1 /*- 2 * Copyright (c) 1990 William Jolitz. 3 * Copyright (c) 1991 The Regents of the University of California. 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 4. Neither the name of the University nor the names of its contributors 15 * may be used to endorse or promote products derived from this software 16 * without specific prior written permission. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 * 30 * from: @(#)npx.c 7.2 (Berkeley) 5/12/91 31 */ 32 33 #include <sys/cdefs.h> 34 __FBSDID("$FreeBSD$"); 35 36 #include <sys/param.h> 37 #include <sys/systm.h> 38 #include <sys/bus.h> 39 #include <sys/kernel.h> 40 #include <sys/lock.h> 41 #include <sys/malloc.h> 42 #include <sys/module.h> 43 #include <sys/mutex.h> 44 #include <sys/mutex.h> 45 #include <sys/proc.h> 46 #include <sys/sysctl.h> 47 #include <machine/bus.h> 48 #include <sys/rman.h> 49 #include <sys/signalvar.h> 50 #include <vm/uma.h> 51 52 #include <machine/cputypes.h> 53 #include <machine/frame.h> 54 #include <machine/intr_machdep.h> 55 #include <machine/md_var.h> 56 #include <machine/pcb.h> 57 #include <machine/psl.h> 58 #include <machine/resource.h> 59 #include <machine/specialreg.h> 60 #include <machine/segments.h> 61 #include <machine/ucontext.h> 62 63 /* 64 * Floating point support. 65 */ 66 67 #if defined(__GNUCLIKE_ASM) && !defined(lint) 68 69 #define fldcw(cw) __asm __volatile("fldcw %0" : : "m" (cw)) 70 #define fnclex() __asm __volatile("fnclex") 71 #define fninit() __asm __volatile("fninit") 72 #define fnstcw(addr) __asm __volatile("fnstcw %0" : "=m" (*(addr))) 73 #define fnstsw(addr) __asm __volatile("fnstsw %0" : "=am" (*(addr))) 74 #define fxrstor(addr) __asm __volatile("fxrstor %0" : : "m" (*(addr))) 75 #define fxsave(addr) __asm __volatile("fxsave %0" : "=m" (*(addr))) 76 #define ldmxcsr(csr) __asm __volatile("ldmxcsr %0" : : "m" (csr)) 77 #define stmxcsr(addr) __asm __volatile("stmxcsr %0" : : "m" (*(addr))) 78 79 static __inline void 80 xrstor(char *addr, uint64_t mask) 81 { 82 uint32_t low, hi; 83 84 low = mask; 85 hi = mask >> 32; 86 __asm __volatile("xrstor %0" : : "m" (*addr), "a" (low), "d" (hi)); 87 } 88 89 static __inline void 90 xsave(char *addr, uint64_t mask) 91 { 92 uint32_t low, hi; 93 94 low = mask; 95 hi = mask >> 32; 96 __asm __volatile("xsave %0" : "=m" (*addr) : "a" (low), "d" (hi) : 97 "memory"); 98 } 99 100 #else /* !(__GNUCLIKE_ASM && !lint) */ 101 102 void fldcw(u_short cw); 103 void fnclex(void); 104 void fninit(void); 105 void fnstcw(caddr_t addr); 106 void fnstsw(caddr_t addr); 107 void fxsave(caddr_t addr); 108 void fxrstor(caddr_t addr); 109 void ldmxcsr(u_int csr); 110 void stmxcsr(u_int *csr); 111 void xrstor(char *addr, uint64_t mask); 112 void xsave(char *addr, uint64_t mask); 113 114 #endif /* __GNUCLIKE_ASM && !lint */ 115 116 #define start_emulating() load_cr0(rcr0() | CR0_TS) 117 #define stop_emulating() clts() 118 119 CTASSERT(sizeof(struct savefpu) == 512); 120 CTASSERT(sizeof(struct xstate_hdr) == 64); 121 CTASSERT(sizeof(struct savefpu_ymm) == 832); 122 123 /* 124 * This requirement is to make it easier for asm code to calculate 125 * offset of the fpu save area from the pcb address. FPU save area 126 * must be 64-byte aligned. 