xref: /freebsd/sys/amd64/amd64/fpu.c (revision 70a8349311934f20fcb65e763b8ac80134446796)
1 /*-
2  * Copyright (c) 1990 William Jolitz.
3  * Copyright (c) 1991 The Regents of the University of California.
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Neither the name of the University nor the names of its contributors
15  *    may be used to endorse or promote products derived from this software
16  *    without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  *	from: @(#)npx.c	7.2 (Berkeley) 5/12/91
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/bus.h>
39 #include <sys/kernel.h>
40 #include <sys/lock.h>
41 #include <sys/malloc.h>
42 #include <sys/module.h>
43 #include <sys/mutex.h>
44 #include <sys/mutex.h>
45 #include <sys/proc.h>
46 #include <sys/sysctl.h>
47 #include <machine/bus.h>
48 #include <sys/rman.h>
49 #include <sys/signalvar.h>
50 #include <vm/uma.h>
51 
52 #include <machine/cputypes.h>
53 #include <machine/frame.h>
54 #include <machine/intr_machdep.h>
55 #include <machine/md_var.h>
56 #include <machine/pcb.h>
57 #include <machine/psl.h>
58 #include <machine/resource.h>
59 #include <machine/specialreg.h>
60 #include <machine/segments.h>
61 #include <machine/ucontext.h>
62 
63 /*
64  * Floating point support.
65  */
66 
67 #if defined(__GNUCLIKE_ASM) && !defined(lint)
68 
69 #define	fldcw(cw)		__asm __volatile("fldcw %0" : : "m" (cw))
70 #define	fnclex()		__asm __volatile("fnclex")
71 #define	fninit()		__asm __volatile("fninit")
72 #define	fnstcw(addr)		__asm __volatile("fnstcw %0" : "=m" (*(addr)))
73 #define	fnstsw(addr)		__asm __volatile("fnstsw %0" : "=am" (*(addr)))
74 #define	fxrstor(addr)		__asm __volatile("fxrstor %0" : : "m" (*(addr)))
75 #define	fxsave(addr)		__asm __volatile("fxsave %0" : "=m" (*(addr)))
76 #define	ldmxcsr(csr)		__asm __volatile("ldmxcsr %0" : : "m" (csr))
77 #define	stmxcsr(addr)		__asm __volatile("stmxcsr %0" : : "m" (*(addr)))
78 
79 static __inline void
80 xrstor(char *addr, uint64_t mask)
81 {
82 	uint32_t low, hi;
83 
84 	low = mask;
85 	hi = mask >> 32;
86 	__asm __volatile("xrstor %0" : : "m" (*addr), "a" (low), "d" (hi));
87 }
88 
89 static __inline void
90 xsave(char *addr, uint64_t mask)
91 {
92 	uint32_t low, hi;
93 
94 	low = mask;
95 	hi = mask >> 32;
96 	__asm __volatile("xsave %0" : "=m" (*addr) : "a" (low), "d" (hi) :
97 	    "memory");
98 }
99 
100 #else	/* !(__GNUCLIKE_ASM && !lint) */
101 
102 void	fldcw(u_short cw);
103 void	fnclex(void);
104 void	fninit(void);
105 void	fnstcw(caddr_t addr);
106 void	fnstsw(caddr_t addr);
107 void	fxsave(caddr_t addr);
108 void	fxrstor(caddr_t addr);
109 void	ldmxcsr(u_int csr);
110 void	stmxcsr(u_int *csr);
111 void	xrstor(char *addr, uint64_t mask);
112 void	xsave(char *addr, uint64_t mask);
113 
114 #endif	/* __GNUCLIKE_ASM && !lint */
115 
116 #define	start_emulating()	load_cr0(rcr0() | CR0_TS)
117 #define	stop_emulating()	clts()
118 
119 CTASSERT(sizeof(struct savefpu) == 512);
120 CTASSERT(sizeof(struct xstate_hdr) == 64);
121 CTASSERT(sizeof(struct savefpu_ymm) == 832);
122 
123 /*
124  * This requirement is to make it easier for asm code to calculate
125  * offset of the fpu save area from the pcb address. FPU save area
126  * must be 64-byte aligned.
127  */
128 CTASSERT(sizeof(struct pcb) % XSAVE_AREA_ALIGN == 0);
129 
130 /*
131  * Ensure the copy of XCR0 saved in a core is contained in the padding
132  * area.
133  */
134 CTASSERT(X86_XSTATE_XCR0_OFFSET >= offsetof(struct savefpu, sv_pad) &&
135     X86_XSTATE_XCR0_OFFSET + sizeof(uint64_t) <= sizeof(struct savefpu));
136 
137 static	void	fpu_clean_state(void);
138 
139 SYSCTL_INT(_hw, HW_FLOATINGPT, floatingpoint, CTLFLAG_RD,
140     SYSCTL_NULL_INT_PTR, 1, "Floating point instructions executed in hardware");
141 
142 int use_xsave;			/* non-static for cpu_switch.S */
143 uint64_t xsave_mask;		/* the same */
144 static	uma_zone_t fpu_save_area_zone;
145 static	struct savefpu *fpu_initialstate;
146 
147 struct xsave_area_elm_descr {
148 	u_int	offset;
149 	u_int	size;
150 } *xsave_area_desc;
151 
152 void
153 fpusave(void *addr)
154 {
155 
156 	if (use_xsave)
157 		xsave((char *)addr, xsave_mask);
158 	else
159 		fxsave((char *)addr);
160 }
161 
162 void
163 fpurestore(void *addr)
164 {
165 
166 	if (use_xsave)
167 		xrstor((char *)addr, xsave_mask);
168 	else
169 		fxrstor((char *)addr);
170 }
171 
172 void
173 fpususpend(void *addr)
174 {
175 	u_long cr0;
176 
177 	cr0 = rcr0();
178 	stop_emulating();
179 	fpusave(addr);
180 	load_cr0(cr0);
181 }
182 
183 void
184 fpuresume(void *addr)
185 {
186 	u_long cr0;
187 
188 	cr0 = rcr0();
189 	stop_emulating();
190 	fninit();
191 	if (use_xsave)
192 		load_xcr(XCR0, xsave_mask);
193 	fpurestore(addr);
194 	load_cr0(cr0);
195 }
196 
197 /*
198  * Enable XSAVE if supported and allowed by user.
