1 /*- 2 * Copyright (c) 1990 William Jolitz. 3 * Copyright (c) 1991 The Regents of the University of California. 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 4. Neither the name of the University nor the names of its contributors 15 * may be used to endorse or promote products derived from this software 16 * without specific prior written permission. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 * 30 * from: @(#)npx.c 7.2 (Berkeley) 5/12/91 31 */ 32 33 #include <sys/cdefs.h> 34 __FBSDID("$FreeBSD$"); 35 36 #include <sys/param.h> 37 #include <sys/systm.h> 38 #include <sys/bus.h> 39 #include <sys/kernel.h> 40 #include <sys/lock.h> 41 #include <sys/malloc.h> 42 #include <sys/module.h> 43 #include <sys/mutex.h> 44 #include <sys/mutex.h> 45 #include <sys/proc.h> 46 #include <sys/sysctl.h> 47 #include <machine/bus.h> 48 #include <sys/rman.h> 49 #include <sys/signalvar.h> 50 51 #include <machine/cputypes.h> 52 #include <machine/frame.h> 53 #include <machine/intr_machdep.h> 54 #include <machine/md_var.h> 55 #include <machine/pcb.h> 56 #include <machine/psl.h> 57 #include <machine/resource.h> 58 #include <machine/specialreg.h> 59 #include <machine/segments.h> 60 #include <machine/ucontext.h> 61 62 /* 63 * Floating point support. 64 */ 65 66 #if defined(__GNUCLIKE_ASM) && !defined(lint) 67 68 #define fldcw(cw) __asm __volatile("fldcw %0" : : "m" (cw)) 69 #define fnclex() __asm __volatile("fnclex") 70 #define fninit() __asm __volatile("fninit") 71 #define fnstcw(addr) __asm __volatile("fnstcw %0" : "=m" (*(addr))) 72 #define fnstsw(addr) __asm __volatile("fnstsw %0" : "=am" (*(addr))) 73 #define fxrstor(addr) __asm __volatile("fxrstor %0" : : "m" (*(addr))) 74 #define fxsave(addr) __asm __volatile("fxsave %0" : "=m" (*(addr))) 75 #define ldmxcsr(csr) __asm __volatile("ldmxcsr %0" : : "m" (csr)) 76 #define stmxcsr(addr) __asm __volatile("stmxcsr %0" : : "m" (*(addr))) 77 78 static __inline void 79 xrstor(char *addr, uint64_t mask) 80 { 81 uint32_t low, hi; 82 83 low = mask; 84 hi = mask >> 32; 85 __asm __volatile("xrstor %0" : : "m" (*addr), "a" (low), "d" (hi)); 86 } 87 88 static __inline void 89 xsave(char *addr, uint64_t mask) 90 { 91 uint32_t low, hi; 92 93 low = mask; 94 hi = mask >> 32; 95 __asm __volatile("xsave %0" : "=m" (*addr) : "a" (low), "d" (hi) : 96 "memory"); 97 } 98 99 #else /* !(__GNUCLIKE_ASM && !lint) */ 100 101 void fldcw(u_short cw); 102 void fnclex(void); 103 void fninit(void); 104 void fnstcw(caddr_t addr); 105 void fnstsw(caddr_t addr); 106 void fxsave(caddr_t addr); 107 void fxrstor(caddr_t addr); 108 void ldmxcsr(u_int csr); 109 void stmxcsr(u_int *csr); 110 void xrstor(char *addr, uint64_t mask); 111 void xsave(char *addr, uint64_t mask); 112 113 #endif /* __GNUCLIKE_ASM && !lint */ 114 115 #define start_emulating() load_cr0(rcr0() | CR0_TS) 116 #define stop_emulating() clts() 117 118 CTASSERT(sizeof(struct savefpu) == 512); 119 CTASSERT(sizeof(struct xstate_hdr) == 64); 120 CTASSERT(sizeof(struct savefpu_ymm) == 832); 121 122 /* 123 * This requirement is to make it easier for asm code to calculate 124 * offset of the fpu save area from the pcb address. FPU save area 125 * must be 64-byte aligned. 