xref: /freebsd/sys/amd64/amd64/fpu.c (revision 99282790b7d01ec3c4072621d46a0d7302517ad4)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1990 William Jolitz.
5  * Copyright (c) 1991 The Regents of the University of California.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)npx.c	7.2 (Berkeley) 5/12/91
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/bus.h>
41 #include <sys/kernel.h>
42 #include <sys/lock.h>
43 #include <sys/malloc.h>
44 #include <sys/module.h>
45 #include <sys/mutex.h>
46 #include <sys/mutex.h>
47 #include <sys/proc.h>
48 #include <sys/sysctl.h>
49 #include <machine/bus.h>
50 #include <sys/rman.h>
51 #include <sys/signalvar.h>
52 #include <vm/uma.h>
53 
54 #include <machine/cputypes.h>
55 #include <machine/frame.h>
56 #include <machine/intr_machdep.h>
57 #include <machine/md_var.h>
58 #include <machine/pcb.h>
59 #include <machine/psl.h>
60 #include <machine/resource.h>
61 #include <machine/specialreg.h>
62 #include <machine/segments.h>
63 #include <machine/ucontext.h>
64 #include <x86/ifunc.h>
65 
66 /*
67  * Floating point support.
68  */
69 
70 #if defined(__GNUCLIKE_ASM) && !defined(lint)
71 
72 #define	fldcw(cw)		__asm __volatile("fldcw %0" : : "m" (cw))
73 #define	fnclex()		__asm __volatile("fnclex")
74 #define	fninit()		__asm __volatile("fninit")
75 #define	fnstcw(addr)		__asm __volatile("fnstcw %0" : "=m" (*(addr)))
76 #define	fnstsw(addr)		__asm __volatile("fnstsw %0" : "=am" (*(addr)))
77 #define	fxrstor(addr)		__asm __volatile("fxrstor %0" : : "m" (*(addr)))
78 #define	fxsave(addr)		__asm __volatile("fxsave %0" : "=m" (*(addr)))
79 #define	ldmxcsr(csr)		__asm __volatile("ldmxcsr %0" : : "m" (csr))
80 #define	stmxcsr(addr)		__asm __volatile("stmxcsr %0" : : "m" (*(addr)))
81 
82 static __inline void
83 xrstor(char *addr, uint64_t mask)
84 {
85 	uint32_t low, hi;
86 
87 	low = mask;
88 	hi = mask >> 32;
89 	__asm __volatile("xrstor %0" : : "m" (*addr), "a" (low), "d" (hi));
90 }
91 
92 static __inline void
93 xsave(char *addr, uint64_t mask)
94 {
95 	uint32_t low, hi;
96 
97 	low = mask;
98 	hi = mask >> 32;
99 	__asm __volatile("xsave %0" : "=m" (*addr) : "a" (low), "d" (hi) :
100 	    "memory");
101 }
102 
103 static __inline void
104 xsaveopt(char *addr, uint64_t mask)
105 {
106 	uint32_t low, hi;
107 
108 	low = mask;
109 	hi = mask >> 32;
110 	__asm __volatile("xsaveopt %0" : "=m" (*addr) : "a" (low), "d" (hi) :
111 	    "memory");
112 }
113 
114 #else	/* !(__GNUCLIKE_ASM && !lint) */
115 
116 void	fldcw(u_short cw);
117 void	fnclex(void);
118 void	fninit(void);
119 void	fnstcw(caddr_t addr);
120 void	fnstsw(caddr_t addr);
121 void	fxsave(caddr_t addr);
122 void	fxrstor(caddr_t addr);
123 void	ldmxcsr(u_int csr);
124 void	stmxcsr(u_int *csr);
125 void	xrstor(char *addr, uint64_t mask);
126 void	xsave(char *addr, uint64_t mask);
127 void	xsaveopt(char *addr, uint64_t mask);
128 
129 #endif	/* __GNUCLIKE_ASM && !lint */
130 
131 #define	start_emulating()	load_cr0(rcr0() | CR0_TS)
132 #define	stop_emulating()	clts()
133 
134 CTASSERT(sizeof(struct savefpu) == 512);
135 CTASSERT(sizeof(struct xstate_hdr) == 64);
136 CTASSERT(sizeof(struct savefpu_ymm) == 832);
137 
138 /*
139  * This requirement is to make it easier for asm code to calculate
140  * offset of the fpu save area from the pcb address. FPU save area
141  * must be 64-byte aligned.
142  */
143 CTASSERT(sizeof(struct pcb) % XSAVE_AREA_ALIGN == 0);
144 
145 /*
146  * Ensure the copy of XCR0 saved in a core is contained in the padding
147  * area.
148  */
149 CTASSERT(X86_XSTATE_XCR0_OFFSET >= offsetof(struct savefpu, sv_pad) &&
150     X86_XSTATE_XCR0_OFFSET + sizeof(uint64_t) <= sizeof(struct savefpu));
151 
152 static	void	fpu_clean_state(void);
153 
154 SYSCTL_INT(_hw, HW_FLOATINGPT, floatingpoint, CTLFLAG_RD,
155     SYSCTL_NULL_INT_PTR, 1, "Floating point instructions executed in hardware");
156 
157 int use_xsave;			/* non-static for cpu_switch.S */
158 uint64_t xsave_mask;		/* the same */
159 static	uma_zone_t fpu_save_area_zone;
160 static	struct savefpu *fpu_initialstate;
161 
162 static struct xsave_area_elm_descr {
163 	u_int	offset;
164 	u_int	size;
165 } *xsave_area_desc;
166 
167 static void
168 fpusave_xsaveopt(void *addr)
169 {
170 
171 	xsaveopt((char *)addr, xsave_mask);
172 }
173 
174 static void
175 fpusave_xsave(void *addr)
176 {
177 
178 	xsave((char *)addr, xsave_mask);
179 }
180 
181 static void
182 fpurestore_xrstor(void *addr)
183 {
184 
185 	xrstor((char *)addr, xsave_mask);
186 }
187 
188 static void
189 fpusave_fxsave(void *addr)
190 {
191 
192 	fxsave((char *)addr);
193 }
194 
195 static void
196 fpurestore_fxrstor(void *addr)
197 {
198 
199 	fxrstor((char *)addr);
200 }
201 
202 static void
203 init_xsave(void)
204 {
205 
206 	if (use_xsave)
207 		return;
208 	if ((cpu_feature2 & CPUID2_XSAVE) == 0)
209 		return;
210 	use_xsave = 1;
211 	TUNABLE_INT_FETCH("hw.use_xsave", &use_xsave);
212 }
213 
214 DEFINE_IFUNC(, void, fpusave, (void *))
215 {
216 
217 	init_xsave();
218 	if (use_xsave)
219 		return ((cpu_stdext_feature & CPUID_EXTSTATE_XSAVEOPT) != 0 ?
