xref: /freebsd/sys/amd64/amd64/fpu.c (revision 780fb4a2fa9a9aee5ac48a60b790f567c0dc13e9)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1990 William Jolitz.
5  * Copyright (c) 1991 The Regents of the University of California.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)npx.c	7.2 (Berkeley) 5/12/91
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/bus.h>
41 #include <sys/kernel.h>
42 #include <sys/lock.h>
43 #include <sys/malloc.h>
44 #include <sys/module.h>
45 #include <sys/mutex.h>
46 #include <sys/mutex.h>
47 #include <sys/proc.h>
48 #include <sys/sysctl.h>
49 #include <machine/bus.h>
50 #include <sys/rman.h>
51 #include <sys/signalvar.h>
52 #include <vm/uma.h>
53 
54 #include <machine/cputypes.h>
55 #include <machine/frame.h>
56 #include <machine/intr_machdep.h>
57 #include <machine/md_var.h>
58 #include <machine/pcb.h>
59 #include <machine/psl.h>
60 #include <machine/resource.h>
61 #include <machine/specialreg.h>
62 #include <machine/segments.h>
63 #include <machine/ucontext.h>
64 #include <x86/ifunc.h>
65 
66 /*
67  * Floating point support.
68  */
69 
70 #if defined(__GNUCLIKE_ASM) && !defined(lint)
71 
72 #define	fldcw(cw)		__asm __volatile("fldcw %0" : : "m" (cw))
73 #define	fnclex()		__asm __volatile("fnclex")
74 #define	fninit()		__asm __volatile("fninit")
75 #define	fnstcw(addr)		__asm __volatile("fnstcw %0" : "=m" (*(addr)))
76 #define	fnstsw(addr)		__asm __volatile("fnstsw %0" : "=am" (*(addr)))
77 #define	fxrstor(addr)		__asm __volatile("fxrstor %0" : : "m" (*(addr)))
78 #define	fxsave(addr)		__asm __volatile("fxsave %0" : "=m" (*(addr)))
79 #define	ldmxcsr(csr)		__asm __volatile("ldmxcsr %0" : : "m" (csr))
80 #define	stmxcsr(addr)		__asm __volatile("stmxcsr %0" : : "m" (*(addr)))
81 
82 static __inline void
83 xrstor(char *addr, uint64_t mask)
84 {
85 	uint32_t low, hi;
86 
87 	low = mask;
88 	hi = mask >> 32;
89 	__asm __volatile("xrstor %0" : : "m" (*addr), "a" (low), "d" (hi));
90 }
91 
92 static __inline void
93 xsave(char *addr, uint64_t mask)
94 {
95 	uint32_t low, hi;
96 
97 	low = mask;
98 	hi = mask >> 32;
99 	__asm __volatile("xsave %0" : "=m" (*addr) : "a" (low), "d" (hi) :
100 	    "memory");
101 }
102 
103 #else	/* !(__GNUCLIKE_ASM && !lint) */
104 
105 void	fldcw(u_short cw);
106 void	fnclex(void);
107 void	fninit(void);
108 void	fnstcw(caddr_t addr);
109 void	fnstsw(caddr_t addr);
110 void	fxsave(caddr_t addr);
111 void	fxrstor(caddr_t addr);
112 void	ldmxcsr(u_int csr);
113 void	stmxcsr(u_int *csr);
114 void	xrstor(char *addr, uint64_t mask);
115 void	xsave(char *addr, uint64_t mask);
116 
117 #endif	/* __GNUCLIKE_ASM && !lint */
118 
119 #define	start_emulating()	load_cr0(rcr0() | CR0_TS)
120 #define	stop_emulating()	clts()
121 
122 CTASSERT(sizeof(struct savefpu) == 512);
123 CTASSERT(sizeof(struct xstate_hdr) == 64);
124 CTASSERT(sizeof(struct savefpu_ymm) == 832);
125 
126 /*
127  * This requirement is to make it easier for asm code to calculate
128  * offset of the fpu save area from the pcb address. FPU save area
129  * must be 64-byte aligned.
130  */
131 CTASSERT(sizeof(struct pcb) % XSAVE_AREA_ALIGN == 0);
132 
133 /*
134  * Ensure the copy of XCR0 saved in a core is contained in the padding
135  * area.
136  */
137 CTASSERT(X86_XSTATE_XCR0_OFFSET >= offsetof(struct savefpu, sv_pad) &&
138     X86_XSTATE_XCR0_OFFSET + sizeof(uint64_t) <= sizeof(struct savefpu));
139 
140 static	void	fpu_clean_state(void);
141 
142 SYSCTL_INT(_hw, HW_FLOATINGPT, floatingpoint, CTLFLAG_RD,
143     SYSCTL_NULL_INT_PTR, 1, "Floating point instructions executed in hardware");
144 
145 int lazy_fpu_switch = 0;
146 SYSCTL_INT(_hw, OID_AUTO, lazy_fpu_switch, CTLFLAG_RWTUN | CTLFLAG_NOFETCH,
147     &lazy_fpu_switch, 0,
148     "Lazily load FPU context after context switch");
149 
150 int use_xsave;			/* non-static for cpu_switch.S */
151 uint64_t xsave_mask;		/* the same */
152 static	uma_zone_t fpu_save_area_zone;
153 static	struct savefpu *fpu_initialstate;
154 
155 struct xsave_area_elm_descr {
156 	u_int	offset;
157 	u_int	size;
158 } *xsave_area_desc;
159 
160 static void
161 fpusave_xsave(void *addr)
162 {
163 
164 	xsave((char *)addr, xsave_mask);
165 }
166 
167 static void
168 fpurestore_xrstor(void *addr)
169 {
170 
171 	xrstor((char *)addr, xsave_mask);
172 }
173 
174 static void
175 fpusave_fxsave(void *addr)
176 {
177 
178 	fxsave((char *)addr);
179 }
180 
181 static void
182 fpurestore_fxrstor(void *addr)
183 {
184 
185 	fxrstor((char *)addr);
186 }
187 
188 static void
189 init_xsave(void)
190 {
191 
192 	if (use_xsave)
193 		return;
194 	if ((cpu_feature2 & CPUID2_XSAVE) == 0)
195 		return;
196 	use_xsave = 1;
197 	TUNABLE_INT_FETCH("hw.use_xsave", &use_xsave);
198 }
199 
200 DEFINE_IFUNC(, void, fpusave, (void *), static)
201 {
202 
203 	init_xsave();
204 	return (use_xsave ? fpusave_xsave : fpusave_fxsave);
205 }
206 
207 DEFINE_IFUNC(, void, fpurestore, (void *), static)
208 {
209 
210 	init_xsave();
211 	return (use_xsave ? fpurestore_xrstor : fpurestore_fxrstor);
212 }
213 
214 void
215 fpususpend(void *addr)
216 {
217 	u_long cr0;
218 
219 	cr0 = rcr0();
220 	stop_emulating();
221 	fpusave(addr);
222 	load_cr0(cr0);
223 }
224 
225 void
226 fpuresume(void *addr)
227 {
228 	u_long cr0;
229 
230 	cr0 = rcr0();
231 	stop_emulating();
232 	fninit();
233 	if (use_xsave)
234 		load_xcr(XCR0, xsave_mask);
235 	fpurestore(addr);
236 	load_cr0(cr0);
237 }
238 
239 /*
240  * Enable XSAVE if supported and allowed by user.