127 */ 128 CTASSERT(sizeof(struct pcb) % XSAVE_AREA_ALIGN == 0); 129 130 static void fpu_clean_state(void); 131 132 SYSCTL_INT(_hw, HW_FLOATINGPT, floatingpoint, CTLFLAG_RD, 133 NULL, 1, "Floating point instructions executed in hardware"); 134 135 int use_xsave; /* non-static for cpu_switch.S */ 136 uint64_t xsave_mask; /* the same */ 137 static uma_zone_t fpu_save_area_zone; 138 static struct savefpu *fpu_initialstate; 139 140 struct xsave_area_elm_descr { 141 u_int offset; 142 u_int size; 143 } *xsave_area_desc; 144 145 void 146 fpusave(void *addr) 147 { 148 149 if (use_xsave) 150 xsave((char *)addr, xsave_mask); 151 else 152 fxsave((char *)addr); 153 } 154 155 void 156 fpurestore(void *addr) 157 { 158 159 if (use_xsave) 160 xrstor((char *)addr, xsave_mask); 161 else 162 fxrstor((char *)addr); 163 } 164 165 void 166 fpususpend(void *addr) 167 { 168 u_long cr0; 169 170 cr0 = rcr0(); 171 stop_emulating(); 172 fpusave(addr); 173 load_cr0(cr0); 174 } 175 176 /* 177 * Enable XSAVE if supported and allowed by user. 178 * Calculate the xsave_mask. 179 */ 180 static void 181 fpuinit_bsp1(void) 182 { 183 u_int cp[4]; 184 uint64_t xsave_mask_user; 185 186 if ((cpu_feature2 & CPUID2_XSAVE) != 0) { 187 use_xsave = 1; 188 TUNABLE_INT_FETCH("hw.use_xsave", &use_xsave); 189 } 190 if (!use_xsave) 191 return; 192 193 cpuid_count(0xd, 0x0, cp); 194 xsave_mask = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE; 195 if ((cp[0] & xsave_mask) != xsave_mask) 196 panic("CPU0 does not support X87 or SSE: %x", cp[0]); 197 xsave_mask = ((uint64_t)cp[3] << 32) | cp[0]; 198 xsave_mask_user = xsave_mask; 199 TUNABLE_ULONG_FETCH("hw.xsave_mask", &xsave_mask_user); 200 xsave_mask_user |= XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE; 201 xsave_mask &= xsave_mask_user; 202 if ((xsave_mask & XFEATURE_AVX512) != XFEATURE_AVX512) 203 xsave_mask &= ~XFEATURE_AVX512; 204 if ((xsave_mask & XFEATURE_MPX) != XFEATURE_MPX) 205 xsave_mask &= ~XFEATURE_MPX; 206 207 cpuid_count(0xd, 0x1, cp); 208 if ((cp[0] & CPUID_EXTSTATE_XSAVEOPT) != 0) { 209 /* 210 * Patch the XSAVE instruction in the cpu_switch code 211 * to XSAVEOPT. We assume that XSAVE encoding used 212 * REX byte, and set the bit 4 of the r/m byte. 213 */ 214 ctx_switch_xsave[3] |= 0x10; 215 } 216 } 217 218 /* 219 * Calculate the fpu save area size. 220 */ 221 static void 222 fpuinit_bsp2(void) 223 { 224 u_int cp[4]; 225 226 if (use_xsave) { 227 cpuid_count(0xd, 0x0, cp); 228 cpu_max_ext_state_size = cp[1]; 229 230 /* 231 * Reload the cpu_feature2, since we enabled OSXSAVE. 232 */ 233 do_cpuid(1, cp); 234 cpu_feature2 = cp[2]; 235 } else 236 cpu_max_ext_state_size = sizeof(struct savefpu); 237 } 238 239 /* 240 * Initialize the floating point unit. 241 */ 242 void 243 fpuinit(void) 244 { 245 register_t saveintr; 246 u_int mxcsr; 247 u_short control; 248 249 if (IS_BSP()) 250 fpuinit_bsp1(); 251 252 if (use_xsave) { 253 load_cr4(rcr4() | CR4_XSAVE); 254 load_xcr(XCR0, xsave_mask); 255 } 256 257 /* 258 * XCR0 shall be set up before CPU can report the save area size. 259 */ 260 if (IS_BSP()) 261 fpuinit_bsp2(); 262 263 /* 264 * It is too early for critical_enter() to work on AP. 265 */ 266 saveintr = intr_disable(); 267 stop_emulating(); 268 fninit(); 269 control = __INITIAL_FPUCW__; 270 fldcw(control); 271 mxcsr = __INITIAL_MXCSR__; 272 ldmxcsr(mxcsr); 273 start_emulating(); 274 intr_restore(saveintr); 275 } 276 277 /* 278 * On the boot CPU we generate a clean state that is used to 279 * initialize the floating point unit when it is first used by a 280 * process. 281 */ 282 static void 283 fpuinitstate(void *arg __unused) 284 { 285 register_t saveintr; 286 int cp[4], i, max_ext_n; 287 288 fpu_initialstate = malloc(cpu_max_ext_state_size, M_DEVBUF, 289 M_WAITOK | M_ZERO); 290 saveintr = intr_disable(); 291 stop_emulating(); 292 293 fpusave(fpu_initialstate); 294 if (fpu_initialstate->sv_env.en_mxcsr_mask) 295 cpu_mxcsr_mask = fpu_initialstate->sv_env.en_mxcsr_mask; 296 else 297 cpu_mxcsr_mask = 0xFFBF; 298 299 /* 300 * The fninit instruction does not modify XMM registers. The 301 * fpusave call dumped the garbage contained in the registers 302 * after reset to the initial state saved. Clear XMM 303 * registers file image to make the startup program state and 304 * signal handler XMM register content predictable. 