xref: /freebsd/sys/amd64/amd64/fpu.c (revision ab2043b81eaba0d7d7769b4a58b2b6d17bc464a3)
1 /*-
2  * Copyright (c) 1990 William Jolitz.
3  * Copyright (c) 1991 The Regents of the University of California.
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 4. Neither the name of the University nor the names of its contributors
15  *    may be used to endorse or promote products derived from this software
16  *    without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  *	from: @(#)npx.c	7.2 (Berkeley) 5/12/91
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/bus.h>
39 #include <sys/kernel.h>
40 #include <sys/lock.h>
41 #include <sys/malloc.h>
42 #include <sys/module.h>
43 #include <sys/mutex.h>
44 #include <sys/mutex.h>
45 #include <sys/proc.h>
46 #include <sys/sysctl.h>
47 #include <machine/bus.h>
48 #include <sys/rman.h>
49 #include <sys/signalvar.h>
50 
51 #include <machine/cputypes.h>
52 #include <machine/frame.h>
53 #include <machine/intr_machdep.h>
54 #include <machine/md_var.h>
55 #include <machine/pcb.h>
56 #include <machine/psl.h>
57 #include <machine/resource.h>
58 #include <machine/specialreg.h>
59 #include <machine/segments.h>
60 #include <machine/ucontext.h>
61 
62 /*
63  * Floating point support.
64  */
65 
66 #if defined(__GNUCLIKE_ASM) && !defined(lint)
67 
68 #define	fldcw(cw)		__asm __volatile("fldcw %0" : : "m" (cw))
69 #define	fnclex()		__asm __volatile("fnclex")
70 #define	fninit()		__asm __volatile("fninit")
71 #define	fnstcw(addr)		__asm __volatile("fnstcw %0" : "=m" (*(addr)))
72 #define	fnstsw(addr)		__asm __volatile("fnstsw %0" : "=am" (*(addr)))
73 #define	fxrstor(addr)		__asm __volatile("fxrstor %0" : : "m" (*(addr)))
74 #define	fxsave(addr)		__asm __volatile("fxsave %0" : "=m" (*(addr)))
75 #define	ldmxcsr(csr)		__asm __volatile("ldmxcsr %0" : : "m" (csr))
76 #define	stmxcsr(addr)		__asm __volatile("stmxcsr %0" : : "m" (*(addr)))
77 
78 static __inline void
79 xrstor(char *addr, uint64_t mask)
80 {
81 	uint32_t low, hi;
82 
83 	low = mask;
84 	hi = mask >> 32;
85 	__asm __volatile("xrstor %0" : : "m" (*addr), "a" (low), "d" (hi));
86 }
87 
88 static __inline void
89 xsave(char *addr, uint64_t mask)
90 {
91 	uint32_t low, hi;
92 
93 	low = mask;
94 	hi = mask >> 32;
95 	__asm __volatile("xsave %0" : "=m" (*addr) : "a" (low), "d" (hi) :
96 	    "memory");
97 }
98 
99 #else	/* !(__GNUCLIKE_ASM && !lint) */
100 
101 void	fldcw(u_short cw);
102 void	fnclex(void);
103 void	fninit(void);
104 void	fnstcw(caddr_t addr);
105 void	fnstsw(caddr_t addr);
106 void	fxsave(caddr_t addr);
107 void	fxrstor(caddr_t addr);
108 void	ldmxcsr(u_int csr);
109 void	stmxcsr(u_int *csr);
110 void	xrstor(char *addr, uint64_t mask);
111 void	xsave(char *addr, uint64_t mask);
112 
113 #endif	/* __GNUCLIKE_ASM && !lint */
114 
115 #define	start_emulating()	load_cr0(rcr0() | CR0_TS)
116 #define	stop_emulating()	clts()
117 
118 CTASSERT(sizeof(struct savefpu) == 512);
119 CTASSERT(sizeof(struct xstate_hdr) == 64);
120 CTASSERT(sizeof(struct savefpu_ymm) == 832);
121 
122 /*
123  * This requirement is to make it easier for asm code to calculate
124  * offset of the fpu save area from the pcb address. FPU save area
125  * must be 64-byte aligned.
126  */
127 CTASSERT(sizeof(struct pcb) % XSAVE_AREA_ALIGN == 0);
128 
129 static	void	fpu_clean_state(void);
130 
131 SYSCTL_INT(_hw, HW_FLOATINGPT, floatingpoint, CTLFLAG_RD,
132     NULL, 1, "Floating point instructions executed in hardware");
133 
134 static int use_xsaveopt;
135 int use_xsave;			/* non-static for cpu_switch.S */
136 uint64_t xsave_mask;		/* the same */
137 static	struct savefpu *fpu_initialstate;
138 
139 struct xsave_area_elm_descr {
140 	u_int	offset;
141 	u_int	size;
142 } *xsave_area_desc;
143 
144 void
145 fpusave(void *addr)
146 {
147 
148 	if (use_xsave)
149 		xsave((char *)addr, xsave_mask);
150 	else
151 		fxsave((char *)addr);
152 }
153 
154 static void
155 fpurestore(void *addr)
156 {
157 
158 	if (use_xsave)
159 		xrstor((char *)addr, xsave_mask);
160 	else
161 		fxrstor((char *)addr);
162 }
163 
164 /*
165  * Enable XSAVE if supported and allowed by user.
