xref: /freebsd/sys/amd64/amd64/fpu.c (revision 5c8e8e82aeaf3aa788acdd6cfca30ef09094230d)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1990 William Jolitz.
5  * Copyright (c) 1991 The Regents of the University of California.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)npx.c	7.2 (Berkeley) 5/12/91
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/bus.h>
41 #include <sys/domainset.h>
42 #include <sys/kernel.h>
43 #include <sys/lock.h>
44 #include <sys/malloc.h>
45 #include <sys/module.h>
46 #include <sys/mutex.h>
47 #include <sys/mutex.h>
48 #include <sys/proc.h>
49 #include <sys/sysctl.h>
50 #include <sys/sysent.h>
51 #include <machine/bus.h>
52 #include <sys/rman.h>
53 #include <sys/signalvar.h>
54 #include <vm/uma.h>
55 
56 #include <machine/cputypes.h>
57 #include <machine/frame.h>
58 #include <machine/intr_machdep.h>
59 #include <machine/md_var.h>
60 #include <machine/pcb.h>
61 #include <machine/psl.h>
62 #include <machine/resource.h>
63 #include <machine/specialreg.h>
64 #include <machine/segments.h>
65 #include <machine/ucontext.h>
66 #include <x86/ifunc.h>
67 
68 /*
69  * Floating point support.
70  */
71 
72 #if defined(__GNUCLIKE_ASM) && !defined(lint)
73 
74 #define	fldcw(cw)		__asm __volatile("fldcw %0" : : "m" (cw))
75 #define	fnclex()		__asm __volatile("fnclex")
76 #define	fninit()		__asm __volatile("fninit")
77 #define	fnstcw(addr)		__asm __volatile("fnstcw %0" : "=m" (*(addr)))
78 #define	fnstsw(addr)		__asm __volatile("fnstsw %0" : "=am" (*(addr)))
79 #define	fxrstor(addr)		__asm __volatile("fxrstor %0" : : "m" (*(addr)))
80 #define	fxsave(addr)		__asm __volatile("fxsave %0" : "=m" (*(addr)))
81 #define	ldmxcsr(csr)		__asm __volatile("ldmxcsr %0" : : "m" (csr))
82 #define	stmxcsr(addr)		__asm __volatile("stmxcsr %0" : "=m" (*(addr)))
83 
84 static __inline void
85 xrstor32(char *addr, uint64_t mask)
86 {
87 	uint32_t low, hi;
88 
89 	low = mask;
90 	hi = mask >> 32;
91 	__asm __volatile("xrstor %0" : : "m" (*addr), "a" (low), "d" (hi));
92 }
93 
94 static __inline void
95 xrstor64(char *addr, uint64_t mask)
96 {
97 	uint32_t low, hi;
98 
99 	low = mask;
100 	hi = mask >> 32;
101 	__asm __volatile("xrstor64 %0" : : "m" (*addr), "a" (low), "d" (hi));
102 }
103 
104 static __inline void
105 xsave32(char *addr, uint64_t mask)
106 {
107 	uint32_t low, hi;
108 
109 	low = mask;
110 	hi = mask >> 32;
111 	__asm __volatile("xsave %0" : "=m" (*addr) : "a" (low), "d" (hi) :
112 	    "memory");
113 }
114 
115 static __inline void
116 xsave64(char *addr, uint64_t mask)
117 {
118 	uint32_t low, hi;
119 
120 	low = mask;
121 	hi = mask >> 32;
122 	__asm __volatile("xsave64 %0" : "=m" (*addr) : "a" (low), "d" (hi) :
123 	    "memory");
124 }
125 
126 static __inline void
127 xsaveopt32(char *addr, uint64_t mask)
128 {
129 	uint32_t low, hi;
130 
131 	low = mask;
132 	hi = mask >> 32;
133 	__asm __volatile("xsaveopt %0" : "=m" (*addr) : "a" (low), "d" (hi) :
134 	    "memory");
135 }
136 
137 static __inline void
138 xsaveopt64(char *addr, uint64_t mask)
139 {
140 	uint32_t low, hi;
141 
142 	low = mask;
143 	hi = mask >> 32;
144 	__asm __volatile("xsaveopt64 %0" : "=m" (*addr) : "a" (low), "d" (hi) :
145 	    "memory");
146 }
147 
148 #else	/* !(__GNUCLIKE_ASM && !lint) */
149 
150 void	fldcw(u_short cw);
151 void	fnclex(void);
152 void	fninit(void);