241  * Calculate the xsave_mask.
242  */
243 static void
244 fpuinit_bsp1(void)
245 {
246 	u_int cp[4];
247 	uint64_t xsave_mask_user;
248 	bool old_wp;
249 
250 	TUNABLE_INT_FETCH("hw.lazy_fpu_switch", &lazy_fpu_switch);
251 	if (!use_xsave)
252 		return;
253 	cpuid_count(0xd, 0x0, cp);
254 	xsave_mask = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
255 	if ((cp[0] & xsave_mask) != xsave_mask)
256 		panic("CPU0 does not support X87 or SSE: %x", cp[0]);
257 	xsave_mask = ((uint64_t)cp[3] << 32) | cp[0];
258 	xsave_mask_user = xsave_mask;
259 	TUNABLE_ULONG_FETCH("hw.xsave_mask", &xsave_mask_user);
260 	xsave_mask_user |= XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
261 	xsave_mask &= xsave_mask_user;
262 	if ((xsave_mask & XFEATURE_AVX512) != XFEATURE_AVX512)
263 		xsave_mask &= ~XFEATURE_AVX512;
264 	if ((xsave_mask & XFEATURE_MPX) != XFEATURE_MPX)
265 		xsave_mask &= ~XFEATURE_MPX;
266 
267 	cpuid_count(0xd, 0x1, cp);
268 	if ((cp[0] & CPUID_EXTSTATE_XSAVEOPT) != 0) {
269 		/*
270 		 * Patch the XSAVE instruction in the cpu_switch code
271 		 * to XSAVEOPT.  We assume that XSAVE encoding used
272 		 * REX byte, and set the bit 4 of the r/m byte.
273 		 *
274 		 * It seems that some BIOSes give control to the OS
275 		 * with CR0.WP already set, making the kernel text
276 		 * read-only before cpu_startup().
277 		 */
278 		old_wp = disable_wp();
279 		ctx_switch_xsave[3] |= 0x10;
280 		restore_wp(old_wp);
281 	}
282 }
283 
284 /*
285  * Calculate the fpu save area size.
286  */
287 static void
288 fpuinit_bsp2(void)
289 {
290 	u_int cp[4];
291 
292 	if (use_xsave) {
293 		cpuid_count(0xd, 0x0, cp);
294 		cpu_max_ext_state_size = cp[1];
295 
296 		/*
297 		 * Reload the cpu_feature2, since we enabled OSXSAVE.
298 		 */
299 		do_cpuid(1, cp);
300 		cpu_feature2 = cp[2];
301 	} else
302 		cpu_max_ext_state_size = sizeof(struct savefpu);
303 }
304 
305 /*
306  * Initialize the floating point unit.
307  */
308 void
309 fpuinit(void)
310 {
311 	register_t saveintr;
312 	u_int mxcsr;
313 	u_short control;
314 
315 	if (IS_BSP())
316 		fpuinit_bsp1();
317 
318 	if (use_xsave) {
319 		load_cr4(rcr4() | CR4_XSAVE);
320 		load_xcr(XCR0, xsave_mask);
321 	}
322 
323 	/*
324 	 * XCR0 shall be set up before CPU can report the save area size.
325 	 */
326 	if (IS_BSP())
327 		fpuinit_bsp2();
328 
329 	/*
330 	 * It is too early for critical_enter() to work on AP.
331 	 */
332 	saveintr = intr_disable();
333 	stop_emulating();
334 	fninit();
335 	control = __INITIAL_FPUCW__;
336 	fldcw(control);
337 	mxcsr = __INITIAL_MXCSR__;
338 	ldmxcsr(mxcsr);
339 	start_emulating();
340 	intr_restore(saveintr);
341 }
342 
343 /*
344  * On the boot CPU we generate a clean state that is used to
345  * initialize the floating point unit when it is first used by a
346  * process.
347  */
348 static void
349 fpuinitstate(void *arg __unused)
350 {
351 	register_t saveintr;
352 	int cp[4], i, max_ext_n;
353 
354 	fpu_initialstate = malloc(cpu_max_ext_state_size, M_DEVBUF,
355 	    M_WAITOK | M_ZERO);
356 	saveintr = intr_disable();
357 	stop_emulating();
358 
359 	fpusave(fpu_initialstate);
360 	if (fpu_initialstate->sv_env.en_mxcsr_mask)
361 		cpu_mxcsr_mask = fpu_initialstate->sv_env.en_mxcsr_mask;
362 	else
363 		cpu_mxcsr_mask = 0xFFBF;
364 
365 	/*
366 	 * The fninit instruction does not modify XMM registers or x87
367 	 * registers (MM/ST).  The fpusave call dumped the garbage
368 	 * contained in the registers after reset to the initial state
369 	 * saved.  Clear XMM and x87 registers file image to make the
370 	 * startup program state and signal handler XMM/x87 register
371 	 * content predictable.
372 	 */
373 	bzero(fpu_initialstate->sv_fp, sizeof(fpu_initialstate->sv_fp));
374 	bzero(fpu_initialstate->sv_xmm, sizeof(fpu_initialstate->sv_xmm));
375 
376 	/*
377 	 * Create a table describing the layout of the CPU Extended
378 	 * Save Area.