220 		    fpusave_xsaveopt : fpusave_xsave);
221 	return (fpusave_fxsave);
222 }
223 
224 DEFINE_IFUNC(, void, fpurestore, (void *))
225 {
226 
227 	init_xsave();
228 	return (use_xsave ? fpurestore_xrstor : fpurestore_fxrstor);
229 }
230 
231 void
232 fpususpend(void *addr)
233 {
234 	u_long cr0;
235 
236 	cr0 = rcr0();
237 	stop_emulating();
238 	fpusave(addr);
239 	load_cr0(cr0);
240 }
241 
242 void
243 fpuresume(void *addr)
244 {
245 	u_long cr0;
246 
247 	cr0 = rcr0();
248 	stop_emulating();
249 	fninit();
250 	if (use_xsave)
251 		load_xcr(XCR0, xsave_mask);
252 	fpurestore(addr);
253 	load_cr0(cr0);
254 }
255 
256 /*
257  * Enable XSAVE if supported and allowed by user.
258  * Calculate the xsave_mask.
259  */
260 static void
261 fpuinit_bsp1(void)
262 {
263 	u_int cp[4];
264 	uint64_t xsave_mask_user;
265 	bool old_wp;
266 
267 	if (!use_xsave)
268 		return;
269 	cpuid_count(0xd, 0x0, cp);
270 	xsave_mask = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
271 	if ((cp[0] & xsave_mask) != xsave_mask)
272 		panic("CPU0 does not support X87 or SSE: %x", cp[0]);
273 	xsave_mask = ((uint64_t)cp[3] << 32) | cp[0];
274 	xsave_mask_user = xsave_mask;
275 	TUNABLE_ULONG_FETCH("hw.xsave_mask", &xsave_mask_user);
276 	xsave_mask_user |= XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
277 	xsave_mask &= xsave_mask_user;
278 	if ((xsave_mask & XFEATURE_AVX512) != XFEATURE_AVX512)
279 		xsave_mask &= ~XFEATURE_AVX512;
280 	if ((xsave_mask & XFEATURE_MPX) != XFEATURE_MPX)
281 		xsave_mask &= ~XFEATURE_MPX;
282 
283 	cpuid_count(0xd, 0x1, cp);
284 	if ((cp[0] & CPUID_EXTSTATE_XSAVEOPT) != 0) {
285 		/*
286 		 * Patch the XSAVE instruction in the cpu_switch code
287 		 * to XSAVEOPT.  We assume that XSAVE encoding used
288 		 * REX byte, and set the bit 4 of the r/m byte.
289 		 *
290 		 * It seems that some BIOSes give control to the OS
291 		 * with CR0.WP already set, making the kernel text
292 		 * read-only before cpu_startup().
293 		 */
294 		old_wp = disable_wp();
295 		ctx_switch_xsave[3] |= 0x10;
296 		restore_wp(old_wp);
297 	}
298 }
299 
300 /*
301  * Calculate the fpu save area size.
302  */
303 static void
304 fpuinit_bsp2(void)
305 {
306 	u_int cp[4];
307 
308 	if (use_xsave) {
309 		cpuid_count(0xd, 0x0, cp);
310 		cpu_max_ext_state_size = cp[1];
311 
312 		/*
313 		 * Reload the cpu_feature2, since we enabled OSXSAVE.
314 		 */
315 		do_cpuid(1, cp);
316 		cpu_feature2 = cp[2];
317 	} else
318 		cpu_max_ext_state_size = sizeof(struct savefpu);
319 }
320 
321 /*
322  * Initialize the floating point unit.
323  */
324 void
325 fpuinit(void)
326 {
327 	register_t saveintr;
328 	u_int mxcsr;
329 	u_short control;
330 
331 	if (IS_BSP())
332 		fpuinit_bsp1();
333 
334 	if (use_xsave) {
335 		load_cr4(rcr4() | CR4_XSAVE);
336 		load_xcr(XCR0, xsave_mask);
337 	}
338 
339 	/*
340 	 * XCR0 shall be set up before CPU can report the save area size.
341 	 */
342 	if (IS_BSP())
343 		fpuinit_bsp2();
344 
345 	/*
346 	 * It is too early for critical_enter() to work on AP.
347 	 */
348 	saveintr = intr_disable();
349 	stop_emulating();
350 	fninit();
351 	control = __INITIAL_FPUCW__;
352 	fldcw(control);
353 	mxcsr = __INITIAL_MXCSR__;
354 	ldmxcsr(mxcsr);
355 	start_emulating();
356 	intr_restore(saveintr);
357 }
358 
359 /*
360  * On the boot CPU we generate a clean state that is used to
361  * initialize the floating point unit when it is first used by a
362  * process.
363  */
364 static void
365 fpuinitstate(void *arg __unused)
366 {
367 	uint64_t *xstate_bv;
368 	register_t saveintr;
369 	int cp[4], i, max_ext_n;
370 
371 	/* Do potentially blocking operations before disabling interrupts. */
372 	fpu_save_area_zone = uma_zcreate("FPU_save_area",
373 	    cpu_max_ext_state_size, NULL, NULL, NULL, NULL,
374 	    XSAVE_AREA_ALIGN - 1, 0);
375 	fpu_initialstate = uma_zalloc(fpu_save_area_zone, M_WAITOK | M_ZERO);
376 	if (use_xsave) {
377 		max_ext_n = flsl(xsave_mask);
378 		xsave_area_desc = malloc(max_ext_n * sizeof(struct
379 		    xsave_area_elm_descr), M_DEVBUF, M_WAITOK | M_ZERO);
380 	}
381 
382 	saveintr = intr_disable();
383 	stop_emulating();
384 
385 	fpusave_fxsave(fpu_initialstate);
386 	if (fpu_initialstate->sv_env.en_mxcsr_mask)
387 		cpu_mxcsr_mask = fpu_initialstate->sv_env.en_mxcsr_mask;
388 	else
389 		cpu_mxcsr_mask = 0xFFBF;
390 
391 	/*
392 	 * The fninit instruction does not modify XMM registers or x87
393 	 * registers (MM/ST).  The fpusave call dumped the garbage
394 	 * contained in the registers after reset to the initial state
395 	 * saved.  Clear XMM and x87 registers file image to make the
396 	 * startup program state and signal handler XMM/x87 register
397 	 * content predictable.