153 void	fnstcw(caddr_t addr);
154 void	fnstsw(caddr_t addr);
155 void	fxsave(caddr_t addr);
156 void	fxrstor(caddr_t addr);
157 void	ldmxcsr(u_int csr);
158 void	stmxcsr(u_int *csr);
159 void	xrstor32(char *addr, uint64_t mask);
160 void	xrstor64(char *addr, uint64_t mask);
161 void	xsave32(char *addr, uint64_t mask);
162 void	xsave64(char *addr, uint64_t mask);
163 void	xsaveopt32(char *addr, uint64_t mask);
164 void	xsaveopt64(char *addr, uint64_t mask);
165 
166 #endif	/* __GNUCLIKE_ASM && !lint */
167 
168 #define	start_emulating()	load_cr0(rcr0() | CR0_TS)
169 #define	stop_emulating()	clts()
170 
171 CTASSERT(sizeof(struct savefpu) == 512);
172 CTASSERT(sizeof(struct xstate_hdr) == 64);
173 CTASSERT(sizeof(struct savefpu_ymm) == 832);
174 
175 /*
176  * This requirement is to make it easier for asm code to calculate
177  * offset of the fpu save area from the pcb address. FPU save area
178  * must be 64-byte aligned.
179  */
180 CTASSERT(sizeof(struct pcb) % XSAVE_AREA_ALIGN == 0);
181 
182 /*
183  * Ensure the copy of XCR0 saved in a core is contained in the padding
184  * area.
185  */
186 CTASSERT(X86_XSTATE_XCR0_OFFSET >= offsetof(struct savefpu, sv_pad) &&
187     X86_XSTATE_XCR0_OFFSET + sizeof(uint64_t) <= sizeof(struct savefpu));
188 
189 static	void	fpu_clean_state(void);
190 
191 SYSCTL_INT(_hw, HW_FLOATINGPT, floatingpoint, CTLFLAG_RD,
192     SYSCTL_NULL_INT_PTR, 1, "Floating point instructions executed in hardware");
193 
194 int use_xsave;			/* non-static for cpu_switch.S */
195 uint64_t xsave_mask;		/* the same */
196 static	uma_zone_t fpu_save_area_zone;
197 static	struct savefpu *fpu_initialstate;
198 
199 static struct xsave_area_elm_descr {
200 	u_int	offset;
201 	u_int	size;
202 } *xsave_area_desc;
203 
204 static void
205 fpusave_xsaveopt64(void *addr)
206 {
207 	xsaveopt64((char *)addr, xsave_mask);
208 }
209 
210 static void
211 fpusave_xsaveopt3264(void *addr)
212 {
213 	if (SV_CURPROC_FLAG(SV_ILP32))
214 		xsaveopt32((char *)addr, xsave_mask);
215 	else
216 		xsaveopt64((char *)addr, xsave_mask);
217 }
218 
219 static void
220 fpusave_xsave64(void *addr)
221 {
222 	xsave64((char *)addr, xsave_mask);
223 }
224 
225 static void
226 fpusave_xsave3264(void *addr)
227 {
228 	if (SV_CURPROC_FLAG(SV_ILP32))
229 		xsave32((char *)addr, xsave_mask);
230 	else
231 		xsave64((char *)addr, xsave_mask);
232 }
233 
234 static void
235 fpurestore_xrstor64(void *addr)
236 {
237 	xrstor64((char *)addr, xsave_mask);
238 }
239 
240 static void
241 fpurestore_xrstor3264(void *addr)
242 {
243 	if (SV_CURPROC_FLAG(SV_ILP32))
244 		xrstor32((char *)addr, xsave_mask);
245 	else
246 		xrstor64((char *)addr, xsave_mask);
247 }
248 
249 static void
250 fpusave_fxsave(void *addr)
251 {
252 
253 	fxsave((char *)addr);
254 }
255 
256 static void
257 fpurestore_fxrstor(void *addr)
258 {
259 
260 	fxrstor((char *)addr);
261 }
262 
263 static void
264 init_xsave(void)
265 {
266 
267 	if (use_xsave)
268 		return;
269 	if ((cpu_feature2 & CPUID2_XSAVE) == 0)
270 		return;
271 	use_xsave = 1;
272 	TUNABLE_INT_FETCH("hw.use_xsave", &use_xsave);
273 }
274 
275 DEFINE_IFUNC(, void, fpusave, (void *))
276 {
277 
278 	init_xsave();
279 	if (!use_xsave)
280 		return (fpusave_fxsave);
281 	if ((cpu_stdext_feature & CPUID_EXTSTATE_XSAVEOPT) != 0) {
282 		return ((cpu_stdext_feature & CPUID_STDEXT_NFPUSG) != 0 ?