379 	 */
380 	if (use_xsave) {
381 		max_ext_n = flsl(xsave_mask);
382 		xsave_area_desc = malloc(max_ext_n * sizeof(struct
383 		    xsave_area_elm_descr), M_DEVBUF, M_WAITOK | M_ZERO);
384 		/* x87 state */
385 		xsave_area_desc[0].offset = 0;
386 		xsave_area_desc[0].size = 160;
387 		/* XMM */
388 		xsave_area_desc[1].offset = 160;
389 		xsave_area_desc[1].size = 288 - 160;
390 
391 		for (i = 2; i < max_ext_n; i++) {
392 			cpuid_count(0xd, i, cp);
393 			xsave_area_desc[i].offset = cp[1];
394 			xsave_area_desc[i].size = cp[0];
395 		}
396 	}
397 
398 	fpu_save_area_zone = uma_zcreate("FPU_save_area",
399 	    cpu_max_ext_state_size, NULL, NULL, NULL, NULL,
400 	    XSAVE_AREA_ALIGN - 1, 0);
401 
402 	start_emulating();
403 	intr_restore(saveintr);
404 }
405 /* EFIRT needs this to be initialized before we can enter our EFI environment */
406 SYSINIT(fpuinitstate, SI_SUB_DRIVERS, SI_ORDER_FIRST, fpuinitstate, NULL);
407 
408 /*
409  * Free coprocessor (if we have it).
410  */
411 void
412 fpuexit(struct thread *td)
413 {
414 
415 	critical_enter();
416 	if (curthread == PCPU_GET(fpcurthread)) {
417 		stop_emulating();
418 		fpusave(curpcb->pcb_save);
419 		start_emulating();
420 		PCPU_SET(fpcurthread, NULL);
421 	}
422 	critical_exit();
423 }
424 
425 int
426 fpuformat(void)
427 {
428 
429 	return (_MC_FPFMT_XMM);
430 }
431 
432 /*
433  * The following mechanism is used to ensure that the FPE_... value
434  * that is passed as a trapcode to the signal handler of the user
435  * process does not have more than one bit set.
436  *
437  * Multiple bits may be set if the user process modifies the control
438  * word while a status word bit is already set.  While this is a sign
439  * of bad coding, we have no choise than to narrow them down to one
440  * bit, since we must not send a trapcode that is not exactly one of
441  * the FPE_ macros.
442  *
443  * The mechanism has a static table with 127 entries.  Each combination
444  * of the 7 FPU status word exception bits directly translates to a
445  * position in this table, where a single FPE_... value is stored.
446  * This FPE_... value stored there is considered the "most important"
447  * of the exception bits and will be sent as the signal code.  The
448  * precedence of the bits is based upon Intel Document "Numerical
449  * Applications", Chapter "Special Computational Situations".
450  *
451  * The macro to choose one of these values does these steps: 1) Throw
452  * away status word bits that cannot be masked.  2) Throw away the bits
453  * currently masked in the control word, assuming the user isn't
454  * interested in them anymore.  3) Reinsert status word bit 7 (stack
455  * fault) if it is set, which cannot be masked but must be presered.
456  * 4) Use the remaining bits to point into the trapcode table.
457  *
458  * The 6 maskable bits in order of their preference, as stated in the
459  * above referenced Intel manual:
460  * 1  Invalid operation (FP_X_INV)
461  * 1a   Stack underflow
462  * 1b   Stack overflow
463  * 1c   Operand of unsupported format
464  * 1d   SNaN operand.
465  * 2  QNaN operand (not an exception, irrelavant here)
466  * 3  Any other invalid-operation not mentioned above or zero divide
467  *      (FP_X_INV, FP_X_DZ)
468  * 4  Denormal operand (FP_X_DNML)
469  * 5  Numeric over/underflow (FP_X_OFL, FP_X_UFL)
470  * 6  Inexact result (FP_X_IMP)
471  */
472 static char fpetable[128] = {
473 	0,
474 	FPE_FLTINV,	/*  1 - INV */
475 	FPE_FLTUND,	/*  2 - DNML */
476 	FPE_FLTINV,	/*  3 - INV | DNML */
477 	FPE_FLTDIV,	/*  4 - DZ */
478 	FPE_FLTINV,	/*  5 - INV | DZ */
479 	FPE_FLTDIV,	/*  6 - DNML | DZ */
480 	FPE_FLTINV,	/*  7 - INV | DNML | DZ */
481 	FPE_FLTOVF,	/*  8 - OFL */
482 	FPE_FLTINV,	/*  9 - INV | OFL */
483 	FPE_FLTUND,	/*  A - DNML | OFL */
484 	FPE_FLTINV,	/*  B - INV | DNML | OFL */
485 	FPE_FLTDIV,	/*  C - DZ | OFL */
486 	FPE_FLTINV,	/*  D - INV | DZ | OFL */
487 	FPE_FLTDIV,	/*  E - DNML | DZ | OFL */
488 	FPE_FLTINV,	/*  F - INV | DNML | DZ | OFL */
489 	FPE_FLTUND,	/* 10 - UFL */
490 	FPE_FLTINV,	/* 11 - INV | UFL */
491 	FPE_FLTUND,	/* 12 - DNML | UFL */
492 	FPE_FLTINV,	/* 13 - INV | DNML | UFL */
493 	FPE_FLTDIV,	/* 14 - DZ | UFL */
