xref: /freebsd/sys/amd64/amd64/fpu.c (revision 63f537551380d2dab29fa402ad1269feae17e594)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1990 William Jolitz.
5  * Copyright (c) 1991 The Regents of the University of California.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)npx.c	7.2 (Berkeley) 5/12/91
33  */
34 
35 #include <sys/cdefs.h>
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/bus.h>
39 #include <sys/domainset.h>
40 #include <sys/kernel.h>
41 #include <sys/lock.h>
42 #include <sys/malloc.h>
43 #include <sys/module.h>
44 #include <sys/mutex.h>
45 #include <sys/mutex.h>
46 #include <sys/proc.h>
47 #include <sys/sysctl.h>
48 #include <sys/sysent.h>
49 #include <sys/tslog.h>
50 #include <machine/bus.h>
51 #include <sys/rman.h>
52 #include <sys/signalvar.h>
53 #include <vm/uma.h>
54 
55 #include <machine/cputypes.h>
56 #include <machine/frame.h>
57 #include <machine/intr_machdep.h>
58 #include <machine/md_var.h>
59 #include <machine/pcb.h>
60 #include <machine/psl.h>
61 #include <machine/resource.h>
62 #include <machine/specialreg.h>
63 #include <machine/segments.h>
64 #include <machine/ucontext.h>
65 #include <x86/ifunc.h>
66 
67 /*
68  * Floating point support.
69  */
70 
71 #define	fldcw(cw)		__asm __volatile("fldcw %0" : : "m" (cw))
72 #define	fnclex()		__asm __volatile("fnclex")
73 #define	fninit()		__asm __volatile("fninit")
74 #define	fnstcw(addr)		__asm __volatile("fnstcw %0" : "=m" (*(addr)))
75 #define	fnstsw(addr)		__asm __volatile("fnstsw %0" : "=am" (*(addr)))
76 #define	fxrstor(addr)		__asm __volatile("fxrstor %0" : : "m" (*(addr)))
77 #define	fxsave(addr)		__asm __volatile("fxsave %0" : "=m" (*(addr)))
78 #define	ldmxcsr(csr)		__asm __volatile("ldmxcsr %0" : : "m" (csr))
79 #define	stmxcsr(addr)		__asm __volatile("stmxcsr %0" : "=m" (*(addr)))
80 
81 static __inline void
82 xrstor32(char *addr, uint64_t mask)
83 {
84 	uint32_t low, hi;
85 
86 	low = mask;
87 	hi = mask >> 32;
88 	__asm __volatile("xrstor %0" : : "m" (*addr), "a" (low), "d" (hi));
89 }
90 
91 static __inline void
92 xrstor64(char *addr, uint64_t mask)
93 {
94 	uint32_t low, hi;
95 
96 	low = mask;
97 	hi = mask >> 32;
98 	__asm __volatile("xrstor64 %0" : : "m" (*addr), "a" (low), "d" (hi));
99 }
100 
101 static __inline void
102 xsave32(char *addr, uint64_t mask)
103 {
104 	uint32_t low, hi;
105 
106 	low = mask;
107 	hi = mask >> 32;
108 	__asm __volatile("xsave %0" : "=m" (*addr) : "a" (low), "d" (hi) :
109 	    "memory");
110 }
111 
112 static __inline void
113 xsave64(char *addr, uint64_t mask)
114 {
115 	uint32_t low, hi;
116 
117 	low = mask;
118 	hi = mask >> 32;
119 	__asm __volatile("xsave64 %0" : "=m" (*addr) : "a" (low), "d" (hi) :
120 	    "memory");
121 }
122 
123 static __inline void
124 xsaveopt32(char *addr, uint64_t mask)
125 {
126 	uint32_t low, hi;
127 
128 	low = mask;
129 	hi = mask >> 32;
130 	__asm __volatile("xsaveopt %0" : "=m" (*addr) : "a" (low), "d" (hi) :
131 	    "memory");
132 }
133 
134 static __inline void
135 xsaveopt64(char *addr, uint64_t mask)
136 {
137 	uint32_t low, hi;
138 
139 	low = mask;
140 	hi = mask >> 32;
141 	__asm __volatile("xsaveopt64 %0" : "=m" (*addr) : "a" (low), "d" (hi) :
142 	    "memory");
143 }
144 
145 CTASSERT(sizeof(struct savefpu) == 512);
146 CTASSERT(sizeof(struct xstate_hdr) == 64);
147 CTASSERT(sizeof(struct savefpu_ymm) == 832);
148 
149 /*
150  * This requirement is to make it easier for asm code to calculate
151  * offset of the fpu save area from the pcb address. FPU save area
152  * must be 64-byte aligned.
153  */
154 CTASSERT(sizeof(struct pcb) % XSAVE_AREA_ALIGN == 0);
155 
156 /*
157  * Ensure the copy of XCR0 saved in a core is contained in the padding
158  * area.
159  */
160 CTASSERT(X86_XSTATE_XCR0_OFFSET >= offsetof(struct savefpu, sv_pad) &&
161     X86_XSTATE_XCR0_OFFSET + sizeof(uint64_t) <= sizeof(struct savefpu));
162 
163 static	void	fpu_clean_state(void);
164 
165 SYSCTL_INT(_hw, HW_FLOATINGPT, floatingpoint, CTLFLAG_RD,
166     SYSCTL_NULL_INT_PTR, 1, "Floating point instructions executed in hardware");
167 
168 int use_xsave;			/* non-static for cpu_switch.S */
169 uint64_t xsave_mask;		/* the same */
170 static	uma_zone_t fpu_save_area_zone;
171 static	struct savefpu *fpu_initialstate;
172 
173 static struct xsave_area_elm_descr {
174 	u_int	offset;
175 	u_int	size;
176 } *xsave_area_desc;
177 
178 static void
179 fpusave_xsaveopt64(void *addr)
180 {
181 	xsaveopt64((char *)addr, xsave_mask);
182 }
183 
184 static void
185 fpusave_xsaveopt3264(void *addr)
186 {
187 	if (SV_CURPROC_FLAG(SV_ILP32))
188 		xsaveopt32((char *)addr, xsave_mask);
189 	else
190 		xsaveopt64((char *)addr, xsave_mask);
191 }
192 
193 static void
194 fpusave_xsave64(void *addr)
195 {
196 	xsave64((char *)addr, xsave_mask);
197 }
198 
199 static void
200 fpusave_xsave3264(void *addr)
201 {
202 	if (SV_CURPROC_FLAG(SV_ILP32))
203 		xsave32((char *)addr, xsave_mask);
204 	else
205 		xsave64((char *)addr, xsave_mask);
206 }
207 
208 static void
209 fpurestore_xrstor64(void *addr)
210 {
211 	xrstor64((char *)addr, xsave_mask);
212 }
213 
214 static void
215 fpurestore_xrstor3264(void *addr)
216 {
217 	if (SV_CURPROC_FLAG(SV_ILP32))
218 		xrstor32((char *)addr, xsave_mask);
219 	else
220 		xrstor64((char *)addr, xsave_mask);
221 }
222 
223 static void
224 fpusave_fxsave(void *addr)
225 {
226 
227 	fxsave((char *)addr);
228 }
229 
230 static void
231 fpurestore_fxrstor(void *addr)
232 {
233 
234 	fxrstor((char *)addr);
235 }
236 
237 DEFINE_IFUNC(, void, fpusave, (void *))
238 {
239 	if (!use_xsave)
240 		return (fpusave_fxsave);
241 	if ((cpu_stdext_feature & CPUID_EXTSTATE_XSAVEOPT) != 0) {
242 		return ((cpu_stdext_feature & CPUID_STDEXT_NFPUSG) != 0 ?