126 */ 127 CTASSERT(sizeof(struct pcb) % XSAVE_AREA_ALIGN == 0); 128 129 static void fpu_clean_state(void); 130 131 SYSCTL_INT(_hw, HW_FLOATINGPT, floatingpoint, CTLFLAG_RD, 132 NULL, 1, "Floating point instructions executed in hardware"); 133 134 static int use_xsaveopt; 135 int use_xsave; /* non-static for cpu_switch.S */ 136 uint64_t xsave_mask; /* the same */ 137 static struct savefpu *fpu_initialstate; 138 139 struct xsave_area_elm_descr { 140 u_int offset; 141 u_int size; 142 } *xsave_area_desc; 143 144 void 145 fpusave(void *addr) 146 { 147 148 if (use_xsave) 149 xsave((char *)addr, xsave_mask); 150 else 151 fxsave((char *)addr); 152 } 153 154 static void 155 fpurestore(void *addr) 156 { 157 158 if (use_xsave) 159 xrstor((char *)addr, xsave_mask); 160 else 161 fxrstor((char *)addr); 162 } 163 164 /* 165 * Enable XSAVE if supported and allowed by user. 166 * Calculate the xsave_mask. 167 */ 168 static void 169 fpuinit_bsp1(void) 170 { 171 u_int cp[4]; 172 uint64_t xsave_mask_user; 173 174 if ((cpu_feature2 & CPUID2_XSAVE) != 0) { 175 use_xsave = 1; 176 TUNABLE_INT_FETCH("hw.use_xsave", &use_xsave); 177 } 178 if (!use_xsave) 179 return; 180 181 cpuid_count(0xd, 0x0, cp); 182 xsave_mask = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE; 183 if ((cp[0] & xsave_mask) != xsave_mask) 184 panic("CPU0 does not support X87 or SSE: %x", cp[0]); 185 xsave_mask = ((uint64_t)cp[3] << 32) | cp[0]; 186 xsave_mask_user = xsave_mask; 187 TUNABLE_ULONG_FETCH("hw.xsave_mask", &xsave_mask_user); 188 xsave_mask_user |= XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE; 189 xsave_mask &= xsave_mask_user; 190 191 cpuid_count(0xd, 0x1, cp); 192 if ((cp[0] & CPUID_EXTSTATE_XSAVEOPT) != 0) { 193 /* 194 * Patch the XSAVE instruction in the cpu_switch code 195 * to XSAVEOPT. We assume that XSAVE encoding used 196 * REX byte, and set the bit 4 of the r/m byte. 197 */ 198 ctx_switch_xsave[3] |= 0x10; 199 use_xsaveopt = 1; 200 } 201 } 202 203 /* 204 * Calculate the fpu save area size. 205 */ 206 static void 207 fpuinit_bsp2(void) 208 { 209 u_int cp[4]; 210 211 if (use_xsave) { 212 cpuid_count(0xd, 0x0, cp); 213 cpu_max_ext_state_size = cp[1]; 214 215 /* 216 * Reload the cpu_feature2, since we enabled OSXSAVE. 217 */ 218 do_cpuid(1, cp); 219 cpu_feature2 = cp[2]; 220 } else 221 cpu_max_ext_state_size = sizeof(struct savefpu); 222 } 223 224 /* 225 * Initialize the floating point unit. 226 */ 227 void 228 fpuinit(void) 229 { 230 register_t saveintr; 231 u_int mxcsr; 232 u_short control; 233 234 if (IS_BSP()) 235 fpuinit_bsp1(); 236 237 if (use_xsave) { 238 load_cr4(rcr4() | CR4_XSAVE); 239 load_xcr(XCR0, xsave_mask); 240 } 241 242 /* 243 * XCR0 shall be set up before CPU can report the save area size. 244 */ 245 if (IS_BSP()) 246 fpuinit_bsp2(); 247 248 /* 249 * It is too early for critical_enter() to work on AP. 250 */ 251 saveintr = intr_disable(); 252 stop_emulating(); 253 fninit(); 254 control = __INITIAL_FPUCW__; 255 fldcw(control); 256 mxcsr = __INITIAL_MXCSR__; 257 ldmxcsr(mxcsr); 258 start_emulating(); 259 intr_restore(saveintr); 260 } 261 262 /* 263 * On the boot CPU we generate a clean state that is used to 264 * initialize the floating point unit when it is first used by a 265 * process. 266 */ 267 static void 268 fpuinitstate(void *arg __unused) 269 { 270 register_t saveintr; 271 int cp[4], i, max_ext_n; 272 273 fpu_initialstate = malloc(cpu_max_ext_state_size, M_DEVBUF, 274 M_WAITOK | M_ZERO); 275 saveintr = intr_disable(); 276 stop_emulating(); 277 278 fpusave(fpu_initialstate); 279 if (fpu_initialstate->sv_env.en_mxcsr_mask) 280 cpu_mxcsr_mask = fpu_initialstate->sv_env.en_mxcsr_mask; 281 else 282 cpu_mxcsr_mask = 0xFFBF; 283 284 /* 285 * The fninit instruction does not modify XMM registers. The 286 * fpusave call dumped the garbage contained in the registers 287 * after reset to the initial state saved. Clear XMM 288 * registers file image to make the startup program state and 289 * signal handler XMM register content predictable. 