494 	FPE_FLTINV,	/* 15 - INV | DZ | UFL */
495 	FPE_FLTDIV,	/* 16 - DNML | DZ | UFL */
496 	FPE_FLTINV,	/* 17 - INV | DNML | DZ | UFL */
497 	FPE_FLTOVF,	/* 18 - OFL | UFL */
498 	FPE_FLTINV,	/* 19 - INV | OFL | UFL */
499 	FPE_FLTUND,	/* 1A - DNML | OFL | UFL */
500 	FPE_FLTINV,	/* 1B - INV | DNML | OFL | UFL */
501 	FPE_FLTDIV,	/* 1C - DZ | OFL | UFL */
502 	FPE_FLTINV,	/* 1D - INV | DZ | OFL | UFL */
503 	FPE_FLTDIV,	/* 1E - DNML | DZ | OFL | UFL */
504 	FPE_FLTINV,	/* 1F - INV | DNML | DZ | OFL | UFL */
505 	FPE_FLTRES,	/* 20 - IMP */
506 	FPE_FLTINV,	/* 21 - INV | IMP */
507 	FPE_FLTUND,	/* 22 - DNML | IMP */
508 	FPE_FLTINV,	/* 23 - INV | DNML | IMP */
509 	FPE_FLTDIV,	/* 24 - DZ | IMP */
510 	FPE_FLTINV,	/* 25 - INV | DZ | IMP */
511 	FPE_FLTDIV,	/* 26 - DNML | DZ | IMP */
512 	FPE_FLTINV,	/* 27 - INV | DNML | DZ | IMP */
513 	FPE_FLTOVF,	/* 28 - OFL | IMP */
514 	FPE_FLTINV,	/* 29 - INV | OFL | IMP */
515 	FPE_FLTUND,	/* 2A - DNML | OFL | IMP */
516 	FPE_FLTINV,	/* 2B - INV | DNML | OFL | IMP */
517 	FPE_FLTDIV,	/* 2C - DZ | OFL | IMP */
518 	FPE_FLTINV,	/* 2D - INV | DZ | OFL | IMP */
519 	FPE_FLTDIV,	/* 2E - DNML | DZ | OFL | IMP */
520 	FPE_FLTINV,	/* 2F - INV | DNML | DZ | OFL | IMP */
521 	FPE_FLTUND,	/* 30 - UFL | IMP */
522 	FPE_FLTINV,	/* 31 - INV | UFL | IMP */
523 	FPE_FLTUND,	/* 32 - DNML | UFL | IMP */
524 	FPE_FLTINV,	/* 33 - INV | DNML | UFL | IMP */
525 	FPE_FLTDIV,	/* 34 - DZ | UFL | IMP */
526 	FPE_FLTINV,	/* 35 - INV | DZ | UFL | IMP */
527 	FPE_FLTDIV,	/* 36 - DNML | DZ | UFL | IMP */
528 	FPE_FLTINV,	/* 37 - INV | DNML | DZ | UFL | IMP */
529 	FPE_FLTOVF,	/* 38 - OFL | UFL | IMP */
530 	FPE_FLTINV,	/* 39 - INV | OFL | UFL | IMP */
531 	FPE_FLTUND,	/* 3A - DNML | OFL | UFL | IMP */
532 	FPE_FLTINV,	/* 3B - INV | DNML | OFL | UFL | IMP */
533 	FPE_FLTDIV,	/* 3C - DZ | OFL | UFL | IMP */
534 	FPE_FLTINV,	/* 3D - INV | DZ | OFL | UFL | IMP */
535 	FPE_FLTDIV,	/* 3E - DNML | DZ | OFL | UFL | IMP */
536 	FPE_FLTINV,	/* 3F - INV | DNML | DZ | OFL | UFL | IMP */
537 	FPE_FLTSUB,	/* 40 - STK */
538 	FPE_FLTSUB,	/* 41 - INV | STK */
539 	FPE_FLTUND,	/* 42 - DNML | STK */
540 	FPE_FLTSUB,	/* 43 - INV | DNML | STK */
541 	FPE_FLTDIV,	/* 44 - DZ | STK */
542 	FPE_FLTSUB,	/* 45 - INV | DZ | STK */
543 	FPE_FLTDIV,	/* 46 - DNML | DZ | STK */
544 	FPE_FLTSUB,	/* 47 - INV | DNML | DZ | STK */
545 	FPE_FLTOVF,	/* 48 - OFL | STK */
546 	FPE_FLTSUB,	/* 49 - INV | OFL | STK */
547 	FPE_FLTUND,	/* 4A - DNML | OFL | STK */
548 	FPE_FLTSUB,	/* 4B - INV | DNML | OFL | STK */
549 	FPE_FLTDIV,	/* 4C - DZ | OFL | STK */
550 	FPE_FLTSUB,	/* 4D - INV | DZ | OFL | STK */
551 	FPE_FLTDIV,	/* 4E - DNML | DZ | OFL | STK */
552 	FPE_FLTSUB,	/* 4F - INV | DNML | DZ | OFL | STK */
553 	FPE_FLTUND,	/* 50 - UFL | STK */
554 	FPE_FLTSUB,	/* 51 - INV | UFL | STK */
555 	FPE_FLTUND,	/* 52 - DNML | UFL | STK */
556 	FPE_FLTSUB,	/* 53 - INV | DNML | UFL | STK */
557 	FPE_FLTDIV,	/* 54 - DZ | UFL | STK */
558 	FPE_FLTSUB,	/* 55 - INV | DZ | UFL | STK */
559 	FPE_FLTDIV,	/* 56 - DNML | DZ | UFL | STK */
560 	FPE_FLTSUB,	/* 57 - INV | DNML | DZ | UFL | STK */
561 	FPE_FLTOVF,	/* 58 - OFL | UFL | STK */
562 	FPE_FLTSUB,	/* 59 - INV | OFL | UFL | STK */
563 	FPE_FLTUND,	/* 5A - DNML | OFL | UFL | STK */
564 	FPE_FLTSUB,	/* 5B - INV | DNML | OFL | UFL | STK */
565 	FPE_FLTDIV,	/* 5C - DZ | OFL | UFL | STK */
566 	FPE_FLTSUB,	/* 5D - INV | DZ | OFL | UFL | STK */
567 	FPE_FLTDIV,	/* 5E - DNML | DZ | OFL | UFL | STK */
568 	FPE_FLTSUB,	/* 5F - INV | DNML | DZ | OFL | UFL | STK */
569 	FPE_FLTRES,	/* 60 - IMP | STK */
570 	FPE_FLTSUB,	/* 61 - INV | IMP | STK */
571 	FPE_FLTUND,	/* 62 - DNML | IMP | STK */
572 	FPE_FLTSUB,	/* 63 - INV | DNML | IMP | STK */
573 	FPE_FLTDIV,	/* 64 - DZ | IMP | STK */
574 	FPE_FLTSUB,	/* 65 - INV | DZ | IMP | STK */
575 	FPE_FLTDIV,	/* 66 - DNML | DZ | IMP | STK */
576 	FPE_FLTSUB,	/* 67 - INV | DNML | DZ | IMP | STK */
577 	FPE_FLTOVF,	/* 68 - OFL | IMP | STK */
578 	FPE_FLTSUB,	/* 69 - INV | OFL | IMP | STK */
579 	FPE_FLTUND,	/* 6A - DNML | OFL | IMP | STK */
580 	FPE_FLTSUB,	/* 6B - INV | DNML | OFL | IMP | STK */
581 	FPE_FLTDIV,	/* 6C - DZ | OFL | IMP | STK */
582 	FPE_FLTSUB,	/* 6D - INV | DZ | OFL | IMP | STK */
583 	FPE_FLTDIV,	/* 6E - DNML | DZ | OFL | IMP | STK */
