xref: /freebsd/sys/amd64/amd64/fpu.c (revision 8d1d01717552c3384e9cf02b7b0daf79ac734bfd)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1990 William Jolitz.
5  * Copyright (c) 1991 The Regents of the University of California.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)npx.c	7.2 (Berkeley) 5/12/91
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/bus.h>
41 #include <sys/domainset.h>
42 #include <sys/kernel.h>
43 #include <sys/lock.h>
44 #include <sys/malloc.h>
45 #include <sys/module.h>
46 #include <sys/mutex.h>
47 #include <sys/mutex.h>
48 #include <sys/proc.h>
49 #include <sys/sysctl.h>
50 #include <machine/bus.h>
51 #include <sys/rman.h>
52 #include <sys/signalvar.h>
53 #include <vm/uma.h>
54 
55 #include <machine/cputypes.h>
56 #include <machine/frame.h>
57 #include <machine/intr_machdep.h>
58 #include <machine/md_var.h>
59 #include <machine/pcb.h>
60 #include <machine/psl.h>
61 #include <machine/resource.h>
62 #include <machine/specialreg.h>
63 #include <machine/segments.h>
64 #include <machine/ucontext.h>
65 #include <x86/ifunc.h>
66 
67 /*
68  * Floating point support.
69  */
70 
71 #if defined(__GNUCLIKE_ASM) && !defined(lint)
72 
73 #define	fldcw(cw)		__asm __volatile("fldcw %0" : : "m" (cw))
74 #define	fnclex()		__asm __volatile("fnclex")
75 #define	fninit()		__asm __volatile("fninit")
76 #define	fnstcw(addr)		__asm __volatile("fnstcw %0" : "=m" (*(addr)))
77 #define	fnstsw(addr)		__asm __volatile("fnstsw %0" : "=am" (*(addr)))
78 #define	fxrstor(addr)		__asm __volatile("fxrstor %0" : : "m" (*(addr)))
79 #define	fxsave(addr)		__asm __volatile("fxsave %0" : "=m" (*(addr)))
80 #define	ldmxcsr(csr)		__asm __volatile("ldmxcsr %0" : : "m" (csr))
81 #define	stmxcsr(addr)		__asm __volatile("stmxcsr %0" : : "m" (*(addr)))
82 
83 static __inline void
84 xrstor(char *addr, uint64_t mask)
85 {
86 	uint32_t low, hi;
87 
88 	low = mask;
89 	hi = mask >> 32;
90 	__asm __volatile("xrstor %0" : : "m" (*addr), "a" (low), "d" (hi));
91 }
92 
93 static __inline void
94 xsave(char *addr, uint64_t mask)
95 {
96 	uint32_t low, hi;
97 
98 	low = mask;
99 	hi = mask >> 32;
100 	__asm __volatile("xsave %0" : "=m" (*addr) : "a" (low), "d" (hi) :
101 	    "memory");
102 }
103 
104 static __inline void
105 xsaveopt(char *addr, uint64_t mask)
106 {
107 	uint32_t low, hi;
108 
109 	low = mask;
110 	hi = mask >> 32;
111 	__asm __volatile("xsaveopt %0" : "=m" (*addr) : "a" (low), "d" (hi) :
112 	    "memory");
113 }
114 
115 #else	/* !(__GNUCLIKE_ASM && !lint) */
116 
117 void	fldcw(u_short cw);
118 void	fnclex(void);
119 void	fninit(void);
120 void	fnstcw(caddr_t addr);
121 void	fnstsw(caddr_t addr);
122 void	fxsave(caddr_t addr);
123 void	fxrstor(caddr_t addr);
124 void	ldmxcsr(u_int csr);
125 void	stmxcsr(u_int *csr);
126 void	xrstor(char *addr, uint64_t mask);
127 void	xsave(char *addr, uint64_t mask);
128 void	xsaveopt(char *addr, uint64_t mask);
129 
130 #endif	/* __GNUCLIKE_ASM && !lint */
131 
132 #define	start_emulating()	load_cr0(rcr0() | CR0_TS)
133 #define	stop_emulating()	clts()
134 
135 CTASSERT(sizeof(struct savefpu) == 512);
136 CTASSERT(sizeof(struct xstate_hdr) == 64);
137 CTASSERT(sizeof(struct savefpu_ymm) == 832);
138 
139 /*
140  * This requirement is to make it easier for asm code to calculate
141  * offset of the fpu save area from the pcb address. FPU save area
142  * must be 64-byte aligned.
143  */
144 CTASSERT(sizeof(struct pcb) % XSAVE_AREA_ALIGN == 0);
145 
146 /*
147  * Ensure the copy of XCR0 saved in a core is contained in the padding
148  * area.
149  */
150 CTASSERT(X86_XSTATE_XCR0_OFFSET >= offsetof(struct savefpu, sv_pad) &&
151     X86_XSTATE_XCR0_OFFSET + sizeof(uint64_t) <= sizeof(struct savefpu));
152 
153 static	void	fpu_clean_state(void);
154 
155 SYSCTL_INT(_hw, HW_FLOATINGPT, floatingpoint, CTLFLAG_RD,
156     SYSCTL_NULL_INT_PTR, 1, "Floating point instructions executed in hardware");
157 
158 int use_xsave;			/* non-static for cpu_switch.S */
159 uint64_t xsave_mask;		/* the same */
160 static	uma_zone_t fpu_save_area_zone;
161 static	struct savefpu *fpu_initialstate;
162 
163 static struct xsave_area_elm_descr {
164 	u_int	offset;
165 	u_int	size;
166 } *xsave_area_desc;
167 
168 static void
169 fpusave_xsaveopt(void *addr)
170 {
171 
172 	xsaveopt((char *)addr, xsave_mask);
173 }
174 
175 static void
176 fpusave_xsave(void *addr)
177 {
178 
179 	xsave((char *)addr, xsave_mask);
180 }
181 
182 static void
183 fpurestore_xrstor(void *addr)
184 {
185 
186 	xrstor((char *)addr, xsave_mask);
187 }
188 
189 static void
190 fpusave_fxsave(void *addr)
191 {
192 
193 	fxsave((char *)addr);
194 }
195 
196 static void
197 fpurestore_fxrstor(void *addr)
198 {
199 
200 	fxrstor((char *)addr);
201 }
202 
203 static void
204 init_xsave(void)
205 {
206 
207 	if (use_xsave)
208 		return;
209 	if ((cpu_feature2 & CPUID2_XSAVE) == 0)
210 		return;
211 	use_xsave = 1;
212 	TUNABLE_INT_FETCH("hw.use_xsave", &use_xsave);
213 }
214 
215 DEFINE_IFUNC(, void, fpusave, (void *))
216 {
217 
218 	init_xsave();
219 	if (use_xsave)
220 		return ((cpu_stdext_feature & CPUID_EXTSTATE_XSAVEOPT) != 0 ?