243 		    fpusave_xsaveopt64 : fpusave_xsaveopt3264);
244 	}
245 	return ((cpu_stdext_feature & CPUID_STDEXT_NFPUSG) != 0 ?
246 	    fpusave_xsave64 : fpusave_xsave3264);
247 }
248 
249 DEFINE_IFUNC(, void, fpurestore, (void *))
250 {
251 	if (!use_xsave)
252 		return (fpurestore_fxrstor);
253 	return ((cpu_stdext_feature & CPUID_STDEXT_NFPUSG) != 0 ?
254 	    fpurestore_xrstor64 : fpurestore_xrstor3264);
255 }
256 
257 void
258 fpususpend(void *addr)
259 {
260 	u_long cr0;
261 
262 	cr0 = rcr0();
263 	fpu_enable();
264 	fpusave(addr);
265 	load_cr0(cr0);
266 }
267 
268 void
269 fpuresume(void *addr)
270 {
271 	u_long cr0;
272 
273 	cr0 = rcr0();
274 	fpu_enable();
275 	fninit();
276 	if (use_xsave)
277 		load_xcr(XCR0, xsave_mask);
278 	fpurestore(addr);
279 	load_cr0(cr0);
280 }
281 
282 /*
283  * Enable XSAVE if supported and allowed by user.
284  * Calculate the xsave_mask.
285  */
286 static void
287 fpuinit_bsp1(void)
288 {
289 	u_int cp[4];
290 	uint64_t xsave_mask_user;
291 	bool old_wp;
292 
293 	if (!use_xsave)
294 		return;
295 	cpuid_count(0xd, 0x0, cp);
296 	xsave_mask = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
297 	if ((cp[0] & xsave_mask) != xsave_mask)
298 		panic("CPU0 does not support X87 or SSE: %x", cp[0]);
299 	xsave_mask = ((uint64_t)cp[3] << 32) | cp[0];
300 	xsave_mask_user = xsave_mask;
301 	TUNABLE_ULONG_FETCH("hw.xsave_mask", &xsave_mask_user);
302 	xsave_mask_user |= XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
303 	xsave_mask &= xsave_mask_user;
304 	if ((xsave_mask & XFEATURE_AVX512) != XFEATURE_AVX512)
305 		xsave_mask &= ~XFEATURE_AVX512;
306 	if ((xsave_mask & XFEATURE_MPX) != XFEATURE_MPX)
307 		xsave_mask &= ~XFEATURE_MPX;
308 
309 	cpuid_count(0xd, 0x1, cp);
310 	if ((cp[0] & CPUID_EXTSTATE_XSAVEOPT) != 0) {
311 		/*
312 		 * Patch the XSAVE instruction in the cpu_switch code
313 		 * to XSAVEOPT.  We assume that XSAVE encoding used
314 		 * REX byte, and set the bit 4 of the r/m byte.
315 		 *
316 		 * It seems that some BIOSes give control to the OS
317 		 * with CR0.WP already set, making the kernel text
318 		 * read-only before cpu_startup().
319 		 */
320 		old_wp = disable_wp();
321 		ctx_switch_xsave32[3] |= 0x10;
322 		ctx_switch_xsave[3] |= 0x10;
323 		restore_wp(old_wp);
324 	}
325 }
326 
327 /*
328  * Calculate the fpu save area size.
329  */
330 static void
331 fpuinit_bsp2(void)
332 {
333 	u_int cp[4];
334 
335 	if (use_xsave) {
336 		cpuid_count(0xd, 0x0, cp);
337 		cpu_max_ext_state_size = cp[1];
338 
339 		/*
340 		 * Reload the cpu_feature2, since we enabled OSXSAVE.
341 		 */
342 		do_cpuid(1, cp);
343 		cpu_feature2 = cp[2];
344 	} else
345 		cpu_max_ext_state_size = sizeof(struct savefpu);
346 }
347 
348 /*
349  * Initialize the floating point unit.
350  */
351 void
352 fpuinit(void)
353 {
354 	register_t saveintr;
355 	uint64_t cr4;
356 	u_int mxcsr;
357 	u_short control;
358 
359 	TSENTER();
360 	if (IS_BSP())
361 		fpuinit_bsp1();
362 
363 	if (use_xsave) {
364 		cr4 = rcr4();
365 
366 		/*
367 		 * Revert enablement of PKRU if user disabled its
368 		 * saving on context switches by clearing the bit in
369 		 * the xsave mask.  Also redundantly clear the bit in
370 		 * cpu_stdext_feature2 to prevent pmap from ever
371 		 * trying to set the page table bits.
372 		 */
373 		if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0 &&
374 		    (xsave_mask & XFEATURE_ENABLED_PKRU) == 0) {
375 			cr4 &= ~CR4_PKE;
376 			cpu_stdext_feature2 &= ~CPUID_STDEXT2_PKU;
377 		}
378 
379 		load_cr4(cr4 | CR4_XSAVE);
380 		load_xcr(XCR0, xsave_mask);
381 	}
382 
383 	/*
384 	 * XCR0 shall be set up before CPU can report the save area size.
385 	 */
386 	if (IS_BSP())
387 		fpuinit_bsp2();
388 
389 	/*
390 	 * It is too early for critical_enter() to work on AP.
391 	 */
392 	saveintr = intr_disable();
393 	fpu_enable();
394 	fninit();
395 	control = __INITIAL_FPUCW__;
396 	fldcw(control);
397 	mxcsr = __INITIAL_MXCSR__;
398 	ldmxcsr(mxcsr);
399 	fpu_disable();
400 	intr_restore(saveintr);
401 	TSEXIT();
402 }
403 
404 /*
405  * On the boot CPU we generate a clean state that is used to
406  * initialize the floating point unit when it is first used by a
407  * process.