584 	FPE_FLTSUB,	/* 6F - INV | DNML | DZ | OFL | IMP | STK */
585 	FPE_FLTUND,	/* 70 - UFL | IMP | STK */
586 	FPE_FLTSUB,	/* 71 - INV | UFL | IMP | STK */
587 	FPE_FLTUND,	/* 72 - DNML | UFL | IMP | STK */
588 	FPE_FLTSUB,	/* 73 - INV | DNML | UFL | IMP | STK */
589 	FPE_FLTDIV,	/* 74 - DZ | UFL | IMP | STK */
590 	FPE_FLTSUB,	/* 75 - INV | DZ | UFL | IMP | STK */
591 	FPE_FLTDIV,	/* 76 - DNML | DZ | UFL | IMP | STK */
592 	FPE_FLTSUB,	/* 77 - INV | DNML | DZ | UFL | IMP | STK */
593 	FPE_FLTOVF,	/* 78 - OFL | UFL | IMP | STK */
594 	FPE_FLTSUB,	/* 79 - INV | OFL | UFL | IMP | STK */
595 	FPE_FLTUND,	/* 7A - DNML | OFL | UFL | IMP | STK */
596 	FPE_FLTSUB,	/* 7B - INV | DNML | OFL | UFL | IMP | STK */
597 	FPE_FLTDIV,	/* 7C - DZ | OFL | UFL | IMP | STK */
598 	FPE_FLTSUB,	/* 7D - INV | DZ | OFL | UFL | IMP | STK */
599 	FPE_FLTDIV,	/* 7E - DNML | DZ | OFL | UFL | IMP | STK */
600 	FPE_FLTSUB,	/* 7F - INV | DNML | DZ | OFL | UFL | IMP | STK */
601 };
602 
603 /*
604  * Read the FP status and control words, then generate si_code value
605  * for SIGFPE.  The error code chosen will be one of the
606  * FPE_... macros.  It will be sent as the second argument to old
607  * BSD-style signal handlers and as "siginfo_t->si_code" (second
608  * argument) to SA_SIGINFO signal handlers.
609  *
610  * Some time ago, we cleared the x87 exceptions with FNCLEX there.
611  * Clearing exceptions was necessary mainly to avoid IRQ13 bugs.  The
612  * usermode code which understands the FPU hardware enough to enable
613  * the exceptions, can also handle clearing the exception state in the
614  * handler.  The only consequence of not clearing the exception is the
615  * rethrow of the SIGFPE on return from the signal handler and
616  * reexecution of the corresponding instruction.
617  *
618  * For XMM traps, the exceptions were never cleared.
619  */
620 int
621 fputrap_x87(void)
622 {
623 	struct savefpu *pcb_save;
624 	u_short control, status;
625 
626 	critical_enter();
627 
628 	/*
629 	 * Interrupt handling (for another interrupt) may have pushed the
630 	 * state to memory.  Fetch the relevant parts of the state from
631 	 * wherever they are.
632 	 */
633 	if (PCPU_GET(fpcurthread) != curthread) {
634 		pcb_save = curpcb->pcb_save;
635 		control = pcb_save->sv_env.en_cw;
636 		status = pcb_save->sv_env.en_sw;
637 	} else {
638 		fnstcw(&control);
639 		fnstsw(&status);
640 	}
641 
642 	critical_exit();
643 	return (fpetable[status & ((~control & 0x3f) | 0x40)]);
644 }
645 
646 int
647 fputrap_sse(void)
648 {
649 	u_int mxcsr;
650 
651 	critical_enter();
652 	if (PCPU_GET(fpcurthread) != curthread)
653 		mxcsr = curpcb->pcb_save->sv_env.en_mxcsr;
654 	else
655 		stmxcsr(&mxcsr);
656 	critical_exit();
657 	return (fpetable[(mxcsr & (~mxcsr >> 7)) & 0x3f]);
658 }
659 
660 static void
661 restore_fpu_curthread(struct thread *td)
662 {
663 	struct pcb *pcb;
664 
665 	/*
666 	 * Record new context early in case frstor causes a trap.
667 	 */
668 	PCPU_SET(fpcurthread, td);
669 
670 	stop_emulating();
671 	fpu_clean_state();
672 	pcb = td->td_pcb;
673 
674 	if ((pcb->pcb_flags & PCB_FPUINITDONE) == 0) {
675 		/*
676 		 * This is the first time this thread has used the FPU or
677 		 * the PCB doesn't contain a clean FPU state.  Explicitly
678 		 * load an initial state.
679 		 *
680 		 * We prefer to restore the state from the actual save
681 		 * area in PCB instead of directly loading from
682 		 * fpu_initialstate, to ignite the XSAVEOPT
683 		 * tracking engine.
684 		 */
685 		bcopy(fpu_initialstate, pcb->pcb_save,
686 		    cpu_max_ext_state_size);
687 		fpurestore(pcb->pcb_save);
688 		if (pcb->pcb_initial_fpucw != __INITIAL_FPUCW__)
689 			fldcw(pcb->pcb_initial_fpucw);
690 		if (PCB_USER_FPU(pcb))
691 			set_pcb_flags(pcb, PCB_FPUINITDONE |
692 			    PCB_USERFPUINITDONE);
693 		else
694 			set_pcb_flags(pcb, PCB_FPUINITDONE);
695 	} else
696 		fpurestore(pcb->pcb_save);
697 }
698 
699 /*
700  * Device Not Available (DNA, #NM) exception handler.
701  *
702  * It would be better to switch FP context here (if curthread !=
703  * fpcurthread) and not necessarily for every context switch, but it
704  * is too hard to access foreign pcb's.