305 */ 306 bzero(&fpu_initialstate->sv_xmm[0], sizeof(struct xmmacc)); 307 308 /* 309 * Create a table describing the layout of the CPU Extended 310 * Save Area. 311 */ 312 if (use_xsave) { 313 max_ext_n = flsl(xsave_mask); 314 xsave_area_desc = malloc(max_ext_n * sizeof(struct 315 xsave_area_elm_descr), M_DEVBUF, M_WAITOK | M_ZERO); 316 /* x87 state */ 317 xsave_area_desc[0].offset = 0; 318 xsave_area_desc[0].size = 160; 319 /* XMM */ 320 xsave_area_desc[1].offset = 160; 321 xsave_area_desc[1].size = 288 - 160; 322 323 for (i = 2; i < max_ext_n; i++) { 324 cpuid_count(0xd, i, cp); 325 xsave_area_desc[i].offset = cp[1]; 326 xsave_area_desc[i].size = cp[0]; 327 } 328 } 329 330 fpu_save_area_zone = uma_zcreate("FPU_save_area", 331 cpu_max_ext_state_size, NULL, NULL, NULL, NULL, 332 XSAVE_AREA_ALIGN - 1, 0); 333 334 start_emulating(); 335 intr_restore(saveintr); 336 } 337 SYSINIT(fpuinitstate, SI_SUB_DRIVERS, SI_ORDER_ANY, fpuinitstate, NULL); 338 339 /* 340 * Free coprocessor (if we have it). 341 */ 342 void 343 fpuexit(struct thread *td) 344 { 345 346 critical_enter(); 347 if (curthread == PCPU_GET(fpcurthread)) { 348 stop_emulating(); 349 fpusave(curpcb->pcb_save); 350 start_emulating(); 351 PCPU_SET(fpcurthread, 0); 352 } 353 critical_exit(); 354 } 355 356 int 357 fpuformat() 358 { 359 360 return (_MC_FPFMT_XMM); 361 } 362 363 /* 364 * The following mechanism is used to ensure that the FPE_... value 365 * that is passed as a trapcode to the signal handler of the user 366 * process does not have more than one bit set. 367 * 368 * Multiple bits may be set if the user process modifies the control 369 * word while a status word bit is already set. While this is a sign 370 * of bad coding, we have no choise than to narrow them down to one 371 * bit, since we must not send a trapcode that is not exactly one of 372 * the FPE_ macros. 373 * 374 * The mechanism has a static table with 127 entries. Each combination 375 * of the 7 FPU status word exception bits directly translates to a 376 * position in this table, where a single FPE_... value is stored. 377 * This FPE_... value stored there is considered the "most important" 378 * of the exception bits and will be sent as the signal code. The 379 * precedence of the bits is based upon Intel Document "Numerical 380 * Applications", Chapter "Special Computational Situations". 381 * 382 * The macro to choose one of these values does these steps: 1) Throw 383 * away status word bits that cannot be masked. 2) Throw away the bits 384 * currently masked in the control word, assuming the user isn't 385 * interested in them anymore. 3) Reinsert status word bit 7 (stack 386 * fault) if it is set, which cannot be masked but must be presered. 387 * 4) Use the remaining bits to point into the trapcode table. 388 * 389 * The 6 maskable bits in order of their preference, as stated in the 390 * above referenced Intel manual: 391 * 1 Invalid operation (FP_X_INV) 392 * 1a Stack underflow 393 * 1b Stack overflow 394 * 1c Operand of unsupported format 395 * 1d SNaN operand. 396 * 2 QNaN operand (not an exception, irrelavant here) 397 * 3 Any other invalid-operation not mentioned above or zero divide 398 * (FP_X_INV, FP_X_DZ) 399 * 4 Denormal operand (FP_X_DNML) 400 * 5 Numeric over/underflow (FP_X_OFL, FP_X_UFL) 401 * 6 Inexact result (FP_X_IMP) 402 */ 403 static char fpetable[128] = { 404 0, 405 FPE_FLTINV, /* 1 - INV */ 406 FPE_FLTUND, /* 2 - DNML */ 407 FPE_FLTINV, /* 3 - INV | DNML */ 408 FPE_FLTDIV, /* 4 - DZ */ 409 FPE_FLTINV, /* 5 - INV | DZ */ 410 FPE_FLTDIV, /* 6 - DNML | DZ */ 411 FPE_FLTINV, /* 7 - INV | DNML | DZ */ 412 FPE_FLTOVF, /* 8 - OFL */ 413 FPE_FLTINV, /* 9 - INV | OFL */ 414 FPE_FLTUND, /* A - DNML | OFL */ 415 FPE_FLTINV, /* B - INV | DNML | OFL */ 416 