166  * Calculate the xsave_mask.
167  */
168 static void
169 fpuinit_bsp1(void)
170 {
171 	u_int cp[4];
172 	uint64_t xsave_mask_user;
173 
174 	if ((cpu_feature2 & CPUID2_XSAVE) != 0) {
175 		use_xsave = 1;
176 		TUNABLE_INT_FETCH("hw.use_xsave", &use_xsave);
177 	}
178 	if (!use_xsave)
179 		return;
180 
181 	cpuid_count(0xd, 0x0, cp);
182 	xsave_mask = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
183 	if ((cp[0] & xsave_mask) != xsave_mask)
184 		panic("CPU0 does not support X87 or SSE: %x", cp[0]);
185 	xsave_mask = ((uint64_t)cp[3] << 32) | cp[0];
186 	xsave_mask_user = xsave_mask;
187 	TUNABLE_ULONG_FETCH("hw.xsave_mask", &xsave_mask_user);
188 	xsave_mask_user |= XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
189 	xsave_mask &= xsave_mask_user;
190 
191 	cpuid_count(0xd, 0x1, cp);
192 	if ((cp[0] & CPUID_EXTSTATE_XSAVEOPT) != 0) {
193 		/*
194 		 * Patch the XSAVE instruction in the cpu_switch code
195 		 * to XSAVEOPT.  We assume that XSAVE encoding used
196 		 * REX byte, and set the bit 4 of the r/m byte.
197 		 */
198 		ctx_switch_xsave[3] |= 0x10;
199 		use_xsaveopt = 1;
200 	}
201 }
202 
203 /*
204  * Calculate the fpu save area size.
205  */
206 static void
207 fpuinit_bsp2(void)
208 {
209 	u_int cp[4];
210 
211 	if (use_xsave) {
212 		cpuid_count(0xd, 0x0, cp);
213 		cpu_max_ext_state_size = cp[1];
214 
215 		/*
216 		 * Reload the cpu_feature2, since we enabled OSXSAVE.
217 		 */
218 		do_cpuid(1, cp);
219 		cpu_feature2 = cp[2];
220 	} else
221 		cpu_max_ext_state_size = sizeof(struct savefpu);
222 }
223 
224 /*
225  * Initialize the floating point unit.
226  */
227 void
228 fpuinit(void)
229 {
230 	register_t saveintr;
231 	u_int mxcsr;
232 	u_short control;
233 
234 	if (IS_BSP())
235 		fpuinit_bsp1();
236 
237 	if (use_xsave) {
238 		load_cr4(rcr4() | CR4_XSAVE);
239 		load_xcr(XCR0, xsave_mask);
240 	}
241 
242 	/*
243 	 * XCR0 shall be set up before CPU can report the save area size.
244 	 */
245 	if (IS_BSP())
246 		fpuinit_bsp2();
247 
248 	/*
249 	 * It is too early for critical_enter() to work on AP.
250 	 */
251 	saveintr = intr_disable();
252 	stop_emulating();
253 	fninit();
254 	control = __INITIAL_FPUCW__;
255 	fldcw(control);
256 	mxcsr = __INITIAL_MXCSR__;
257 	ldmxcsr(mxcsr);
258 	start_emulating();
259 	intr_restore(saveintr);
260 }
261 
262 /*
263  * On the boot CPU we generate a clean state that is used to
264  * initialize the floating point unit when it is first used by a
265  * process.
266  */
267 static void
268 fpuinitstate(void *arg __unused)
269 {
270 	register_t saveintr;
271 	int cp[4], i, max_ext_n;
272 
273 	fpu_initialstate = malloc(cpu_max_ext_state_size, M_DEVBUF,
274 	    M_WAITOK | M_ZERO);
275 	saveintr = intr_disable();
276 	stop_emulating();
277 
278 	fpusave(fpu_initialstate);
279 	if (fpu_initialstate->sv_env.en_mxcsr_mask)
280 		cpu_mxcsr_mask = fpu_initialstate->sv_env.en_mxcsr_mask;
281 	else
282 		cpu_mxcsr_mask = 0xFFBF;
283 
284 	/*
285 	 * The fninit instruction does not modify XMM registers.  The
286 	 * fpusave call dumped the garbage contained in the registers
287 	 * after reset to the initial state saved.  Clear XMM
288 	 * registers file image to make the startup program state and
289 	 * signal handler XMM register content predictable.
290 	 */
291 	bzero(&fpu_initialstate->sv_xmm[0], sizeof(struct xmmacc));
292 
293 	/*
294 	 * Create a table describing the layout of the CPU Extended
295 	 * Save Area.
296 	 */
297 	if (use_xsaveopt) {
298 		max_ext_n = flsl(xsave_mask);
299 		xsave_area_desc = malloc(max_ext_n * sizeof(struct
300 		    xsave_area_elm_descr), M_DEVBUF, M_WAITOK | M_ZERO);
301 		/* x87 state */
302 		xsave_area_desc[0].offset = 0;
303 		xsave_area_desc[0].size = 160;
304 		/* XMM */
305 		xsave_area_desc[1].offset = 160;
306 		xsave_area_desc[1].size = 288 - 160;
307 
308 		for (i = 2; i < max_ext_n; i++) {
309 			cpuid_count(0xd, i, cp);
310 			xsave_area_desc[i].offset = cp[1];
311 			xsave_area_desc[i].size = cp[0];
312 		}
313 	}
314 
315 	start_emulating();
316 	intr_restore(saveintr);
317 }
318 SYSINIT(fpuinitstate, SI_SUB_DRIVERS, SI_ORDER_ANY, fpuinitstate, NULL);
319 
320 /*
321  * Free coprocessor (if we have it).
322  */
323 void
324 fpuexit(struct thread *td)
325 {
326 
327 	critical_enter();
328 	if (curthread == PCPU_GET(fpcurthread)) {
329 		stop_emulating();
330 		fpusave(curpcb->pcb_save);
331 		start_emulating();
332 		PCPU_SET(fpcurthread, 0);
333 	}
334 	critical_exit();
335 }
336 
337 int
338 fpuformat()
339 {
340 
341 	return (_MC_FPFMT_XMM);
342 }
343 
344 /*
345  * The following mechanism is used to ensure that the FPE_... value
346  * that is passed as a trapcode to the signal handler of the user
347  * process does not have more than one bit set.
348  *
349  * Multiple bits may be set if the user process modifies the control
350  * word while a status word bit is already set.  While this is a sign
351  * of bad coding, we have no choise than to narrow them down to one
352  * bit, since we must not send a trapcode that is not exactly one of
353  * the FPE_ macros.
354  *
355  * The mechanism has a static table with 127 entries.  Each combination
356  * of the 7 FPU status word exception bits directly translates to a
357  * position in this table, where a single FPE_... value is stored.
358  * This FPE_... value stored there is considered the "most important"
359  * of the exception bits and will be sent as the signal code.  The
360  * precedence of the bits is based upon Intel Document "Numerical
361  * Applications", Chapter "Special Computational Situations".
362  *
363  * The macro to choose one of these values does these steps: 1) Throw
364  * away status word bits that cannot be masked.  2) Throw away the bits
365  * currently masked in the control word, assuming the user isn't
366  * interested in them anymore.  3) Reinsert status word bit 7 (stack
367  * fault) if it is set, which cannot be masked but must be presered.
368  * 4) Use the remaining bits to point into the trapcode table.
369  *
370  * The 6 maskable bits in order of their preference, as stated in the
371  * above referenced Intel manual:
372  * 1  Invalid operation (FP_X_INV)
373  * 1a   Stack underflow
374  * 1b   Stack overflow
375  * 1c   Operand of unsupported format
376  * 1d   SNaN operand.
377  * 2  QNaN operand (not an exception, irrelavant here)
378  * 3  Any other invalid-operation not mentioned above or zero divide
379  *      (FP_X_INV, FP_X_DZ)
380  * 4  Denormal operand (FP_X_DNML)
381  * 5  Numeric over/underflow (FP_X_OFL, FP_X_UFL)
382  * 6  Inexact result (FP_X_IMP)
383  */
384 static char fpetable[128] = {
385 	0,
386 	FPE_FLTINV,	/*  1 - INV */
387 	FPE_FLTUND,	/*  2 - DNML */
388 	FPE_FLTINV,	/*  3 - INV | DNML */
389 	FPE_FLTDIV,	/*  4 - DZ */
390 	FPE_FLTINV,	/*  5 - INV | DZ */
391 	FPE_FLTDIV,	/*  6 - DNML | DZ */
392 	FPE_FLTINV,	/*  7 - INV | DNML | DZ */
393 	FPE_FLTOVF,	/*  8 - OFL */
394 	FPE_FLTINV,	/*  9 - INV | OFL */
395 	FPE_FLTUND,	/*  A - DNML | OFL */
396 	FPE_FLTINV,	/*  B - INV | DNML | OFL */
397 	FPE_FLTDIV,	/*  C - DZ | OFL */
398 	FPE_FLTINV,	/*  D - INV | DZ | OFL */
399 	FPE_FLTDIV,	/*  E - DNML | DZ | OFL */
400 	FPE_FLTINV,	/*  F - INV | DNML | DZ | OFL */
401 	FPE_FLTUND,	/* 10 - UFL */
402 	FPE_FLTINV,	/* 11 - INV | UFL */
403 	FPE_FLTUND,	/* 12 - DNML | UFL */
404 	FPE_FLTINV,	/* 13 - INV | DNML | UFL */
405 	FPE_FLTDIV,	/* 14 - DZ | UFL */