408  */
409 static void
410 fpuinitstate(void *arg __unused)
411 {
412 	uint64_t *xstate_bv;
413 	register_t saveintr;
414 	int cp[4], i, max_ext_n;
415 
416 	/* Do potentially blocking operations before disabling interrupts. */
417 	fpu_save_area_zone = uma_zcreate("FPU_save_area",
418 	    cpu_max_ext_state_size, NULL, NULL, NULL, NULL,
419 	    XSAVE_AREA_ALIGN - 1, 0);
420 	fpu_initialstate = uma_zalloc(fpu_save_area_zone, M_WAITOK | M_ZERO);
421 	if (use_xsave) {
422 		max_ext_n = flsl(xsave_mask);
423 		xsave_area_desc = malloc(max_ext_n * sizeof(struct
424 		    xsave_area_elm_descr), M_DEVBUF, M_WAITOK | M_ZERO);
425 	}
426 
427 	cpu_thread_alloc(&thread0);
428 
429 	saveintr = intr_disable();
430 	fpu_enable();
431 
432 	fpusave_fxsave(fpu_initialstate);
433 	if (fpu_initialstate->sv_env.en_mxcsr_mask)
434 		cpu_mxcsr_mask = fpu_initialstate->sv_env.en_mxcsr_mask;
435 	else
436 		cpu_mxcsr_mask = 0xFFBF;
437 
438 	/*
439 	 * The fninit instruction does not modify XMM registers or x87
440 	 * registers (MM/ST).  The fpusave call dumped the garbage
441 	 * contained in the registers after reset to the initial state
442 	 * saved.  Clear XMM and x87 registers file image to make the
443 	 * startup program state and signal handler XMM/x87 register
444 	 * content predictable.
445 	 */
446 	bzero(fpu_initialstate->sv_fp, sizeof(fpu_initialstate->sv_fp));
447 	bzero(fpu_initialstate->sv_xmm, sizeof(fpu_initialstate->sv_xmm));
448 
449 	/*
450 	 * Create a table describing the layout of the CPU Extended
451 	 * Save Area.  See Intel SDM rev. 075 Vol. 1 13.4.1 "Legacy
452 	 * Region of an XSAVE Area" for the source of offsets/sizes.
453 	 */
454 	if (use_xsave) {
455 		xstate_bv = (uint64_t *)((char *)(fpu_initialstate + 1) +
456 		    offsetof(struct xstate_hdr, xstate_bv));
457 		*xstate_bv = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
458 
459 		/* x87 state */
460 		xsave_area_desc[0].offset = 0;
461 		xsave_area_desc[0].size = 160;
462 		/* XMM */
463 		xsave_area_desc[1].offset = 160;
464 		xsave_area_desc[1].size = 416 - 160;
465 
466 		for (i = 2; i < max_ext_n; i++) {
467 			cpuid_count(0xd, i, cp);
468 			xsave_area_desc[i].offset = cp[1];
469 			xsave_area_desc[i].size = cp[0];
470 		}
471 	}
472 
473 	fpu_disable();
474 	intr_restore(saveintr);
475 }
476 /* EFIRT needs this to be initialized before we can enter our EFI environment */
477 SYSINIT(fpuinitstate, SI_SUB_CPU, SI_ORDER_ANY, fpuinitstate, NULL);
478 
479 /*
480  * Free coprocessor (if we have it).
481  */
482 void
483 fpuexit(struct thread *td)
484 {
485 
486 	critical_enter();
487 	if (curthread == PCPU_GET(fpcurthread)) {
488 		fpu_enable();
489 		fpusave(curpcb->pcb_save);
490 		fpu_disable();
491 		PCPU_SET(fpcurthread, NULL);
492 	}
493 	critical_exit();
494 }
495 
496 int
497 fpuformat(void)
498 {
499 
500 	return (_MC_FPFMT_XMM);
501 }
502 
503 /*
504  * The following mechanism is used to ensure that the FPE_... value
505  * that is passed as a trapcode to the signal handler of the user
506  * process does not have more than one bit set.
507  *
508  * Multiple bits may be set if the user process modifies the control
509  * word while a status word bit is already set.  While this is a sign
510  * of bad coding, we have no choice than to narrow them down to one
511  * bit, since we must not send a trapcode that is not exactly one of
512  * the FPE_ macros.
513  *
514  * The mechanism has a static table with 127 entries.  Each combination
515  * of the 7 FPU status word exception bits directly translates to a
516  * position in this table, where a single FPE_... value is stored.
517  * This FPE_... value stored there is considered the "most important"
518  * of the exception bits and will be sent as the signal code.  The
519  * precedence of the bits is based upon Intel Document "Numerical
520  * Applications", Chapter "Special Computational Situations".
521  *
522  * The macro to choose one of these values does these steps: 1) Throw
523  * away status word bits that cannot be masked.  2) Throw away the bits
524  * currently masked in the control word, assuming the user isn't
525  * interested in them anymore.  3) Reinsert status word bit 7 (stack
526  * fault) if it is set, which cannot be masked but must be presered.
527  * 4) Use the remaining bits to point into the trapcode table.
528  *
529  * The 6 maskable bits in order of their preference, as stated in the
530  * above referenced Intel manual:
531  * 1  Invalid operation (FP_X_INV)
532  * 1a   Stack underflow
533  * 1b   Stack overflow
534  * 1c   Operand of unsupported format
535  * 1d   SNaN operand.