705  */
706 void
707 fpudna(void)
708 {
709 	struct thread *td;
710 
711 	td = curthread;
712 	/*
713 	 * This handler is entered with interrupts enabled, so context
714 	 * switches may occur before critical_enter() is executed.  If
715 	 * a context switch occurs, then when we regain control, our
716 	 * state will have been completely restored.  The CPU may
717 	 * change underneath us, but the only part of our context that
718 	 * lives in the CPU is CR0.TS and that will be "restored" by
719 	 * setting it on the new CPU.
720 	 */
721 	critical_enter();
722 
723 	KASSERT((curpcb->pcb_flags & PCB_FPUNOSAVE) == 0,
724 	    ("fpudna while in fpu_kern_enter(FPU_KERN_NOCTX)"));
725 	if (__predict_false(PCPU_GET(fpcurthread) == td)) {
726 		/*
727 		 * Some virtual machines seems to set %cr0.TS at
728 		 * arbitrary moments.  Silently clear the TS bit
729 		 * regardless of the eager/lazy FPU context switch
730 		 * mode.
731 		 */
732 		stop_emulating();
733 	} else {
734 		if (__predict_false(PCPU_GET(fpcurthread) != NULL)) {
735 			panic(
736 		    "fpudna: fpcurthread = %p (%d), curthread = %p (%d)\n",
737 			    PCPU_GET(fpcurthread),
738 			    PCPU_GET(fpcurthread)->td_tid, td, td->td_tid);
739 		}
740 		restore_fpu_curthread(td);
741 	}
742 	critical_exit();
743 }
744 
745 void fpu_activate_sw(struct thread *td); /* Called from the context switch */
746 void
747 fpu_activate_sw(struct thread *td)
748 {
749 
750 	if (lazy_fpu_switch || (td->td_pflags & TDP_KTHREAD) != 0 ||
751 	    !PCB_USER_FPU(td->td_pcb)) {
752 		PCPU_SET(fpcurthread, NULL);
753 		start_emulating();
754 	} else if (PCPU_GET(fpcurthread) != td) {
755 		restore_fpu_curthread(td);
756 	}
757 }
758 
759 void
760 fpudrop(void)
761 {
762 	struct thread *td;
763 
764 	td = PCPU_GET(fpcurthread);
765 	KASSERT(td == curthread, ("fpudrop: fpcurthread != curthread"));
766 	CRITICAL_ASSERT(td);
767 	PCPU_SET(fpcurthread, NULL);
768 	clear_pcb_flags(td->td_pcb, PCB_FPUINITDONE);
769 	start_emulating();
770 }
771 
772 /*
773  * Get the user state of the FPU into pcb->pcb_user_save without
774  * dropping ownership (if possible).  It returns the FPU ownership
775  * status.
776  */
777 int
778 fpugetregs(struct thread *td)
779 {
780 	struct pcb *pcb;
781 	uint64_t *xstate_bv, bit;
782 	char *sa;
783 	int max_ext_n, i, owned;
784 
785 	pcb = td->td_pcb;
786 	if ((pcb->pcb_flags & PCB_USERFPUINITDONE) == 0) {
787 		bcopy(fpu_initialstate, get_pcb_user_save_pcb(pcb),
788 		    cpu_max_ext_state_size);
789 		get_pcb_user_save_pcb(pcb)->sv_env.en_cw =
790 		    pcb->pcb_initial_fpucw;
791 		fpuuserinited(td);
792 		return (_MC_FPOWNED_PCB);
793 	}
794 	critical_enter();
795 	if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
796 		fpusave(get_pcb_user_save_pcb(pcb));
797 		owned = _MC_FPOWNED_FPU;
798 	} else {
799 		owned = _MC_FPOWNED_PCB;
800 	}
801 	critical_exit();
802 	if (use_xsave) {
803 		/*
804 		 * Handle partially saved state.
805 		 */
806 		sa = (char *)get_pcb_user_save_pcb(pcb);
807 		xstate_bv = (uint64_t *)(sa + sizeof(struct savefpu) +
808 		    offsetof(struct xstate_hdr, xstate_bv));
809 		max_ext_n = flsl(xsave_mask);
810 		for (i = 0; i < max_ext_n; i++) {
811 			bit = 1ULL << i;
812 			if ((xsave_mask & bit) == 0 || (*xstate_bv & bit) != 0)
813 				continue;
814 			bcopy((char *)fpu_initialstate +
815 			    xsave_area_desc[i].offset,
816 			    sa + xsave_area_desc[i].offset,
817 			    xsave_area_desc[i].size);
818 			*xstate_bv |= bit;
819 		}
820 	}
821 	return (owned);
822 }
823 
824 void
825 fpuuserinited(struct thread *td)
826 {
827 	struct pcb *pcb;
828 
829 	pcb = td->td_pcb;
830 	if (PCB_USER_FPU(pcb))
831 		set_pcb_flags(pcb,
832 		    PCB_FPUINITDONE | PCB_USERFPUINITDONE);
833 	else
834 		set_pcb_flags(pcb, PCB_FPUINITDONE);
835 }
836 
837 int
838 fpusetxstate(struct thread *td, char *xfpustate, size_t xfpustate_size)
839 {
840 	struct xstate_hdr *hdr, *ehdr;
841 	size_t len, max_len;
842 	uint64_t bv;
843 
844 	/* XXXKIB should we clear all extended state in xstate_bv instead ? */
845 	if (xfpustate == NULL)
846 		return (0);
847 	if (!use_xsave)
848 		return (EOPNOTSUPP);
849 
850 	len = xfpustate_size;
851 	if (len < sizeof(struct xstate_hdr))
852 		return (EINVAL);
853 	max_len = cpu_max_ext_state_size - sizeof(struct savefpu);
854 	if (len > max_len)
855 		return (EINVAL);
856 
857 	ehdr = (struct xstate_hdr *)xfpustate;
858 	bv = ehdr->xstate_bv;
859 
860 	/*
861 	 * Avoid #gp.
862 	 */
863 	if (bv & ~xsave_mask)
864 		return (EINVAL);
865 
866 	hdr = (struct xstate_hdr *)(get_pcb_user_save_td(td) + 1);
867 
868 	hdr->xstate_bv = bv;
869 	bcopy(xfpustate + sizeof(struct xstate_hdr),
870 	    (char *)(hdr + 1), len - sizeof(struct xstate_hdr));
871 
872 	return (0);
873 }
874 
875 /*
876  * Set the state of the FPU.