406 	FPE_FLTINV,	/* 15 - INV | DZ | UFL */
407 	FPE_FLTDIV,	/* 16 - DNML | DZ | UFL */
408 	FPE_FLTINV,	/* 17 - INV | DNML | DZ | UFL */
409 	FPE_FLTOVF,	/* 18 - OFL | UFL */
410 	FPE_FLTINV,	/* 19 - INV | OFL | UFL */
411 	FPE_FLTUND,	/* 1A - DNML | OFL | UFL */
412 	FPE_FLTINV,	/* 1B - INV | DNML | OFL | UFL */
413 	FPE_FLTDIV,	/* 1C - DZ | OFL | UFL */
414 	FPE_FLTINV,	/* 1D - INV | DZ | OFL | UFL */
415 	FPE_FLTDIV,	/* 1E - DNML | DZ | OFL | UFL */
416 	FPE_FLTINV,	/* 1F - INV | DNML | DZ | OFL | UFL */
417 	FPE_FLTRES,	/* 20 - IMP */
418 	FPE_FLTINV,	/* 21 - INV | IMP */
419 	FPE_FLTUND,	/* 22 - DNML | IMP */
420 	FPE_FLTINV,	/* 23 - INV | DNML | IMP */
421 	FPE_FLTDIV,	/* 24 - DZ | IMP */
422 	FPE_FLTINV,	/* 25 - INV | DZ | IMP */
423 	FPE_FLTDIV,	/* 26 - DNML | DZ | IMP */
424 	FPE_FLTINV,	/* 27 - INV | DNML | DZ | IMP */
425 	FPE_FLTOVF,	/* 28 - OFL | IMP */
426 	FPE_FLTINV,	/* 29 - INV | OFL | IMP */
427 	FPE_FLTUND,	/* 2A - DNML | OFL | IMP */
428 	FPE_FLTINV,	/* 2B - INV | DNML | OFL | IMP */
429 	FPE_FLTDIV,	/* 2C - DZ | OFL | IMP */
430 	FPE_FLTINV,	/* 2D - INV | DZ | OFL | IMP */
431 	FPE_FLTDIV,	/* 2E - DNML | DZ | OFL | IMP */
432 	FPE_FLTINV,	/* 2F - INV | DNML | DZ | OFL | IMP */
433 	FPE_FLTUND,	/* 30 - UFL | IMP */
434 	FPE_FLTINV,	/* 31 - INV | UFL | IMP */
435 	FPE_FLTUND,	/* 32 - DNML | UFL | IMP */
436 	FPE_FLTINV,	/* 33 - INV | DNML | UFL | IMP */
437 	FPE_FLTDIV,	/* 34 - DZ | UFL | IMP */
438 	FPE_FLTINV,	/* 35 - INV | DZ | UFL | IMP */
439 	FPE_FLTDIV,	/* 36 - DNML | DZ | UFL | IMP */
440 	FPE_FLTINV,	/* 37 - INV | DNML | DZ | UFL | IMP */
441 	FPE_FLTOVF,	/* 38 - OFL | UFL | IMP */
442 	FPE_FLTINV,	/* 39 - INV | OFL | UFL | IMP */
443 	FPE_FLTUND,	/* 3A - DNML | OFL | UFL | IMP */
444 	FPE_FLTINV,	/* 3B - INV | DNML | OFL | UFL | IMP */
445 	FPE_FLTDIV,	/* 3C - DZ | OFL | UFL | IMP */
446 	FPE_FLTINV,	/* 3D - INV | DZ | OFL | UFL | IMP */
447 	FPE_FLTDIV,	/* 3E - DNML | DZ | OFL | UFL | IMP */
448 	FPE_FLTINV,	/* 3F - INV | DNML | DZ | OFL | UFL | IMP */
449 	FPE_FLTSUB,	/* 40 - STK */
450 	FPE_FLTSUB,	/* 41 - INV | STK */
451 	FPE_FLTUND,	/* 42 - DNML | STK */
452 	FPE_FLTSUB,	/* 43 - INV | DNML | STK */
453 	FPE_FLTDIV,	/* 44 - DZ | STK */
454 	FPE_FLTSUB,	/* 45 - INV | DZ | STK */
455 	FPE_FLTDIV,	/* 46 - DNML | DZ | STK */
456 	FPE_FLTSUB,	/* 47 - INV | DNML | DZ | STK */
457 	FPE_FLTOVF,	/* 48 - OFL | STK */
458 	FPE_FLTSUB,	/* 49 - INV | OFL | STK */
459 	FPE_FLTUND,	/* 4A - DNML | OFL | STK */
460 	FPE_FLTSUB,	/* 4B - INV | DNML | OFL | STK */
461 	FPE_FLTDIV,	/* 4C - DZ | OFL | STK */
462 	FPE_FLTSUB,	/* 4D - INV | DZ | OFL | STK */
463 	FPE_FLTDIV,	/* 4E - DNML | DZ | OFL | STK */
464 	FPE_FLTSUB,	/* 4F - INV | DNML | DZ | OFL | STK */
465 	FPE_FLTUND,	/* 50 - UFL | STK */
466 	FPE_FLTSUB,	/* 51 - INV | UFL | STK */
467 	FPE_FLTUND,	/* 52 - DNML | UFL | STK */
468 	FPE_FLTSUB,	/* 53 - INV | DNML | UFL | STK */
469 	FPE_FLTDIV,	/* 54 - DZ | UFL | STK */
470 	FPE_FLTSUB,	/* 55 - INV | DZ | UFL | STK */
471 	FPE_FLTDIV,	/* 56 - DNML | DZ | UFL | STK */
472 	FPE_FLTSUB,	/* 57 - INV | DNML | DZ | UFL | STK */
473 	FPE_FLTOVF,	/* 58 - OFL | UFL | STK */
474 	FPE_FLTSUB,	/* 59 - INV | OFL | UFL | STK */