398 	 */
399 	bzero(fpu_initialstate->sv_fp, sizeof(fpu_initialstate->sv_fp));
400 	bzero(fpu_initialstate->sv_xmm, sizeof(fpu_initialstate->sv_xmm));
401 
402 	/*
403 	 * Create a table describing the layout of the CPU Extended
404 	 * Save Area.
405 	 */
406 	if (use_xsave) {
407 		xstate_bv = (uint64_t *)((char *)(fpu_initialstate + 1) +
408 		    offsetof(struct xstate_hdr, xstate_bv));
409 		*xstate_bv = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
410 
411 		/* x87 state */
412 		xsave_area_desc[0].offset = 0;
413 		xsave_area_desc[0].size = 160;
414 		/* XMM */
415 		xsave_area_desc[1].offset = 160;
416 		xsave_area_desc[1].size = 288 - 160;
417 
418 		for (i = 2; i < max_ext_n; i++) {
419 			cpuid_count(0xd, i, cp);
420 			xsave_area_desc[i].offset = cp[1];
421 			xsave_area_desc[i].size = cp[0];
422 		}
423 	}
424 
425 	start_emulating();
426 	intr_restore(saveintr);
427 }
428 /* EFIRT needs this to be initialized before we can enter our EFI environment */
429 SYSINIT(fpuinitstate, SI_SUB_DRIVERS, SI_ORDER_FIRST, fpuinitstate, NULL);
430 
431 /*
432  * Free coprocessor (if we have it).
433  */
434 void
435 fpuexit(struct thread *td)
436 {
437 
438 	critical_enter();
439 	if (curthread == PCPU_GET(fpcurthread)) {
440 		stop_emulating();
441 		fpusave(curpcb->pcb_save);
442 		start_emulating();
443 		PCPU_SET(fpcurthread, NULL);
444 	}
445 	critical_exit();
446 }
447 
448 int
449 fpuformat(void)
450 {
451 
452 	return (_MC_FPFMT_XMM);
453 }
454 
455 /*
456  * The following mechanism is used to ensure that the FPE_... value
457  * that is passed as a trapcode to the signal handler of the user
458  * process does not have more than one bit set.
459  *
460  * Multiple bits may be set if the user process modifies the control
461  * word while a status word bit is already set.  While this is a sign
462  * of bad coding, we have no choise than to narrow them down to one
463  * bit, since we must not send a trapcode that is not exactly one of
464  * the FPE_ macros.
465  *
466  * The mechanism has a static table with 127 entries.  Each combination
467  * of the 7 FPU status word exception bits directly translates to a
468  * position in this table, where a single FPE_... value is stored.
469  * This FPE_... value stored there is considered the "most important"
470  * of the exception bits and will be sent as the signal code.  The
471  * precedence of the bits is based upon Intel Document "Numerical
472  * Applications", Chapter "Special Computational Situations".
473  *
474  * The macro to choose one of these values does these steps: 1) Throw
475  * away status word bits that cannot be masked.  2) Throw away the bits
476  * currently masked in the control word, assuming the user isn't
477  * interested in them anymore.  3) Reinsert status word bit 7 (stack
478  * fault) if it is set, which cannot be masked but must be presered.
479  * 4) Use the remaining bits to point into the trapcode table.
480  *
481  * The 6 maskable bits in order of their preference, as stated in the
482  * above referenced Intel manual:
483  * 1  Invalid operation (FP_X_INV)
484  * 1a   Stack underflow
485  * 1b   Stack overflow
486  * 1c   Operand of unsupported format
487  * 1d   SNaN operand.
488  * 2  QNaN operand (not an exception, irrelavant here)
489  * 3  Any other invalid-operation not mentioned above or zero divide
490  *      (FP_X_INV, FP_X_DZ)
491  * 4  Denormal operand (FP_X_DNML)
492  * 5  Numeric over/underflow (FP_X_OFL, FP_X_UFL)
493  * 6  Inexact result (FP_X_IMP)
494  */
495 static char fpetable[128] = {
496 	0,
497 	FPE_FLTINV,	/*  1 - INV */
498 	FPE_FLTUND,	/*  2 - DNML */
499 	FPE_FLTINV,	/*  3 - INV | DNML */
500 	FPE_FLTDIV,	/*  4 - DZ */
501 	FPE_FLTINV,	/*  5 - INV | DZ */
502 	FPE_FLTDIV,	/*  6 - DNML | DZ */
503 	FPE_FLTINV,	/*  7 - INV | DNML | DZ */
504 	FPE_FLTOVF,	/*  8 - OFL */
505 	FPE_FLTINV,	/*  9 - INV | OFL */
506 	FPE_FLTUND,	/*  A - DNML | OFL */
507 	FPE_FLTINV,	/*  B - INV | DNML | OFL */
508 	FPE_FLTDIV,	/*  C - DZ | OFL */
509 	FPE_FLTINV,	/*  D - INV | DZ | OFL */
510 	FPE_FLTDIV,	/*  E - DNML | DZ | OFL */
511 	FPE_FLTINV,	/*  F - INV | DNML | DZ | OFL */
512 	FPE_FLTUND,	/* 10 - UFL */
513 	FPE_FLTINV,	/* 11 - INV | UFL */
514 	FPE_FLTUND,	/* 12 - DNML | UFL */