877  */
878 int
879 fpusetregs(struct thread *td, struct savefpu *addr, char *xfpustate,
880     size_t xfpustate_size)
881 {
882 	struct pcb *pcb;
883 	int error;
884 
885 	addr->sv_env.en_mxcsr &= cpu_mxcsr_mask;
886 	pcb = td->td_pcb;
887 	critical_enter();
888 	if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
889 		error = fpusetxstate(td, xfpustate, xfpustate_size);
890 		if (error != 0) {
891 			critical_exit();
892 			return (error);
893 		}
894 		bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
895 		fpurestore(get_pcb_user_save_td(td));
896 		critical_exit();
897 		set_pcb_flags(pcb, PCB_FPUINITDONE | PCB_USERFPUINITDONE);
898 	} else {
899 		critical_exit();
900 		error = fpusetxstate(td, xfpustate, xfpustate_size);
901 		if (error != 0)
902 			return (error);
903 		bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
904 		fpuuserinited(td);
905 	}
906 	return (0);
907 }
908 
909 /*
910  * On AuthenticAMD processors, the fxrstor instruction does not restore
911  * the x87's stored last instruction pointer, last data pointer, and last
912  * opcode values, except in the rare case in which the exception summary
913  * (ES) bit in the x87 status word is set to 1.
914  *
915  * In order to avoid leaking this information across processes, we clean
916  * these values by performing a dummy load before executing fxrstor().
917  */
918 static void
919 fpu_clean_state(void)
920 {
921 	static float dummy_variable = 0.0;
922 	u_short status;
923 
924 	/*
925 	 * Clear the ES bit in the x87 status word if it is currently
926 	 * set, in order to avoid causing a fault in the upcoming load.
927 	 */
928 	fnstsw(&status);
929 	if (status & 0x80)
930 		fnclex();
931 
932 	/*
933 	 * Load the dummy variable into the x87 stack.  This mangles
934 	 * the x87 stack, but we don't care since we're about to call
935 	 * fxrstor() anyway.
936 	 */
937 	__asm __volatile("ffree %%st(7); flds %0" : : "m" (dummy_variable));
938 }
939 
940 /*
941  * This really sucks.  We want the acpi version only, but it requires
942  * the isa_if.h file in order to get the definitions.
943  */
944 #include "opt_isa.h"
945 #ifdef DEV_ISA
946 #include <isa/isavar.h>
947 /*
948  * This sucks up the legacy ISA support assignments from PNPBIOS/ACPI.
949  */
950 static struct isa_pnp_id fpupnp_ids[] = {
951 	{ 0x040cd041, "Legacy ISA coprocessor support" }, /* PNP0C04 */
952 	{ 0 }
953 };
954 
955 static int
956 fpupnp_probe(device_t dev)
957 {
958 	int result;
959 
960 	result = ISA_PNP_PROBE(device_get_parent(dev), dev, fpupnp_ids);
961 	if (result <= 0)
962 		device_quiet(dev);
963 	return (result);
964 }
965 
966 static int
967 fpupnp_attach(device_t dev)
968 {
969 
970 	return (0);
971 }
972 
973 static device_method_t fpupnp_methods[] = {
974 	/* Device interface */
975 	DEVMETHOD(device_probe,		fpupnp_probe),
976 	DEVMETHOD(device_attach,	fpupnp_attach),
977 	DEVMETHOD(device_detach,	bus_generic_detach),
978 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
979 	DEVMETHOD(device_suspend,	bus_generic_suspend),
980 	DEVMETHOD(device_resume,	bus_generic_resume),
981 
982 	{ 0, 0 }
983 };
984 
985 static driver_t fpupnp_driver = {
986 	"fpupnp",
987 	fpupnp_methods,
988 	1,			/* no softc */
989 };
990 
991 static devclass_t fpupnp_devclass;
992 
993 DRIVER_MODULE(fpupnp, acpi, fpupnp_driver, fpupnp_devclass, 0, 0);
994 ISA_PNP_INFO(fpupnp_ids);
995 #endif	/* DEV_ISA */
996 
997 static MALLOC_DEFINE(M_FPUKERN_CTX, "fpukern_ctx",
998     "Kernel contexts for FPU state");
999 
1000 #define	FPU_KERN_CTX_FPUINITDONE 0x01
1001 #define	FPU_KERN_CTX_DUMMY	 0x02	/* avoided save for the kern thread */
1002 #define	FPU_KERN_CTX_INUSE	 0x04
1003 
1004 struct fpu_kern_ctx {
1005 	struct savefpu *prev;
1006 	uint32_t flags;
1007 	char hwstate1[];
1008 };
1009 
1010 struct fpu_kern_ctx *
1011 fpu_kern_alloc_ctx(u_int flags)
1012 {
1013 	struct fpu_kern_ctx *res;
1014 	size_t sz;
1015 
1016 	sz = sizeof(struct fpu_kern_ctx) + XSAVE_AREA_ALIGN +
1017 	    cpu_max_ext_state_size;
1018 	res = malloc(sz, M_FPUKERN_CTX, ((flags & FPU_KERN_NOWAIT) ?
1019 	    M_NOWAIT : M_WAITOK) | M_ZERO);
1020 	return (res);
1021 }
1022 
1023 void
1024 fpu_kern_free_ctx(struct fpu_kern_ctx *ctx)
1025 {
1026 
1027 	KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) == 0, ("free'ing inuse ctx"));
1028 	/* XXXKIB clear the memory ? */
1029 	free(ctx, M_FPUKERN_CTX);
1030 }
1031 
1032 static struct savefpu *
1033 fpu_kern_ctx_savefpu(struct fpu_kern_ctx *ctx)
1034 {
1035 	vm_offset_t p;
1036 
1037 	p = (vm_offset_t)&ctx->hwstate1;
1038 	p = roundup2(p, XSAVE_AREA_ALIGN);
1039 	return ((struct savefpu *)p);
1040 }
1041 
1042 void
1043 fpu_kern_enter(struct thread *td, struct fpu_kern_ctx *ctx, u_int flags)
1044 {
1045 	struct pcb *pcb;
1046 
1047 	pcb = td->td_pcb;
1048 	KASSERT((flags & FPU_KERN_NOCTX) != 0 || ctx != NULL,
1049 	    ("ctx is required when !FPU_KERN_NOCTX"));
1050 	KASSERT(ctx == NULL || (ctx->flags & FPU_KERN_CTX_INUSE) == 0,
1051 	    ("using inuse ctx"));
1052 	KASSERT((pcb->pcb_flags & PCB_FPUNOSAVE) == 0,
1053 	    ("recursive fpu_kern_enter while in PCB_FPUNOSAVE state"));
1054 
1055 	if ((flags & FPU_KERN_NOCTX) != 0) {
1056 		critical_enter();
1057 		stop_emulating();
1058 		if (curthread == PCPU_GET(fpcurthread)) {
1059 			fpusave(curpcb->pcb_save);
1060 			PCPU_SET(fpcurthread, NULL);
1061 		} else {
1062 			KASSERT(PCPU_GET(fpcurthread) == NULL,
1063 			    ("invalid fpcurthread"));
1064 		}
1065 
1066 		/*
1067 		 * This breaks XSAVEOPT tracker, but
1068 		 * PCB_FPUNOSAVE state is supposed to never need to
1069 		 * save FPU context at all.