283 		    fpusave_xsaveopt64 : fpusave_xsaveopt3264);
284 	}
285 	return ((cpu_stdext_feature & CPUID_STDEXT_NFPUSG) != 0 ?
286 	    fpusave_xsave64 : fpusave_xsave3264);
287 }
288 
289 DEFINE_IFUNC(, void, fpurestore, (void *))
290 {
291 
292 	init_xsave();
293 	if (!use_xsave)
294 		return (fpurestore_fxrstor);
295 	return ((cpu_stdext_feature & CPUID_STDEXT_NFPUSG) != 0 ?
296 	    fpurestore_xrstor64 : fpurestore_xrstor3264);
297 }
298 
299 void
300 fpususpend(void *addr)
301 {
302 	u_long cr0;
303 
304 	cr0 = rcr0();
305 	stop_emulating();
306 	fpusave(addr);
307 	load_cr0(cr0);
308 }
309 
310 void
311 fpuresume(void *addr)
312 {
313 	u_long cr0;
314 
315 	cr0 = rcr0();
316 	stop_emulating();
317 	fninit();
318 	if (use_xsave)
319 		load_xcr(XCR0, xsave_mask);
320 	fpurestore(addr);
321 	load_cr0(cr0);
322 }
323 
324 /*
325  * Enable XSAVE if supported and allowed by user.
326  * Calculate the xsave_mask.
327  */
328 static void
329 fpuinit_bsp1(void)
330 {
331 	u_int cp[4];
332 	uint64_t xsave_mask_user;
333 	bool old_wp;
334 
335 	if (!use_xsave)
336 		return;
337 	cpuid_count(0xd, 0x0, cp);
338 	xsave_mask = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
339 	if ((cp[0] & xsave_mask) != xsave_mask)
340 		panic("CPU0 does not support X87 or SSE: %x", cp[0]);
341 	xsave_mask = ((uint64_t)cp[3] << 32) | cp[0];
342 	xsave_mask_user = xsave_mask;
343 	TUNABLE_ULONG_FETCH("hw.xsave_mask", &xsave_mask_user);
344 	xsave_mask_user |= XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
345 	xsave_mask &= xsave_mask_user;
346 	if ((xsave_mask & XFEATURE_AVX512) != XFEATURE_AVX512)
347 		xsave_mask &= ~XFEATURE_AVX512;
348 	if ((xsave_mask & XFEATURE_MPX) != XFEATURE_MPX)
349 		xsave_mask &= ~XFEATURE_MPX;
350 
351 	cpuid_count(0xd, 0x1, cp);
352 	if ((cp[0] & CPUID_EXTSTATE_XSAVEOPT) != 0) {
353 		/*
354 		 * Patch the XSAVE instruction in the cpu_switch code
355 		 * to XSAVEOPT.  We assume that XSAVE encoding used
356 		 * REX byte, and set the bit 4 of the r/m byte.
357 		 *
358 		 * It seems that some BIOSes give control to the OS
359 		 * with CR0.WP already set, making the kernel text
360 		 * read-only before cpu_startup().
361 		 */
362 		old_wp = disable_wp();
363 		ctx_switch_xsave32[3] |= 0x10;
364 		ctx_switch_xsave[3] |= 0x10;
365 		restore_wp(old_wp);
366 	}
367 }
368 
369 /*
370  * Calculate the fpu save area size.
371  */
372 static void
373 fpuinit_bsp2(void)
374 {
375 	u_int cp[4];
376 
377 	if (use_xsave) {
378 		cpuid_count(0xd, 0x0, cp);
379 		cpu_max_ext_state_size = cp[1];
380 
381 		/*
382 		 * Reload the cpu_feature2, since we enabled OSXSAVE.