290 */ 291 bzero(&fpu_initialstate->sv_xmm[0], sizeof(struct xmmacc)); 292 293 /* 294 * Create a table describing the layout of the CPU Extended 295 * Save Area. 296 */ 297 if (use_xsaveopt) { 298 max_ext_n = flsl(xsave_mask); 299 xsave_area_desc = malloc(max_ext_n * sizeof(struct 300 xsave_area_elm_descr), M_DEVBUF, M_WAITOK | M_ZERO); 301 /* x87 state */ 302 xsave_area_desc[0].offset = 0; 303 xsave_area_desc[0].size = 160; 304 /* XMM */ 305 xsave_area_desc[1].offset = 160; 306 xsave_area_desc[1].size = 288 - 160; 307 308 for (i = 2; i < max_ext_n; i++) { 309 cpuid_count(0xd, i, cp); 310 xsave_area_desc[i].offset = cp[1]; 311 xsave_area_desc[i].size = cp[0]; 312 } 313 } 314 315 start_emulating(); 316 intr_restore(saveintr); 317 } 318 SYSINIT(fpuinitstate, SI_SUB_DRIVERS, SI_ORDER_ANY, fpuinitstate, NULL); 319 320 /* 321 * Free coprocessor (if we have it). 322 */ 323 void 324 fpuexit(struct thread *td) 325 { 326 327 critical_enter(); 328 if (curthread == PCPU_GET(fpcurthread)) { 329 stop_emulating(); 330 fpusave(curpcb->pcb_save); 331 start_emulating(); 332 PCPU_SET(fpcurthread, 0); 333 } 334 critical_exit(); 335 } 336 337 int 338 fpuformat() 339 { 340 341 return (_MC_FPFMT_XMM); 342 } 343 344 /* 345 * The following mechanism is used to ensure that the FPE_... value 346 * that is passed as a trapcode to the signal handler of the user 347 * process does not have more than one bit set. 348 * 349 * Multiple bits may be set if the user process modifies the control 350 * word while a status word bit is already set. While this is a sign 351 * of bad coding, we have no choise than to narrow them down to one 352 * bit, since we must not send a trapcode that is not exactly one of 353 * the FPE_ macros. 354 * 355 * The mechanism has a static table with 127 entries. Each combination 356 * of the 7 FPU status word exception bits directly translates to a 357 * position in this table, where a single FPE_... value is stored. 358 * This FPE_... value stored there is considered the "most important" 359 * of the exception bits and will be sent as the signal code. The 360 * precedence of the bits is based upon Intel Document "Numerical 361 * Applications", Chapter "Special Computational Situations". 362 * 363 * The macro to choose one of these values does these steps: 1) Throw 364 * away status word bits that cannot be masked. 2) Throw away the bits 365 * currently masked in the control word, assuming the user isn't 366 * interested in them anymore. 3) Reinsert status word bit 7 (stack 367 * fault) if it is set, which cannot be masked but must be presered. 368 * 4) Use the remaining bits to point into the trapcode table. 369 * 370 * The 6 maskable bits in order of their preference, as stated in the 371 * above referenced Intel manual: 372 * 1 Invalid operation (FP_X_INV) 373 * 1a Stack underflow 374 * 1b Stack overflow 375 * 1c Operand of unsupported format 376 * 1d SNaN operand. 377 * 2 QNaN operand (not an exception, irrelavant here) 378 * 3 Any other invalid-operation not mentioned above or zero divide 379 * (FP_X_INV, FP_X_DZ) 380 * 4 Denormal operand (FP_X_DNML) 381 * 5 Numeric over/underflow (FP_X_OFL, FP_X_UFL) 382 * 6 Inexact result (FP_X_IMP) 383 */ 384 static char fpetable[128] = { 385 0, 386 FPE_FLTINV, /* 1 - INV */ 387 FPE_FLTUND, /* 2 - DNML */ 388 FPE_FLTINV, /* 3 - INV | DNML */ 389 FPE_FLTDIV, /* 4 - DZ */ 390 FPE_FLTINV, /* 5 - INV | DZ */ 391 FPE_FLTDIV, /* 6 - DNML | DZ */ 392 FPE_FLTINV, /* 7 - INV | DNML | DZ */ 393 FPE_FLTOVF, /* 8 - OFL */ 394 FPE_FLTINV, /* 9 - INV | OFL */ 395 FPE_FLTUND, /* A - DNML | OFL */ 396 FPE_FLTINV, /* B - INV | DNML | OFL */ 397 FPE_FLTDIV, /* C - DZ | OFL */ 398 