FPE_FLTDIV, /* C - DZ | OFL */ 417 FPE_FLTINV, /* D - INV | DZ | OFL */ 418 FPE_FLTDIV, /* E - DNML | DZ | OFL */ 419 FPE_FLTINV, /* F - INV | DNML | DZ | OFL */ 420 FPE_FLTUND, /* 10 - UFL */ 421 FPE_FLTINV, /* 11 - INV | UFL */ 422 FPE_FLTUND, /* 12 - DNML | UFL */ 423 FPE_FLTINV, /* 13 - INV | DNML | UFL */ 424 FPE_FLTDIV, /* 14 - DZ | UFL */ 425 FPE_FLTINV, /* 15 - INV | DZ | UFL */ 426 FPE_FLTDIV, /* 16 - DNML | DZ | UFL */ 427 FPE_FLTINV, /* 17 - INV | DNML | DZ | UFL */ 428 FPE_FLTOVF, /* 18 - OFL | UFL */ 429 FPE_FLTINV, /* 19 - INV | OFL | UFL */ 430 FPE_FLTUND, /* 1A - DNML | OFL | UFL */ 431 FPE_FLTINV, /* 1B - INV | DNML | OFL | UFL */ 432 FPE_FLTDIV, /* 1C - DZ | OFL | UFL */ 433 FPE_FLTINV, /* 1D - INV | DZ | OFL | UFL */ 434 FPE_FLTDIV, /* 1E - DNML | DZ | OFL | UFL */ 435 FPE_FLTINV, /* 1F - INV | DNML | DZ | OFL | UFL */ 436 FPE_FLTRES, /* 20 - IMP */ 437 FPE_FLTINV, /* 21 - INV | IMP */ 438 FPE_FLTUND, /* 22 - DNML | IMP */ 439 FPE_FLTINV, /* 23 - INV | DNML | IMP */ 440 FPE_FLTDIV, /* 24 - DZ | IMP */ 441 FPE_FLTINV, /* 25 - INV | DZ | IMP */ 442 FPE_FLTDIV, /* 26 - DNML | DZ | IMP */ 443 FPE_FLTINV, /* 27 - INV | DNML | DZ | IMP */ 444 FPE_FLTOVF, /* 28 - OFL | IMP */ 445 FPE_FLTINV, /* 29 - INV | OFL | IMP */ 446 FPE_FLTUND, /* 2A - DNML | OFL | IMP */ 447 FPE_FLTINV, /* 2B - INV | DNML | OFL | IMP */ 448 FPE_FLTDIV, /* 2C - DZ | OFL | IMP */ 449 FPE_FLTINV, /* 2D - INV | DZ | OFL | IMP */ 450 FPE_FLTDIV, /* 2E - DNML | DZ | OFL | IMP */ 451 FPE_FLTINV, /* 2F - INV | DNML | DZ | OFL | IMP */ 452 FPE_FLTUND, /* 30 - UFL | IMP */ 453 FPE_FLTINV, /* 31 - INV | UFL | IMP */ 454 FPE_FLTUND, /* 32 - DNML | UFL | IMP */ 455 FPE_FLTINV, /* 33 - INV | DNML | UFL | IMP */ 456 FPE_FLTDIV, /* 34 - DZ | UFL | IMP */ 457 FPE_FLTINV, /* 35 - INV | DZ | UFL | IMP */ 458 FPE_FLTDIV, /* 36 - DNML | DZ | UFL | IMP */ 459 FPE_FLTINV, /* 37 - INV | DNML | DZ | UFL | IMP */ 460 FPE_FLTOVF, /* 38 - OFL | UFL | IMP */ 461 FPE_FLTINV, /* 39 - INV | OFL | UFL | IMP */ 462 FPE_FLTUND, /* 3A - DNML | OFL | UFL | IMP */ 463 FPE_FLTINV, /* 3B - INV | DNML | OFL | UFL | IMP */ 464 FPE_FLTDIV, /* 3C - DZ | OFL | UFL | IMP */ 465 FPE_FLTINV, /* 3D - INV | DZ | OFL | UFL | IMP */ 466 FPE_FLTDIV, /* 3E - DNML | DZ | OFL | UFL | IMP */ 467 FPE_FLTINV, /* 3F - INV | DNML | DZ | OFL | UFL | IMP */ 468 FPE_FLTSUB, /* 40 - STK */ 469 FPE_FLTSUB, /* 41 - INV | STK */ 470 FPE_FLTUND, /* 42 - DNML | STK */ 471 FPE_FLTSUB, /* 43 - INV | DNML | STK */ 472 FPE_FLTDIV, /* 44 - DZ | STK */ 473 FPE_FLTSUB, /* 45 - INV | DZ | STK */ 474 FPE_FLTDIV, /* 46 - DNML | DZ | STK */ 475 FPE_FLTSUB, /* 47 - INV | DNML | DZ | STK */ 476 FPE_FLTOVF, /* 48 - OFL | STK */ 477 FPE_FLTSUB, /* 49 - INV | OFL | STK */ 478 FPE_FLTUND, /* 4A - DNML | OFL | STK */ 479 FPE_FLTSUB, /* 4B - INV | DNML | OFL | STK */ 480 FPE_FLTDIV, /* 4C - DZ | OFL | STK */ 481 FPE_FLTSUB, /* 4D - INV | DZ | OFL | STK */ 482 FPE_FLTDIV, /* 4E - DNML | DZ | OFL | STK */ 483 FPE_FLTSUB, /* 4F - INV | DNML | DZ | OFL | STK */ 484 FPE_FLTUND, /* 50 - UFL | STK */ 485 FPE_FLTSUB, /* 51 - INV | UFL | STK */ 486 FPE_FLTUND, /* 52 - DNML | UFL | STK */ 487 FPE_FLTSUB, /* 53 - INV | DNML | UFL | STK */ 488 FPE_FLTDIV, /* 54 - DZ | UFL | STK */ 489 FPE_FLTSUB, /* 55 - INV | DZ | UFL | STK */ 490 FPE_FLTDIV, /* 56 - DNML | DZ | UFL | STK */ 491 FPE_FLTSUB, /* 57 - INV | DNML | DZ | UFL | STK */ 492 FPE_FLTOVF, /* 58 - OFL | UFL | STK */ 493 FPE_FLTSUB, /* 59 - INV | OFL | UFL | STK */ 494 FPE_FLTUND, /* 5A - DNML | OFL | UFL | STK */ 495 FPE_FLTSUB, /* 5B - INV | DNML | OFL | UFL | STK */ 496 FPE_FLTDIV, /* 5C - DZ | OFL | UFL | STK */ 497 FPE_FLTSUB, /* 5D - INV | DZ | OFL | UFL | STK */ 498 FPE_FLTDIV, /* 5E - DNML | DZ | OFL | UFL | STK */ 499 FPE_FLTSUB, /* 5F - INV | DNML | DZ | OFL | UFL | STK */ 500 FPE_FLTRES, /* 60 - IMP | STK */ 501 FPE_FLTSUB, /* 61 - INV | IMP | STK */ 502 FPE_FLTUND, /* 62 - DNML | IMP | STK */ 503 FPE_FLTSUB, /* 63 - INV | DNML | IMP | STK */ 504 FPE_FLTDIV, /* 64 - DZ | IMP | STK */ 505 FPE_FLTSUB, /* 65 - INV | DZ | IMP | STK */ 506 FPE_FLTDIV, /* 66 - DNML | DZ | IMP | STK */ 507 FPE_FLTSUB, /* 67 - INV | DNML | DZ | IMP | STK */ 508 FPE_FLTOVF, /* 68 - OFL | IMP | STK */ 509 FPE_FLTSUB, /* 69 - INV | OFL | IMP | STK */ 510 FPE_FLTUND, /* 6A - DNML | OFL | IMP | STK */ 511 FPE_FLTSUB, /* 6B - INV | DNML | OFL | IMP | STK */ 512 FPE_FLTDIV, /* 6C - DZ | OFL | IMP | STK */ 513 FPE_FLTSUB, /* 6D - INV | DZ | OFL | IMP | STK */ 514 FPE_FLTDIV, /* 6E - DNML | DZ | OFL | IMP | STK */ 515 FPE_FLTSUB, /* 6F - INV | DNML | DZ | OFL | IMP | STK */ 516 FPE_FLTUND, /* 70 - UFL | IMP | STK */ 517 FPE_FLTSUB, /* 71 - INV | UFL | IMP | STK */ 518 FPE_FLTUND, /* 72 - DNML | UFL | IMP | STK */ 519 FPE_FLTSUB, /* 73 - INV | DNML | UFL | IMP | STK */ 520 FPE_FLTDIV, /* 74 - DZ | UFL | IMP | STK */ 521 FPE_FLTSUB, /* 75 - INV | DZ | UFL | IMP | STK */ 522 FPE_FLTDIV, /* 76 - DNML | DZ | UFL | IMP | STK */ 523 FPE_FLTSUB, /* 77 - INV | DNML | DZ | UFL | IMP | STK */ 524 FPE_FLTOVF, /* 78 - OFL | UFL | IMP | STK */ 525 FPE_FLTSUB, /* 79 - INV | OFL | UFL | IMP | STK */ 526 FPE_FLTUND, /* 7A - DNML | OFL | UFL | IMP | STK */ 527 FPE_FLTSUB, /* 7B - INV | DNML | OFL | UFL | IMP | STK */ 528 FPE_FLTDIV, /* 7C - DZ | OFL | UFL | IMP | STK */ 529 FPE_FLTSUB, /* 7D - INV | DZ | OFL | UFL | IMP | STK */ 530 FPE_FLTDIV, /* 7E - DNML | DZ | OFL | UFL | IMP | STK */ 531 FPE_FLTSUB, /* 7F - INV | DNML | DZ | OFL | UFL | IMP | STK */ 532 }; 533 534 /* 535 * Read the FP status and control words, then generate si_code value 536 * for SIGFPE. The error code chosen will be one of the 537 * FPE_... macros. It will be sent as the second argument to old 538 * BSD-style signal handlers and as "siginfo_t->si_code" (second 539 * argument) to SA_SIGINFO signal handlers. 540 * 541 * Some time ago, we cleared the x87 exceptions with FNCLEX there. 542 * Clearing exceptions was necessary mainly to avoid IRQ13 bugs. The 543 * usermode code which understands the FPU hardware enough to enable 544 * the exceptions, can also handle clearing the exception state in the 545 * handler. The only consequence of not clearing the exception is the 546 * rethrow of the SIGFPE on return from the signal handler and 547 * reexecution of the corresponding instruction. 548 * 549 * For XMM traps, the exceptions were never cleared. 550 */ 551 int 552 fputrap_x87(void) 553 { 554 struct savefpu *pcb_save; 555 u_short control, status; 556 557 critical_enter(); 558 559 /* 560 * Interrupt handling (for another interrupt) may have pushed the 561 * state to memory. Fetch the relevant parts of the state from 562 * wherever they are. 563 */ 564 if (PCPU_GET(fpcurthread) != curthread) { 565 pcb_save = curpcb->pcb_save; 566 control = pcb_save->sv_env.en_cw; 567 status = pcb_save->sv_env.en_sw; 568 } else { 569 fnstcw(&control); 570 fnstsw(&status); 571 } 572 573 critical_exit(); 574 return (fpetable[status & ((~control & 0x3f) | 0x40)]); 575 } 576 577 int 578 fputrap_sse(void) 579 { 580 u_int mxcsr; 581 582 critical_enter(); 583 if (PCPU_GET(fpcurthread) != curthread) 584 mxcsr = curpcb->pcb_save->sv_env.en_mxcsr; 585 else 586 stmxcsr(&mxcsr); 587 critical_exit(); 588 return (fpetable[(mxcsr & (~mxcsr >> 7)) & 0x3f]); 589 } 590 591 /* 592 * Implement device not available (DNA) exception 593 * 594 * It would be better to switch FP context here (if curthread != fpcurthread) 595 * and not necessarily for every context switch, but it is too hard to 596 * access foreign pcb's. 597 */ 598 599 static int err_count = 0; 