475 	FPE_FLTUND,	/* 5A - DNML | OFL | UFL | STK */
476 	FPE_FLTSUB,	/* 5B - INV | DNML | OFL | UFL | STK */
477 	FPE_FLTDIV,	/* 5C - DZ | OFL | UFL | STK */
478 	FPE_FLTSUB,	/* 5D - INV | DZ | OFL | UFL | STK */
479 	FPE_FLTDIV,	/* 5E - DNML | DZ | OFL | UFL | STK */
480 	FPE_FLTSUB,	/* 5F - INV | DNML | DZ | OFL | UFL | STK */
481 	FPE_FLTRES,	/* 60 - IMP | STK */
482 	FPE_FLTSUB,	/* 61 - INV | IMP | STK */
483 	FPE_FLTUND,	/* 62 - DNML | IMP | STK */
484 	FPE_FLTSUB,	/* 63 - INV | DNML | IMP | STK */
485 	FPE_FLTDIV,	/* 64 - DZ | IMP | STK */
486 	FPE_FLTSUB,	/* 65 - INV | DZ | IMP | STK */
487 	FPE_FLTDIV,	/* 66 - DNML | DZ | IMP | STK */
488 	FPE_FLTSUB,	/* 67 - INV | DNML | DZ | IMP | STK */
489 	FPE_FLTOVF,	/* 68 - OFL | IMP | STK */
490 	FPE_FLTSUB,	/* 69 - INV | OFL | IMP | STK */
491 	FPE_FLTUND,	/* 6A - DNML | OFL | IMP | STK */
492 	FPE_FLTSUB,	/* 6B - INV | DNML | OFL | IMP | STK */
493 	FPE_FLTDIV,	/* 6C - DZ | OFL | IMP | STK */
494 	FPE_FLTSUB,	/* 6D - INV | DZ | OFL | IMP | STK */
495 	FPE_FLTDIV,	/* 6E - DNML | DZ | OFL | IMP | STK */
496 	FPE_FLTSUB,	/* 6F - INV | DNML | DZ | OFL | IMP | STK */
497 	FPE_FLTUND,	/* 70 - UFL | IMP | STK */
498 	FPE_FLTSUB,	/* 71 - INV | UFL | IMP | STK */
499 	FPE_FLTUND,	/* 72 - DNML | UFL | IMP | STK */
500 	FPE_FLTSUB,	/* 73 - INV | DNML | UFL | IMP | STK */
501 	FPE_FLTDIV,	/* 74 - DZ | UFL | IMP | STK */
502 	FPE_FLTSUB,	/* 75 - INV | DZ | UFL | IMP | STK */
503 	FPE_FLTDIV,	/* 76 - DNML | DZ | UFL | IMP | STK */
504 	FPE_FLTSUB,	/* 77 - INV | DNML | DZ | UFL | IMP | STK */
505 	FPE_FLTOVF,	/* 78 - OFL | UFL | IMP | STK */
506 	FPE_FLTSUB,	/* 79 - INV | OFL | UFL | IMP | STK */
507 	FPE_FLTUND,	/* 7A - DNML | OFL | UFL | IMP | STK */
508 	FPE_FLTSUB,	/* 7B - INV | DNML | OFL | UFL | IMP | STK */
509 	FPE_FLTDIV,	/* 7C - DZ | OFL | UFL | IMP | STK */
510 	FPE_FLTSUB,	/* 7D - INV | DZ | OFL | UFL | IMP | STK */
511 	FPE_FLTDIV,	/* 7E - DNML | DZ | OFL | UFL | IMP | STK */
512 	FPE_FLTSUB,	/* 7F - INV | DNML | DZ | OFL | UFL | IMP | STK */
513 };
514 
515 /*
516  * Read the FP status and control words, then generate si_code value
517  * for SIGFPE.  The error code chosen will be one of the
518  * FPE_... macros.  It will be sent as the second argument to old
519  * BSD-style signal handlers and as "siginfo_t->si_code" (second
520  * argument) to SA_SIGINFO signal handlers.
521  *
522  * Some time ago, we cleared the x87 exceptions with FNCLEX there.
523  * Clearing exceptions was necessary mainly to avoid IRQ13 bugs.  The
524  * usermode code which understands the FPU hardware enough to enable
525  * the exceptions, can also handle clearing the exception state in the
526  * handler.  The only consequence of not clearing the exception is the
527  * rethrow of the SIGFPE on return from the signal handler and
528  * reexecution of the corresponding instruction.
529  *
530  * For XMM traps, the exceptions were never cleared.
531  */
532 int
533 fputrap_x87(void)
534 {
535 	struct savefpu *pcb_save;
536 	u_short control, status;
537 
538 	critical_enter();
539 
540 	/*
541 	 * Interrupt handling (for another interrupt) may have pushed the
542 	 * state to memory.  Fetch the relevant parts of the state from
543 	 * wherever they are.