FPE_FLTINV, /* D - INV | DZ | OFL */ 399 FPE_FLTDIV, /* E - DNML | DZ | OFL */ 400 FPE_FLTINV, /* F - INV | DNML | DZ | OFL */ 401 FPE_FLTUND, /* 10 - UFL */ 402 FPE_FLTINV, /* 11 - INV | UFL */ 403 FPE_FLTUND, /* 12 - DNML | UFL */ 404 FPE_FLTINV, /* 13 - INV | DNML | UFL */ 405 FPE_FLTDIV, /* 14 - DZ | UFL */ 406 FPE_FLTINV, /* 15 - INV | DZ | UFL */ 407 FPE_FLTDIV, /* 16 - DNML | DZ | UFL */ 408 FPE_FLTINV, /* 17 - INV | DNML | DZ | UFL */ 409 FPE_FLTOVF, /* 18 - OFL | UFL */ 410 FPE_FLTINV, /* 19 - INV | OFL | UFL */ 411 FPE_FLTUND, /* 1A - DNML | OFL | UFL */ 412 FPE_FLTINV, /* 1B - INV | DNML | OFL | UFL */ 413 FPE_FLTDIV, /* 1C - DZ | OFL | UFL */ 414 FPE_FLTINV, /* 1D - INV | DZ | OFL | UFL */ 415 FPE_FLTDIV, /* 1E - DNML | DZ | OFL | UFL */ 416 FPE_FLTINV, /* 1F - INV | DNML | DZ | OFL | UFL */ 417 FPE_FLTRES, /* 20 - IMP */ 418 FPE_FLTINV, /* 21 - INV | IMP */ 419 FPE_FLTUND, /* 22 - DNML | IMP */ 420 FPE_FLTINV, /* 23 - INV | DNML | IMP */ 421 FPE_FLTDIV, /* 24 - DZ | IMP */ 422 FPE_FLTINV, /* 25 - INV | DZ | IMP */ 423 FPE_FLTDIV, /* 26 - DNML | DZ | IMP */ 424 FPE_FLTINV, /* 27 - INV | DNML | DZ | IMP */ 425 FPE_FLTOVF, /* 28 - OFL | IMP */ 426 FPE_FLTINV, /* 29 - INV | OFL | IMP */ 427 FPE_FLTUND, /* 2A - DNML | OFL | IMP */ 428 FPE_FLTINV, /* 2B - INV | DNML | OFL | IMP */ 429 FPE_FLTDIV, /* 2C - DZ | OFL | IMP */ 430 FPE_FLTINV, /* 2D - INV | DZ | OFL | IMP */ 431 FPE_FLTDIV, /* 2E - DNML | DZ | OFL | IMP */ 432 FPE_FLTINV, /* 2F - INV | DNML | DZ | OFL | IMP */ 433 FPE_FLTUND, /* 30 - UFL | IMP */ 434 FPE_FLTINV, /* 31 - INV | UFL | IMP */ 435 FPE_FLTUND, /* 32 - DNML | UFL | IMP */ 436 FPE_FLTINV, /* 33 - INV | DNML | UFL | IMP */ 437 FPE_FLTDIV, /* 34 - DZ | UFL | IMP */ 438 FPE_FLTINV, /* 35 - INV | DZ | UFL | IMP */ 439 FPE_FLTDIV, /* 36 - DNML | DZ | UFL | IMP */ 440 FPE_FLTINV, /* 37 - INV | DNML | DZ | UFL | IMP */ 441 FPE_FLTOVF, /* 38 - OFL | UFL | IMP */ 442 FPE_FLTINV, /* 39 - INV | OFL | UFL | IMP */ 443 FPE_FLTUND, /* 3A - DNML | OFL | UFL | IMP */ 444 FPE_FLTINV, /* 3B - INV | DNML | OFL | UFL | IMP */ 445 FPE_FLTDIV, /* 3C - DZ | OFL | UFL | IMP */ 446 FPE_FLTINV, /* 3D - INV | DZ | OFL | UFL | IMP */ 447 FPE_FLTDIV, /* 3E - DNML | DZ | OFL | UFL | IMP */ 448 FPE_FLTINV, /* 3F - INV | DNML | DZ | OFL | UFL | IMP */ 449 FPE_FLTSUB, /* 40 - STK */ 450 FPE_FLTSUB, /* 41 - INV | STK */ 451 FPE_FLTUND, /* 42 - DNML | STK */ 452 FPE_FLTSUB, /* 43 - INV | DNML | STK */ 453 FPE_FLTDIV, /* 44 - DZ | STK */ 454 FPE_FLTSUB, /* 45 - INV | DZ | STK */ 455 FPE_FLTDIV, /* 46 - DNML | DZ | STK */ 456 FPE_FLTSUB, /* 47 - INV | DNML | DZ | STK */ 457 FPE_FLTOVF, /* 48 - OFL | STK */ 458 FPE_FLTSUB, /* 49 - INV | OFL | STK */ 459 FPE_FLTUND, /* 4A - DNML | OFL | STK */ 460 FPE_FLTSUB, /* 4B - INV | DNML | OFL | STK */ 461 FPE_FLTDIV, /* 4C - DZ | OFL | STK */ 462 FPE_FLTSUB, /* 4D - INV | DZ | OFL | STK */ 463 FPE_FLTDIV, /* 4E - DNML | DZ | OFL | STK */ 464 FPE_FLTSUB, /* 4F - INV | DNML | DZ | OFL | STK */ 465 FPE_FLTUND, /* 50 - UFL | STK */ 466 FPE_FLTSUB, /* 51 - INV | UFL | STK */ 467 FPE_FLTUND, /* 52 - DNML | UFL | STK */ 468 FPE_FLTSUB, /* 53 - INV | DNML | UFL | STK */ 469 FPE_FLTDIV, /* 54 - DZ | UFL | STK */ 470 FPE_FLTSUB, /* 55 - INV | DZ | UFL | STK */ 471 FPE_FLTDIV, /* 56 - DNML | DZ | UFL | STK */ 472 FPE_FLTSUB, /* 57 - INV | DNML | DZ | UFL | STK */ 473 FPE_FLTOVF, /* 58 - OFL | UFL | STK */ 474 FPE_FLTSUB, /* 59 - INV | OFL | UFL | STK */ 475 FPE_FLTUND, /* 5A - DNML | OFL | UFL | STK */ 476 FPE_FLTSUB, /* 5B - INV | DNML | OFL | UFL | STK */ 477 FPE_FLTDIV, /* 5C - DZ | OFL | UFL | STK */ 478 FPE_FLTSUB, /* 5D - INV | DZ | OFL | UFL | STK */ 479 FPE_FLTDIV, /* 5E - DNML | DZ | OFL | UFL | STK */ 480 FPE_FLTSUB, /* 5F - INV | DNML | DZ | OFL | UFL | STK */ 481 FPE_FLTRES, /* 60 - IMP | STK */ 482 FPE_FLTSUB, /* 61 - INV | IMP | STK */ 483 FPE_FLTUND, /* 62 - DNML | IMP | STK */ 484 FPE_FLTSUB, /* 63 - INV | DNML | IMP | STK */ 485 FPE_FLTDIV, /* 64 - DZ | IMP | STK */ 486 FPE_FLTSUB, /* 65 - INV | DZ | IMP | STK */ 487 FPE_FLTDIV, /* 66 - DNML | DZ | IMP | STK */ 488 FPE_FLTSUB, /* 67 - INV | DNML | DZ | IMP | STK */ 489 FPE_FLTOVF, /* 68 - OFL | IMP | STK */ 490 FPE_FLTSUB, /* 69 - INV | OFL | IMP | STK */ 491 FPE_FLTUND, /* 6A - DNML | OFL | IMP | STK */ 492 FPE_FLTSUB, /* 6B - INV | DNML | OFL | IMP | STK */ 493 FPE_FLTDIV, /* 6C - DZ | OFL | IMP | STK */ 494 FPE_FLTSUB, /* 6D - INV | DZ | OFL | IMP | STK */ 495 FPE_FLTDIV, /* 6E - DNML | DZ | OFL | IMP | STK */ 496 FPE_FLTSUB, /* 6F - INV | DNML | DZ | OFL | IMP | STK */ 497 FPE_FLTUND, /* 70 - UFL | IMP | STK */ 498 FPE_FLTSUB, /* 71 - INV | UFL | IMP | STK */ 499 FPE_FLTUND, /* 72 - DNML | UFL | IMP | STK */ 500 FPE_FLTSUB, /* 73 - INV | DNML | UFL | IMP | STK */ 501 FPE_FLTDIV, /* 74 - DZ | UFL | IMP | STK */ 502 FPE_FLTSUB, /* 75 - INV | DZ | UFL | IMP | STK */ 503 FPE_FLTDIV, /* 76 - DNML | DZ | UFL | IMP | STK */ 504 FPE_FLTSUB, /* 77 - INV | DNML | DZ | UFL | IMP | STK */ 505 FPE_FLTOVF, /* 78 - OFL | UFL | IMP | STK */ 506 FPE_FLTSUB, /* 79 - INV | OFL | UFL | IMP | STK */ 507 FPE_FLTUND, /* 7A - DNML | OFL | UFL | IMP | STK */ 508 FPE_FLTSUB, /* 7B - INV | DNML | OFL | UFL | IMP | STK */ 509 FPE_FLTDIV, /* 7C - DZ | OFL | UFL | IMP | STK */ 510 FPE_FLTSUB, /* 7D - INV | DZ | OFL | UFL | IMP | STK */ 511 FPE_FLTDIV, /* 7E - DNML | DZ | OFL | UFL | IMP | STK */ 512 FPE_FLTSUB, /* 7F - INV | DNML | DZ | OFL | UFL | IMP | STK */ 513 }; 514 515 /* 516 * Read the FP status and control words, then generate si_code value 517 * for SIGFPE. The error code chosen will be one of the 518 * FPE_... macros. It will be sent as the second argument to old 519 * BSD-style signal handlers and as "siginfo_t->si_code" (second 520 * argument) to SA_SIGINFO signal handlers. 521 * 522 * Some time ago, we cleared the x87 exceptions with FNCLEX there. 523 * Clearing exceptions was necessary mainly to avoid IRQ13 bugs. The 524 * usermode code which understands the FPU hardware enough to enable 525 * the exceptions, can also handle clearing the exception state in the 526 * handler. The only consequence of not clearing the exception is the 527 * rethrow of the SIGFPE on return from the signal handler and 528 * reexecution of the corresponding instruction. 529 * 530 * For XMM traps, the exceptions were never cleared. 531 */ 532 int 533 fputrap_x87(void) 534 { 535 struct savefpu *pcb_save; 536 u_short control, status; 537 538 critical_enter(); 539 540 /* 541 * Interrupt handling (for another interrupt) may have pushed the 542 * state to memory. Fetch the relevant parts of the state from 543 * wherever they are. 544 */ 545 if (PCPU_GET(fpcurthread) != curthread) { 546 pcb_save = curpcb->pcb_save; 547 control = pcb_save->sv_env.en_cw; 548 status = pcb_save->sv_env.en_sw; 549 } else { 550 fnstcw(&control); 551 fnstsw(&status); 552 } 553 554 critical_exit(); 555 return (fpetable[status & ((~control & 0x3f) | 0x40)]); 556 } 557 558 int 559 fputrap_sse(void) 560 { 561 u_int mxcsr; 562 563 critical_enter(); 564 if (PCPU_GET(fpcurthread) != curthread) 565 mxcsr = curpcb->pcb_save->sv_env.en_mxcsr; 566 else 567 stmxcsr(&mxcsr); 568 critical_exit(); 569 return (fpetable[(mxcsr & (~mxcsr >> 7)) & 0x3f]); 570 } 571 572 /* 573 * Implement device not