600 601 void 602 fpudna(void) 603 { 604 605 critical_enter(); 606 if (PCPU_GET(fpcurthread) == curthread) { 607 printf("fpudna: fpcurthread == curthread %d times\n", 608 ++err_count); 609 stop_emulating(); 610 critical_exit(); 611 return; 612 } 613 if (PCPU_GET(fpcurthread) != NULL) { 614 printf("fpudna: fpcurthread = %p (%d), curthread = %p (%d)\n", 615 PCPU_GET(fpcurthread), 616 PCPU_GET(fpcurthread)->td_proc->p_pid, 617 curthread, curthread->td_proc->p_pid); 618 panic("fpudna"); 619 } 620 stop_emulating(); 621 /* 622 * Record new context early in case frstor causes a trap. 623 */ 624 PCPU_SET(fpcurthread, curthread); 625 626 fpu_clean_state(); 627 628 if ((curpcb->pcb_flags & PCB_FPUINITDONE) == 0) { 629 /* 630 * This is the first time this thread has used the FPU or 631 * the PCB doesn't contain a clean FPU state. Explicitly 632 * load an initial state. 633 * 634 * We prefer to restore the state from the actual save 635 * area in PCB instead of directly loading from 636 * fpu_initialstate, to ignite the XSAVEOPT 637 * tracking engine. 638 */ 639 bcopy(fpu_initialstate, curpcb->pcb_save, cpu_max_ext_state_size); 640 fpurestore(curpcb->pcb_save); 641 if (curpcb->pcb_initial_fpucw != __INITIAL_FPUCW__) 642 fldcw(curpcb->pcb_initial_fpucw); 643 if (PCB_USER_FPU(curpcb)) 644 set_pcb_flags(curpcb, 645 PCB_FPUINITDONE | PCB_USERFPUINITDONE); 646 else 647 set_pcb_flags(curpcb, PCB_FPUINITDONE); 648 } else 649 fpurestore(curpcb->pcb_save); 650 critical_exit(); 651 } 652 653 void 654 fpudrop() 655 { 656 struct thread *td; 657 658 td = PCPU_GET(fpcurthread); 659 KASSERT(td == curthread, ("fpudrop: fpcurthread != curthread")); 660 CRITICAL_ASSERT(td); 661 PCPU_SET(fpcurthread, NULL); 662 clear_pcb_flags(td->td_pcb, PCB_FPUINITDONE); 663 start_emulating(); 664 } 665 666 /* 667 * Get the user state of the FPU into pcb->pcb_user_save without 668 * dropping ownership (if possible). It returns the FPU ownership 669 * status. 670 */ 671 int 672 fpugetregs(struct thread *td) 673 { 674 struct pcb *pcb; 675 uint64_t *xstate_bv, bit; 676 char *sa; 677 int max_ext_n, i, owned; 678 679 pcb = td->td_pcb; 680 if ((pcb->pcb_flags & PCB_USERFPUINITDONE) == 0) { 681 bcopy(fpu_initialstate, get_pcb_user_save_pcb(pcb), 682 cpu_max_ext_state_size); 683 get_pcb_user_save_pcb(pcb)->sv_env.en_cw = 684 pcb->pcb_initial_fpucw; 685 fpuuserinited(td); 686 return (_MC_FPOWNED_PCB); 687 } 688 critical_enter(); 689 if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) { 690 fpusave(get_pcb_user_save_pcb(pcb)); 691 owned = _MC_FPOWNED_FPU; 692 } else { 693 owned = _MC_FPOWNED_PCB; 694 } 695 critical_exit(); 696 if (use_xsave) { 697 /* 698 * Handle partially saved state. 699 */ 700 sa = (char *)get_pcb_user_save_pcb(pcb); 701 xstate_bv = (uint64_t *)(sa + sizeof(struct savefpu) + 702 offsetof(struct xstate_hdr, xstate_bv)); 703 max_ext_n = flsl(xsave_mask); 704 for (i = 0; i < max_ext_n; i++) { 705 bit = 1ULL << i; 706 if ((xsave_mask & bit) == 0 || (*xstate_bv & bit) != 0) 707 continue; 708 bcopy((char *)fpu_initialstate + 709 xsave_area_desc[i].offset, 710 sa + xsave_area_desc[i].offset, 711 xsave_area_desc[i].size); 712 *xstate_bv |= bit; 713 } 714 } 715 return (owned); 716 } 717 718 void 719 fpuuserinited(struct thread *td) 720 { 721 struct pcb *pcb; 722 723 pcb = td->td_pcb; 724 if (PCB_USER_FPU(pcb)) 725 set_pcb_flags(pcb, 726 PCB_FPUINITDONE | PCB_USERFPUINITDONE); 727 else 728 set_pcb_flags(pcb, PCB_FPUINITDONE); 729 } 730 731 int 732 fpusetxstate(struct thread *td, char *xfpustate, size_t xfpustate_size) 733 { 734 struct xstate_hdr *hdr, *ehdr; 735 size_t len, max_len; 736 uint64_t bv; 737 738 /* XXXKIB should we clear all extended state in xstate_bv instead ? */ 739 if (xfpustate == NULL) 740 return (0); 741 if (!use_xsave) 