544 	 */
545 	if (PCPU_GET(fpcurthread) != curthread) {
546 		pcb_save = curpcb->pcb_save;
547 		control = pcb_save->sv_env.en_cw;
548 		status = pcb_save->sv_env.en_sw;
549 	} else {
550 		fnstcw(&control);
551 		fnstsw(&status);
552 	}
553 
554 	critical_exit();
555 	return (fpetable[status & ((~control & 0x3f) | 0x40)]);
556 }
557 
558 int
559 fputrap_sse(void)
560 {
561 	u_int mxcsr;
562 
563 	critical_enter();
564 	if (PCPU_GET(fpcurthread) != curthread)
565 		mxcsr = curpcb->pcb_save->sv_env.en_mxcsr;
566 	else
567 		stmxcsr(&mxcsr);
568 	critical_exit();
569 	return (fpetable[(mxcsr & (~mxcsr >> 7)) & 0x3f]);
570 }
571 
572 /*
573  * Implement device not available (DNA) exception
574  *
575  * It would be better to switch FP context here (if curthread != fpcurthread)
576  * and not necessarily for every context switch, but it is too hard to
577  * access foreign pcb's.
578  */
579 
580 static int err_count = 0;
581 
582 void
583 fpudna(void)
584 {
585 
586 	critical_enter();
587 	if (PCPU_GET(fpcurthread) == curthread) {
588 		printf("fpudna: fpcurthread == curthread %d times\n",
589 		    ++err_count);
590 		stop_emulating();
591 		critical_exit();
592 		return;
593 	}
594 	if (PCPU_GET(fpcurthread) != NULL) {
595 		printf("fpudna: fpcurthread = %p (%d), curthread = %p (%d)\n",
596 		       PCPU_GET(fpcurthread),
597 		       PCPU_GET(fpcurthread)->td_proc->p_pid,
598 		       curthread, curthread->td_proc->p_pid);
599 		panic("fpudna");
600 	}
601 	stop_emulating();
602 	/*
603 	 * Record new context early in case frstor causes a trap.
604 	 */
605 	PCPU_SET(fpcurthread, curthread);
606 
607 	fpu_clean_state();
608 
609 	if ((curpcb->pcb_flags & PCB_FPUINITDONE) == 0) {
610 		/*
611 		 * This is the first time this thread has used the FPU or
612 		 * the PCB doesn't contain a clean FPU state.  Explicitly
613 		 * load an initial state.
614 		 *
615 		 * We prefer to restore the state from the actual save
616 		 * area in PCB instead of directly loading from
617 		 * fpu_initialstate, to ignite the XSAVEOPT
618 		 * tracking engine.
619 		 */
620 		bcopy(fpu_initialstate, curpcb->pcb_save, cpu_max_ext_state_size);
621 		fpurestore(curpcb->pcb_save);
622 		if (curpcb->pcb_initial_fpucw != __INITIAL_FPUCW__)
623 			fldcw(curpcb->pcb_initial_fpucw);
624 		if (PCB_USER_FPU(curpcb))
625 			set_pcb_flags(curpcb,
626 			    PCB_FPUINITDONE | PCB_USERFPUINITDONE);
627 		else
628 			set_pcb_flags(curpcb, PCB_FPUINITDONE);
629 	} else
630 		fpurestore(curpcb->pcb_save);
631 	critical_exit();
632 }
633 
634 void
635 fpudrop()
636 {
637 	struct thread *td;
638 
639 	td = PCPU_GET(fpcurthread);
640 	KASSERT(td == curthread, ("fpudrop: fpcurthread != curthread"));
641 	CRITICAL_ASSERT(td);
642 	PCPU_SET(fpcurthread, NULL);
643 	clear_pcb_flags(td->td_pcb, PCB_FPUINITDONE);
644 	start_emulating();
645 }
646 
647 /*
648  * Get the user state of the FPU into pcb->pcb_user_save without
649  * dropping ownership (if possible).  It returns the FPU ownership
650  * status.
651  */
652 int
653 fpugetregs(struct thread *td)
654 {
655 	struct pcb *pcb;
656 	uint64_t *xstate_bv, bit;
657 	char *sa;
658 	int max_ext_n, i;
659 
660 	pcb = td->td_pcb;
661 	if ((pcb->pcb_flags & PCB_USERFPUINITDONE) == 0) {
662 		bcopy(fpu_initialstate, get_pcb_user_save_pcb(pcb),
663 		    cpu_max_ext_state_size);
664 		get_pcb_user_save_pcb(pcb)->sv_env.en_cw =
665 		    pcb->pcb_initial_fpucw;
666 		fpuuserinited(td);
667 		return (_MC_FPOWNED_PCB);
668 	}
669 	critical_enter();
670 	if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
671 		fpusave(get_pcb_user_save_pcb(pcb));
672 		critical_exit();
673 		return (_MC_FPOWNED_FPU);
674 	} else {
675 		critical_exit();
676 		if (use_xsaveopt) {
677 			/*
678 			 * Handle partially saved state.