221 		    fpusave_xsaveopt : fpusave_xsave);
222 	return (fpusave_fxsave);
223 }
224 
225 DEFINE_IFUNC(, void, fpurestore, (void *))
226 {
227 
228 	init_xsave();
229 	return (use_xsave ? fpurestore_xrstor : fpurestore_fxrstor);
230 }
231 
232 void
233 fpususpend(void *addr)
234 {
235 	u_long cr0;
236 
237 	cr0 = rcr0();
238 	stop_emulating();
239 	fpusave(addr);
240 	load_cr0(cr0);
241 }
242 
243 void
244 fpuresume(void *addr)
245 {
246 	u_long cr0;
247 
248 	cr0 = rcr0();
249 	stop_emulating();
250 	fninit();
251 	if (use_xsave)
252 		load_xcr(XCR0, xsave_mask);
253 	fpurestore(addr);
254 	load_cr0(cr0);
255 }
256 
257 /*
258  * Enable XSAVE if supported and allowed by user.
259  * Calculate the xsave_mask.
260  */
261 static void
262 fpuinit_bsp1(void)
263 {
264 	u_int cp[4];
265 	uint64_t xsave_mask_user;
266 	bool old_wp;
267 
268 	if (!use_xsave)
269 		return;
270 	cpuid_count(0xd, 0x0, cp);
271 	xsave_mask = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
272 	if ((cp[0] & xsave_mask) != xsave_mask)
273 		panic("CPU0 does not support X87 or SSE: %x", cp[0]);
274 	xsave_mask = ((uint64_t)cp[3] << 32) | cp[0];
275 	xsave_mask_user = xsave_mask;
276 	TUNABLE_ULONG_FETCH("hw.xsave_mask", &xsave_mask_user);
277 	xsave_mask_user |= XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
278 	xsave_mask &= xsave_mask_user;
279 	if ((xsave_mask & XFEATURE_AVX512) != XFEATURE_AVX512)
280 		xsave_mask &= ~XFEATURE_AVX512;
281 	if ((xsave_mask & XFEATURE_MPX) != XFEATURE_MPX)
282 		xsave_mask &= ~XFEATURE_MPX;
283 
284 	cpuid_count(0xd, 0x1, cp);
285 	if ((cp[0] & CPUID_EXTSTATE_XSAVEOPT) != 0) {
286 		/*
287 		 * Patch the XSAVE instruction in the cpu_switch code
288 		 * to XSAVEOPT.  We assume that XSAVE encoding used
289 		 * REX byte, and set the bit 4 of the r/m byte.
290 		 *
291 		 * It seems that some BIOSes give control to the OS
292 		 * with CR0.WP already set, making the kernel text
293 		 * read-only before cpu_startup().
294 		 */
295 		old_wp = disable_wp();
296 		ctx_switch_xsave[3] |= 0x10;
297 		restore_wp(old_wp);
298 	}
299 }
300 
301 /*
302  * Calculate the fpu save area size.
303  */
304 static void
305 fpuinit_bsp2(void)
306 {
307 	u_int cp[4];
308 
309 	if (use_xsave) {
310 		cpuid_count(0xd, 0x0, cp);
311 		cpu_max_ext_state_size = cp[1];
312 
313 		/*
314 		 * Reload the cpu_feature2, since we enabled OSXSAVE.
315 		 */
316 		do_cpuid(1, cp);
317 		cpu_feature2 = cp[2];
318 	} else
319 		cpu_max_ext_state_size = sizeof(struct savefpu);
320 }
321 
322 /*
323  * Initialize the floating point unit.
324  */
325 void
326 fpuinit(void)
327 {
328 	register_t saveintr;
329 	u_int mxcsr;
330 	u_short control;
331 
332 	if (IS_BSP())
333 		fpuinit_bsp1();
334 
335 	if (use_xsave) {
336 		load_cr4(rcr4() | CR4_XSAVE);
337 		load_xcr(XCR0, xsave_mask);
338 	}
339 
340 	/*
341 	 * XCR0 shall be set up before CPU can report the save area size.
342 	 */
343 	if (IS_BSP())
344 		fpuinit_bsp2();
345 
346 	/*
347 	 * It is too early for critical_enter() to work on AP.
348 	 */
349 	saveintr = intr_disable();
350 	stop_emulating();
351 	fninit();
352 	control = __INITIAL_FPUCW__;
353 	fldcw(control);
354 	mxcsr = __INITIAL_MXCSR__;
355 	ldmxcsr(mxcsr);
356 	start_emulating();
357 	intr_restore(saveintr);
358 }
359 
360 /*
361  * On the boot CPU we generate a clean state that is used to
362  * initialize the floating point unit when it is first used by a
363  * process.
364  */
365 static void
366 fpuinitstate(void *arg __unused)
367 {
368 	uint64_t *xstate_bv;
369 	register_t saveintr;
370 	int cp[4], i, max_ext_n;
371 
372 	/* Do potentially blocking operations before disabling interrupts. */
373 	fpu_save_area_zone = uma_zcreate("FPU_save_area",
374 	    cpu_max_ext_state_size, NULL, NULL, NULL, NULL,
375 	    XSAVE_AREA_ALIGN - 1, 0);
376 	fpu_initialstate = uma_zalloc(fpu_save_area_zone, M_WAITOK | M_ZERO);
377 	if (use_xsave) {
378 		max_ext_n = flsl(xsave_mask);
379 		xsave_area_desc = malloc(max_ext_n * sizeof(struct
380 		    xsave_area_elm_descr), M_DEVBUF, M_WAITOK | M_ZERO);
381 	}
382 
383 	saveintr = intr_disable();
384 	stop_emulating();
385 
386 	fpusave_fxsave(fpu_initialstate);
387 	if (fpu_initialstate->sv_env.en_mxcsr_mask)
388 		cpu_mxcsr_mask = fpu_initialstate->sv_env.en_mxcsr_mask;
389 	else
390 		cpu_mxcsr_mask = 0xFFBF;
391 
392 	/*
393 	 * The fninit instruction does not modify XMM registers or x87
394 	 * registers (MM/ST).  The fpusave call dumped the garbage
395 	 * contained in the registers after reset to the initial state
396 	 * saved.  Clear XMM and x87 registers file image to make the
397 	 * startup program state and signal handler XMM/x87 register
398 	 * content predictable.