742 return (EOPNOTSUPP); 743 744 len = xfpustate_size; 745 if (len < sizeof(struct xstate_hdr)) 746 return (EINVAL); 747 max_len = cpu_max_ext_state_size - sizeof(struct savefpu); 748 if (len > max_len) 749 return (EINVAL); 750 751 ehdr = (struct xstate_hdr *)xfpustate; 752 bv = ehdr->xstate_bv; 753 754 /* 755 * Avoid #gp. 756 */ 757 if (bv & ~xsave_mask) 758 return (EINVAL); 759 760 hdr = (struct xstate_hdr *)(get_pcb_user_save_td(td) + 1); 761 762 hdr->xstate_bv = bv; 763 bcopy(xfpustate + sizeof(struct xstate_hdr), 764 (char *)(hdr + 1), len - sizeof(struct xstate_hdr)); 765 766 return (0); 767 } 768 769 /* 770 * Set the state of the FPU. 771 */ 772 int 773 fpusetregs(struct thread *td, struct savefpu *addr, char *xfpustate, 774 size_t xfpustate_size) 775 { 776 struct pcb *pcb; 777 int error; 778 779 pcb = td->td_pcb; 780 critical_enter(); 781 if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) { 782 error = fpusetxstate(td, xfpustate, xfpustate_size); 783 if (error != 0) { 784 critical_exit(); 785 return (error); 786 } 787 bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr)); 788 fpurestore(get_pcb_user_save_td(td)); 789 critical_exit(); 790 set_pcb_flags(pcb, PCB_FPUINITDONE | PCB_USERFPUINITDONE); 791 } else { 792 critical_exit(); 793 error = fpusetxstate(td, xfpustate, xfpustate_size); 794 if (error != 0) 795 return (error); 796 bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr)); 797 fpuuserinited(td); 798 } 799 return (0); 800 } 801 802 /* 803 * On AuthenticAMD processors, the fxrstor instruction does not restore 804 * the x87's stored last instruction pointer, last data pointer, and last 805 * opcode values, except in the rare case in which the exception summary 806 * (ES) bit in the x87 status word is set to 1. 807 * 808 * In order to avoid leaking this information across processes, we clean 809 * these values by performing a dummy load before executing fxrstor(). 810 */ 811 static void 812 fpu_clean_state(void) 813 { 814 static float dummy_variable = 0.0; 815 u_short status; 816 817 /* 818 * Clear the ES bit in the x87 status word if it is currently 819 * set, in order to avoid causing a fault in the upcoming load. 820 */ 821 fnstsw(&status); 822 if (status & 0x80) 823 fnclex(); 824 825 /* 826 * Load the dummy variable into the x87 stack. This mangles 827 * the x87 stack, but we don't care since we're about to call 828 * fxrstor() anyway. 829 */ 830 __asm __volatile("ffree %%st(7); flds %0" : : "m" (dummy_variable)); 831 } 832 833 /* 834 * This really sucks. We want the acpi version only, but it requires 835 * the isa_if.h file in order to get the definitions. 836 */ 837 #include "opt_isa.h" 838 #ifdef DEV_ISA 839 #include <isa/isavar.h> 840 /* 841 * This sucks up the legacy ISA support assignments from PNPBIOS/ACPI. 842 */ 843 static struct isa_pnp_id fpupnp_ids[] = { 844 { 0x040cd041, "Legacy ISA coprocessor support" }, /* PNP0C04 */ 845 { 0 } 846 }; 847 848 static int 849 fpupnp_probe(device_t dev) 850 { 851 int result; 852 853 result = ISA_PNP_PROBE(device_get_parent(dev), dev, fpupnp_ids); 854 if (result <= 0) 855 device_quiet(dev); 856 return (result); 857 } 858 859 static int 860 fpupnp_attach(device_t dev) 861 { 862 863 return (0); 864 } 865 866 static device_method_t fpupnp_methods[] = { 867 /* Device interface */ 868 DEVMETHOD(device_probe, fpupnp_probe), 869 DEVMETHOD(device_attach, fpupnp_attach), 870 DEVMETHOD(device_detach, bus_generic_detach), 871 DEVMETHOD(device_shutdown, bus_generic_shutdown), 872 DEVMETHOD(device_suspend, bus_generic_suspend), 873 DEVMETHOD(device_resume, bus_generic_resume), 874 875 { 0, 0 } 876 }; 877 878 static driver_t fpupnp_driver = { 879 "fpupnp", 880 fpupnp_methods, 881 1, /* no softc */ 882 }; 883 884 static devclass_t