199  * Calculate the xsave_mask.
200  */
201 static void
202 fpuinit_bsp1(void)
203 {
204 	u_int cp[4];
205 	uint64_t xsave_mask_user;
206 
207 	if ((cpu_feature2 & CPUID2_XSAVE) != 0) {
208 		use_xsave = 1;
209 		TUNABLE_INT_FETCH("hw.use_xsave", &use_xsave);
210 	}
211 	if (!use_xsave)
212 		return;
213 
214 	cpuid_count(0xd, 0x0, cp);
215 	xsave_mask = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
216 	if ((cp[0] & xsave_mask) != xsave_mask)
217 		panic("CPU0 does not support X87 or SSE: %x", cp[0]);
218 	xsave_mask = ((uint64_t)cp[3] << 32) | cp[0];
219 	xsave_mask_user = xsave_mask;
220 	TUNABLE_ULONG_FETCH("hw.xsave_mask", &xsave_mask_user);
221 	xsave_mask_user |= XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
222 	xsave_mask &= xsave_mask_user;
223 	if ((xsave_mask & XFEATURE_AVX512) != XFEATURE_AVX512)
224 		xsave_mask &= ~XFEATURE_AVX512;
225 	if ((xsave_mask & XFEATURE_MPX) != XFEATURE_MPX)
226 		xsave_mask &= ~XFEATURE_MPX;
227 
228 	cpuid_count(0xd, 0x1, cp);
229 	if ((cp[0] & CPUID_EXTSTATE_XSAVEOPT) != 0) {
230 		/*
231 		 * Patch the XSAVE instruction in the cpu_switch code
232 		 * to XSAVEOPT.  We assume that XSAVE encoding used
233 		 * REX byte, and set the bit 4 of the r/m byte.
234 		 */
235 		ctx_switch_xsave[3] |= 0x10;
236 	}
237 }
238 
239 /*
240  * Calculate the fpu save area size.
241  */
242 static void
243 fpuinit_bsp2(void)
244 {
245 	u_int cp[4];
246 
247 	if (use_xsave) {
248 		cpuid_count(0xd, 0x0, cp);
249 		cpu_max_ext_state_size = cp[1];
250 
251 		/*
252 		 * Reload the cpu_feature2, since we enabled OSXSAVE.
253 		 */
254 		do_cpuid(1, cp);
255 		cpu_feature2 = cp[2];
256 	} else
257 		cpu_max_ext_state_size = sizeof(struct savefpu);
258 }
259 
260 /*
261  * Initialize the floating point unit.
262  */
263 void
264 fpuinit(void)
265 {
266 	register_t saveintr;
267 	u_int mxcsr;
268 	u_short control;
269 
270 	if (IS_BSP())
271 		fpuinit_bsp1();
272 
273 	if (use_xsave) {
274 		load_cr4(rcr4() | CR4_XSAVE);
275 		load_xcr(XCR0, xsave_mask);
276 	}
277 
278 	/*
279 	 * XCR0 shall be set up before CPU can report the save area size.
280 	 */
281 	if (IS_BSP())
282 		fpuinit_bsp2();
283 
284 	/*
285 	 * It is too early for critical_enter() to work on AP.
286 	 */
287 	saveintr = intr_disable();
288 	stop_emulating();
289 	fninit();
290 	control = __INITIAL_FPUCW__;
291 	fldcw(control);
292 	mxcsr = __INITIAL_MXCSR__;
293 	ldmxcsr(mxcsr);
294 	start_emulating();
295 	intr_restore(saveintr);
296 }
297 
298 /*
299  * On the boot CPU we generate a clean state that is used to
300  * initialize the floating point unit when it is first used by a
301  * process.
302  */
303 static void
304 fpuinitstate(void *arg __unused)
305 {
306 	register_t saveintr;
307 	int cp[4], i, max_ext_n;
308 
309 	fpu_initialstate = malloc(cpu_max_ext_state_size, M_DEVBUF,
310 	    M_WAITOK | M_ZERO);
311 	saveintr = intr_disable();
312 	stop_emulating();
313 
314 	fpusave(fpu_initialstate);
315 	if (fpu_initialstate->sv_env.en_mxcsr_mask)
316 		cpu_mxcsr_mask = fpu_initialstate->sv_env.en_mxcsr_mask;
317 	else
318 		cpu_mxcsr_mask = 0xFFBF;
319 
320 	/*
321 	 * The fninit instruction does not modify XMM registers or x87
322 	 * registers (MM/ST).  The fpusave call dumped the garbage
323 	 * contained in the registers after reset to the initial state
324 	 * saved.  Clear XMM and x87 registers file image to make the
325 	 * startup program state and signal handler XMM/x87 register
326 	 * content predictable.
327 	 */
328 	bzero(fpu_initialstate->sv_fp, sizeof(fpu_initialstate->sv_fp));
329 	bzero(fpu_initialstate->sv_xmm, sizeof(fpu_initialstate->sv_xmm));
330 
331 	/*
332 	 * Create a table describing the layout of the CPU Extended
333 	 * Save Area.