383 		 */
384 		do_cpuid(1, cp);
385 		cpu_feature2 = cp[2];
386 	} else
387 		cpu_max_ext_state_size = sizeof(struct savefpu);
388 }
389 
390 /*
391  * Initialize the floating point unit.
392  */
393 void
394 fpuinit(void)
395 {
396 	register_t saveintr;
397 	u_int mxcsr;
398 	u_short control;
399 
400 	if (IS_BSP())
401 		fpuinit_bsp1();
402 
403 	if (use_xsave) {
404 		load_cr4(rcr4() | CR4_XSAVE);
405 		load_xcr(XCR0, xsave_mask);
406 	}
407 
408 	/*
409 	 * XCR0 shall be set up before CPU can report the save area size.
410 	 */
411 	if (IS_BSP())
412 		fpuinit_bsp2();
413 
414 	/*
415 	 * It is too early for critical_enter() to work on AP.
416 	 */
417 	saveintr = intr_disable();
418 	stop_emulating();
419 	fninit();
420 	control = __INITIAL_FPUCW__;
421 	fldcw(control);
422 	mxcsr = __INITIAL_MXCSR__;
423 	ldmxcsr(mxcsr);
424 	start_emulating();
425 	intr_restore(saveintr);
426 }
427 
428 /*
429  * On the boot CPU we generate a clean state that is used to
430  * initialize the floating point unit when it is first used by a
431  * process.
432  */
433 static void
434 fpuinitstate(void *arg __unused)
435 {
436 	uint64_t *xstate_bv;
437 	register_t saveintr;
438 	int cp[4], i, max_ext_n;
439 
440 	/* Do potentially blocking operations before disabling interrupts. */
441 	fpu_save_area_zone = uma_zcreate("FPU_save_area",
442 	    cpu_max_ext_state_size, NULL, NULL, NULL, NULL,
443 	    XSAVE_AREA_ALIGN - 1, 0);
444 	fpu_initialstate = uma_zalloc(fpu_save_area_zone, M_WAITOK | M_ZERO);
445 	if (use_xsave) {
446 		max_ext_n = flsl(xsave_mask);
447 		xsave_area_desc = malloc(max_ext_n * sizeof(struct
448 		    xsave_area_elm_descr), M_DEVBUF, M_WAITOK | M_ZERO);
449 	}
450 
451 	saveintr = intr_disable();
452 	stop_emulating();
453 
454 	fpusave_fxsave(fpu_initialstate);
455 	if (fpu_initialstate->sv_env.en_mxcsr_mask)
456 		cpu_mxcsr_mask = fpu_initialstate->sv_env.en_mxcsr_mask;
457 	else
458 		cpu_mxcsr_mask = 0xFFBF;
459 
460 	/*
461 	 * The fninit instruction does not modify XMM registers or x87
462 	 * registers (MM/ST).  The fpusave call dumped the garbage
463 	 * contained in the registers after reset to the initial state
464 	 * saved.  Clear XMM and x87 registers file image to make the
465 	 * startup program state and signal handler XMM/x87 register
466 	 * content predictable.
467 	 */
468 	bzero(fpu_initialstate->sv_fp, sizeof(fpu_initialstate->sv_fp));
469 	bzero(fpu_initialstate->sv_xmm, sizeof(fpu_initialstate->sv_xmm));
470 
471 	/*
472 	 * Create a table describing the layout of the CPU Extended
473 	 * Save Area.
474 	 */
475 	if (use_xsave) {
476 		xstate_bv = (uint64_t *)((char *)(fpu_initialstate + 1) +
477 		    offsetof(struct xstate_hdr, xstate_bv));
478 		*xstate_bv = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
479 
480 		/* x87 state */
481 		xsave_area_desc[0].offset = 0;
482 		xsave_area_desc[0].size = 160;
483 		/* XMM */
484 		xsave_area_desc[1].offset = 160;
485 		xsave_area_desc[1].size = 288 - 160;
486 
487 		for (i = 2; i < max_ext_n; i++) {
488 			cpuid_count(0xd, i, cp);
489 			xsave_area_desc[i].offset = cp[1];
490 			xsave_area_desc[i].size = cp[0];
491 		}
492 	}
493 
494 	start_emulating();
495 	intr_restore(saveintr);
496 }
497 /* EFIRT needs this to be initialized before we can enter our EFI environment */
498 SYSINIT(fpuinitstate, SI_SUB_CPU, SI_ORDER_ANY, fpuinitstate, NULL);
499 
500 /*
501  * Free coprocessor (if we have it).