1070 		 */
1071 		fpurestore(fpu_initialstate);
1072 		set_pcb_flags(pcb, PCB_KERNFPU | PCB_FPUNOSAVE |
1073 		    PCB_FPUINITDONE);
1074 		return;
1075 	}
1076 	if ((flags & FPU_KERN_KTHR) != 0 && is_fpu_kern_thread(0)) {
1077 		ctx->flags = FPU_KERN_CTX_DUMMY | FPU_KERN_CTX_INUSE;
1078 		return;
1079 	}
1080 	KASSERT(!PCB_USER_FPU(pcb) || pcb->pcb_save ==
1081 	    get_pcb_user_save_pcb(pcb), ("mangled pcb_save"));
1082 	ctx->flags = FPU_KERN_CTX_INUSE;
1083 	if ((pcb->pcb_flags & PCB_FPUINITDONE) != 0)
1084 		ctx->flags |= FPU_KERN_CTX_FPUINITDONE;
1085 	fpuexit(td);
1086 	ctx->prev = pcb->pcb_save;
1087 	pcb->pcb_save = fpu_kern_ctx_savefpu(ctx);
1088 	set_pcb_flags(pcb, PCB_KERNFPU);
1089 	clear_pcb_flags(pcb, PCB_FPUINITDONE);
1090 	return;
1091 }
1092 
1093 int
1094 fpu_kern_leave(struct thread *td, struct fpu_kern_ctx *ctx)
1095 {
1096 	struct pcb *pcb;
1097 
1098 	pcb = td->td_pcb;
1099 
1100 	if ((pcb->pcb_flags & PCB_FPUNOSAVE) != 0) {
1101 		KASSERT(ctx == NULL, ("non-null ctx after FPU_KERN_NOCTX"));
1102 		KASSERT(PCPU_GET(fpcurthread) == NULL,
1103 		    ("non-NULL fpcurthread for PCB_FPUNOSAVE"));
1104 		CRITICAL_ASSERT(td);
1105 
1106 		clear_pcb_flags(pcb,  PCB_FPUNOSAVE | PCB_FPUINITDONE);
1107 		start_emulating();
1108 		critical_exit();
1109 	} else {
1110 		KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) != 0,
1111 		    ("leaving not inuse ctx"));
1112 		ctx->flags &= ~FPU_KERN_CTX_INUSE;
1113 
1114 		if (is_fpu_kern_thread(0) &&
1115 		    (ctx->flags & FPU_KERN_CTX_DUMMY) != 0)
1116 			return (0);
1117 		KASSERT((ctx->flags & FPU_KERN_CTX_DUMMY) == 0,
1118 		    ("dummy ctx"));
1119 		critical_enter();
1120 		if (curthread == PCPU_GET(fpcurthread))
1121 			fpudrop();
1122 		critical_exit();
1123 		pcb->pcb_save = ctx->prev;
1124 	}
1125 
1126 	if (pcb->pcb_save == get_pcb_user_save_pcb(pcb)) {
1127 		if ((pcb->pcb_flags & PCB_USERFPUINITDONE) != 0) {
1128 			set_pcb_flags(pcb, PCB_FPUINITDONE);
1129 			clear_pcb_flags(pcb, PCB_KERNFPU);
1130 		} else
1131 			clear_pcb_flags(pcb, PCB_FPUINITDONE | PCB_KERNFPU);
1132 	} else {
1133 		if ((ctx->flags & FPU_KERN_CTX_FPUINITDONE) != 0)
1134 			set_pcb_flags(pcb, PCB_FPUINITDONE);
1135 		else
1136 			clear_pcb_flags(pcb, PCB_FPUINITDONE);
1137 		KASSERT(!PCB_USER_FPU(pcb), ("unpaired fpu_kern_leave"));
1138 	}
1139 	return (0);
1140 }
1141 
1142 int
1143 fpu_kern_thread(u_int flags)
1144 {
1145 
1146 	KASSERT((curthread->td_pflags & TDP_KTHREAD) != 0,
1147 	    ("Only kthread may use fpu_kern_thread"));
1148 	KASSERT(curpcb->pcb_save == get_pcb_user_save_pcb(curpcb),
1149 	    ("mangled pcb_save"));
1150 	KASSERT(PCB_USER_FPU(curpcb), ("recursive call"));
1151 
1152 	set_pcb_flags(curpcb, PCB_KERNFPU);
1153 	return (0);
1154 }
1155 
1156 int
1157 is_fpu_kern_thread(u_int flags)
1158 {
1159 
1160 	if ((curthread->td_pflags & TDP_KTHREAD) == 0)
1161 		return (0);
1162 	return ((curpcb->pcb_flags & PCB_KERNFPU) != 0);
1163 }
1164 
1165 /*
1166  * FPU save area alloc/free/init utility routines
1167  */
1168 struct savefpu *
1169 fpu_save_area_alloc(void)
1170 {
1171 
1172 	return (uma_zalloc(fpu_save_area_zone, 0));
1173 }
1174 
1175 void
1176 fpu_save_area_free(struct savefpu *fsa)
1177 {
1178 
1179 	uma_zfree(fpu_save_area_zone, fsa);
1180 }
1181 
1182 void
1183 fpu_save_area_reset(struct savefpu *fsa)
1184 {
1185 
1186 	bcopy(fpu_initialstate, fsa, cpu_max_ext_state_size);
1187 }
1188