334 	 */
335 	if (use_xsave) {
336 		max_ext_n = flsl(xsave_mask);
337 		xsave_area_desc = malloc(max_ext_n * sizeof(struct
338 		    xsave_area_elm_descr), M_DEVBUF, M_WAITOK | M_ZERO);
339 		/* x87 state */
340 		xsave_area_desc[0].offset = 0;
341 		xsave_area_desc[0].size = 160;
342 		/* XMM */
343 		xsave_area_desc[1].offset = 160;
344 		xsave_area_desc[1].size = 288 - 160;
345 
346 		for (i = 2; i < max_ext_n; i++) {
347 			cpuid_count(0xd, i, cp);
348 			xsave_area_desc[i].offset = cp[1];
349 			xsave_area_desc[i].size = cp[0];
350 		}
351 	}
352 
353 	fpu_save_area_zone = uma_zcreate("FPU_save_area",
354 	    cpu_max_ext_state_size, NULL, NULL, NULL, NULL,
355 	    XSAVE_AREA_ALIGN - 1, 0);
356 
357 	start_emulating();
358 	intr_restore(saveintr);
359 }
360 SYSINIT(fpuinitstate, SI_SUB_DRIVERS, SI_ORDER_ANY, fpuinitstate, NULL);
361 
362 /*
363  * Free coprocessor (if we have it).
364  */
365 void
366 fpuexit(struct thread *td)
367 {
368 
369 	critical_enter();
370 	if (curthread == PCPU_GET(fpcurthread)) {
371 		stop_emulating();
372 		fpusave(curpcb->pcb_save);
373 		start_emulating();
374 		PCPU_SET(fpcurthread, NULL);
375 	}
376 	critical_exit();
377 }
378 
379 int
380 fpuformat(void)
381 {
382 
383 	return (_MC_FPFMT_XMM);
384 }
385 
386 /*
387  * The following mechanism is used to ensure that the FPE_... value
388  * that is passed as a trapcode to the signal handler of the user
389  * process does not have more than one bit set.
390  *
391  * Multiple bits may be set if the user process modifies the control
392  * word while a status word bit is already set.  While this is a sign
393  * of bad coding, we have no choise than to narrow them down to one
394  * bit, since we must not send a trapcode that is not exactly one of
395  * the FPE_ macros.
396  *
397  * The mechanism has a static table with 127 entries.  Each combination
398  * of the 7 FPU status word exception bits directly translates to a
399  * position in this table, where a single FPE_... value is stored.
400  * This FPE_... value stored there is considered the "most important"
401  * of the exception bits and will be sent as the signal code.  The
402  * precedence of the bits is based upon Intel Document "Numerical
403  * Applications", Chapter "Special Computational Situations".
404  *
405  * The macro to choose one of these values does these steps: 1) Throw
406  * away status word bits that cannot be masked.  2) Throw away the bits
407  * currently masked in the control word, assuming the user isn't
408  * interested in them anymore.  3) Reinsert status word bit 7 (stack
409  * fault) if it is set, which cannot be masked but must be presered.
410  * 4) Use the remaining bits to point into the trapcode table.
411  *
412  * The 6 maskable bits in order of their preference, as stated in the
413  * above referenced Intel manual:
414  * 1  Invalid operation (FP_X_INV)
415  * 1a   Stack underflow
416  * 1b   Stack overflow
417  * 1c   Operand of unsupported format
418  * 1d   SNaN operand.
419  * 2  QNaN operand (not an exception, irrelavant here)
420  * 3  Any other invalid-operation not mentioned above or zero divide
421  *      (FP_X_INV, FP_X_DZ)
422  * 4  Denormal operand (FP_X_DNML)
423  * 5  Numeric over/underflow (FP_X_OFL, FP_X_UFL)
424  * 6  Inexact result (FP_X_IMP)
425  */
426 static char fpetable[128] = {
427 	0,
428 	FPE_FLTINV,	/*  1 - INV */
429 	FPE_FLTUND,	/*  2 - DNML */
430 	FPE_FLTINV,	/*  3 - INV | DNML */
431 	FPE_FLTDIV,	/*  4 - DZ */
432 	FPE_FLTINV,	/*  5 - INV | DZ */
433 	FPE_FLTDIV,	/*  6 - DNML | DZ */
434 	FPE_FLTINV,	/*  7 - INV | DNML | DZ */
435 	FPE_FLTOVF,	/*  8 - OFL */
436 	FPE_FLTINV,	/*  9 - INV | OFL */
437 	FPE_FLTUND,	/*  A - DNML | OFL */
438 	FPE_FLTINV,	/*  B - INV | DNML | OFL */
439 	FPE_FLTDIV,	/*  C - DZ | OFL */
440 	FPE_FLTINV,	/*  D - INV | DZ | OFL */
441 	FPE_FLTDIV,	/*  E - DNML | DZ | OFL */
442 	FPE_FLTINV,	/*  F - INV | DNML | DZ | OFL */
443 	FPE_FLTUND,	/* 10 - UFL */
444 	FPE_FLTINV,	/* 11 - INV | UFL */
445 	FPE_FLTUND,	/* 12 - DNML | UFL */
446 	FPE_FLTINV,	/* 13 - INV | DNML | UFL */
447 	FPE_FLTDIV,	/* 14 - DZ | UFL */
448 	FPE_FLTINV,	/* 15 - INV | DZ | UFL */