fpupnp_devclass; 885 886 DRIVER_MODULE(fpupnp, acpi, fpupnp_driver, fpupnp_devclass, 0, 0); 887 #endif /* DEV_ISA */ 888 889 static MALLOC_DEFINE(M_FPUKERN_CTX, "fpukern_ctx", 890 "Kernel contexts for FPU state"); 891 892 #define FPU_KERN_CTX_FPUINITDONE 0x01 893 #define FPU_KERN_CTX_DUMMY 0x02 /* avoided save for the kern thread */ 894 895 struct fpu_kern_ctx { 896 struct savefpu *prev; 897 uint32_t flags; 898 char hwstate1[]; 899 }; 900 901 struct fpu_kern_ctx * 902 fpu_kern_alloc_ctx(u_int flags) 903 { 904 struct fpu_kern_ctx *res; 905 size_t sz; 906 907 sz = sizeof(struct fpu_kern_ctx) + XSAVE_AREA_ALIGN + 908 cpu_max_ext_state_size; 909 res = malloc(sz, M_FPUKERN_CTX, ((flags & FPU_KERN_NOWAIT) ? 910 M_NOWAIT : M_WAITOK) | M_ZERO); 911 return (res); 912 } 913 914 void 915 fpu_kern_free_ctx(struct fpu_kern_ctx *ctx) 916 { 917 918 /* XXXKIB clear the memory ? */ 919 free(ctx, M_FPUKERN_CTX); 920 } 921 922 static struct savefpu * 923 fpu_kern_ctx_savefpu(struct fpu_kern_ctx *ctx) 924 { 925 vm_offset_t p; 926 927 p = (vm_offset_t)&ctx->hwstate1; 928 p = roundup2(p, XSAVE_AREA_ALIGN); 929 return ((struct savefpu *)p); 930 } 931 932 int 933 fpu_kern_enter(struct thread *td, struct fpu_kern_ctx *ctx, u_int flags) 934 { 935 struct pcb *pcb; 936 937 if ((flags & FPU_KERN_KTHR) != 0 && is_fpu_kern_thread(0)) { 938 ctx->flags = FPU_KERN_CTX_DUMMY; 939 return (0); 940 } 941 pcb = td->td_pcb; 942 KASSERT(!PCB_USER_FPU(pcb) || pcb->pcb_save == 943 get_pcb_user_save_pcb(pcb), ("mangled pcb_save")); 944 ctx->flags = 0; 945 if ((pcb->pcb_flags & PCB_FPUINITDONE) != 0) 946 ctx->flags |= FPU_KERN_CTX_FPUINITDONE; 947 fpuexit(td); 948 ctx->prev = pcb->pcb_save; 949 pcb->pcb_save = fpu_kern_ctx_savefpu(ctx); 950 set_pcb_flags(pcb, PCB_KERNFPU); 951 clear_pcb_flags(pcb, PCB_FPUINITDONE); 952 return (0); 953 } 954 955 int 956 fpu_kern_leave(struct thread *td, struct fpu_kern_ctx *ctx) 957 { 958 struct pcb *pcb; 959 960 if (is_fpu_kern_thread(0) && (ctx->flags & FPU_KERN_CTX_DUMMY) != 0) 961 return (0); 962 KASSERT((ctx->flags & FPU_KERN_CTX_DUMMY) == 0, ("dummy ctx")); 963 pcb = td->td_pcb; 964 critical_enter(); 965 if (curthread == PCPU_GET(fpcurthread)) 966 fpudrop(); 967 critical_exit(); 968 pcb->pcb_save = ctx->prev; 969 if (pcb->pcb_save == get_pcb_user_save_pcb(pcb)) { 970 if ((pcb->pcb_flags & PCB_USERFPUINITDONE) != 0) { 971 set_pcb_flags(pcb, PCB_FPUINITDONE); 972 clear_pcb_flags(pcb, PCB_KERNFPU); 973 } else 974 clear_pcb_flags(pcb, PCB_FPUINITDONE | PCB_KERNFPU); 975 } else { 976 if ((ctx->flags & FPU_KERN_CTX_FPUINITDONE) != 0) 977 set_pcb_flags(pcb, PCB_FPUINITDONE); 978 else 979 clear_pcb_flags(pcb, PCB_FPUINITDONE); 980 KASSERT(!PCB_USER_FPU(pcb), ("unpaired fpu_kern_leave")); 981 } 982 return (0); 983 } 984 985 int 986 fpu_kern_thread(u_int flags) 987 { 988 989 KASSERT((curthread->td_pflags & TDP_KTHREAD) != 0, 990 ("Only kthread may use fpu_kern_thread")); 991 KASSERT(curpcb->pcb_save == get_pcb_user_save_pcb(curpcb), 992 ("mangled pcb_save")); 993 KASSERT(PCB_USER_FPU(curpcb), ("recursive call")); 994 995 set_pcb_flags(curpcb, PCB_KERNFPU); 996 return (0); 997 } 998 999 int 1000 is_fpu_kern_thread(u_int flags) 1001 { 1002 1003 if ((curthread->td_pflags & TDP_KTHREAD) == 0) 1004 return (0); 1005 return ((curpcb->pcb_flags & PCB_KERNFPU) != 0); 1006 } 1007 1008 /* 1009 * FPU save area alloc/free/init utility routines 1010 */ 1011 struct savefpu * 1012 fpu_save_area_alloc(void) 1013 { 1014 1015 return (uma_zalloc(fpu_save_area_zone, 0)); 1016 } 1017 1018 void 1019 fpu_save_area_free(struct savefpu *fsa) 1020 { 1021 1022 uma_zfree(fpu_save_area_zone, fsa); 1023 } 1024 1025 void 1026 fpu_save_area_reset(struct savefpu *fsa) 1027 { 1028 1029 bcopy(fpu_initialstate, fsa, cpu_max_ext_state_size); 1030 } 1031