536  * 2  QNaN operand (not an exception, irrelavant here)
537  * 3  Any other invalid-operation not mentioned above or zero divide
538  *      (FP_X_INV, FP_X_DZ)
539  * 4  Denormal operand (FP_X_DNML)
540  * 5  Numeric over/underflow (FP_X_OFL, FP_X_UFL)
541  * 6  Inexact result (FP_X_IMP)
542  */
543 static char fpetable[128] = {
544 	0,
545 	FPE_FLTINV,	/*  1 - INV */
546 	FPE_FLTUND,	/*  2 - DNML */
547 	FPE_FLTINV,	/*  3 - INV | DNML */
548 	FPE_FLTDIV,	/*  4 - DZ */
549 	FPE_FLTINV,	/*  5 - INV | DZ */
550 	FPE_FLTDIV,	/*  6 - DNML | DZ */
551 	FPE_FLTINV,	/*  7 - INV | DNML | DZ */
552 	FPE_FLTOVF,	/*  8 - OFL */
553 	FPE_FLTINV,	/*  9 - INV | OFL */
554 	FPE_FLTUND,	/*  A - DNML | OFL */
555 	FPE_FLTINV,	/*  B - INV | DNML | OFL */
556 	FPE_FLTDIV,	/*  C - DZ | OFL */
557 	FPE_FLTINV,	/*  D - INV | DZ | OFL */
558 	FPE_FLTDIV,	/*  E - DNML | DZ | OFL */
559 	FPE_FLTINV,	/*  F - INV | DNML | DZ | OFL */
560 	FPE_FLTUND,	/* 10 - UFL */
561 	FPE_FLTINV,	/* 11 - INV | UFL */
562 	FPE_FLTUND,	/* 12 - DNML | UFL */
563 	FPE_FLTINV,	/* 13 - INV | DNML | UFL */
564 	FPE_FLTDIV,	/* 14 - DZ | UFL */
565 	FPE_FLTINV,	/* 15 - INV | DZ | UFL */
566 	FPE_FLTDIV,	/* 16 - DNML | DZ | UFL */
567 	FPE_FLTINV,	/* 17 - INV | DNML | DZ | UFL */
568 	FPE_FLTOVF,	/* 18 - OFL | UFL */
569 	FPE_FLTINV,	/* 19 - INV | OFL | UFL */
570 	FPE_FLTUND,	/* 1A - DNML | OFL | UFL */
571 	FPE_FLTINV,	/* 1B - INV | DNML | OFL | UFL */
572 	FPE_FLTDIV,	/* 1C - DZ | OFL | UFL */
573 	FPE_FLTINV,	/* 1D - INV | DZ | OFL | UFL */
574 	FPE_FLTDIV,	/* 1E - DNML | DZ | OFL | UFL */
575 	FPE_FLTINV,	/* 1F - INV | DNML | DZ | OFL | UFL */
576 	FPE_FLTRES,	/* 20 - IMP */
577 	FPE_FLTINV,	/* 21 - INV | IMP */
578 	FPE_FLTUND,	/* 22 - DNML | IMP */
579 	FPE_FLTINV,	/* 23 - INV | DNML | IMP */
580 	FPE_FLTDIV,	/* 24 - DZ | IMP */
581 	FPE_FLTINV,	/* 25 - INV | DZ | IMP */
582 	FPE_FLTDIV,	/* 26 - DNML | DZ | IMP */
583 	FPE_FLTINV,	/* 27 - INV | DNML | DZ | IMP */
584 	FPE_FLTOVF,	/* 28 - OFL | IMP */
585 	FPE_FLTINV,	/* 29 - INV | OFL | IMP */
586 	FPE_FLTUND,	/* 2A - DNML | OFL | IMP */
587 	FPE_FLTINV,	/* 2B - INV | DNML | OFL | IMP */
588 	FPE_FLTDIV,	/* 2C - DZ | OFL | IMP */
589 	FPE_FLTINV,	/* 2D - INV | DZ | OFL | IMP */
590 	FPE_FLTDIV,	/* 2E - DNML | DZ | OFL | IMP */
591 	FPE_FLTINV,	/* 2F - INV | DNML | DZ | OFL | IMP */
592 	FPE_FLTUND,	/* 30 - UFL | IMP */
593 	FPE_FLTINV,	/* 31 - INV | UFL | IMP */
594 	FPE_FLTUND,	/* 32 - DNML | UFL | IMP */
595 	FPE_FLTINV,	/* 33 - INV | DNML | UFL | IMP */
596 	FPE_FLTDIV,	/* 34 - DZ | UFL | IMP */
597 	FPE_FLTINV,	/* 35 - INV | DZ | UFL | IMP */
598 	FPE_FLTDIV,	/* 36 - DNML | DZ | UFL | IMP */
599 	FPE_FLTINV,	/* 37 - INV | DNML | DZ | UFL | IMP */
600 	FPE_FLTOVF,	/* 38 - OFL | UFL | IMP */
601 	FPE_FLTINV,	/* 39 - INV | OFL | UFL | IMP */
602 	FPE_FLTUND,	/* 3A - DNML | OFL | UFL | IMP */
603 	FPE_FLTINV,	/* 3B - INV | DNML | OFL | UFL | IMP */
604 	FPE_FLTDIV,	/* 3C - DZ | OFL | UFL | IMP */
605 	FPE_FLTINV,	/* 3D - INV | DZ | OFL | UFL | IMP */
606 	FPE_FLTDIV,	/* 3E - DNML | DZ | OFL | UFL | IMP */
607 	FPE_FLTINV,	/* 3F - INV | DNML | DZ | OFL | UFL | IMP */
608 	FPE_FLTSUB,	/* 40 - STK */
609 	FPE_FLTSUB,	/* 41 - INV | STK */
610 	FPE_FLTUND,	/* 42 - DNML | STK */
611 	FPE_FLTSUB,	/* 43 - INV | DNML | STK */
612 	FPE_FLTDIV,	/* 44 - DZ | STK */
613 	FPE_FLTSUB,	/* 45 - INV | DZ | STK */
614 	FPE_FLTDIV,	/* 46 - DNML | DZ | STK */
615 	FPE_FLTSUB,	/* 47 - INV | DNML | DZ | STK */
616 	FPE_FLTOVF,	/* 48 - OFL | STK */
617 	FPE_FLTSUB,	/* 49 - INV | OFL | STK */
618 	FPE_FLTUND,	/* 4A - DNML | OFL | STK */
619 	FPE_FLTSUB,	/* 4B - INV | DNML | OFL | STK */
620 	FPE_FLTDIV,	/* 4C - DZ | OFL | STK */
621 	FPE_FLTSUB,	/* 4D - INV | DZ | OFL | STK */
622 	FPE_FLTDIV,	/* 4E - DNML | DZ | OFL | STK */
623 	FPE_FLTSUB,	/* 4F - INV | DNML | DZ | OFL | STK */
624 	FPE_FLTUND,	/* 50 - UFL | STK */
625 	FPE_FLTSUB,	/* 51 - INV | UFL | STK */
626 	FPE_FLTUND,	/* 52 - DNML | UFL | STK */
627 	FPE_FLTSUB,	/* 53 - INV | DNML | UFL | STK */
628 	FPE_FLTDIV,	/* 54 - DZ | UFL | STK */
629 	FPE_FLTSUB,	/* 55 - INV | DZ | UFL | STK */
630 	FPE_FLTDIV,	/* 56 - DNML | DZ | UFL | STK */
631 	FPE_FLTSUB,	/* 57 - INV | DNML | DZ | UFL | STK */
632 	FPE_FLTOVF,	/* 58 - OFL | UFL | STK */
633 	FPE_FLTSUB,	/* 59 - INV | OFL | UFL | STK */
634 	FPE_FLTUND,	/* 5A - DNML | OFL | UFL | STK */
635 	FPE_FLTSUB,	/* 5B - INV | DNML | OFL | UFL | STK */
636 	FPE_FLTDIV,	/* 5C - DZ | OFL | UFL | STK */
637 	FPE_FLTSUB,	/* 5D - INV | DZ | OFL | UFL | STK */
638 	FPE_FLTDIV,	/* 5E - DNML | DZ | OFL | UFL | STK */
639 	FPE_FLTSUB,	/* 5F - INV | DNML | DZ | OFL | UFL | STK */
640 	FPE_FLTRES,	/* 60 - IMP | STK */