399 	 */
400 	bzero(fpu_initialstate->sv_fp, sizeof(fpu_initialstate->sv_fp));
401 	bzero(fpu_initialstate->sv_xmm, sizeof(fpu_initialstate->sv_xmm));
402 
403 	/*
404 	 * Create a table describing the layout of the CPU Extended
405 	 * Save Area.
406 	 */
407 	if (use_xsave) {
408 		xstate_bv = (uint64_t *)((char *)(fpu_initialstate + 1) +
409 		    offsetof(struct xstate_hdr, xstate_bv));
410 		*xstate_bv = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
411 
412 		/* x87 state */
413 		xsave_area_desc[0].offset = 0;
414 		xsave_area_desc[0].size = 160;
415 		/* XMM */
416 		xsave_area_desc[1].offset = 160;
417 		xsave_area_desc[1].size = 288 - 160;
418 
419 		for (i = 2; i < max_ext_n; i++) {
420 			cpuid_count(0xd, i, cp);
421 			xsave_area_desc[i].offset = cp[1];
422 			xsave_area_desc[i].size = cp[0];
423 		}
424 	}
425 
426 	start_emulating();
427 	intr_restore(saveintr);
428 }
429 /* EFIRT needs this to be initialized before we can enter our EFI environment */
430 SYSINIT(fpuinitstate, SI_SUB_DRIVERS, SI_ORDER_FIRST, fpuinitstate, NULL);
431 
432 /*
433  * Free coprocessor (if we have it).
434  */
435 void
436 fpuexit(struct thread *td)
437 {
438 
439 	critical_enter();
440 	if (curthread == PCPU_GET(fpcurthread)) {
441 		stop_emulating();
442 		fpusave(curpcb->pcb_save);
443 		start_emulating();
444 		PCPU_SET(fpcurthread, NULL);
445 	}
446 	critical_exit();
447 }
448 
449 int
450 fpuformat(void)
451 {
452 
453 	return (_MC_FPFMT_XMM);
454 }
455 
456 /*
457  * The following mechanism is used to ensure that the FPE_... value
458  * that is passed as a trapcode to the signal handler of the user
459  * process does not have more than one bit set.
460  *
461  * Multiple bits may be set if the user process modifies the control
462  * word while a status word bit is already set.  While this is a sign
463  * of bad coding, we have no choise than to narrow them down to one
464  * bit, since we must not send a trapcode that is not exactly one of
465  * the FPE_ macros.
466  *
467  * The mechanism has a static table with 127 entries.  Each combination
468  * of the 7 FPU status word exception bits directly translates to a
469  * position in this table, where a single FPE_... value is stored.
470  * This FPE_... value stored there is considered the "most important"
471  * of the exception bits and will be sent as the signal code.  The
472  * precedence of the bits is based upon Intel Document "Numerical
473  * Applications", Chapter "Special Computational Situations".
474  *
475  * The macro to choose one of these values does these steps: 1) Throw
476  * away status word bits that cannot be masked.  2) Throw away the bits
477  * currently masked in the control word, assuming the user isn't
478  * interested in them anymore.  3) Reinsert status word bit 7 (stack
479  * fault) if it is set, which cannot be masked but must be presered.
480  * 4) Use the remaining bits to point into the trapcode table.
481  *
482  * The 6 maskable bits in order of their preference, as stated in the
483  * above referenced Intel manual:
484  * 1  Invalid operation (FP_X_INV)
485  * 1a   Stack underflow
486  * 1b   Stack overflow
487  * 1c   Operand of unsupported format
488  * 1d   SNaN operand.
489  * 2  QNaN operand (not an exception, irrelavant here)
490  * 3  Any other invalid-operation not mentioned above or zero divide
491  *      (FP_X_INV, FP_X_DZ)
492  * 4  Denormal operand (FP_X_DNML)
493  * 5  Numeric over/underflow (FP_X_OFL, FP_X_UFL)
494  * 6  Inexact result (FP_X_IMP)
495  */
496 static char fpetable[128] = {
497 	0,
498 	FPE_FLTINV,	/*  1 - INV */
499 	FPE_FLTUND,	/*  2 - DNML */
500 	FPE_FLTINV,	/*  3 - INV | DNML */
501 	FPE_FLTDIV,	/*  4 - DZ */
502 	FPE_FLTINV,	/*  5 - INV | DZ */
503 	FPE_FLTDIV,	/*  6 - DNML | DZ */
504 	FPE_FLTINV,	/*  7 - INV | DNML | DZ */
505 	FPE_FLTOVF,	/*  8 - OFL */
506 	FPE_FLTINV,	/*  9 - INV | OFL */
507 	FPE_FLTUND,	/*  A - DNML | OFL */
508 	FPE_FLTINV,	/*  B - INV | DNML | OFL */
509 	FPE_FLTDIV,	/*  C - DZ | OFL */
510 	FPE_FLTINV,	/*  D - INV | DZ | OFL */
511 	FPE_FLTDIV,	/*  E - DNML | DZ | OFL */
512 	FPE_FLTINV,	/*  F - INV | DNML | DZ | OFL */
513 	FPE_FLTUND,	/* 10 - UFL */
514 	FPE_FLTINV,	/* 11 - INV | UFL */
515 	FPE_FLTUND,	/* 12 - DNML | UFL */
516 	FPE_FLTINV,	/* 13 - INV | DNML | UFL */
517 	FPE_FLTDIV,	/* 14 - DZ | UFL */
518 	FPE_FLTINV,	/* 15 - INV | DZ | UFL */
519 	FPE_FLTDIV,	/* 16 - DNML | DZ | UFL */