449 	FPE_FLTDIV,	/* 16 - DNML | DZ | UFL */
450 	FPE_FLTINV,	/* 17 - INV | DNML | DZ | UFL */
451 	FPE_FLTOVF,	/* 18 - OFL | UFL */
452 	FPE_FLTINV,	/* 19 - INV | OFL | UFL */
453 	FPE_FLTUND,	/* 1A - DNML | OFL | UFL */
454 	FPE_FLTINV,	/* 1B - INV | DNML | OFL | UFL */
455 	FPE_FLTDIV,	/* 1C - DZ | OFL | UFL */
456 	FPE_FLTINV,	/* 1D - INV | DZ | OFL | UFL */
457 	FPE_FLTDIV,	/* 1E - DNML | DZ | OFL | UFL */
458 	FPE_FLTINV,	/* 1F - INV | DNML | DZ | OFL | UFL */
459 	FPE_FLTRES,	/* 20 - IMP */
460 	FPE_FLTINV,	/* 21 - INV | IMP */
461 	FPE_FLTUND,	/* 22 - DNML | IMP */
462 	FPE_FLTINV,	/* 23 - INV | DNML | IMP */
463 	FPE_FLTDIV,	/* 24 - DZ | IMP */
464 	FPE_FLTINV,	/* 25 - INV | DZ | IMP */
465 	FPE_FLTDIV,	/* 26 - DNML | DZ | IMP */
466 	FPE_FLTINV,	/* 27 - INV | DNML | DZ | IMP */
467 	FPE_FLTOVF,	/* 28 - OFL | IMP */
468 	FPE_FLTINV,	/* 29 - INV | OFL | IMP */
469 	FPE_FLTUND,	/* 2A - DNML | OFL | IMP */
470 	FPE_FLTINV,	/* 2B - INV | DNML | OFL | IMP */
471 	FPE_FLTDIV,	/* 2C - DZ | OFL | IMP */
472 	FPE_FLTINV,	/* 2D - INV | DZ | OFL | IMP */
473 	FPE_FLTDIV,	/* 2E - DNML | DZ | OFL | IMP */
474 	FPE_FLTINV,	/* 2F - INV | DNML | DZ | OFL | IMP */
475 	FPE_FLTUND,	/* 30 - UFL | IMP */
476 	FPE_FLTINV,	/* 31 - INV | UFL | IMP */
477 	FPE_FLTUND,	/* 32 - DNML | UFL | IMP */
478 	FPE_FLTINV,	/* 33 - INV | DNML | UFL | IMP */
479 	FPE_FLTDIV,	/* 34 - DZ | UFL | IMP */
480 	FPE_FLTINV,	/* 35 - INV | DZ | UFL | IMP */
481 	FPE_FLTDIV,	/* 36 - DNML | DZ | UFL | IMP */
482 	FPE_FLTINV,	/* 37 - INV | DNML | DZ | UFL | IMP */
483 	FPE_FLTOVF,	/* 38 - OFL | UFL | IMP */
484 	FPE_FLTINV,	/* 39 - INV | OFL | UFL | IMP */
485 	FPE_FLTUND,	/* 3A - DNML | OFL | UFL | IMP */
486 	FPE_FLTINV,	/* 3B - INV | DNML | OFL | UFL | IMP */
487 	FPE_FLTDIV,	/* 3C - DZ | OFL | UFL | IMP */
488 	FPE_FLTINV,	/* 3D - INV | DZ | OFL | UFL | IMP */
489 	FPE_FLTDIV,	/* 3E - DNML | DZ | OFL | UFL | IMP */
490 	FPE_FLTINV,	/* 3F - INV | DNML | DZ | OFL | UFL | IMP */
491 	FPE_FLTSUB,	/* 40 - STK */
492 	FPE_FLTSUB,	/* 41 - INV | STK */
493 	FPE_FLTUND,	/* 42 - DNML | STK */
494 	FPE_FLTSUB,	/* 43 - INV | DNML | STK */
495 	FPE_FLTDIV,	/* 44 - DZ | STK */
496 	FPE_FLTSUB,	/* 45 - INV | DZ | STK */
497 	FPE_FLTDIV,	/* 46 - DNML | DZ | STK */
498 	FPE_FLTSUB,	/* 47 - INV | DNML | DZ | STK */
499 	FPE_FLTOVF,	/* 48 - OFL | STK */
500 	FPE_FLTSUB,	/* 49 - INV | OFL | STK */
501 	FPE_FLTUND,	/* 4A - DNML | OFL | STK */
502 	FPE_FLTSUB,	/* 4B - INV | DNML | OFL | STK */
503 	FPE_FLTDIV,	/* 4C - DZ | OFL | STK */
504 	FPE_FLTSUB,	/* 4D - INV | DZ | OFL | STK */
505 	FPE_FLTDIV,	/* 4E - DNML | DZ | OFL | STK */
506 	FPE_FLTSUB,	/* 4F - INV | DNML | DZ | OFL | STK */
507 	FPE_FLTUND,	/* 50 - UFL | STK */
508 	FPE_FLTSUB,	/* 51 - INV | UFL | STK */
509 	FPE_FLTUND,	/* 52 - DNML | UFL | STK */
510 	FPE_FLTSUB,	/* 53 - INV | DNML | UFL | STK */
511 	FPE_FLTDIV,	/* 54 - DZ | UFL | STK */
512 	FPE_FLTSUB,	/* 55 - INV | DZ | UFL | STK */
513 	FPE_FLTDIV,	/* 56 - DNML | DZ | UFL | STK */
514 	FPE_FLTSUB,	/* 57 - INV | DNML | DZ | UFL | STK */
515 	FPE_FLTOVF,	/* 58 - OFL | UFL | STK */
516 	FPE_FLTSUB,	/* 59 - INV | OFL | UFL | STK */
517 	FPE_FLTUND,	/* 5A - DNML | OFL | UFL | STK */
518 	FPE_FLTSUB,	/* 5B - INV | DNML | OFL | UFL | STK */
519 	FPE_FLTDIV,	/* 5C - DZ | OFL | UFL | STK */
520 	FPE_FLTSUB,	/* 5D - INV | DZ | OFL | UFL | STK */
521 	FPE_FLTDIV,	/* 5E - DNML | DZ | OFL | UFL | STK */
522 	FPE_FLTSUB,	/* 5F - INV | DNML | DZ | OFL | UFL | STK */
523 	FPE_FLTRES,	/* 60 - IMP | STK */
524 	FPE_FLTSUB,	/* 61 - INV | IMP | STK */
525 	FPE_FLTUND,	/* 62 - DNML | IMP | STK */
526 	FPE_FLTSUB,	/* 63 - INV | DNML | IMP | STK */
527 	FPE_FLTDIV,	/* 64 - DZ | IMP | STK */
528 	FPE_FLTSUB,	/* 65 - INV | DZ | IMP | STK */
529 	FPE_FLTDIV,	/* 66 - DNML | DZ | IMP | STK */
530 	FPE_FLTSUB,	/* 67 - INV | DNML | DZ | IMP | STK */
531 	FPE_FLTOVF,	/* 68 - OFL | IMP | STK */
532 	FPE_FLTSUB,	/* 69 - INV | OFL | IMP | STK */
533 	FPE_FLTUND,	/* 6A - DNML | OFL | IMP | STK */
534 	FPE_FLTSUB,	/* 6B - INV | DNML | OFL | IMP | STK */
535 	FPE_FLTDIV,	/* 6C - DZ | OFL | IMP | STK */
536 	FPE_FLTSUB,	/* 6D - INV | DZ | OFL | IMP | STK */
537 	FPE_FLTDIV,	/* 6E - DNML | DZ | OFL | IMP | STK */