641 	FPE_FLTSUB,	/* 61 - INV | IMP | STK */
642 	FPE_FLTUND,	/* 62 - DNML | IMP | STK */
643 	FPE_FLTSUB,	/* 63 - INV | DNML | IMP | STK */
644 	FPE_FLTDIV,	/* 64 - DZ | IMP | STK */
645 	FPE_FLTSUB,	/* 65 - INV | DZ | IMP | STK */
646 	FPE_FLTDIV,	/* 66 - DNML | DZ | IMP | STK */
647 	FPE_FLTSUB,	/* 67 - INV | DNML | DZ | IMP | STK */
648 	FPE_FLTOVF,	/* 68 - OFL | IMP | STK */
649 	FPE_FLTSUB,	/* 69 - INV | OFL | IMP | STK */
650 	FPE_FLTUND,	/* 6A - DNML | OFL | IMP | STK */
651 	FPE_FLTSUB,	/* 6B - INV | DNML | OFL | IMP | STK */
652 	FPE_FLTDIV,	/* 6C - DZ | OFL | IMP | STK */
653 	FPE_FLTSUB,	/* 6D - INV | DZ | OFL | IMP | STK */
654 	FPE_FLTDIV,	/* 6E - DNML | DZ | OFL | IMP | STK */
655 	FPE_FLTSUB,	/* 6F - INV | DNML | DZ | OFL | IMP | STK */
656 	FPE_FLTUND,	/* 70 - UFL | IMP | STK */
657 	FPE_FLTSUB,	/* 71 - INV | UFL | IMP | STK */
658 	FPE_FLTUND,	/* 72 - DNML | UFL | IMP | STK */
659 	FPE_FLTSUB,	/* 73 - INV | DNML | UFL | IMP | STK */
660 	FPE_FLTDIV,	/* 74 - DZ | UFL | IMP | STK */
661 	FPE_FLTSUB,	/* 75 - INV | DZ | UFL | IMP | STK */
662 	FPE_FLTDIV,	/* 76 - DNML | DZ | UFL | IMP | STK */
663 	FPE_FLTSUB,	/* 77 - INV | DNML | DZ | UFL | IMP | STK */
664 	FPE_FLTOVF,	/* 78 - OFL | UFL | IMP | STK */
665 	FPE_FLTSUB,	/* 79 - INV | OFL | UFL | IMP | STK */
666 	FPE_FLTUND,	/* 7A - DNML | OFL | UFL | IMP | STK */
667 	FPE_FLTSUB,	/* 7B - INV | DNML | OFL | UFL | IMP | STK */
668 	FPE_FLTDIV,	/* 7C - DZ | OFL | UFL | IMP | STK */
669 	FPE_FLTSUB,	/* 7D - INV | DZ | OFL | UFL | IMP | STK */
670 	FPE_FLTDIV,	/* 7E - DNML | DZ | OFL | UFL | IMP | STK */
671 	FPE_FLTSUB,	/* 7F - INV | DNML | DZ | OFL | UFL | IMP | STK */
672 };
673 
674 /*
675  * Read the FP status and control words, then generate si_code value
676  * for SIGFPE.  The error code chosen will be one of the
677  * FPE_... macros.  It will be sent as the second argument to old
678  * BSD-style signal handlers and as "siginfo_t->si_code" (second
679  * argument) to SA_SIGINFO signal handlers.
680  *
681  * Some time ago, we cleared the x87 exceptions with FNCLEX there.
682  * Clearing exceptions was necessary mainly to avoid IRQ13 bugs.  The
683  * usermode code which understands the FPU hardware enough to enable
684  * the exceptions, can also handle clearing the exception state in the
685  * handler.  The only consequence of not clearing the exception is the
686  * rethrow of the SIGFPE on return from the signal handler and
687  * reexecution of the corresponding instruction.
688  *
689  * For XMM traps, the exceptions were never cleared.
690  */
691 int
692 fputrap_x87(void)
693 {
694 	struct savefpu *pcb_save;
695 	u_short control, status;
696 
697 	critical_enter();
698 
699 	/*
700 	 * Interrupt handling (for another interrupt) may have pushed the
701 	 * state to memory.  Fetch the relevant parts of the state from
702 	 * wherever they are.
703 	 */
704 	if (PCPU_GET(fpcurthread) != curthread) {
705 		pcb_save = curpcb->pcb_save;
706 		control = pcb_save->sv_env.en_cw;
707 		status = pcb_save->sv_env.en_sw;
708 	} else {
709 		fnstcw(&control);
710 		fnstsw(&status);
711 	}
712 
713 	critical_exit();
714 	return (fpetable[status & ((~control & 0x3f) | 0x40)]);
715 }
716 
717 int
718 fputrap_sse(void)
719 {
720 	u_int mxcsr;
721 
722 	critical_enter();
723 	if (PCPU_GET(fpcurthread) != curthread)
724 		mxcsr = curpcb->pcb_save->sv_env.en_mxcsr;
725 	else
726 		stmxcsr(&mxcsr);
727 	critical_exit();
728 	return (fpetable[(mxcsr & (~mxcsr >> 7)) & 0x3f]);
729 }
730 
731 static void
732 restore_fpu_curthread(struct thread *td)
733 {
734 	struct pcb *pcb;
735 
736 	/*
737 	 * Record new context early in case frstor causes a trap.
738 	 */
739 	PCPU_SET(fpcurthread, td);
740 
741 	fpu_enable();
742 	fpu_clean_state();
743 	pcb = td->td_pcb;
744 
745 	if ((pcb->pcb_flags & PCB_FPUINITDONE) == 0) {
746 		/*
747 		 * This is the first time this thread has used the FPU or
748 		 * the PCB doesn't contain a clean FPU state.  Explicitly
749 		 * load an initial state.
750 		 *
751 		 * We prefer to restore the state from the actual save
752 		 * area in PCB instead of directly loading from
753 		 * fpu_initialstate, to ignite the XSAVEOPT
754 		 * tracking engine.
755 		 */
756 		bcopy(fpu_initialstate, pcb->pcb_save,
757 		    cpu_max_ext_state_size);
758 		fpurestore(pcb->pcb_save);
759 		if (pcb->pcb_initial_fpucw != __INITIAL_FPUCW__)
760 			fldcw(pcb->pcb_initial_fpucw);
761 		if (PCB_USER_FPU(pcb))
762 			set_pcb_flags(pcb, PCB_FPUINITDONE |
763 			    PCB_USERFPUINITDONE);
764 		else
765 			set_pcb_flags(pcb, PCB_FPUINITDONE);
766 	} else
767 		fpurestore(pcb->pcb_save);
768 }
769 
770 /*
771  * Device Not Available (DNA, #NM) exception handler.