515 	FPE_FLTINV,	/* 13 - INV | DNML | UFL */
516 	FPE_FLTDIV,	/* 14 - DZ | UFL */
517 	FPE_FLTINV,	/* 15 - INV | DZ | UFL */
518 	FPE_FLTDIV,	/* 16 - DNML | DZ | UFL */
519 	FPE_FLTINV,	/* 17 - INV | DNML | DZ | UFL */
520 	FPE_FLTOVF,	/* 18 - OFL | UFL */
521 	FPE_FLTINV,	/* 19 - INV | OFL | UFL */
522 	FPE_FLTUND,	/* 1A - DNML | OFL | UFL */
523 	FPE_FLTINV,	/* 1B - INV | DNML | OFL | UFL */
524 	FPE_FLTDIV,	/* 1C - DZ | OFL | UFL */
525 	FPE_FLTINV,	/* 1D - INV | DZ | OFL | UFL */
526 	FPE_FLTDIV,	/* 1E - DNML | DZ | OFL | UFL */
527 	FPE_FLTINV,	/* 1F - INV | DNML | DZ | OFL | UFL */
528 	FPE_FLTRES,	/* 20 - IMP */
529 	FPE_FLTINV,	/* 21 - INV | IMP */
530 	FPE_FLTUND,	/* 22 - DNML | IMP */
531 	FPE_FLTINV,	/* 23 - INV | DNML | IMP */
532 	FPE_FLTDIV,	/* 24 - DZ | IMP */
533 	FPE_FLTINV,	/* 25 - INV | DZ | IMP */
534 	FPE_FLTDIV,	/* 26 - DNML | DZ | IMP */
535 	FPE_FLTINV,	/* 27 - INV | DNML | DZ | IMP */
536 	FPE_FLTOVF,	/* 28 - OFL | IMP */
537 	FPE_FLTINV,	/* 29 - INV | OFL | IMP */
538 	FPE_FLTUND,	/* 2A - DNML | OFL | IMP */
539 	FPE_FLTINV,	/* 2B - INV | DNML | OFL | IMP */
540 	FPE_FLTDIV,	/* 2C - DZ | OFL | IMP */
541 	FPE_FLTINV,	/* 2D - INV | DZ | OFL | IMP */
542 	FPE_FLTDIV,	/* 2E - DNML | DZ | OFL | IMP */
543 	FPE_FLTINV,	/* 2F - INV | DNML | DZ | OFL | IMP */
544 	FPE_FLTUND,	/* 30 - UFL | IMP */
545 	FPE_FLTINV,	/* 31 - INV | UFL | IMP */
546 	FPE_FLTUND,	/* 32 - DNML | UFL | IMP */
547 	FPE_FLTINV,	/* 33 - INV | DNML | UFL | IMP */
548 	FPE_FLTDIV,	/* 34 - DZ | UFL | IMP */
549 	FPE_FLTINV,	/* 35 - INV | DZ | UFL | IMP */
550 	FPE_FLTDIV,	/* 36 - DNML | DZ | UFL | IMP */
551 	FPE_FLTINV,	/* 37 - INV | DNML | DZ | UFL | IMP */
552 	FPE_FLTOVF,	/* 38 - OFL | UFL | IMP */
553 	FPE_FLTINV,	/* 39 - INV | OFL | UFL | IMP */
554 	FPE_FLTUND,	/* 3A - DNML | OFL | UFL | IMP */
555 	FPE_FLTINV,	/* 3B - INV | DNML | OFL | UFL | IMP */
556 	FPE_FLTDIV,	/* 3C - DZ | OFL | UFL | IMP */
557 	FPE_FLTINV,	/* 3D - INV | DZ | OFL | UFL | IMP */
558 	FPE_FLTDIV,	/* 3E - DNML | DZ | OFL | UFL | IMP */
559 	FPE_FLTINV,	/* 3F - INV | DNML | DZ | OFL | UFL | IMP */
560 	FPE_FLTSUB,	/* 40 - STK */
561 	FPE_FLTSUB,	/* 41 - INV | STK */
562 	FPE_FLTUND,	/* 42 - DNML | STK */
563 	FPE_FLTSUB,	/* 43 - INV | DNML | STK */
564 	FPE_FLTDIV,	/* 44 - DZ | STK */
565 	FPE_FLTSUB,	/* 45 - INV | DZ | STK */
566 	FPE_FLTDIV,	/* 46 - DNML | DZ | STK */
567 	FPE_FLTSUB,	/* 47 - INV | DNML | DZ | STK */
568 	FPE_FLTOVF,	/* 48 - OFL | STK */
569 	FPE_FLTSUB,	/* 49 - INV | OFL | STK */
570 	FPE_FLTUND,	/* 4A - DNML | OFL | STK */
571 	FPE_FLTSUB,	/* 4B - INV | DNML | OFL | STK */
572 	FPE_FLTDIV,	/* 4C - DZ | OFL | STK */
573 	FPE_FLTSUB,	/* 4D - INV | DZ | OFL | STK */
574 	FPE_FLTDIV,	/* 4E - DNML | DZ | OFL | STK */
575 	FPE_FLTSUB,	/* 4F - INV | DNML | DZ | OFL | STK */
576 	FPE_FLTUND,	/* 50 - UFL | STK */
577 	FPE_FLTSUB,	/* 51 - INV | UFL | STK */
578 	FPE_FLTUND,	/* 52 - DNML | UFL | STK */
579 	FPE_FLTSUB,	/* 53 - INV | DNML | UFL | STK */
580 	FPE_FLTDIV,	/* 54 - DZ | UFL | STK */
581 	FPE_FLTSUB,	/* 55 - INV | DZ | UFL | STK */
582 	FPE_FLTDIV,	/* 56 - DNML | DZ | UFL | STK */
583 	FPE_FLTSUB,	/* 57 - INV | DNML | DZ | UFL | STK */
584 	FPE_FLTOVF,	/* 58 - OFL | UFL | STK */
585 	FPE_FLTSUB,	/* 59 - INV | OFL | UFL | STK */
586 	FPE_FLTUND,	/* 5A - DNML | OFL | UFL | STK */
587 	FPE_FLTSUB,	/* 5B - INV | DNML | OFL | UFL | STK */
588 	FPE_FLTDIV,	/* 5C - DZ | OFL | UFL | STK */
589 	FPE_FLTSUB,	/* 5D - INV | DZ | OFL | UFL | STK */
590 	FPE_FLTDIV,	/* 5E - DNML | DZ | OFL | UFL | STK */
591 	FPE_FLTSUB,	/* 5F - INV | DNML | DZ | OFL | UFL | STK */
592 	FPE_FLTRES,	/* 60 - IMP | STK */
593 	FPE_FLTSUB,	/* 61 - INV | IMP | STK */
594 	FPE_FLTUND,	/* 62 - DNML | IMP | STK */
595 	FPE_FLTSUB,	/* 63 - INV | DNML | IMP | STK */
596 	FPE_FLTDIV,	/* 64 - DZ | IMP | STK */
597 	FPE_FLTSUB,	/* 65 - INV | DZ | IMP | STK */
598 	FPE_FLTDIV,	/* 66 - DNML | DZ | IMP | STK */
599 	FPE_FLTSUB,	/* 67 - INV | DNML | DZ | IMP | STK */
600 	FPE_FLTOVF,	/* 68 - OFL | IMP | STK */
601 	FPE_FLTSUB,	/* 69 - INV | OFL | IMP | STK */
602 	FPE_FLTUND,	/* 6A - DNML | OFL | IMP | STK */
603 	FPE_FLTSUB,	/* 6B - INV | DNML | OFL | IMP | STK */
604 	FPE_FLTDIV,	/* 6C - DZ | OFL | IMP | STK */
605 	FPE_FLTSUB,	/* 6D - INV | DZ | OFL | IMP | STK */