538 	FPE_FLTSUB,	/* 6F - INV | DNML | DZ | OFL | IMP | STK */
539 	FPE_FLTUND,	/* 70 - UFL | IMP | STK */
540 	FPE_FLTSUB,	/* 71 - INV | UFL | IMP | STK */
541 	FPE_FLTUND,	/* 72 - DNML | UFL | IMP | STK */
542 	FPE_FLTSUB,	/* 73 - INV | DNML | UFL | IMP | STK */
543 	FPE_FLTDIV,	/* 74 - DZ | UFL | IMP | STK */
544 	FPE_FLTSUB,	/* 75 - INV | DZ | UFL | IMP | STK */
545 	FPE_FLTDIV,	/* 76 - DNML | DZ | UFL | IMP | STK */
546 	FPE_FLTSUB,	/* 77 - INV | DNML | DZ | UFL | IMP | STK */
547 	FPE_FLTOVF,	/* 78 - OFL | UFL | IMP | STK */
548 	FPE_FLTSUB,	/* 79 - INV | OFL | UFL | IMP | STK */
549 	FPE_FLTUND,	/* 7A - DNML | OFL | UFL | IMP | STK */
550 	FPE_FLTSUB,	/* 7B - INV | DNML | OFL | UFL | IMP | STK */
551 	FPE_FLTDIV,	/* 7C - DZ | OFL | UFL | IMP | STK */
552 	FPE_FLTSUB,	/* 7D - INV | DZ | OFL | UFL | IMP | STK */
553 	FPE_FLTDIV,	/* 7E - DNML | DZ | OFL | UFL | IMP | STK */
554 	FPE_FLTSUB,	/* 7F - INV | DNML | DZ | OFL | UFL | IMP | STK */
555 };
556 
557 /*
558  * Read the FP status and control words, then generate si_code value
559  * for SIGFPE.  The error code chosen will be one of the
560  * FPE_... macros.  It will be sent as the second argument to old
561  * BSD-style signal handlers and as "siginfo_t->si_code" (second
562  * argument) to SA_SIGINFO signal handlers.
563  *
564  * Some time ago, we cleared the x87 exceptions with FNCLEX there.
565  * Clearing exceptions was necessary mainly to avoid IRQ13 bugs.  The
566  * usermode code which understands the FPU hardware enough to enable
567  * the exceptions, can also handle clearing the exception state in the
568  * handler.  The only consequence of not clearing the exception is the
569  * rethrow of the SIGFPE on return from the signal handler and
570  * reexecution of the corresponding instruction.
571  *
572  * For XMM traps, the exceptions were never cleared.
573  */
574 int
575 fputrap_x87(void)
576 {
577 	struct savefpu *pcb_save;
578 	u_short control, status;
579 
580 	critical_enter();
581 
582 	/*
583 	 * Interrupt handling (for another interrupt) may have pushed the
584 	 * state to memory.  Fetch the relevant parts of the state from
585 	 * wherever they are.
586 	 */
587 	if (PCPU_GET(fpcurthread) != curthread) {
588 		pcb_save = curpcb->pcb_save;
589 		control = pcb_save->sv_env.en_cw;
590 		status = pcb_save->sv_env.en_sw;
591 	} else {
592 		fnstcw(&control);
593 		fnstsw(&status);
594 	}
595 
596 	critical_exit();
597 	return (fpetable[status & ((~control & 0x3f) | 0x40)]);
598 }
599 
600 int
601 fputrap_sse(void)
602 {
603 	u_int mxcsr;
604 
605 	critical_enter();
606 	if (PCPU_GET(fpcurthread) != curthread)
607 		mxcsr = curpcb->pcb_save->sv_env.en_mxcsr;
608 	else
609 		stmxcsr(&mxcsr);
610 	critical_exit();
611 	return (fpetable[(mxcsr & (~mxcsr >> 7)) & 0x3f]);
612 }
613 
614 /*
615  * Device Not Available (DNA, #NM) exception handler.
616  *
617  * It would be better to switch FP context here (if curthread !=
618  * fpcurthread) and not necessarily for every context switch, but it
619  * is too hard to access foreign pcb's.
620  */
621 void
622 fpudna(void)
623 {
624 
625 	/*
626 	 * This handler is entered with interrupts enabled, so context
627 	 * switches may occur before critical_enter() is executed.  If
628 	 * a context switch occurs, then when we regain control, our
629 	 * state will have been completely restored.  The CPU may
630 	 * change underneath us, but the only part of our context that
631 	 * lives in the CPU is CR0.TS and that will be "restored" by
632 	 * setting it on the new CPU.
633 	 */
634 	critical_enter();
635 
636 	KASSERT((curpcb->pcb_flags & PCB_FPUNOSAVE) == 0,
637 	    ("fpudna while in fpu_kern_enter(FPU_KERN_NOCTX)"));
638 	if (PCPU_GET(fpcurthread) == curthread) {
639 		printf("fpudna: fpcurthread == curthread\n");
640 		stop_emulating();
641 		critical_exit();
642 		return;
643 	}
644 	if (PCPU_GET(fpcurthread) != NULL) {
645 		panic("fpudna: fpcurthread = %p (%d), curthread = %p (%d)\n",
646 		    PCPU_GET(fpcurthread), PCPU_GET(fpcurthread)->td_tid,
647 		    curthread, curthread->td_tid);
648 	}
649 	stop_emulating();
650 	/*
651 	 * Record new context early in case frstor causes a trap.