772  *
773  * It would be better to switch FP context here (if curthread !=
774  * fpcurthread) and not necessarily for every context switch, but it
775  * is too hard to access foreign pcb's.
776  */
777 void
778 fpudna(void)
779 {
780 	struct thread *td;
781 
782 	td = curthread;
783 	/*
784 	 * This handler is entered with interrupts enabled, so context
785 	 * switches may occur before critical_enter() is executed.  If
786 	 * a context switch occurs, then when we regain control, our
787 	 * state will have been completely restored.  The CPU may
788 	 * change underneath us, but the only part of our context that
789 	 * lives in the CPU is CR0.TS and that will be "restored" by
790 	 * setting it on the new CPU.
791 	 */
792 	critical_enter();
793 
794 	KASSERT((curpcb->pcb_flags & PCB_FPUNOSAVE) == 0,
795 	    ("fpudna while in fpu_kern_enter(FPU_KERN_NOCTX)"));
796 	if (__predict_false(PCPU_GET(fpcurthread) == td)) {
797 		/*
798 		 * Some virtual machines seems to set %cr0.TS at
799 		 * arbitrary moments.  Silently clear the TS bit
800 		 * regardless of the eager/lazy FPU context switch
801 		 * mode.
802 		 */
803 		fpu_enable();
804 	} else {
805 		if (__predict_false(PCPU_GET(fpcurthread) != NULL)) {
806 			panic(
807 		    "fpudna: fpcurthread = %p (%d), curthread = %p (%d)\n",
808 			    PCPU_GET(fpcurthread),
809 			    PCPU_GET(fpcurthread)->td_tid, td, td->td_tid);
810 		}
811 		restore_fpu_curthread(td);
812 	}
813 	critical_exit();
814 }
815 
816 void fpu_activate_sw(struct thread *td); /* Called from the context switch */
817 void
818 fpu_activate_sw(struct thread *td)
819 {
820 
821 	if ((td->td_pflags & TDP_KTHREAD) != 0 || !PCB_USER_FPU(td->td_pcb)) {
822 		PCPU_SET(fpcurthread, NULL);
823 		fpu_disable();
824 	} else if (PCPU_GET(fpcurthread) != td) {
825 		restore_fpu_curthread(td);
826 	}
827 }
828 
829 void
830 fpudrop(void)
831 {
832 	struct thread *td;
833 
834 	td = PCPU_GET(fpcurthread);
835 	KASSERT(td == curthread, ("fpudrop: fpcurthread != curthread"));
836 	CRITICAL_ASSERT(td);
837 	PCPU_SET(fpcurthread, NULL);
838 	clear_pcb_flags(td->td_pcb, PCB_FPUINITDONE);
839 	fpu_disable();
840 }
841 
842 /*
843  * Get the user state of the FPU into pcb->pcb_user_save without
844  * dropping ownership (if possible).  It returns the FPU ownership
845  * status.
846  */
847 int
848 fpugetregs(struct thread *td)
849 {
850 	struct pcb *pcb;
851 	uint64_t *xstate_bv, bit;
852 	char *sa;
853 	int max_ext_n, i, owned;
854 
855 	pcb = td->td_pcb;
856 	critical_enter();
857 	if ((pcb->pcb_flags & PCB_USERFPUINITDONE) == 0) {
858 		bcopy(fpu_initialstate, get_pcb_user_save_pcb(pcb),
859 		    cpu_max_ext_state_size);
860 		get_pcb_user_save_pcb(pcb)->sv_env.en_cw =
861 		    pcb->pcb_initial_fpucw;
862 		fpuuserinited(td);
863 		critical_exit();
864 		return (_MC_FPOWNED_PCB);
865 	}
866 	if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
867 		fpusave(get_pcb_user_save_pcb(pcb));
868 		owned = _MC_FPOWNED_FPU;
869 	} else {
870 		owned = _MC_FPOWNED_PCB;
871 	}
872 	if (use_xsave) {
873 		/*
874 		 * Handle partially saved state.
875 		 */
876 		sa = (char *)get_pcb_user_save_pcb(pcb);
877 		xstate_bv = (uint64_t *)(sa + sizeof(struct savefpu) +
878 		    offsetof(struct xstate_hdr, xstate_bv));
879 		max_ext_n = flsl(xsave_mask);
880 		for (i = 0; i < max_ext_n; i++) {
881 			bit = 1ULL << i;
882 			if ((xsave_mask & bit) == 0 || (*xstate_bv & bit) != 0)
883 				continue;
884 			bcopy((char *)fpu_initialstate +
885 			    xsave_area_desc[i].offset,
886 			    sa + xsave_area_desc[i].offset,
887 			    xsave_area_desc[i].size);
888 			*xstate_bv |= bit;
889 		}
890 	}
891 	critical_exit();
892 	return (owned);
893 }
894 
895 void
896 fpuuserinited(struct thread *td)
897 {
898 	struct pcb *pcb;
899 
900 	CRITICAL_ASSERT(td);
901 	pcb = td->td_pcb;
902 	if (PCB_USER_FPU(pcb))
903 		set_pcb_flags(pcb,
904 		    PCB_FPUINITDONE | PCB_USERFPUINITDONE);
905 	else
906 		set_pcb_flags(pcb, PCB_FPUINITDONE);
907 }
908 
909 int
910 fpusetxstate(struct thread *td, char *xfpustate, size_t xfpustate_size)
911 {
912 	struct xstate_hdr *hdr, *ehdr;
913 	size_t len, max_len;
914 	uint64_t bv;
915 
916 	/* XXXKIB should we clear all extended state in xstate_bv instead ? */
917 	if (xfpustate == NULL)
918 		return (0);
919 	if (!use_xsave)
920 		return (EOPNOTSUPP);
921 
922 	len = xfpustate_size;
923 	if (len < sizeof(struct xstate_hdr))
924 		return (EINVAL);
925 	max_len = cpu_max_ext_state_size - sizeof(struct savefpu);
926 	if (len > max_len)
927 		return (EINVAL);
928 
929 	ehdr = (struct xstate_hdr *)xfpustate;
930 	bv = ehdr->xstate_bv;
931 
932 	/*
933 	 * Avoid #gp.
934 	 */
935 	if (bv & ~xsave_mask)
936 		return (EINVAL);
937 
938 	hdr = (struct xstate_hdr *)(get_pcb_user_save_td(td) + 1);
939 
940 	hdr->xstate_bv = bv;
941 	bcopy(xfpustate + sizeof(struct xstate_hdr),
942 	    (char *)(hdr + 1), len - sizeof(struct xstate_hdr));
943 
944 	return (0);
945 }
946 
947 /*
948  * Set the state of the FPU.