606 	FPE_FLTDIV,	/* 6E - DNML | DZ | OFL | IMP | STK */
607 	FPE_FLTSUB,	/* 6F - INV | DNML | DZ | OFL | IMP | STK */
608 	FPE_FLTUND,	/* 70 - UFL | IMP | STK */
609 	FPE_FLTSUB,	/* 71 - INV | UFL | IMP | STK */
610 	FPE_FLTUND,	/* 72 - DNML | UFL | IMP | STK */
611 	FPE_FLTSUB,	/* 73 - INV | DNML | UFL | IMP | STK */
612 	FPE_FLTDIV,	/* 74 - DZ | UFL | IMP | STK */
613 	FPE_FLTSUB,	/* 75 - INV | DZ | UFL | IMP | STK */
614 	FPE_FLTDIV,	/* 76 - DNML | DZ | UFL | IMP | STK */
615 	FPE_FLTSUB,	/* 77 - INV | DNML | DZ | UFL | IMP | STK */
616 	FPE_FLTOVF,	/* 78 - OFL | UFL | IMP | STK */
617 	FPE_FLTSUB,	/* 79 - INV | OFL | UFL | IMP | STK */
618 	FPE_FLTUND,	/* 7A - DNML | OFL | UFL | IMP | STK */
619 	FPE_FLTSUB,	/* 7B - INV | DNML | OFL | UFL | IMP | STK */
620 	FPE_FLTDIV,	/* 7C - DZ | OFL | UFL | IMP | STK */
621 	FPE_FLTSUB,	/* 7D - INV | DZ | OFL | UFL | IMP | STK */
622 	FPE_FLTDIV,	/* 7E - DNML | DZ | OFL | UFL | IMP | STK */
623 	FPE_FLTSUB,	/* 7F - INV | DNML | DZ | OFL | UFL | IMP | STK */
624 };
625 
626 /*
627  * Read the FP status and control words, then generate si_code value
628  * for SIGFPE.  The error code chosen will be one of the
629  * FPE_... macros.  It will be sent as the second argument to old
630  * BSD-style signal handlers and as "siginfo_t->si_code" (second
631  * argument) to SA_SIGINFO signal handlers.
632  *
633  * Some time ago, we cleared the x87 exceptions with FNCLEX there.
634  * Clearing exceptions was necessary mainly to avoid IRQ13 bugs.  The
635  * usermode code which understands the FPU hardware enough to enable
636  * the exceptions, can also handle clearing the exception state in the
637  * handler.  The only consequence of not clearing the exception is the
638  * rethrow of the SIGFPE on return from the signal handler and
639  * reexecution of the corresponding instruction.
640  *
641  * For XMM traps, the exceptions were never cleared.
642  */
643 int
644 fputrap_x87(void)
645 {
646 	struct savefpu *pcb_save;
647 	u_short control, status;
648 
649 	critical_enter();
650 
651 	/*
652 	 * Interrupt handling (for another interrupt) may have pushed the
653 	 * state to memory.  Fetch the relevant parts of the state from
654 	 * wherever they are.
655 	 */
656 	if (PCPU_GET(fpcurthread) != curthread) {
657 		pcb_save = curpcb->pcb_save;
658 		control = pcb_save->sv_env.en_cw;
659 		status = pcb_save->sv_env.en_sw;
660 	} else {
661 		fnstcw(&control);
662 		fnstsw(&status);
663 	}
664 
665 	critical_exit();
666 	return (fpetable[status & ((~control & 0x3f) | 0x40)]);
667 }
668 
669 int
670 fputrap_sse(void)
671 {
672 	u_int mxcsr;
673 
674 	critical_enter();
675 	if (PCPU_GET(fpcurthread) != curthread)
676 		mxcsr = curpcb->pcb_save->sv_env.en_mxcsr;
677 	else
678 		stmxcsr(&mxcsr);
679 	critical_exit();
680 	return (fpetable[(mxcsr & (~mxcsr >> 7)) & 0x3f]);
681 }
682 
683 static void
684 restore_fpu_curthread(struct thread *td)
685 {
686 	struct pcb *pcb;
687 
688 	/*
689 	 * Record new context early in case frstor causes a trap.
690 	 */
691 	PCPU_SET(fpcurthread, td);
692 
693 	stop_emulating();
694 	fpu_clean_state();
695 	pcb = td->td_pcb;
696 
697 	if ((pcb->pcb_flags & PCB_FPUINITDONE) == 0) {
698 		/*
699 		 * This is the first time this thread has used the FPU or
700 		 * the PCB doesn't contain a clean FPU state.  Explicitly
701 		 * load an initial state.
702 		 *
703 		 * We prefer to restore the state from the actual save
704 		 * area in PCB instead of directly loading from
705 		 * fpu_initialstate, to ignite the XSAVEOPT
706 		 * tracking engine.
707 		 */
708 		bcopy(fpu_initialstate, pcb->pcb_save,
709 		    cpu_max_ext_state_size);
710 		fpurestore(pcb->pcb_save);
711 		if (pcb->pcb_initial_fpucw != __INITIAL_FPUCW__)
712 			fldcw(pcb->pcb_initial_fpucw);
713 		if (PCB_USER_FPU(pcb))
714 			set_pcb_flags(pcb, PCB_FPUINITDONE |
715 			    PCB_USERFPUINITDONE);
716 		else
717 			set_pcb_flags(pcb, PCB_FPUINITDONE);
718 	} else
719 		fpurestore(pcb->pcb_save);
720 }
721 
722 /*
723  * Device Not Available (DNA, #NM) exception handler.
724  *
725  * It would be better to switch FP context here (if curthread !=
726  * fpcurthread) and not necessarily for every context switch, but it
727  * is too hard to access foreign pcb's.