652 	 */
653 	PCPU_SET(fpcurthread, curthread);
654 
655 	fpu_clean_state();
656 
657 	if ((curpcb->pcb_flags & PCB_FPUINITDONE) == 0) {
658 		/*
659 		 * This is the first time this thread has used the FPU or
660 		 * the PCB doesn't contain a clean FPU state.  Explicitly
661 		 * load an initial state.
662 		 *
663 		 * We prefer to restore the state from the actual save
664 		 * area in PCB instead of directly loading from
665 		 * fpu_initialstate, to ignite the XSAVEOPT
666 		 * tracking engine.
667 		 */
668 		bcopy(fpu_initialstate, curpcb->pcb_save,
669 		    cpu_max_ext_state_size);
670 		fpurestore(curpcb->pcb_save);
671 		if (curpcb->pcb_initial_fpucw != __INITIAL_FPUCW__)
672 			fldcw(curpcb->pcb_initial_fpucw);
673 		if (PCB_USER_FPU(curpcb))
674 			set_pcb_flags(curpcb,
675 			    PCB_FPUINITDONE | PCB_USERFPUINITDONE);
676 		else
677 			set_pcb_flags(curpcb, PCB_FPUINITDONE);
678 	} else
679 		fpurestore(curpcb->pcb_save);
680 	critical_exit();
681 }
682 
683 void
684 fpudrop(void)
685 {
686 	struct thread *td;
687 
688 	td = PCPU_GET(fpcurthread);
689 	KASSERT(td == curthread, ("fpudrop: fpcurthread != curthread"));
690 	CRITICAL_ASSERT(td);
691 	PCPU_SET(fpcurthread, NULL);
692 	clear_pcb_flags(td->td_pcb, PCB_FPUINITDONE);
693 	start_emulating();
694 }
695 
696 /*
697  * Get the user state of the FPU into pcb->pcb_user_save without
698  * dropping ownership (if possible).  It returns the FPU ownership
699  * status.
700  */
701 int
702 fpugetregs(struct thread *td)
703 {
704 	struct pcb *pcb;
705 	uint64_t *xstate_bv, bit;
706 	char *sa;
707 	int max_ext_n, i, owned;
708 
709 	pcb = td->td_pcb;
710 	if ((pcb->pcb_flags & PCB_USERFPUINITDONE) == 0) {
711 		bcopy(fpu_initialstate, get_pcb_user_save_pcb(pcb),
712 		    cpu_max_ext_state_size);
713 		get_pcb_user_save_pcb(pcb)->sv_env.en_cw =
714 		    pcb->pcb_initial_fpucw;
715 		fpuuserinited(td);
716 		return (_MC_FPOWNED_PCB);
717 	}
718 	critical_enter();
719 	if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
720 		fpusave(get_pcb_user_save_pcb(pcb));
721 		owned = _MC_FPOWNED_FPU;
722 	} else {
723 		owned = _MC_FPOWNED_PCB;
724 	}
725 	critical_exit();
726 	if (use_xsave) {
727 		/*
728 		 * Handle partially saved state.
729 		 */
730 		sa = (char *)get_pcb_user_save_pcb(pcb);
731 		xstate_bv = (uint64_t *)(sa + sizeof(struct savefpu) +
732 		    offsetof(struct xstate_hdr, xstate_bv));
733 		max_ext_n = flsl(xsave_mask);
734 		for (i = 0; i < max_ext_n; i++) {
735 			bit = 1ULL << i;
736 			if ((xsave_mask & bit) == 0 || (*xstate_bv & bit) != 0)
737 				continue;
738 			bcopy((char *)fpu_initialstate +
739 			    xsave_area_desc[i].offset,
740 			    sa + xsave_area_desc[i].offset,
741 			    xsave_area_desc[i].size);
742 			*xstate_bv |= bit;
743 		}
744 	}
745 	return (owned);
746 }
747 
748 void
749 fpuuserinited(struct thread *td)
750 {
751 	struct pcb *pcb;
752 
753 	pcb = td->td_pcb;
754 	if (PCB_USER_FPU(pcb))
755 		set_pcb_flags(pcb,
756 		    PCB_FPUINITDONE | PCB_USERFPUINITDONE);
757 	else
758 		set_pcb_flags(pcb, PCB_FPUINITDONE);
759 }
760 
761 int
762 fpusetxstate(struct thread *td, char *xfpustate, size_t xfpustate_size)
763 {
764 	struct xstate_hdr *hdr, *ehdr;
765 	size_t len, max_len;
766 	uint64_t bv;
767 
768 	/* XXXKIB should we clear all extended state in xstate_bv instead ? */
769 	if (xfpustate == NULL)
770 		return (0);
771 	if (!use_xsave)
772 		return (EOPNOTSUPP);
773 
774 	len = xfpustate_size;
775 	if (len < sizeof(struct xstate_hdr))
776 		return (EINVAL);
777 	max_len = cpu_max_ext_state_size - sizeof(struct savefpu);
778 	if (len > max_len)
779 		return (EINVAL);
780 
781 	ehdr = (struct xstate_hdr *)xfpustate;
782 	bv = ehdr->xstate_bv;
783 
784 	/*
785 	 * Avoid #gp.
786 	 */
787 	if (bv & ~xsave_mask)
788 		return (EINVAL);
789 
790 	hdr = (struct xstate_hdr *)(get_pcb_user_save_td(td) + 1);
791 
792 	hdr->xstate_bv = bv;
793 	bcopy(xfpustate + sizeof(struct xstate_hdr),
794 	    (char *)(hdr + 1), len - sizeof(struct xstate_hdr));
795 
796 	return (0);
797 }
798 
799 /*
800  * Set the state of the FPU.