679 			 */
680 			sa = (char *)get_pcb_user_save_pcb(pcb);
681 			xstate_bv = (uint64_t *)(sa + sizeof(struct savefpu) +
682 			    offsetof(struct xstate_hdr, xstate_bv));
683 			max_ext_n = flsl(xsave_mask);
684 			for (i = 0; i < max_ext_n; i++) {
685 				bit = 1 << i;
686 				if ((*xstate_bv & bit) != 0)
687 					continue;
688 				bcopy((char *)fpu_initialstate +
689 				    xsave_area_desc[i].offset,
690 				    sa + xsave_area_desc[i].offset,
691 				    xsave_area_desc[i].size);
692 				*xstate_bv |= bit;
693 			}
694 		}
695 		return (_MC_FPOWNED_PCB);
696 	}
697 }
698 
699 void
700 fpuuserinited(struct thread *td)
701 {
702 	struct pcb *pcb;
703 
704 	pcb = td->td_pcb;
705 	if (PCB_USER_FPU(pcb))
706 		set_pcb_flags(pcb,
707 		    PCB_FPUINITDONE | PCB_USERFPUINITDONE);
708 	else
709 		set_pcb_flags(pcb, PCB_FPUINITDONE);
710 }
711 
712 int
713 fpusetxstate(struct thread *td, char *xfpustate, size_t xfpustate_size)
714 {
715 	struct xstate_hdr *hdr, *ehdr;
716 	size_t len, max_len;
717 	uint64_t bv;
718 
719 	/* XXXKIB should we clear all extended state in xstate_bv instead ? */
720 	if (xfpustate == NULL)
721 		return (0);
722 	if (!use_xsave)
723 		return (EOPNOTSUPP);
724 
725 	len = xfpustate_size;
726 	if (len < sizeof(struct xstate_hdr))
727 		return (EINVAL);
728 	max_len = cpu_max_ext_state_size - sizeof(struct savefpu);
729 	if (len > max_len)
730 		return (EINVAL);
731 
732 	ehdr = (struct xstate_hdr *)xfpustate;
733 	bv = ehdr->xstate_bv;
734 
735 	/*
736 	 * Avoid #gp.
737 	 */
738 	if (bv & ~xsave_mask)
739 		return (EINVAL);
740 	if ((bv & (XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE)) !=
741 	    (XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE))
742 		return (EINVAL);
743 
744 	hdr = (struct xstate_hdr *)(get_pcb_user_save_td(td) + 1);
745 
746 	hdr->xstate_bv = bv;
747 	bcopy(xfpustate + sizeof(struct xstate_hdr),
748 	    (char *)(hdr + 1), len - sizeof(struct xstate_hdr));
749 
750 	return (0);
751 }
752 
753 /*
754  * Set the state of the FPU.
755  */
756 int
757 fpusetregs(struct thread *td, struct savefpu *addr, char *xfpustate,
758     size_t xfpustate_size)
759 {
760 	struct pcb *pcb;
761 	int error;
762 
763 	pcb = td->td_pcb;
764 	critical_enter();
765 	if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
766 		error = fpusetxstate(td, xfpustate, xfpustate_size);
767 		if (error != 0) {
768 			critical_exit();
769 			return (error);
770 		}
771 		bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
772 		fpurestore(get_pcb_user_save_td(td));
773 		critical_exit();
774 		set_pcb_flags(pcb, PCB_FPUINITDONE | PCB_USERFPUINITDONE);
775 	} else {
776 		critical_exit();
777 		error = fpusetxstate(td, xfpustate, xfpustate_size);
778 		if (error != 0)
779 			return (error);
780 		bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
781 		fpuuserinited(td);
782 	}
783 	return (0);
784 }
785 
786 /*
787  * On AuthenticAMD processors, the fxrstor instruction does not restore
788  * the x87's stored last instruction pointer, last data pointer, and last
789  * opcode values, except in the rare case in which the exception summary
790  * (ES) bit in the x87 status word is set to 1.
791  *
792  * In order to avoid leaking this information across processes, we clean
793  * these values by performing a dummy load before executing fxrstor().
794  */
795 static void
796 fpu_clean_state(void)
797 {
798 	static float dummy_variable = 0.0;
799 	u_short status;
800 
801 	/*
802 	 * Clear the ES bit in the x87 status word if it is currently
803 	 * set, in order to avoid causing a fault in the upcoming load.
804 	 */
805 	fnstsw(&status);
806 	if (status & 0x80)
807 		fnclex();
808 
809 	/*
810 	 * Load the dummy variable into the x87 stack.  This mangles
811 	 * the x87 stack, but we don't care since we're about to call
812 	 * fxrstor() anyway.
813 	 */
814 	__asm __volatile("ffree %%st(7); flds %0" : : "m" (dummy_variable));
815 }
816 
817 /*
818  * This really sucks.  We want the acpi version only, but it requires
819  * the isa_if.h file in order to get the definitions.
820  */
821 #include "opt_isa.h"
822 #ifdef DEV_ISA
823 #include <isa/isavar.h>
824 /*
825  * This sucks up the legacy ISA support assignments from PNPBIOS/ACPI.