520 	FPE_FLTINV,	/* 17 - INV | DNML | DZ | UFL */
521 	FPE_FLTOVF,	/* 18 - OFL | UFL */
522 	FPE_FLTINV,	/* 19 - INV | OFL | UFL */
523 	FPE_FLTUND,	/* 1A - DNML | OFL | UFL */
524 	FPE_FLTINV,	/* 1B - INV | DNML | OFL | UFL */
525 	FPE_FLTDIV,	/* 1C - DZ | OFL | UFL */
526 	FPE_FLTINV,	/* 1D - INV | DZ | OFL | UFL */
527 	FPE_FLTDIV,	/* 1E - DNML | DZ | OFL | UFL */
528 	FPE_FLTINV,	/* 1F - INV | DNML | DZ | OFL | UFL */
529 	FPE_FLTRES,	/* 20 - IMP */
530 	FPE_FLTINV,	/* 21 - INV | IMP */
531 	FPE_FLTUND,	/* 22 - DNML | IMP */
532 	FPE_FLTINV,	/* 23 - INV | DNML | IMP */
533 	FPE_FLTDIV,	/* 24 - DZ | IMP */
534 	FPE_FLTINV,	/* 25 - INV | DZ | IMP */
535 	FPE_FLTDIV,	/* 26 - DNML | DZ | IMP */
536 	FPE_FLTINV,	/* 27 - INV | DNML | DZ | IMP */
537 	FPE_FLTOVF,	/* 28 - OFL | IMP */
538 	FPE_FLTINV,	/* 29 - INV | OFL | IMP */
539 	FPE_FLTUND,	/* 2A - DNML | OFL | IMP */
540 	FPE_FLTINV,	/* 2B - INV | DNML | OFL | IMP */
541 	FPE_FLTDIV,	/* 2C - DZ | OFL | IMP */
542 	FPE_FLTINV,	/* 2D - INV | DZ | OFL | IMP */
543 	FPE_FLTDIV,	/* 2E - DNML | DZ | OFL | IMP */
544 	FPE_FLTINV,	/* 2F - INV | DNML | DZ | OFL | IMP */
545 	FPE_FLTUND,	/* 30 - UFL | IMP */
546 	FPE_FLTINV,	/* 31 - INV | UFL | IMP */
547 	FPE_FLTUND,	/* 32 - DNML | UFL | IMP */
548 	FPE_FLTINV,	/* 33 - INV | DNML | UFL | IMP */
549 	FPE_FLTDIV,	/* 34 - DZ | UFL | IMP */
550 	FPE_FLTINV,	/* 35 - INV | DZ | UFL | IMP */
551 	FPE_FLTDIV,	/* 36 - DNML | DZ | UFL | IMP */
552 	FPE_FLTINV,	/* 37 - INV | DNML | DZ | UFL | IMP */
553 	FPE_FLTOVF,	/* 38 - OFL | UFL | IMP */
554 	FPE_FLTINV,	/* 39 - INV | OFL | UFL | IMP */
555 	FPE_FLTUND,	/* 3A - DNML | OFL | UFL | IMP */
556 	FPE_FLTINV,	/* 3B - INV | DNML | OFL | UFL | IMP */
557 	FPE_FLTDIV,	/* 3C - DZ | OFL | UFL | IMP */
558 	FPE_FLTINV,	/* 3D - INV | DZ | OFL | UFL | IMP */
559 	FPE_FLTDIV,	/* 3E - DNML | DZ | OFL | UFL | IMP */
560 	FPE_FLTINV,	/* 3F - INV | DNML | DZ | OFL | UFL | IMP */
561 	FPE_FLTSUB,	/* 40 - STK */
562 	FPE_FLTSUB,	/* 41 - INV | STK */
563 	FPE_FLTUND,	/* 42 - DNML | STK */
564 	FPE_FLTSUB,	/* 43 - INV | DNML | STK */
565 	FPE_FLTDIV,	/* 44 - DZ | STK */
566 	FPE_FLTSUB,	/* 45 - INV | DZ | STK */
567 	FPE_FLTDIV,	/* 46 - DNML | DZ | STK */
568 	FPE_FLTSUB,	/* 47 - INV | DNML | DZ | STK */
569 	FPE_FLTOVF,	/* 48 - OFL | STK */
570 	FPE_FLTSUB,	/* 49 - INV | OFL | STK */
571 	FPE_FLTUND,	/* 4A - DNML | OFL | STK */
572 	FPE_FLTSUB,	/* 4B - INV | DNML | OFL | STK */
573 	FPE_FLTDIV,	/* 4C - DZ | OFL | STK */
574 	FPE_FLTSUB,	/* 4D - INV | DZ | OFL | STK */
575 	FPE_FLTDIV,	/* 4E - DNML | DZ | OFL | STK */
576 	FPE_FLTSUB,	/* 4F - INV | DNML | DZ | OFL | STK */
577 	FPE_FLTUND,	/* 50 - UFL | STK */
578 	FPE_FLTSUB,	/* 51 - INV | UFL | STK */
579 	FPE_FLTUND,	/* 52 - DNML | UFL | STK */
580 	FPE_FLTSUB,	/* 53 - INV | DNML | UFL | STK */
581 	FPE_FLTDIV,	/* 54 - DZ | UFL | STK */
582 	FPE_FLTSUB,	/* 55 - INV | DZ | UFL | STK */
583 	FPE_FLTDIV,	/* 56 - DNML | DZ | UFL | STK */
584 	FPE_FLTSUB,	/* 57 - INV | DNML | DZ | UFL | STK */
585 	FPE_FLTOVF,	/* 58 - OFL | UFL | STK */
586 	FPE_FLTSUB,	/* 59 - INV | OFL | UFL | STK */
587 	FPE_FLTUND,	/* 5A - DNML | OFL | UFL | STK */
588 	FPE_FLTSUB,	/* 5B - INV | DNML | OFL | UFL | STK */
589 	FPE_FLTDIV,	/* 5C - DZ | OFL | UFL | STK */
590 	FPE_FLTSUB,	/* 5D - INV | DZ | OFL | UFL | STK */
591 	FPE_FLTDIV,	/* 5E - DNML | DZ | OFL | UFL | STK */
592 	FPE_FLTSUB,	/* 5F - INV | DNML | DZ | OFL | UFL | STK */
593 	FPE_FLTRES,	/* 60 - IMP | STK */
594 	FPE_FLTSUB,	/* 61 - INV | IMP | STK */
595 	FPE_FLTUND,	/* 62 - DNML | IMP | STK */
596 	FPE_FLTSUB,	/* 63 - INV | DNML | IMP | STK */
597 	FPE_FLTDIV,	/* 64 - DZ | IMP | STK */
598 	FPE_FLTSUB,	/* 65 - INV | DZ | IMP | STK */
599 	FPE_FLTDIV,	/* 66 - DNML | DZ | IMP | STK */
600 	FPE_FLTSUB,	/* 67 - INV | DNML | DZ | IMP | STK */
601 	FPE_FLTOVF,	/* 68 - OFL | IMP | STK */
602 	FPE_FLTSUB,	/* 69 - INV | OFL | IMP | STK */
603 	FPE_FLTUND,	/* 6A - DNML | OFL | IMP | STK */
604 	FPE_FLTSUB,	/* 6B - INV | DNML | OFL | IMP | STK */
605 	FPE_FLTDIV,	/* 6C - DZ | OFL | IMP | STK */
606 	FPE_FLTSUB,	/* 6D - INV | DZ | OFL | IMP | STK */
607 	FPE_FLTDIV,	/* 6E - DNML | DZ | OFL | IMP | STK */
608 	FPE_FLTSUB,	/* 6F - INV | DNML | DZ | OFL | IMP | STK */
609 	FPE_FLTUND,	/* 70 - UFL | IMP | STK */
610 	FPE_FLTSUB,	/* 71 - INV | UFL | IMP | STK */
611 	FPE_FLTUND,	/* 72 - DNML | UFL | IMP | STK */
612 	FPE_FLTSUB,	/* 73 - INV | DNML | UFL | IMP | STK */