801  */
802 int
803 fpusetregs(struct thread *td, struct savefpu *addr, char *xfpustate,
804     size_t xfpustate_size)
805 {
806 	struct pcb *pcb;
807 	int error;
808 
809 	addr->sv_env.en_mxcsr &= cpu_mxcsr_mask;
810 	pcb = td->td_pcb;
811 	critical_enter();
812 	if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
813 		error = fpusetxstate(td, xfpustate, xfpustate_size);
814 		if (error != 0) {
815 			critical_exit();
816 			return (error);
817 		}
818 		bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
819 		fpurestore(get_pcb_user_save_td(td));
820 		critical_exit();
821 		set_pcb_flags(pcb, PCB_FPUINITDONE | PCB_USERFPUINITDONE);
822 	} else {
823 		critical_exit();
824 		error = fpusetxstate(td, xfpustate, xfpustate_size);
825 		if (error != 0)
826 			return (error);
827 		bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
828 		fpuuserinited(td);
829 	}
830 	return (0);
831 }
832 
833 /*
834  * On AuthenticAMD processors, the fxrstor instruction does not restore
835  * the x87's stored last instruction pointer, last data pointer, and last
836  * opcode values, except in the rare case in which the exception summary
837  * (ES) bit in the x87 status word is set to 1.
838  *
839  * In order to avoid leaking this information across processes, we clean
840  * these values by performing a dummy load before executing fxrstor().
841  */
842 static void
843 fpu_clean_state(void)
844 {
845 	static float dummy_variable = 0.0;
846 	u_short status;
847 
848 	/*
849 	 * Clear the ES bit in the x87 status word if it is currently
850 	 * set, in order to avoid causing a fault in the upcoming load.
851 	 */
852 	fnstsw(&status);
853 	if (status & 0x80)
854 		fnclex();
855 
856 	/*
857 	 * Load the dummy variable into the x87 stack.  This mangles
858 	 * the x87 stack, but we don't care since we're about to call
859 	 * fxrstor() anyway.
860 	 */
861 	__asm __volatile("ffree %%st(7); flds %0" : : "m" (dummy_variable));
862 }
863 
864 /*
865  * This really sucks.  We want the acpi version only, but it requires
866  * the isa_if.h file in order to get the definitions.
867  */
868 #include "opt_isa.h"
869 #ifdef DEV_ISA
870 #include <isa/isavar.h>
871 /*
872  * This sucks up the legacy ISA support assignments from PNPBIOS/ACPI.
873  */
874 static struct isa_pnp_id fpupnp_ids[] = {
875 	{ 0x040cd041, "Legacy ISA coprocessor support" }, /* PNP0C04 */
876 	{ 0 }
877 };
878 
879 static int
880 fpupnp_probe(device_t dev)
881 {
882 	int result;
883 
884 	result = ISA_PNP_PROBE(device_get_parent(dev), dev, fpupnp_ids);
885 	if (result <= 0)
886 		device_quiet(dev);
887 	return (result);
888 }
889 
890 static int
891 fpupnp_attach(device_t dev)
892 {
893 
894 	return (0);
895 }
896 
897 static device_method_t fpupnp_methods[] = {
898 	/* Device interface */
899 	DEVMETHOD(device_probe,		fpupnp_probe),
900 	DEVMETHOD(device_attach,	fpupnp_attach),
901 	DEVMETHOD(device_detach,	bus_generic_detach),
902 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
903 	DEVMETHOD(device_suspend,	bus_generic_suspend),
904 	DEVMETHOD(device_resume,	bus_generic_resume),
905 
906 	{ 0, 0 }
907 };
908 
909 static driver_t fpupnp_driver = {
910 	"fpupnp",
911 	fpupnp_methods,
912 	1,			/* no softc */
913 };
914 
915 static devclass_t fpupnp_devclass;
916 
917 DRIVER_MODULE(fpupnp, acpi, fpupnp_driver, fpupnp_devclass, 0, 0);
918 #endif	/* DEV_ISA */
919 
920 static MALLOC_DEFINE(M_FPUKERN_CTX, "fpukern_ctx",
921     "Kernel contexts for FPU state");
922 
923 #define	FPU_KERN_CTX_FPUINITDONE 0x01
924 #define	FPU_KERN_CTX_DUMMY	 0x02	/* avoided save for the kern thread */
925 #define	FPU_KERN_CTX_INUSE	 0x04
926 
927 struct fpu_kern_ctx {
928 	struct savefpu *prev;
929 	uint32_t flags;
930 	char hwstate1[];
931 };
932 
933 struct fpu_kern_ctx *
934 fpu_kern_alloc_ctx(u_int flags)
935 {
936 	struct fpu_kern_ctx *res;
937 	size_t sz;
938 
939 	sz = sizeof(struct fpu_kern_ctx) + XSAVE_AREA_ALIGN +
940 	    cpu_max_ext_state_size;
941 	res = malloc(sz, M_FPUKERN_CTX, ((flags & FPU_KERN_NOWAIT) ?
942 	    M_NOWAIT : M_WAITOK) | M_ZERO);
943 	return (res);
944 }
945 
946 void
947 fpu_kern_free_ctx(struct fpu_kern_ctx *ctx)
948 {
949 
950 	KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) == 0, ("free'ing inuse ctx"));
951 	/* XXXKIB clear the memory ? */
952 	free(ctx, M_FPUKERN_CTX);
953 }
954 
955 static struct savefpu *
956 fpu_kern_ctx_savefpu(struct fpu_kern_ctx *ctx)
957 {
958 	vm_offset_t p;
959 
960 	p = (vm_offset_t)&ctx->hwstate1;
961 	p = roundup2(p, XSAVE_AREA_ALIGN);
962 	return ((struct savefpu *)p);
963 }
964 
965 int
966 fpu_kern_enter(struct thread *td, struct fpu_kern_ctx *ctx, u_int flags)
967 {
968 	struct pcb *pcb;
969 
970 	pcb = td->td_pcb;
971 	KASSERT((flags & FPU_KERN_NOCTX) != 0 || ctx != NULL,
972 	    ("ctx is required when !FPU_KERN_NOCTX"));
973 	KASSERT(ctx == NULL || (ctx->flags & FPU_KERN_CTX_INUSE) == 0,
974 	    ("using inuse ctx"));
975 	KASSERT((pcb->pcb_flags & PCB_FPUNOSAVE) == 0,
976 	    ("recursive fpu_kern_enter while in PCB_FPUNOSAVE state"));
977 
978 	if ((flags & FPU_KERN_NOCTX) != 0) {
979 		critical_enter();
980 		stop_emulating();
981 		if (curthread == PCPU_GET(fpcurthread)) {
982 			fpusave(curpcb->pcb_save);
983 			PCPU_SET(fpcurthread, NULL);
984 		} else {
985 			KASSERT(PCPU_GET(fpcurthread) == NULL,
986 			    ("invalid fpcurthread"));
987 		}
988 
989 		/*
990 		 * This breaks XSAVEOPT tracker, but
991 		 * PCB_FPUNOSAVE state is supposed to never need to
992 		 * save FPU context at all.