available (DNA) exception 574 * 575 * It would be better to switch FP context here (if curthread != fpcurthread) 576 * and not necessarily for every context switch, but it is too hard to 577 * access foreign pcb's. 578 */ 579 580 static int err_count = 0; 581 582 void 583 fpudna(void) 584 { 585 586 critical_enter(); 587 if (PCPU_GET(fpcurthread) == curthread) { 588 printf("fpudna: fpcurthread == curthread %d times\n", 589 ++err_count); 590 stop_emulating(); 591 critical_exit(); 592 return; 593 } 594 if (PCPU_GET(fpcurthread) != NULL) { 595 printf("fpudna: fpcurthread = %p (%d), curthread = %p (%d)\n", 596 PCPU_GET(fpcurthread), 597 PCPU_GET(fpcurthread)->td_proc->p_pid, 598 curthread, curthread->td_proc->p_pid); 599 panic("fpudna"); 600 } 601 stop_emulating(); 602 /* 603 * Record new context early in case frstor causes a trap. 604 */ 605 PCPU_SET(fpcurthread, curthread); 606 607 fpu_clean_state(); 608 609 if ((curpcb->pcb_flags & PCB_FPUINITDONE) == 0) { 610 /* 611 * This is the first time this thread has used the FPU or 612 * the PCB doesn't contain a clean FPU state. Explicitly 613 * load an initial state. 614 * 615 * We prefer to restore the state from the actual save 616 * area in PCB instead of directly loading from 617 * fpu_initialstate, to ignite the XSAVEOPT 618 * tracking engine. 619 */ 620 bcopy(fpu_initialstate, curpcb->pcb_save, cpu_max_ext_state_size); 621 fpurestore(curpcb->pcb_save); 622 if (curpcb->pcb_initial_fpucw != __INITIAL_FPUCW__) 623 fldcw(curpcb->pcb_initial_fpucw); 624 if (PCB_USER_FPU(curpcb)) 625 set_pcb_flags(curpcb, 626 PCB_FPUINITDONE | PCB_USERFPUINITDONE); 627 else 628 set_pcb_flags(curpcb, PCB_FPUINITDONE); 629 } else 630 fpurestore(curpcb->pcb_save); 631 critical_exit(); 632 } 633 634 void 635 fpudrop() 636 { 637 struct thread *td; 638 639 td = PCPU_GET(fpcurthread); 640 KASSERT(td == curthread, ("fpudrop: fpcurthread != curthread")); 641 CRITICAL_ASSERT(td); 642 PCPU_SET(fpcurthread, NULL); 643 clear_pcb_flags(td->td_pcb, PCB_FPUINITDONE); 644 start_emulating(); 645 } 646 647 /* 648 * Get the user state of the FPU into pcb->pcb_user_save without 649 * dropping ownership (if possible). It returns the FPU ownership 650 * status. 651 */ 652 int 653 fpugetregs(struct thread *td) 654 { 655 struct pcb *pcb; 656 uint64_t *xstate_bv, bit; 657 char *sa; 658 int max_ext_n, i; 659 660 pcb = td->td_pcb; 661 if ((pcb->pcb_flags & PCB_USERFPUINITDONE) == 0) { 662 bcopy(fpu_initialstate, get_pcb_user_save_pcb(pcb), 663 cpu_max_ext_state_size); 664 get_pcb_user_save_pcb(pcb)->sv_env.en_cw = 665 pcb->pcb_initial_fpucw; 666 fpuuserinited(td); 667 return (_MC_FPOWNED_PCB); 668 } 669 critical_enter(); 670 if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) { 671 fpusave(get_pcb_user_save_pcb(pcb)); 672 critical_exit(); 673 return (_MC_FPOWNED_FPU); 674 } else { 675 critical_exit(); 676 if (use_xsaveopt) { 677 /* 678 * Handle partially saved state. 679 */ 680 sa = (char *)get_pcb_user_save_pcb(pcb); 681 xstate_bv = (uint64_t *)(sa + sizeof(struct savefpu) + 682 offsetof(struct xstate_hdr, xstate_bv)); 683 max_ext_n = flsl(xsave_mask); 684 for (i = 0; i < max_ext_n; i++) { 685 bit = 1 << i; 686 if ((*xstate_bv & bit) != 0) 687 continue; 688 bcopy((char *)fpu_initialstate + 689 xsave_area_desc[i].offset, 690 sa + xsave_area_desc[i].offset, 691 xsave_area_desc[i].size); 692 *xstate_bv |= bit; 693 } 694 } 695 return (_MC_FPOWNED_PCB); 696 } 697 } 698 699 void 700 fpuuserinited(struct thread *td) 701 { 702 struct pcb *pcb; 703 704 pcb = td->td_pcb; 705 if (PCB_USER_FPU(pcb)) 706 set_pcb_flags(pcb, 707 PCB_FPUINITDONE | PCB_USERFPUINITDONE); 