613 	FPE_FLTDIV,	/* 74 - DZ | UFL | IMP | STK */
614 	FPE_FLTSUB,	/* 75 - INV | DZ | UFL | IMP | STK */
615 	FPE_FLTDIV,	/* 76 - DNML | DZ | UFL | IMP | STK */
616 	FPE_FLTSUB,	/* 77 - INV | DNML | DZ | UFL | IMP | STK */
617 	FPE_FLTOVF,	/* 78 - OFL | UFL | IMP | STK */
618 	FPE_FLTSUB,	/* 79 - INV | OFL | UFL | IMP | STK */
619 	FPE_FLTUND,	/* 7A - DNML | OFL | UFL | IMP | STK */
620 	FPE_FLTSUB,	/* 7B - INV | DNML | OFL | UFL | IMP | STK */
621 	FPE_FLTDIV,	/* 7C - DZ | OFL | UFL | IMP | STK */
622 	FPE_FLTSUB,	/* 7D - INV | DZ | OFL | UFL | IMP | STK */
623 	FPE_FLTDIV,	/* 7E - DNML | DZ | OFL | UFL | IMP | STK */
624 	FPE_FLTSUB,	/* 7F - INV | DNML | DZ | OFL | UFL | IMP | STK */
625 };
626 
627 /*
628  * Read the FP status and control words, then generate si_code value
629  * for SIGFPE.  The error code chosen will be one of the
630  * FPE_... macros.  It will be sent as the second argument to old
631  * BSD-style signal handlers and as "siginfo_t->si_code" (second
632  * argument) to SA_SIGINFO signal handlers.
633  *
634  * Some time ago, we cleared the x87 exceptions with FNCLEX there.
635  * Clearing exceptions was necessary mainly to avoid IRQ13 bugs.  The
636  * usermode code which understands the FPU hardware enough to enable
637  * the exceptions, can also handle clearing the exception state in the
638  * handler.  The only consequence of not clearing the exception is the
639  * rethrow of the SIGFPE on return from the signal handler and
640  * reexecution of the corresponding instruction.
641  *
642  * For XMM traps, the exceptions were never cleared.
643  */
644 int
645 fputrap_x87(void)
646 {
647 	struct savefpu *pcb_save;
648 	u_short control, status;
649 
650 	critical_enter();
651 
652 	/*
653 	 * Interrupt handling (for another interrupt) may have pushed the
654 	 * state to memory.  Fetch the relevant parts of the state from
655 	 * wherever they are.
656 	 */
657 	if (PCPU_GET(fpcurthread) != curthread) {
658 		pcb_save = curpcb->pcb_save;
659 		control = pcb_save->sv_env.en_cw;
660 		status = pcb_save->sv_env.en_sw;
661 	} else {
662 		fnstcw(&control);
663 		fnstsw(&status);
664 	}
665 
666 	critical_exit();
667 	return (fpetable[status & ((~control & 0x3f) | 0x40)]);
668 }
669 
670 int
671 fputrap_sse(void)
672 {
673 	u_int mxcsr;
674 
675 	critical_enter();
676 	if (PCPU_GET(fpcurthread) != curthread)
677 		mxcsr = curpcb->pcb_save->sv_env.en_mxcsr;
678 	else
679 		stmxcsr(&mxcsr);
680 	critical_exit();
681 	return (fpetable[(mxcsr & (~mxcsr >> 7)) & 0x3f]);
682 }
683 
684 static void
685 restore_fpu_curthread(struct thread *td)
686 {
687 	struct pcb *pcb;
688 
689 	/*
690 	 * Record new context early in case frstor causes a trap.
691 	 */
692 	PCPU_SET(fpcurthread, td);
693 
694 	stop_emulating();
695 	fpu_clean_state();
696 	pcb = td->td_pcb;
697 
698 	if ((pcb->pcb_flags & PCB_FPUINITDONE) == 0) {
699 		/*
700 		 * This is the first time this thread has used the FPU or
701 		 * the PCB doesn't contain a clean FPU state.  Explicitly
702 		 * load an initial state.
703 		 *
704 		 * We prefer to restore the state from the actual save
705 		 * area in PCB instead of directly loading from
706 		 * fpu_initialstate, to ignite the XSAVEOPT
707 		 * tracking engine.
708 		 */
709 		bcopy(fpu_initialstate, pcb->pcb_save,
710 		    cpu_max_ext_state_size);
711 		fpurestore(pcb->pcb_save);
712 		if (pcb->pcb_initial_fpucw != __INITIAL_FPUCW__)
713 			fldcw(pcb->pcb_initial_fpucw);
714 		if (PCB_USER_FPU(pcb))
715 			set_pcb_flags(pcb, PCB_FPUINITDONE |
716 			    PCB_USERFPUINITDONE);
717 		else
718 			set_pcb_flags(pcb, PCB_FPUINITDONE);
719 	} else
720 		fpurestore(pcb->pcb_save);
721 }
722 
723 /*
724  * Device Not Available (DNA, #NM) exception handler.
725  *
726  * It would be better to switch FP context here (if curthread !=
727  * fpcurthread) and not necessarily for every context switch, but it
728  * is too hard to access foreign pcb's.
729  */
730 void
731 fpudna(void)
732 {
733 	struct thread *td;
734 
735 	td = curthread;
736 	/*
737 	 * This handler is entered with interrupts enabled, so context
738 	 * switches may occur before critical_enter() is executed.  If
739 	 * a context switch occurs, then when we regain control, our
740 	 * state will have been completely restored.  The CPU may
741 	 * change underneath us, but the only part of our context that
742 	 * lives in the CPU is CR0.TS and that will be "restored" by
743 	 * setting it on the new CPU.