728  */
729 void
730 fpudna(void)
731 {
732 	struct thread *td;
733 
734 	td = curthread;
735 	/*
736 	 * This handler is entered with interrupts enabled, so context
737 	 * switches may occur before critical_enter() is executed.  If
738 	 * a context switch occurs, then when we regain control, our
739 	 * state will have been completely restored.  The CPU may
740 	 * change underneath us, but the only part of our context that
741 	 * lives in the CPU is CR0.TS and that will be "restored" by
742 	 * setting it on the new CPU.
743 	 */
744 	critical_enter();
745 
746 	KASSERT((curpcb->pcb_flags & PCB_FPUNOSAVE) == 0,
747 	    ("fpudna while in fpu_kern_enter(FPU_KERN_NOCTX)"));
748 	if (__predict_false(PCPU_GET(fpcurthread) == td)) {
749 		/*
750 		 * Some virtual machines seems to set %cr0.TS at
751 		 * arbitrary moments.  Silently clear the TS bit
752 		 * regardless of the eager/lazy FPU context switch
753 		 * mode.
754 		 */
755 		stop_emulating();
756 	} else {
757 		if (__predict_false(PCPU_GET(fpcurthread) != NULL)) {
758 			panic(
759 		    "fpudna: fpcurthread = %p (%d), curthread = %p (%d)\n",
760 			    PCPU_GET(fpcurthread),
761 			    PCPU_GET(fpcurthread)->td_tid, td, td->td_tid);
762 		}
763 		restore_fpu_curthread(td);
764 	}
765 	critical_exit();
766 }
767 
768 void fpu_activate_sw(struct thread *td); /* Called from the context switch */
769 void
770 fpu_activate_sw(struct thread *td)
771 {
772 
773 	if ((td->td_pflags & TDP_KTHREAD) != 0 || !PCB_USER_FPU(td->td_pcb)) {
774 		PCPU_SET(fpcurthread, NULL);
775 		start_emulating();
776 	} else if (PCPU_GET(fpcurthread) != td) {
777 		restore_fpu_curthread(td);
778 	}
779 }
780 
781 void
782 fpudrop(void)
783 {
784 	struct thread *td;
785 
786 	td = PCPU_GET(fpcurthread);
787 	KASSERT(td == curthread, ("fpudrop: fpcurthread != curthread"));
788 	CRITICAL_ASSERT(td);
789 	PCPU_SET(fpcurthread, NULL);
790 	clear_pcb_flags(td->td_pcb, PCB_FPUINITDONE);
791 	start_emulating();
792 }
793 
794 /*
795  * Get the user state of the FPU into pcb->pcb_user_save without
796  * dropping ownership (if possible).  It returns the FPU ownership
797  * status.
798  */
799 int
800 fpugetregs(struct thread *td)
801 {
802 	struct pcb *pcb;
803 	uint64_t *xstate_bv, bit;
804 	char *sa;
805 	int max_ext_n, i, owned;
806 
807 	pcb = td->td_pcb;
808 	critical_enter();
809 	if ((pcb->pcb_flags & PCB_USERFPUINITDONE) == 0) {
810 		bcopy(fpu_initialstate, get_pcb_user_save_pcb(pcb),
811 		    cpu_max_ext_state_size);
812 		get_pcb_user_save_pcb(pcb)->sv_env.en_cw =
813 		    pcb->pcb_initial_fpucw;
814 		fpuuserinited(td);
815 		critical_exit();
816 		return (_MC_FPOWNED_PCB);
817 	}
818 	if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
819 		fpusave(get_pcb_user_save_pcb(pcb));
820 		owned = _MC_FPOWNED_FPU;
821 	} else {
822 		owned = _MC_FPOWNED_PCB;
823 	}
824 	if (use_xsave) {
825 		/*
826 		 * Handle partially saved state.
827 		 */
828 		sa = (char *)get_pcb_user_save_pcb(pcb);
829 		xstate_bv = (uint64_t *)(sa + sizeof(struct savefpu) +
830 		    offsetof(struct xstate_hdr, xstate_bv));
831 		max_ext_n = flsl(xsave_mask);
832 		for (i = 0; i < max_ext_n; i++) {
833 			bit = 1ULL << i;
834 			if ((xsave_mask & bit) == 0 || (*xstate_bv & bit) != 0)
835 				continue;
836 			bcopy((char *)fpu_initialstate +
837 			    xsave_area_desc[i].offset,
838 			    sa + xsave_area_desc[i].offset,
839 			    xsave_area_desc[i].size);
840 			*xstate_bv |= bit;
841 		}
842 	}
843 	critical_exit();
844 	return (owned);
845 }
846 
847 void
848 fpuuserinited(struct thread *td)
849 {
850 	struct pcb *pcb;
851 
852 	CRITICAL_ASSERT(td);
853 	pcb = td->td_pcb;
854 	if (PCB_USER_FPU(pcb))
855 		set_pcb_flags(pcb,
856 		    PCB_FPUINITDONE | PCB_USERFPUINITDONE);
857 	else
858 		set_pcb_flags(pcb, PCB_FPUINITDONE);
859 }
860 
861 int
862 fpusetxstate(struct thread *td, char *xfpustate, size_t xfpustate_size)
863 {
864 	struct xstate_hdr *hdr, *ehdr;
865 	size_t len, max_len;
866 	uint64_t bv;
867 
868 	/* XXXKIB should we clear all extended state in xstate_bv instead ? */
869 	if (xfpustate == NULL)
870 		return (0);
871 	if (!use_xsave)
872 		return (EOPNOTSUPP);
873 
874 	len = xfpustate_size;
875 	if (len < sizeof(struct xstate_hdr))
876 		return (EINVAL);
877 	max_len = cpu_max_ext_state_size - sizeof(struct savefpu);
878 	if (len > max_len)
879 		return (EINVAL);
880 
881 	ehdr = (struct xstate_hdr *)xfpustate;
882 	bv = ehdr->xstate_bv;
883 
884 	/*
885 	 * Avoid #gp.
886 	 */
887 	if (bv & ~xsave_mask)
888 		return (EINVAL);
889 
890 	hdr = (struct xstate_hdr *)(get_pcb_user_save_td(td) + 1);
891 
892 	hdr->xstate_bv = bv;
893 	bcopy(xfpustate + sizeof(struct xstate_hdr),
894 	    (char *)(hdr + 1), len - sizeof(struct xstate_hdr));
895 
896 	return (0);
897 }
898 
899 /*
900  * Set the state of the FPU.