949  */
950 int
951 fpusetregs(struct thread *td, struct savefpu *addr, char *xfpustate,
952     size_t xfpustate_size)
953 {
954 	struct pcb *pcb;
955 	int error;
956 
957 	addr->sv_env.en_mxcsr &= cpu_mxcsr_mask;
958 	pcb = td->td_pcb;
959 	error = 0;
960 	critical_enter();
961 	if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
962 		error = fpusetxstate(td, xfpustate, xfpustate_size);
963 		if (error == 0) {
964 			bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
965 			fpurestore(get_pcb_user_save_td(td));
966 			set_pcb_flags(pcb, PCB_FPUINITDONE |
967 			    PCB_USERFPUINITDONE);
968 		}
969 	} else {
970 		error = fpusetxstate(td, xfpustate, xfpustate_size);
971 		if (error == 0) {
972 			bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
973 			fpuuserinited(td);
974 		}
975 	}
976 	critical_exit();
977 	return (error);
978 }
979 
980 /*
981  * On AuthenticAMD processors, the fxrstor instruction does not restore
982  * the x87's stored last instruction pointer, last data pointer, and last
983  * opcode values, except in the rare case in which the exception summary
984  * (ES) bit in the x87 status word is set to 1.
985  *
986  * In order to avoid leaking this information across processes, we clean
987  * these values by performing a dummy load before executing fxrstor().
988  */
989 static void
990 fpu_clean_state(void)
991 {
992 	static float dummy_variable = 0.0;
993 	u_short status;
994 
995 	/*
996 	 * Clear the ES bit in the x87 status word if it is currently
997 	 * set, in order to avoid causing a fault in the upcoming load.
998 	 */
999 	fnstsw(&status);
1000 	if (status & 0x80)
1001 		fnclex();
1002 
1003 	/*
1004 	 * Load the dummy variable into the x87 stack.  This mangles
1005 	 * the x87 stack, but we don't care since we're about to call
1006 	 * fxrstor() anyway.
1007 	 */
1008 	__asm __volatile("ffree %%st(7); flds %0" : : "m" (dummy_variable));
1009 }
1010 
1011 /*
1012  * This really sucks.  We want the acpi version only, but it requires
1013  * the isa_if.h file in order to get the definitions.
1014  */
1015 #include "opt_isa.h"
1016 #ifdef DEV_ISA
1017 #include <isa/isavar.h>
1018 /*
1019  * This sucks up the legacy ISA support assignments from PNPBIOS/ACPI.
1020  */
1021 static struct isa_pnp_id fpupnp_ids[] = {
1022 	{ 0x040cd041, "Legacy ISA coprocessor support" }, /* PNP0C04 */
1023 	{ 0 }
1024 };
1025 
1026 static int
1027 fpupnp_probe(device_t dev)
1028 {
1029 	int result;
1030 
1031 	result = ISA_PNP_PROBE(device_get_parent(dev), dev, fpupnp_ids);
1032 	if (result <= 0)
1033 		device_quiet(dev);
1034 	return (result);
1035 }
1036 
1037 static int
1038 fpupnp_attach(device_t dev)
1039 {
1040 
1041 	return (0);
1042 }
1043 
1044 static device_method_t fpupnp_methods[] = {
1045 	/* Device interface */
1046 	DEVMETHOD(device_probe,		fpupnp_probe),
1047 	DEVMETHOD(device_attach,	fpupnp_attach),
1048 	DEVMETHOD(device_detach,	bus_generic_detach),
1049 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
1050 	DEVMETHOD(device_suspend,	bus_generic_suspend),
1051 	DEVMETHOD(device_resume,	bus_generic_resume),
1052 	{ 0, 0 }
1053 };
1054 
1055 static driver_t fpupnp_driver = {
1056 	"fpupnp",
1057 	fpupnp_methods,
1058 	1,			/* no softc */
1059 };
1060 
1061 DRIVER_MODULE(fpupnp, acpi, fpupnp_driver, 0, 0);
1062 ISA_PNP_INFO(fpupnp_ids);
1063 #endif	/* DEV_ISA */
1064 
1065 static MALLOC_DEFINE(M_FPUKERN_CTX, "fpukern_ctx",
1066     "Kernel contexts for FPU state");
1067 
1068 #define	FPU_KERN_CTX_FPUINITDONE 0x01
1069 #define	FPU_KERN_CTX_DUMMY	 0x02	/* avoided save for the kern thread */
1070 #define	FPU_KERN_CTX_INUSE	 0x04
1071 
1072 struct fpu_kern_ctx {
1073 	struct savefpu *prev;
1074 	uint32_t flags;
1075 	char hwstate1[];
1076 };
1077 
1078 static inline size_t __pure2
1079 fpu_kern_alloc_sz(u_int max_est)
1080 {
1081 	return (sizeof(struct fpu_kern_ctx) + XSAVE_AREA_ALIGN + max_est);
1082 }
1083 
1084 static inline int __pure2
1085 fpu_kern_malloc_flags(u_int fpflags)
1086 {
1087 	return (((fpflags & FPU_KERN_NOWAIT) ? M_NOWAIT : M_WAITOK) | M_ZERO);
1088 }
1089 
1090 struct fpu_kern_ctx *
1091 fpu_kern_alloc_ctx_domain(int domain, u_int flags)
1092 {
1093 	return (malloc_domainset(fpu_kern_alloc_sz(cpu_max_ext_state_size),
1094 	    M_FPUKERN_CTX, DOMAINSET_PREF(domain),
1095 	    fpu_kern_malloc_flags(flags)));
1096 }
1097 
1098 struct fpu_kern_ctx *
1099 fpu_kern_alloc_ctx(u_int flags)
1100 {
1101 	return (malloc(fpu_kern_alloc_sz(cpu_max_ext_state_size),
1102 	    M_FPUKERN_CTX, fpu_kern_malloc_flags(flags)));
1103 }
1104 
1105 void
1106 fpu_kern_free_ctx(struct fpu_kern_ctx *ctx)
1107 {
1108 
1109 	KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) == 0, ("free'ing inuse ctx"));
1110 	/* XXXKIB clear the memory ? */
1111 	free(ctx, M_FPUKERN_CTX);
1112 }
1113 
1114 static struct savefpu *
1115 fpu_kern_ctx_savefpu(struct fpu_kern_ctx *ctx)
1116 {
1117 	vm_offset_t p;
1118 
1119 	p = (vm_offset_t)&ctx->hwstate1;
1120 	p = roundup2(p, XSAVE_AREA_ALIGN);
1121 	return ((struct savefpu *)p);
1122 }
1123 
1124 void
1125 fpu_kern_enter(struct thread *td, struct fpu_kern_ctx *ctx, u_int flags)
1126 {
1127 	struct pcb *pcb;
1128 
1129 	pcb = td->td_pcb;
1130 	KASSERT((flags & FPU_KERN_NOCTX) != 0 || ctx != NULL,
1131 	    ("ctx is required when !FPU_KERN_NOCTX"));
1132 	KASSERT(ctx == NULL || (ctx->flags & FPU_KERN_CTX_INUSE) == 0,
1133 	    ("using inuse ctx"));
1134 	KASSERT((pcb->pcb_flags & PCB_FPUNOSAVE) == 0,
1135 	    ("recursive fpu_kern_enter while in PCB_FPUNOSAVE state"));
1136 
1137 	if ((flags & FPU_KERN_NOCTX) != 0) {
1138 		critical_enter();
1139 		fpu_enable();
1140 		if (curthread == PCPU_GET(fpcurthread)) {
1141 			fpusave(curpcb->pcb_save);
1142 			PCPU_SET(fpcurthread, NULL);
1143 		} else {
1144 			KASSERT(PCPU_GET(fpcurthread) == NULL,
1145 			    ("invalid fpcurthread"));
1146 		}
1147 
1148 		/*
1149 		 * This breaks XSAVEOPT tracker, but
1150 		 * PCB_FPUNOSAVE state is supposed to never need to
1151 		 * save FPU context at all.