708 else 709 set_pcb_flags(pcb, PCB_FPUINITDONE); 710 } 711 712 int 713 fpusetxstate(struct thread *td, char *xfpustate, size_t xfpustate_size) 714 { 715 struct xstate_hdr *hdr, *ehdr; 716 size_t len, max_len; 717 uint64_t bv; 718 719 /* XXXKIB should we clear all extended state in xstate_bv instead ? */ 720 if (xfpustate == NULL) 721 return (0); 722 if (!use_xsave) 723 return (EOPNOTSUPP); 724 725 len = xfpustate_size; 726 if (len < sizeof(struct xstate_hdr)) 727 return (EINVAL); 728 max_len = cpu_max_ext_state_size - sizeof(struct savefpu); 729 if (len > max_len) 730 return (EINVAL); 731 732 ehdr = (struct xstate_hdr *)xfpustate; 733 bv = ehdr->xstate_bv; 734 735 /* 736 * Avoid #gp. 737 */ 738 if (bv & ~xsave_mask) 739 return (EINVAL); 740 if ((bv & (XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE)) != 741 (XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE)) 742 return (EINVAL); 743 744 hdr = (struct xstate_hdr *)(get_pcb_user_save_td(td) + 1); 745 746 hdr->xstate_bv = bv; 747 bcopy(xfpustate + sizeof(struct xstate_hdr), 748 (char *)(hdr + 1), len - sizeof(struct xstate_hdr)); 749 750 return (0); 751 } 752 753 /* 754 * Set the state of the FPU. 755 */ 756 int 757 fpusetregs(struct thread *td, struct savefpu *addr, char *xfpustate, 758 size_t xfpustate_size) 759 { 760 struct pcb *pcb; 761 int error; 762 763 pcb = td->td_pcb; 764 critical_enter(); 765 if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) { 766 error = fpusetxstate(td, xfpustate, xfpustate_size); 767 if (error != 0) { 768 critical_exit(); 769 return (error); 770 } 771 bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr)); 772 fpurestore(get_pcb_user_save_td(td)); 773 critical_exit(); 774 set_pcb_flags(pcb, PCB_FPUINITDONE | PCB_USERFPUINITDONE); 775 } else { 776 critical_exit(); 777 error = fpusetxstate(td, xfpustate, xfpustate_size); 778 if (error != 0) 779 return (error); 780 bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr)); 781 fpuuserinited(td); 782 } 783 return (0); 784 } 785 786 /* 787 * On AuthenticAMD processors, the fxrstor instruction does not restore 788 * the x87's stored last instruction pointer, last data pointer, and last 789 * opcode values, except in the rare case in which the exception summary 790 * (ES) bit in the x87 status word is set to 1. 791 * 792 * In order to avoid leaking this information across processes, we clean 793 * these values by performing a dummy load before executing fxrstor(). 794 */ 795 static void 796 fpu_clean_state(void) 797 { 798 static float dummy_variable = 0.0; 799 u_short status; 800 801 /* 802 * Clear the ES bit in the x87 status word if it is currently 803 * set, in order to avoid causing a fault in the upcoming load. 804 */ 805 fnstsw(&status); 806 if (status & 0x80) 807 fnclex(); 808 809 /* 810 * Load the dummy variable into the x87 stack. This mangles 811 * the x87 stack, but we don't care since we're about to call 812 * fxrstor() anyway. 813 */ 814 __asm __volatile("ffree %%st(7); flds %0" : : "m" (dummy_variable)); 815 } 816 817 /* 818 * This really sucks. We want the acpi version only, but it requires 819 * the isa_if.h file in order to get the definitions. 