901  */
902 int
903 fpusetregs(struct thread *td, struct savefpu *addr, char *xfpustate,
904     size_t xfpustate_size)
905 {
906 	struct pcb *pcb;
907 	int error;
908 
909 	addr->sv_env.en_mxcsr &= cpu_mxcsr_mask;
910 	pcb = td->td_pcb;
911 	error = 0;
912 	critical_enter();
913 	if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
914 		error = fpusetxstate(td, xfpustate, xfpustate_size);
915 		if (error == 0) {
916 			bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
917 			fpurestore(get_pcb_user_save_td(td));
918 			set_pcb_flags(pcb, PCB_FPUINITDONE |
919 			    PCB_USERFPUINITDONE);
920 		}
921 	} else {
922 		error = fpusetxstate(td, xfpustate, xfpustate_size);
923 		if (error == 0) {
924 			bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
925 			fpuuserinited(td);
926 		}
927 	}
928 	critical_exit();
929 	return (error);
930 }
931 
932 /*
933  * On AuthenticAMD processors, the fxrstor instruction does not restore
934  * the x87's stored last instruction pointer, last data pointer, and last
935  * opcode values, except in the rare case in which the exception summary
936  * (ES) bit in the x87 status word is set to 1.
937  *
938  * In order to avoid leaking this information across processes, we clean
939  * these values by performing a dummy load before executing fxrstor().
940  */
941 static void
942 fpu_clean_state(void)
943 {
944 	static float dummy_variable = 0.0;
945 	u_short status;
946 
947 	/*
948 	 * Clear the ES bit in the x87 status word if it is currently
949 	 * set, in order to avoid causing a fault in the upcoming load.
950 	 */
951 	fnstsw(&status);
952 	if (status & 0x80)
953 		fnclex();
954 
955 	/*
956 	 * Load the dummy variable into the x87 stack.  This mangles
957 	 * the x87 stack, but we don't care since we're about to call
958 	 * fxrstor() anyway.
959 	 */
960 	__asm __volatile("ffree %%st(7); flds %0" : : "m" (dummy_variable));
961 }
962 
963 /*
964  * This really sucks.  We want the acpi version only, but it requires
965  * the isa_if.h file in order to get the definitions.
966  */
967 #include "opt_isa.h"
968 #ifdef DEV_ISA
969 #include <isa/isavar.h>
970 /*
971  * This sucks up the legacy ISA support assignments from PNPBIOS/ACPI.
972  */
973 static struct isa_pnp_id fpupnp_ids[] = {
974 	{ 0x040cd041, "Legacy ISA coprocessor support" }, /* PNP0C04 */
975 	{ 0 }
976 };
977 
978 static int
979 fpupnp_probe(device_t dev)
980 {
981 	int result;
982 
983 	result = ISA_PNP_PROBE(device_get_parent(dev), dev, fpupnp_ids);
984 	if (result <= 0)
985 		device_quiet(dev);
986 	return (result);
987 }
988 
989 static int
990 fpupnp_attach(device_t dev)
991 {
992 
993 	return (0);
994 }
995 
996 static device_method_t fpupnp_methods[] = {
997 	/* Device interface */
998 	DEVMETHOD(device_probe,		fpupnp_probe),
999 	DEVMETHOD(device_attach,	fpupnp_attach),
1000 	DEVMETHOD(device_detach,	bus_generic_detach),
1001 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
1002 	DEVMETHOD(device_suspend,	bus_generic_suspend),
1003 	DEVMETHOD(device_resume,	bus_generic_resume),
1004 
1005 	{ 0, 0 }
1006 };
1007 
1008 static driver_t fpupnp_driver = {
1009 	"fpupnp",
1010 	fpupnp_methods,
1011 	1,			/* no softc */
1012 };
1013 
1014 static devclass_t fpupnp_devclass;
1015 
1016 DRIVER_MODULE(fpupnp, acpi, fpupnp_driver, fpupnp_devclass, 0, 0);
1017 ISA_PNP_INFO(fpupnp_ids);
1018 #endif	/* DEV_ISA */
1019 
1020 static MALLOC_DEFINE(M_FPUKERN_CTX, "fpukern_ctx",
1021     "Kernel contexts for FPU state");
1022 
1023 #define	FPU_KERN_CTX_FPUINITDONE 0x01
1024 #define	FPU_KERN_CTX_DUMMY	 0x02	/* avoided save for the kern thread */
1025 #define	FPU_KERN_CTX_INUSE	 0x04
1026 
1027 struct fpu_kern_ctx {
1028 	struct savefpu *prev;
1029 	uint32_t flags;
1030 	char hwstate1[];
1031 };
1032 
1033 struct fpu_kern_ctx *
1034 fpu_kern_alloc_ctx(u_int flags)
1035 {
1036 	struct fpu_kern_ctx *res;
1037 	size_t sz;
1038 
1039 	sz = sizeof(struct fpu_kern_ctx) + XSAVE_AREA_ALIGN +
1040 	    cpu_max_ext_state_size;
1041 	res = malloc(sz, M_FPUKERN_CTX, ((flags & FPU_KERN_NOWAIT) ?
1042 	    M_NOWAIT : M_WAITOK) | M_ZERO);
1043 	return (res);
1044 }
1045 
1046 void
1047 fpu_kern_free_ctx(struct fpu_kern_ctx *ctx)
1048 {
1049 
1050 	KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) == 0, ("free'ing inuse ctx"));
1051 	/* XXXKIB clear the memory ? */
1052 	free(ctx, M_FPUKERN_CTX);
1053 }
1054 
1055 static struct savefpu *
1056 fpu_kern_ctx_savefpu(struct fpu_kern_ctx *ctx)
1057 {
1058 	vm_offset_t p;
1059 
1060 	p = (vm_offset_t)&ctx->hwstate1;
1061 	p = roundup2(p, XSAVE_AREA_ALIGN);
1062 	return ((struct savefpu *)p);
1063 }
1064 
1065 void
1066 fpu_kern_enter(struct thread *td, struct fpu_kern_ctx *ctx, u_int flags)
1067 {
1068 	struct pcb *pcb;
1069 
1070 	pcb = td->td_pcb;
1071 	KASSERT((flags & FPU_KERN_NOCTX) != 0 || ctx != NULL,
1072 	    ("ctx is required when !FPU_KERN_NOCTX"));
1073 	KASSERT(ctx == NULL || (ctx->flags & FPU_KERN_CTX_INUSE) == 0,
1074 	    ("using inuse ctx"));
1075 	KASSERT((pcb->pcb_flags & PCB_FPUNOSAVE) == 0,
1076 	    ("recursive fpu_kern_enter while in PCB_FPUNOSAVE state"));
1077 
1078 	if ((flags & FPU_KERN_NOCTX) != 0) {
1079 		critical_enter();
1080 		stop_emulating();
1081 		if (curthread == PCPU_GET(fpcurthread)) {
1082 			fpusave(curpcb->pcb_save);
1083 			PCPU_SET(fpcurthread, NULL);
1084 		} else {
1085 			KASSERT(PCPU_GET(fpcurthread) == NULL,
1086 			    ("invalid fpcurthread"));
1087 		}
1088 
1089 		/*
1090 		 * This breaks XSAVEOPT tracker, but
1091 		 * PCB_FPUNOSAVE state is supposed to never need to
1092 		 * save FPU context at all.