826  */
827 static struct isa_pnp_id fpupnp_ids[] = {
828 	{ 0x040cd041, "Legacy ISA coprocessor support" }, /* PNP0C04 */
829 	{ 0 }
830 };
831 
832 static int
833 fpupnp_probe(device_t dev)
834 {
835 	int result;
836 
837 	result = ISA_PNP_PROBE(device_get_parent(dev), dev, fpupnp_ids);
838 	if (result <= 0)
839 		device_quiet(dev);
840 	return (result);
841 }
842 
843 static int
844 fpupnp_attach(device_t dev)
845 {
846 
847 	return (0);
848 }
849 
850 static device_method_t fpupnp_methods[] = {
851 	/* Device interface */
852 	DEVMETHOD(device_probe,		fpupnp_probe),
853 	DEVMETHOD(device_attach,	fpupnp_attach),
854 	DEVMETHOD(device_detach,	bus_generic_detach),
855 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
856 	DEVMETHOD(device_suspend,	bus_generic_suspend),
857 	DEVMETHOD(device_resume,	bus_generic_resume),
858 
859 	{ 0, 0 }
860 };
861 
862 static driver_t fpupnp_driver = {
863 	"fpupnp",
864 	fpupnp_methods,
865 	1,			/* no softc */
866 };
867 
868 static devclass_t fpupnp_devclass;
869 
870 DRIVER_MODULE(fpupnp, acpi, fpupnp_driver, fpupnp_devclass, 0, 0);
871 #endif	/* DEV_ISA */
872 
873 static MALLOC_DEFINE(M_FPUKERN_CTX, "fpukern_ctx",
874     "Kernel contexts for FPU state");
875 
876 #define	FPU_KERN_CTX_FPUINITDONE 0x01
877 
878 struct fpu_kern_ctx {
879 	struct savefpu *prev;
880 	uint32_t flags;
881 	char hwstate1[];
882 };
883 
884 struct fpu_kern_ctx *
885 fpu_kern_alloc_ctx(u_int flags)
886 {
887 	struct fpu_kern_ctx *res;
888 	size_t sz;
889 
890 	sz = sizeof(struct fpu_kern_ctx) + XSAVE_AREA_ALIGN +
891 	    cpu_max_ext_state_size;
892 	res = malloc(sz, M_FPUKERN_CTX, ((flags & FPU_KERN_NOWAIT) ?
893 	    M_NOWAIT : M_WAITOK) | M_ZERO);
894 	return (res);
895 }
896 
897 void
898 fpu_kern_free_ctx(struct fpu_kern_ctx *ctx)
899 {
900 
901 	/* XXXKIB clear the memory ? */
902 	free(ctx, M_FPUKERN_CTX);
903 }
904 
905 static struct savefpu *
906 fpu_kern_ctx_savefpu(struct fpu_kern_ctx *ctx)
907 {
908 	vm_offset_t p;
909 
910 	p = (vm_offset_t)&ctx->hwstate1;
911 	p = roundup2(p, XSAVE_AREA_ALIGN);
912 	return ((struct savefpu *)p);
913 }
914 
915 int
916 fpu_kern_enter(struct thread *td, struct fpu_kern_ctx *ctx, u_int flags)
917 {
918 	struct pcb *pcb;
919 
920 	pcb = td->td_pcb;
921 	KASSERT(!PCB_USER_FPU(pcb) || pcb->pcb_save ==
922 	    get_pcb_user_save_pcb(pcb), ("mangled pcb_save"));
923 	ctx->flags = 0;
924 	if ((pcb->pcb_flags & PCB_FPUINITDONE) != 0)
925 		ctx->flags |= FPU_KERN_CTX_FPUINITDONE;
926 	fpuexit(td);
927 	ctx->prev = pcb->pcb_save;
928 	pcb->pcb_save = fpu_kern_ctx_savefpu(ctx);
929 	set_pcb_flags(pcb, PCB_KERNFPU);
930 	clear_pcb_flags(pcb, PCB_FPUINITDONE);
931 	return (0);
932 }
933 
934 int
935 fpu_kern_leave(struct thread *td, struct fpu_kern_ctx *ctx)
936 {
937 	struct pcb *pcb;
938 
939 	pcb = td->td_pcb;
940 	critical_enter();
941 	if (curthread == PCPU_GET(fpcurthread))
942 		fpudrop();
943 	critical_exit();
944 	pcb->pcb_save = ctx->prev;
945 	if (pcb->pcb_save == get_pcb_user_save_pcb(pcb)) {
946 		if ((pcb->pcb_flags & PCB_USERFPUINITDONE) != 0) {
947 			set_pcb_flags(pcb, PCB_FPUINITDONE);
948 			clear_pcb_flags(pcb, PCB_KERNFPU);
949 		} else
950 			clear_pcb_flags(pcb, PCB_FPUINITDONE | PCB_KERNFPU);
951 	} else {
952 		if ((ctx->flags & FPU_KERN_CTX_FPUINITDONE) != 0)
953 			set_pcb_flags(pcb, PCB_FPUINITDONE);
954 		else
955 			clear_pcb_flags(pcb, PCB_FPUINITDONE);
956 		KASSERT(!PCB_USER_FPU(pcb), ("unpaired fpu_kern_leave"));
957 	}
958 	return (0);
959 }
960 
961 int
962 fpu_kern_thread(u_int flags)
963 {
964 
965 	KASSERT((curthread->td_pflags & TDP_KTHREAD) != 0,
966 	    ("Only kthread may use fpu_kern_thread"));
967 	KASSERT(curpcb->pcb_save == get_pcb_user_save_pcb(curpcb),
968 	    ("mangled pcb_save"));
969 	KASSERT(PCB_USER_FPU(curpcb), ("recursive call"));
970 
971 	set_pcb_flags(curpcb, PCB_KERNFPU);
972 	return (0);
973 }
974 
975 int
976 is_fpu_kern_thread(u_int flags)
977 {
978 
979 	if ((curthread->td_pflags & TDP_KTHREAD) == 0)
980 		return (0);
981 	return ((curpcb->pcb_flags & PCB_KERNFPU) != 0);
982 }
983