744 	 */
745 	critical_enter();
746 
747 	KASSERT((curpcb->pcb_flags & PCB_FPUNOSAVE) == 0,
748 	    ("fpudna while in fpu_kern_enter(FPU_KERN_NOCTX)"));
749 	if (__predict_false(PCPU_GET(fpcurthread) == td)) {
750 		/*
751 		 * Some virtual machines seems to set %cr0.TS at
752 		 * arbitrary moments.  Silently clear the TS bit
753 		 * regardless of the eager/lazy FPU context switch
754 		 * mode.
755 		 */
756 		stop_emulating();
757 	} else {
758 		if (__predict_false(PCPU_GET(fpcurthread) != NULL)) {
759 			panic(
760 		    "fpudna: fpcurthread = %p (%d), curthread = %p (%d)\n",
761 			    PCPU_GET(fpcurthread),
762 			    PCPU_GET(fpcurthread)->td_tid, td, td->td_tid);
763 		}
764 		restore_fpu_curthread(td);
765 	}
766 	critical_exit();
767 }
768 
769 void fpu_activate_sw(struct thread *td); /* Called from the context switch */
770 void
771 fpu_activate_sw(struct thread *td)
772 {
773 
774 	if ((td->td_pflags & TDP_KTHREAD) != 0 || !PCB_USER_FPU(td->td_pcb)) {
775 		PCPU_SET(fpcurthread, NULL);
776 		start_emulating();
777 	} else if (PCPU_GET(fpcurthread) != td) {
778 		restore_fpu_curthread(td);
779 	}
780 }
781 
782 void
783 fpudrop(void)
784 {
785 	struct thread *td;
786 
787 	td = PCPU_GET(fpcurthread);
788 	KASSERT(td == curthread, ("fpudrop: fpcurthread != curthread"));
789 	CRITICAL_ASSERT(td);
790 	PCPU_SET(fpcurthread, NULL);
791 	clear_pcb_flags(td->td_pcb, PCB_FPUINITDONE);
792 	start_emulating();
793 }
794 
795 /*
796  * Get the user state of the FPU into pcb->pcb_user_save without
797  * dropping ownership (if possible).  It returns the FPU ownership
798  * status.
799  */
800 int
801 fpugetregs(struct thread *td)
802 {
803 	struct pcb *pcb;
804 	uint64_t *xstate_bv, bit;
805 	char *sa;
806 	int max_ext_n, i, owned;
807 
808 	pcb = td->td_pcb;
809 	critical_enter();
810 	if ((pcb->pcb_flags & PCB_USERFPUINITDONE) == 0) {
811 		bcopy(fpu_initialstate, get_pcb_user_save_pcb(pcb),
812 		    cpu_max_ext_state_size);
813 		get_pcb_user_save_pcb(pcb)->sv_env.en_cw =
814 		    pcb->pcb_initial_fpucw;
815 		fpuuserinited(td);
816 		critical_exit();
817 		return (_MC_FPOWNED_PCB);
818 	}
819 	if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
820 		fpusave(get_pcb_user_save_pcb(pcb));
821 		owned = _MC_FPOWNED_FPU;
822 	} else {
823 		owned = _MC_FPOWNED_PCB;
824 	}
825 	if (use_xsave) {
826 		/*
827 		 * Handle partially saved state.
828 		 */
829 		sa = (char *)get_pcb_user_save_pcb(pcb);
830 		xstate_bv = (uint64_t *)(sa + sizeof(struct savefpu) +
831 		    offsetof(struct xstate_hdr, xstate_bv));
832 		max_ext_n = flsl(xsave_mask);
833 		for (i = 0; i < max_ext_n; i++) {
834 			bit = 1ULL << i;
835 			if ((xsave_mask & bit) == 0 || (*xstate_bv & bit) != 0)
836 				continue;
837 			bcopy((char *)fpu_initialstate +
838 			    xsave_area_desc[i].offset,
839 			    sa + xsave_area_desc[i].offset,
840 			    xsave_area_desc[i].size);
841 			*xstate_bv |= bit;
842 		}
843 	}
844 	critical_exit();
845 	return (owned);
846 }
847 
848 void
849 fpuuserinited(struct thread *td)
850 {
851 	struct pcb *pcb;
852 
853 	CRITICAL_ASSERT(td);
854 	pcb = td->td_pcb;
855 	if (PCB_USER_FPU(pcb))
856 		set_pcb_flags(pcb,
857 		    PCB_FPUINITDONE | PCB_USERFPUINITDONE);
858 	else
859 		set_pcb_flags(pcb, PCB_FPUINITDONE);
860 }
861 
862 int
863 fpusetxstate(struct thread *td, char *xfpustate, size_t xfpustate_size)
864 {
865 	struct xstate_hdr *hdr, *ehdr;
866 	size_t len, max_len;
867 	uint64_t bv;
868 
869 	/* XXXKIB should we clear all extended state in xstate_bv instead ? */
870 	if (xfpustate == NULL)
871 		return (0);
872 	if (!use_xsave)
873 		return (EOPNOTSUPP);
874 
875 	len = xfpustate_size;
876 	if (len < sizeof(struct xstate_hdr))
877 		return (EINVAL);
878 	max_len = cpu_max_ext_state_size - sizeof(struct savefpu);
879 	if (len > max_len)
880 		return (EINVAL);
881 
882 	ehdr = (struct xstate_hdr *)xfpustate;
883 	bv = ehdr->xstate_bv;
884 
885 	/*
886 	 * Avoid #gp.
887 	 */
888 	if (bv & ~xsave_mask)
889 		return (EINVAL);
890 
891 	hdr = (struct xstate_hdr *)(get_pcb_user_save_td(td) + 1);
892 
893 	hdr->xstate_bv = bv;
894 	bcopy(xfpustate + sizeof(struct xstate_hdr),
895 	    (char *)(hdr + 1), len - sizeof(struct xstate_hdr));
896 
897 	return (0);
898 }
899 
900 /*
901  * Set the state of the FPU.