1093 		 */
1094 		fpurestore(fpu_initialstate);
1095 		set_pcb_flags(pcb, PCB_KERNFPU | PCB_FPUNOSAVE |
1096 		    PCB_FPUINITDONE);
1097 		return;
1098 	}
1099 	if ((flags & FPU_KERN_KTHR) != 0 && is_fpu_kern_thread(0)) {
1100 		ctx->flags = FPU_KERN_CTX_DUMMY | FPU_KERN_CTX_INUSE;
1101 		return;
1102 	}
1103 	critical_enter();
1104 	KASSERT(!PCB_USER_FPU(pcb) || pcb->pcb_save ==
1105 	    get_pcb_user_save_pcb(pcb), ("mangled pcb_save"));
1106 	ctx->flags = FPU_KERN_CTX_INUSE;
1107 	if ((pcb->pcb_flags & PCB_FPUINITDONE) != 0)
1108 		ctx->flags |= FPU_KERN_CTX_FPUINITDONE;
1109 	fpuexit(td);
1110 	ctx->prev = pcb->pcb_save;
1111 	pcb->pcb_save = fpu_kern_ctx_savefpu(ctx);
1112 	set_pcb_flags(pcb, PCB_KERNFPU);
1113 	clear_pcb_flags(pcb, PCB_FPUINITDONE);
1114 	critical_exit();
1115 }
1116 
1117 int
1118 fpu_kern_leave(struct thread *td, struct fpu_kern_ctx *ctx)
1119 {
1120 	struct pcb *pcb;
1121 
1122 	pcb = td->td_pcb;
1123 
1124 	if ((pcb->pcb_flags & PCB_FPUNOSAVE) != 0) {
1125 		KASSERT(ctx == NULL, ("non-null ctx after FPU_KERN_NOCTX"));
1126 		KASSERT(PCPU_GET(fpcurthread) == NULL,
1127 		    ("non-NULL fpcurthread for PCB_FPUNOSAVE"));
1128 		CRITICAL_ASSERT(td);
1129 
1130 		clear_pcb_flags(pcb,  PCB_FPUNOSAVE | PCB_FPUINITDONE);
1131 		start_emulating();
1132 	} else {
1133 		KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) != 0,
1134 		    ("leaving not inuse ctx"));
1135 		ctx->flags &= ~FPU_KERN_CTX_INUSE;
1136 
1137 		if (is_fpu_kern_thread(0) &&
1138 		    (ctx->flags & FPU_KERN_CTX_DUMMY) != 0)
1139 			return (0);
1140 		KASSERT((ctx->flags & FPU_KERN_CTX_DUMMY) == 0,
1141 		    ("dummy ctx"));
1142 		critical_enter();
1143 		if (curthread == PCPU_GET(fpcurthread))
1144 			fpudrop();
1145 		pcb->pcb_save = ctx->prev;
1146 	}
1147 
1148 	if (pcb->pcb_save == get_pcb_user_save_pcb(pcb)) {
1149 		if ((pcb->pcb_flags & PCB_USERFPUINITDONE) != 0) {
1150 			set_pcb_flags(pcb, PCB_FPUINITDONE);
1151 			clear_pcb_flags(pcb, PCB_KERNFPU);
1152 		} else
1153 			clear_pcb_flags(pcb, PCB_FPUINITDONE | PCB_KERNFPU);
1154 	} else {
1155 		if ((ctx->flags & FPU_KERN_CTX_FPUINITDONE) != 0)
1156 			set_pcb_flags(pcb, PCB_FPUINITDONE);
1157 		else
1158 			clear_pcb_flags(pcb, PCB_FPUINITDONE);
1159 		KASSERT(!PCB_USER_FPU(pcb), ("unpaired fpu_kern_leave"));
1160 	}
1161 	critical_exit();
1162 	return (0);
1163 }
1164 
1165 int
1166 fpu_kern_thread(u_int flags)
1167 {
1168 
1169 	KASSERT((curthread->td_pflags & TDP_KTHREAD) != 0,
1170 	    ("Only kthread may use fpu_kern_thread"));
1171 	KASSERT(curpcb->pcb_save == get_pcb_user_save_pcb(curpcb),
1172 	    ("mangled pcb_save"));
1173 	KASSERT(PCB_USER_FPU(curpcb), ("recursive call"));
1174 
1175 	set_pcb_flags(curpcb, PCB_KERNFPU);
1176 	return (0);
1177 }
1178 
1179 int
1180 is_fpu_kern_thread(u_int flags)
1181 {
1182 
1183 	if ((curthread->td_pflags & TDP_KTHREAD) == 0)
1184 		return (0);
1185 	return ((curpcb->pcb_flags & PCB_KERNFPU) != 0);
1186 }
1187 
1188 /*
1189  * FPU save area alloc/free/init utility routines
1190  */
1191 struct savefpu *
1192 fpu_save_area_alloc(void)
1193 {
1194 
1195 	return (uma_zalloc(fpu_save_area_zone, M_WAITOK));
1196 }
1197 
1198 void
1199 fpu_save_area_free(struct savefpu *fsa)
1200 {
1201 
1202 	uma_zfree(fpu_save_area_zone, fsa);
1203 }
1204 
1205 void
1206 fpu_save_area_reset(struct savefpu *fsa)
1207 {
1208 
1209 	bcopy(fpu_initialstate, fsa, cpu_max_ext_state_size);
1210 }
1211