820 */ 821 #include "opt_isa.h" 822 #ifdef DEV_ISA 823 #include <isa/isavar.h> 824 /* 825 * This sucks up the legacy ISA support assignments from PNPBIOS/ACPI. 826 */ 827 static struct isa_pnp_id fpupnp_ids[] = { 828 { 0x040cd041, "Legacy ISA coprocessor support" }, /* PNP0C04 */ 829 { 0 } 830 }; 831 832 static int 833 fpupnp_probe(device_t dev) 834 { 835 int result; 836 837 result = ISA_PNP_PROBE(device_get_parent(dev), dev, fpupnp_ids); 838 if (result <= 0) 839 device_quiet(dev); 840 return (result); 841 } 842 843 static int 844 fpupnp_attach(device_t dev) 845 { 846 847 return (0); 848 } 849 850 static device_method_t fpupnp_methods[] = { 851 /* Device interface */ 852 DEVMETHOD(device_probe, fpupnp_probe), 853 DEVMETHOD(device_attach, fpupnp_attach), 854 DEVMETHOD(device_detach, bus_generic_detach), 855 DEVMETHOD(device_shutdown, bus_generic_shutdown), 856 DEVMETHOD(device_suspend, bus_generic_suspend), 857 DEVMETHOD(device_resume, bus_generic_resume), 858 859 { 0, 0 } 860 }; 861 862 static driver_t fpupnp_driver = { 863 "fpupnp", 864 fpupnp_methods, 865 1, /* no softc */ 866 }; 867 868 static devclass_t fpupnp_devclass; 869 870 DRIVER_MODULE(fpupnp, acpi, fpupnp_driver, fpupnp_devclass, 0, 0); 871 #endif /* DEV_ISA */ 872 873 static MALLOC_DEFINE(M_FPUKERN_CTX, "fpukern_ctx", 874 "Kernel contexts for FPU state"); 875 876 #define FPU_KERN_CTX_FPUINITDONE 0x01 877 878 struct fpu_kern_ctx { 879 struct savefpu *prev; 880 uint32_t flags; 881 char hwstate1[]; 882 }; 883 884 struct fpu_kern_ctx * 885 fpu_kern_alloc_ctx(u_int flags) 886 { 887 struct fpu_kern_ctx *res; 888 size_t sz; 889 890 sz = sizeof(struct fpu_kern_ctx) + XSAVE_AREA_ALIGN + 891 cpu_max_ext_state_size; 892 res = malloc(sz, M_FPUKERN_CTX, ((flags & FPU_KERN_NOWAIT) ? 893 M_NOWAIT : M_WAITOK) | M_ZERO); 894 return (res); 895 } 896 897 void 898 fpu_kern_free_ctx(struct fpu_kern_ctx *ctx) 899 { 900 901 /* XXXKIB clear the memory ? */ 902 free(ctx, M_FPUKERN_CTX); 903 } 904 905 static struct savefpu * 906 fpu_kern_ctx_savefpu(struct fpu_kern_ctx *ctx) 907 { 908 vm_offset_t p; 909 910 p = (vm_offset_t)&ctx->hwstate1; 911 p = roundup2(p, XSAVE_AREA_ALIGN); 912 return ((struct savefpu *)p); 913 } 914 915 int 916 fpu_kern_enter(struct thread *td, struct fpu_kern_ctx *ctx, u_int flags) 917 { 918 struct pcb *pcb; 919 920 pcb = td->td_pcb; 921 KASSERT(!PCB_USER_FPU(pcb) || pcb->pcb_save == 922 get_pcb_user_save_pcb(pcb), ("mangled pcb_save")); 923 ctx->flags = 0; 924 if ((pcb->pcb_flags & PCB_FPUINITDONE) != 0) 925 ctx->flags |= FPU_KERN_CTX_FPUINITDONE; 926 fpuexit(td); 927 ctx->prev = pcb->pcb_save; 928 pcb->pcb_save = fpu_kern_ctx_savefpu(ctx); 929 set_pcb_flags(pcb, PCB_KERNFPU); 930 clear_pcb_flags(pcb, PCB_FPUINITDONE); 931 return (0); 932 } 933 934 int 935 fpu_kern_leave(struct thread *td, struct fpu_kern_ctx *ctx) 936 { 937 struct pcb *pcb; 938 939 pcb = td->td_pcb; 940 critical_enter(); 941 if (curthread == PCPU_GET(fpcurthread)) 942 fpudrop(); 943 critical_exit(); 944 pcb->pcb_save = ctx->prev; 945 if (pcb->pcb_save == get_pcb_user_save_pcb(pcb)) { 946 if ((pcb->pcb_flags & PCB_USERFPUINITDONE) != 0) { 947 set_pcb_flags(pcb, PCB_FPUINITDONE); 948 clear_pcb_flags(pcb, PCB_KERNFPU); 949 } else 950 clear_pcb_flags(pcb, PCB_FPUINITDONE | PCB_KERNFPU); 951 } else { 952 if ((ctx->flags & FPU_KERN_CTX_FPUINITDONE) != 0) 953 set_pcb_flags(pcb, PCB_FPUINITDONE); 954 else 955 clear_pcb_flags(pcb, PCB_FPUINITDONE); 956 KASSERT(!PCB_USER_FPU(pcb), ("unpaired fpu_kern_leave")); 957 } 958 return (0); 959 } 960 961 int 962 fpu_kern_thread(u_int flags) 963 { 964 965 KASSERT((curthread->td_pflags & TDP_KTHREAD) != 0, 966 ("Only kthread may use fpu_kern_thread")); 967 KASSERT(curpcb->pcb_save == get_pcb_user_save_pcb(curpcb), 968 ("mangled pcb_save")); 969 KASSERT(PCB_USER_FPU(curpcb), ("recursive call")); 970 971 set_pcb_flags(curpcb, PCB_KERNFPU); 972 return (0); 973 } 974 975 int 976 is_fpu_kern_thread(u_int flags) 977 { 978 979 if ((curthread->td_pflags & TDP_KTHREAD) == 0) 980 return (0); 981 return ((curpcb->pcb_flags & PCB_KERNFPU) != 0); 982 } 983