993 		 */
994 		fpurestore(fpu_initialstate);
995 		set_pcb_flags(pcb, PCB_KERNFPU | PCB_FPUNOSAVE |
996 		    PCB_FPUINITDONE);
997 		return (0);
998 	}
999 	if ((flags & FPU_KERN_KTHR) != 0 && is_fpu_kern_thread(0)) {
1000 		ctx->flags = FPU_KERN_CTX_DUMMY | FPU_KERN_CTX_INUSE;
1001 		return (0);
1002 	}
1003 	KASSERT(!PCB_USER_FPU(pcb) || pcb->pcb_save ==
1004 	    get_pcb_user_save_pcb(pcb), ("mangled pcb_save"));
1005 	ctx->flags = FPU_KERN_CTX_INUSE;
1006 	if ((pcb->pcb_flags & PCB_FPUINITDONE) != 0)
1007 		ctx->flags |= FPU_KERN_CTX_FPUINITDONE;
1008 	fpuexit(td);
1009 	ctx->prev = pcb->pcb_save;
1010 	pcb->pcb_save = fpu_kern_ctx_savefpu(ctx);
1011 	set_pcb_flags(pcb, PCB_KERNFPU);
1012 	clear_pcb_flags(pcb, PCB_FPUINITDONE);
1013 	return (0);
1014 }
1015 
1016 int
1017 fpu_kern_leave(struct thread *td, struct fpu_kern_ctx *ctx)
1018 {
1019 	struct pcb *pcb;
1020 
1021 	pcb = td->td_pcb;
1022 
1023 	if ((pcb->pcb_flags & PCB_FPUNOSAVE) != 0) {
1024 		KASSERT(ctx == NULL, ("non-null ctx after FPU_KERN_NOCTX"));
1025 		KASSERT(PCPU_GET(fpcurthread) == NULL,
1026 		    ("non-NULL fpcurthread for PCB_FPUNOSAVE"));
1027 		CRITICAL_ASSERT(td);
1028 
1029 		clear_pcb_flags(pcb,  PCB_FPUNOSAVE | PCB_FPUINITDONE);
1030 		start_emulating();
1031 		critical_exit();
1032 	} else {
1033 		KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) != 0,
1034 		    ("leaving not inuse ctx"));
1035 		ctx->flags &= ~FPU_KERN_CTX_INUSE;
1036 
1037 		if (is_fpu_kern_thread(0) &&
1038 		    (ctx->flags & FPU_KERN_CTX_DUMMY) != 0)
1039 			return (0);
1040 		KASSERT((ctx->flags & FPU_KERN_CTX_DUMMY) == 0,
1041 		    ("dummy ctx"));
1042 		critical_enter();
1043 		if (curthread == PCPU_GET(fpcurthread))
1044 			fpudrop();
1045 		critical_exit();
1046 		pcb->pcb_save = ctx->prev;
1047 	}
1048 
1049 	if (pcb->pcb_save == get_pcb_user_save_pcb(pcb)) {
1050 		if ((pcb->pcb_flags & PCB_USERFPUINITDONE) != 0) {
1051 			set_pcb_flags(pcb, PCB_FPUINITDONE);
1052 			clear_pcb_flags(pcb, PCB_KERNFPU);
1053 		} else
1054 			clear_pcb_flags(pcb, PCB_FPUINITDONE | PCB_KERNFPU);
1055 	} else {
1056 		if ((ctx->flags & FPU_KERN_CTX_FPUINITDONE) != 0)
1057 			set_pcb_flags(pcb, PCB_FPUINITDONE);
1058 		else
1059 			clear_pcb_flags(pcb, PCB_FPUINITDONE);
1060 		KASSERT(!PCB_USER_FPU(pcb), ("unpaired fpu_kern_leave"));
1061 	}
1062 	return (0);
1063 }
1064 
1065 int
1066 fpu_kern_thread(u_int flags)
1067 {
1068 
1069 	KASSERT((curthread->td_pflags & TDP_KTHREAD) != 0,
1070 	    ("Only kthread may use fpu_kern_thread"));
1071 	KASSERT(curpcb->pcb_save == get_pcb_user_save_pcb(curpcb),
1072 	    ("mangled pcb_save"));
1073 	KASSERT(PCB_USER_FPU(curpcb), ("recursive call"));
1074 
1075 	set_pcb_flags(curpcb, PCB_KERNFPU);
1076 	return (0);
1077 }
1078 
1079 int
1080 is_fpu_kern_thread(u_int flags)
1081 {
1082 
1083 	if ((curthread->td_pflags & TDP_KTHREAD) == 0)
1084 		return (0);
1085 	return ((curpcb->pcb_flags & PCB_KERNFPU) != 0);
1086 }
1087 
1088 /*
1089  * FPU save area alloc/free/init utility routines
1090  */
1091 struct savefpu *
1092 fpu_save_area_alloc(void)
1093 {
1094 
1095 	return (uma_zalloc(fpu_save_area_zone, 0));
1096 }
1097 
1098 void
1099 fpu_save_area_free(struct savefpu *fsa)
1100 {
1101 
1102 	uma_zfree(fpu_save_area_zone, fsa);
1103 }
1104 
1105 void
1106 fpu_save_area_reset(struct savefpu *fsa)
1107 {
1108 
1109 	bcopy(fpu_initialstate, fsa, cpu_max_ext_state_size);
1110 }
1111