1152 		 */
1153 		fpurestore(fpu_initialstate);
1154 		set_pcb_flags(pcb, PCB_KERNFPU | PCB_FPUNOSAVE |
1155 		    PCB_FPUINITDONE);
1156 		return;
1157 	}
1158 	if ((flags & FPU_KERN_KTHR) != 0 && is_fpu_kern_thread(0)) {
1159 		ctx->flags = FPU_KERN_CTX_DUMMY | FPU_KERN_CTX_INUSE;
1160 		return;
1161 	}
1162 	critical_enter();
1163 	KASSERT(!PCB_USER_FPU(pcb) || pcb->pcb_save ==
1164 	    get_pcb_user_save_pcb(pcb), ("mangled pcb_save"));
1165 	ctx->flags = FPU_KERN_CTX_INUSE;
1166 	if ((pcb->pcb_flags & PCB_FPUINITDONE) != 0)
1167 		ctx->flags |= FPU_KERN_CTX_FPUINITDONE;
1168 	fpuexit(td);
1169 	ctx->prev = pcb->pcb_save;
1170 	pcb->pcb_save = fpu_kern_ctx_savefpu(ctx);
1171 	set_pcb_flags(pcb, PCB_KERNFPU);
1172 	clear_pcb_flags(pcb, PCB_FPUINITDONE);
1173 	critical_exit();
1174 }
1175 
1176 int
1177 fpu_kern_leave(struct thread *td, struct fpu_kern_ctx *ctx)
1178 {
1179 	struct pcb *pcb;
1180 
1181 	pcb = td->td_pcb;
1182 
1183 	if ((pcb->pcb_flags & PCB_FPUNOSAVE) != 0) {
1184 		KASSERT(ctx == NULL, ("non-null ctx after FPU_KERN_NOCTX"));
1185 		KASSERT(PCPU_GET(fpcurthread) == NULL,
1186 		    ("non-NULL fpcurthread for PCB_FPUNOSAVE"));
1187 		CRITICAL_ASSERT(td);
1188 
1189 		clear_pcb_flags(pcb,  PCB_FPUNOSAVE | PCB_FPUINITDONE);
1190 		fpu_disable();
1191 	} else {
1192 		KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) != 0,
1193 		    ("leaving not inuse ctx"));
1194 		ctx->flags &= ~FPU_KERN_CTX_INUSE;
1195 
1196 		if (is_fpu_kern_thread(0) &&
1197 		    (ctx->flags & FPU_KERN_CTX_DUMMY) != 0)
1198 			return (0);
1199 		KASSERT((ctx->flags & FPU_KERN_CTX_DUMMY) == 0,
1200 		    ("dummy ctx"));
1201 		critical_enter();
1202 		if (curthread == PCPU_GET(fpcurthread))
1203 			fpudrop();
1204 		pcb->pcb_save = ctx->prev;
1205 	}
1206 
1207 	if (pcb->pcb_save == get_pcb_user_save_pcb(pcb)) {
1208 		if ((pcb->pcb_flags & PCB_USERFPUINITDONE) != 0) {
1209 			set_pcb_flags(pcb, PCB_FPUINITDONE);
1210 			if ((pcb->pcb_flags & PCB_KERNFPU_THR) == 0)
1211 				clear_pcb_flags(pcb, PCB_KERNFPU);
1212 		} else if ((pcb->pcb_flags & PCB_KERNFPU_THR) == 0)
1213 			clear_pcb_flags(pcb, PCB_FPUINITDONE | PCB_KERNFPU);
1214 	} else {
1215 		if ((ctx->flags & FPU_KERN_CTX_FPUINITDONE) != 0)
1216 			set_pcb_flags(pcb, PCB_FPUINITDONE);
1217 		else
1218 			clear_pcb_flags(pcb, PCB_FPUINITDONE);
1219 		KASSERT(!PCB_USER_FPU(pcb), ("unpaired fpu_kern_leave"));
1220 	}
1221 	critical_exit();
1222 	return (0);
1223 }
1224 
1225 int
1226 fpu_kern_thread(u_int flags)
1227 {
1228 
1229 	KASSERT((curthread->td_pflags & TDP_KTHREAD) != 0,
1230 	    ("Only kthread may use fpu_kern_thread"));
1231 	KASSERT(curpcb->pcb_save == get_pcb_user_save_pcb(curpcb),
1232 	    ("mangled pcb_save"));
1233 	KASSERT(PCB_USER_FPU(curpcb), ("recursive call"));
1234 
1235 	set_pcb_flags(curpcb, PCB_KERNFPU | PCB_KERNFPU_THR);
1236 	return (0);
1237 }
1238 
1239 int
1240 is_fpu_kern_thread(u_int flags)
1241 {
1242 
1243 	if ((curthread->td_pflags & TDP_KTHREAD) == 0)
1244 		return (0);
1245 	return ((curpcb->pcb_flags & PCB_KERNFPU_THR) != 0);
1246 }
1247 
1248 /*
1249  * FPU save area alloc/free/init utility routines
1250  */
1251 struct savefpu *
1252 fpu_save_area_alloc(void)
1253 {
1254 
1255 	return (uma_zalloc(fpu_save_area_zone, M_WAITOK));
1256 }
1257 
1258 void
1259 fpu_save_area_free(struct savefpu *fsa)
1260 {
1261 
1262 	uma_zfree(fpu_save_area_zone, fsa);
1263 }
1264 
1265 void
1266 fpu_save_area_reset(struct savefpu *fsa)
1267 {
1268 
1269 	bcopy(fpu_initialstate, fsa, cpu_max_ext_state_size);
1270 }
1271