902  */
903 int
904 fpusetregs(struct thread *td, struct savefpu *addr, char *xfpustate,
905     size_t xfpustate_size)
906 {
907 	struct pcb *pcb;
908 	int error;
909 
910 	addr->sv_env.en_mxcsr &= cpu_mxcsr_mask;
911 	pcb = td->td_pcb;
912 	error = 0;
913 	critical_enter();
914 	if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
915 		error = fpusetxstate(td, xfpustate, xfpustate_size);
916 		if (error == 0) {
917 			bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
918 			fpurestore(get_pcb_user_save_td(td));
919 			set_pcb_flags(pcb, PCB_FPUINITDONE |
920 			    PCB_USERFPUINITDONE);
921 		}
922 	} else {
923 		error = fpusetxstate(td, xfpustate, xfpustate_size);
924 		if (error == 0) {
925 			bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
926 			fpuuserinited(td);
927 		}
928 	}
929 	critical_exit();
930 	return (error);
931 }
932 
933 /*
934  * On AuthenticAMD processors, the fxrstor instruction does not restore
935  * the x87's stored last instruction pointer, last data pointer, and last
936  * opcode values, except in the rare case in which the exception summary
937  * (ES) bit in the x87 status word is set to 1.
938  *
939  * In order to avoid leaking this information across processes, we clean
940  * these values by performing a dummy load before executing fxrstor().
941  */
942 static void
943 fpu_clean_state(void)
944 {
945 	static float dummy_variable = 0.0;
946 	u_short status;
947 
948 	/*
949 	 * Clear the ES bit in the x87 status word if it is currently
950 	 * set, in order to avoid causing a fault in the upcoming load.
951 	 */
952 	fnstsw(&status);
953 	if (status & 0x80)
954 		fnclex();
955 
956 	/*
957 	 * Load the dummy variable into the x87 stack.  This mangles
958 	 * the x87 stack, but we don't care since we're about to call
959 	 * fxrstor() anyway.
960 	 */
961 	__asm __volatile("ffree %%st(7); flds %0" : : "m" (dummy_variable));
962 }
963 
964 /*
965  * This really sucks.  We want the acpi version only, but it requires
966  * the isa_if.h file in order to get the definitions.
967  */
968 #include "opt_isa.h"
969 #ifdef DEV_ISA
970 #include <isa/isavar.h>
971 /*
972  * This sucks up the legacy ISA support assignments from PNPBIOS/ACPI.
973  */
974 static struct isa_pnp_id fpupnp_ids[] = {
975 	{ 0x040cd041, "Legacy ISA coprocessor support" }, /* PNP0C04 */
976 	{ 0 }
977 };
978 
979 static int
980 fpupnp_probe(device_t dev)
981 {
982 	int result;
983 
984 	result = ISA_PNP_PROBE(device_get_parent(dev), dev, fpupnp_ids);
985 	if (result <= 0)
986 		device_quiet(dev);
987 	return (result);
988 }
989 
990 static int
991 fpupnp_attach(device_t dev)
992 {
993 
994 	return (0);
995 }
996 
997 static device_method_t fpupnp_methods[] = {
998 	/* Device interface */
999 	DEVMETHOD(device_probe,		fpupnp_probe),
1000 	DEVMETHOD(device_attach,	fpupnp_attach),
1001 	DEVMETHOD(device_detach,	bus_generic_detach),
1002 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
1003 	DEVMETHOD(device_suspend,	bus_generic_suspend),
1004 	DEVMETHOD(device_resume,	bus_generic_resume),
1005 
1006 	{ 0, 0 }
1007 };
1008 
1009 static driver_t fpupnp_driver = {
1010 	"fpupnp",
1011 	fpupnp_methods,
1012 	1,			/* no softc */
1013 };
1014 
1015 static devclass_t fpupnp_devclass;
1016 
1017 DRIVER_MODULE(fpupnp, acpi, fpupnp_driver, fpupnp_devclass, 0, 0);
1018 ISA_PNP_INFO(fpupnp_ids);
1019 #endif	/* DEV_ISA */
1020 
1021 static MALLOC_DEFINE(M_FPUKERN_CTX, "fpukern_ctx",
1022     "Kernel contexts for FPU state");
1023 
1024 #define	FPU_KERN_CTX_FPUINITDONE 0x01
1025 #define	FPU_KERN_CTX_DUMMY	 0x02	/* avoided save for the kern thread */
1026 #define	FPU_KERN_CTX_INUSE	 0x04
1027 
1028 struct fpu_kern_ctx {
1029 	struct savefpu *prev;
1030 	uint32_t flags;
1031 	char hwstate1[];
1032 };
1033 
1034 static inline size_t __pure2
1035 fpu_kern_alloc_sz(u_int max_est)
1036 {
1037 	return (sizeof(struct fpu_kern_ctx) + XSAVE_AREA_ALIGN + max_est);
1038 }
1039 
1040 static inline int __pure2
1041 fpu_kern_malloc_flags(u_int fpflags)
1042 {
1043 	return (((fpflags & FPU_KERN_NOWAIT) ? M_NOWAIT : M_WAITOK) | M_ZERO);
1044 }
1045 
1046 struct fpu_kern_ctx *
1047 fpu_kern_alloc_ctx_domain(int domain, u_int flags)
1048 {
1049 	return (malloc_domainset(fpu_kern_alloc_sz(cpu_max_ext_state_size),
1050 	    M_FPUKERN_CTX, DOMAINSET_PREF(domain),
1051 	    fpu_kern_malloc_flags(flags)));
1052 }
1053 
1054 struct fpu_kern_ctx *
1055 fpu_kern_alloc_ctx(u_int flags)
1056 {
1057 	return (malloc(fpu_kern_alloc_sz(cpu_max_ext_state_size),
1058 	    M_FPUKERN_CTX, fpu_kern_malloc_flags(flags)));
1059 }
1060 
1061 void
1062 fpu_kern_free_ctx(struct fpu_kern_ctx *ctx)
1063 {
1064 
1065 	KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) == 0, ("free'ing inuse ctx"));
1066 	/* XXXKIB clear the memory ? */
1067 	free(ctx, M_FPUKERN_CTX);
1068 }
1069 
1070 static struct savefpu *
1071 fpu_kern_ctx_savefpu(struct fpu_kern_ctx *ctx)
1072 {
1073 	vm_offset_t p;
1074 
1075 	p = (vm_offset_t)&ctx->hwstate1;
1076 	p = roundup2(p, XSAVE_AREA_ALIGN);
1077 	return ((struct savefpu *)p);
1078 }
1079 
1080 void
1081 fpu_kern_enter(struct thread *td, struct fpu_kern_ctx *ctx, u_int flags)
1082 {
1083 	struct pcb *pcb;
1084 
1085 	pcb = td->td_pcb;
1086 	KASSERT((flags & FPU_KERN_NOCTX) != 0 || ctx != NULL,
1087 	    ("ctx is required when !FPU_KERN_NOCTX"));
1088 	KASSERT(ctx == NULL || (ctx->flags & FPU_KERN_CTX_INUSE) == 0,
1089 	    ("using inuse ctx"));
1090 	KASSERT((pcb->pcb_flags & PCB_FPUNOSAVE) == 0,
1091 	    ("recursive fpu_kern_enter while in PCB_FPUNOSAVE state"));
1092 
1093 	if ((flags & FPU_KERN_NOCTX) != 0) {
1094 		critical_enter();
1095 		stop_emulating();
1096 		if (curthread == PCPU_GET(fpcurthread)) {
1097 			fpusave(curpcb->pcb_save);
1098 			PCPU_SET(fpcurthread, NULL);
1099 		} else {
1100 			KASSERT(PCPU_GET(fpcurthread) == NULL,
1101 			    ("invalid fpcurthread"));
1102 		}
1103 
1104 		/*
1105 		 * This breaks XSAVEOPT tracker, but
1106 		 * PCB_FPUNOSAVE state is supposed to never need to
1107 		 * save FPU context at all.
1108 		 */
1109 		fpurestore(fpu_initialstate);
1110 		set_pcb_flags(pcb, PCB_KERNFPU | PCB_FPUNOSAVE |
1111 		    PCB_FPUINITDONE);
1112 		return;
1113 	}
1114 	if ((flags & FPU_KERN_KTHR) != 0 && is_fpu_kern_thread(0)) {
1115 		ctx->flags = FPU_KERN_CTX_DUMMY | FPU_KERN_CTX_INUSE;
1116 		return;
1117 	}
1118 	critical_enter();
1119 	KASSERT(!PCB_USER_FPU(pcb) || pcb->pcb_save ==
1120 	    get_pcb_user_save_pcb(pcb), ("mangled pcb_save"));
1121 	ctx->flags = FPU_KERN_CTX_INUSE;
1122 	if ((pcb->pcb_flags & PCB_FPUINITDONE) != 0)
1123 		ctx->flags |= FPU_KERN_CTX_FPUINITDONE;
1124 	fpuexit(td);
1125 	ctx->prev = pcb->pcb_save;
1126 	pcb->pcb_save = fpu_kern_ctx_savefpu(ctx);
1127 	set_pcb_flags(pcb, PCB_KERNFPU);
1128 	clear_pcb_flags(pcb, PCB_FPUINITDONE);
1129 	critical_exit();
1130 }
1131 
1132 int
1133 fpu_kern_leave(struct thread *td, struct fpu_kern_ctx *ctx)
1134 {
1135 	struct pcb *pcb;
1136 
1137 	pcb = td->td_pcb;
1138 
1139 	if ((pcb->pcb_flags & PCB_FPUNOSAVE) != 0) {
1140 		KASSERT(ctx == NULL, ("non-null ctx after FPU_KERN_NOCTX"));
1141 		KASSERT(PCPU_GET(fpcurthread) == NULL,
1142 		    ("non-NULL fpcurthread for PCB_FPUNOSAVE"));
1143 		CRITICAL_ASSERT(td);
1144 
1145 		clear_pcb_flags(pcb,  PCB_FPUNOSAVE | PCB_FPUINITDONE);
1146 		start_emulating();
1147 	} else {
1148 		KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) != 0,
1149 		    ("leaving not inuse ctx"));
1150 		ctx->flags &= ~FPU_KERN_CTX_INUSE;
1151 
1152 		if (is_fpu_kern_thread(0) &&
1153 		    (ctx->flags & FPU_KERN_CTX_DUMMY) != 0)
1154 			return (0);
1155 		KASSERT((ctx->flags & FPU_KERN_CTX_DUMMY) == 0,
1156 		    ("dummy ctx"));
1157 		critical_enter();
1158 		if (curthread == PCPU_GET(fpcurthread))
1159 			fpudrop();
1160 		pcb->pcb_save = ctx->prev;
1161 	}
1162 
1163 	if (pcb->pcb_save == get_pcb_user_save_pcb(pcb)) {
1164 		if ((pcb->pcb_flags & PCB_USERFPUINITDONE) != 0) {
1165 			set_pcb_flags(pcb, PCB_FPUINITDONE);
1166 			clear_pcb_flags(pcb, PCB_KERNFPU);
1167 		} else
1168 			clear_pcb_flags(pcb, PCB_FPUINITDONE | PCB_KERNFPU);
1169 	} else {
1170 		if ((ctx->flags & FPU_KERN_CTX_FPUINITDONE) != 0)
1171 			set_pcb_flags(pcb, PCB_FPUINITDONE);
1172 		else
1173 			clear_pcb_flags(pcb, PCB_FPUINITDONE);
1174 		KASSERT(!PCB_USER_FPU(pcb), ("unpaired fpu_kern_leave"));
1175 	}
1176 	critical_exit();
1177 	return (0);
1178 }
1179 
1180 int
1181 fpu_kern_thread(u_int flags)
1182 {
1183 
1184 	KASSERT((curthread->td_pflags & TDP_KTHREAD) != 0,
1185 	    ("Only kthread may use fpu_kern_thread"));
1186 	KASSERT(curpcb->pcb_save == get_pcb_user_save_pcb(curpcb),
1187 	    ("mangled pcb_save"));
1188 	KASSERT(PCB_USER_FPU(curpcb), ("recursive call"));
1189 
1190 	set_pcb_flags(curpcb, PCB_KERNFPU);
1191 	return (0);
1192 }
1193 
1194 int
1195 is_fpu_kern_thread(u_int flags)
1196 {
1197 
1198 	if ((curthread->td_pflags & TDP_KTHREAD) == 0)
1199 		return (0);
1200 	return ((curpcb->pcb_flags & PCB_KERNFPU) != 0);
1201 }
1202 
1203 /*
1204  * FPU save area alloc/free/init utility routines
1205  */
1206 struct savefpu *
1207 fpu_save_area_alloc(void)
1208 {
1209 
1210 	return (uma_zalloc(fpu_save_area_zone, M_WAITOK));
1211 }
1212 
1213 void
1214 fpu_save_area_free(struct savefpu *fsa)
1215 {
1216 
1217 	uma_zfree(fpu_save_area_zone, fsa);
1218 }
1219 
1220 void
1221 fpu_save_area_reset(struct savefpu *fsa)
1222 {
1223 
1224 	bcopy(fpu_initialstate, fsa, cpu_max_ext_state_size);
1225 }
1226