502  */
503 void
504 fpuexit(struct thread *td)
505 {
506 
507 	critical_enter();
508 	if (curthread == PCPU_GET(fpcurthread)) {
509 		stop_emulating();
510 		fpusave(curpcb->pcb_save);
511 		start_emulating();
512 		PCPU_SET(fpcurthread, NULL);
513 	}
514 	critical_exit();
515 }
516 
517 int
518 fpuformat(void)
519 {
520 
521 	return (_MC_FPFMT_XMM);
522 }
523 
524 /*
525  * The following mechanism is used to ensure that the FPE_... value
526  * that is passed as a trapcode to the signal handler of the user
527  * process does not have more than one bit set.
528  *
529  * Multiple bits may be set if the user process modifies the control
530  * word while a status word bit is already set.  While this is a sign
531  * of bad coding, we have no choise than to narrow them down to one
532  * bit, since we must not send a trapcode that is not exactly one of
533  * the FPE_ macros.
534  *
535  * The mechanism has a static table with 127 entries.  Each combination
536  * of the 7 FPU status word exception bits directly translates to a
537  * position in this table, where a single FPE_... value is stored.
538  * This FPE_... value stored there is considered the "most important"
539  * of the exception bits and will be sent as the signal code.  The
540  * precedence of the bits is based upon Intel Document "Numerical
541  * Applications", Chapter "Special Computational Situations".
542  *
543  * The macro to choose one of these values does these steps: 1) Throw
544  * away status word bits that cannot be masked.  2) Throw away the bits
545  * currently masked in the control word, assuming the user isn't
546  * interested in them anymore.  3) Reinsert status word bit 7 (stack
547  * fault) if it is set, which cannot be masked but must be presered.
548  * 4) Use the remaining bits to point into the trapcode table.
549  *
550  * The 6 maskable bits in order of their preference, as stated in the
551  * above referenced Intel manual:
552  * 1  Invalid operation (FP_X_INV)
553  * 1a   Stack underflow
554  * 1b   Stack overflow
555  * 1c   Operand of unsupported format
556  * 1d   SNaN operand.
557  * 2  QNaN operand (not an exception, irrelavant here)
558  * 3  Any other invalid-operation not mentioned above or zero divide
559  *      (FP_X_INV, FP_X_DZ)
560  * 4  Denormal operand (FP_X_DNML)
561  * 5  Numeric over/underflow (FP_X_OFL, FP_X_UFL)
562  * 6  Inexact result (FP_X_IMP)
563  */
564 static char fpetable[128] = {
565 	0,
566 	FPE_FLTINV,	/*  1 - INV */
567 	FPE_FLTUND,	/*  2 - DNML */
568 	FPE_FLTINV,	/*  3 - INV | DNML */
569 	FPE_FLTDIV,	/*  4 - DZ */
570 	FPE_FLTINV,	/*  5 - INV | DZ */
571 	FPE_FLTDIV,	/*  6 - DNML | DZ */
572 	FPE_FLTINV,	/*  7 - INV | DNML | DZ */
573 	FPE_FLTOVF,	/*  8 - OFL */
574 	FPE_FLTINV,	/*  9 - INV | OFL */
575 	FPE_FLTUND,	/*  A - DNML | OFL */
576 	FPE_FLTINV,	/*  B - INV | DNML | OFL */
577 	FPE_FLTDIV,	/*  C - DZ | OFL */
578 	FPE_FLTINV,	/*  D - INV | DZ | OFL */
579 	FPE_FLTDIV,	/*  E - DNML | DZ | OFL */
580 	FPE_FLTINV,	/*  F - INV | DNML | DZ | OFL */
581 	FPE_FLTUND,	/* 10 - UFL */
582 	FPE_FLTINV,	/* 11 - INV | UFL */
583 	FPE_FLTUND,	/* 12 - DNML | UFL */
584 	FPE_FLTINV,	/* 13 - INV | DNML | UFL */
585 	FPE_FLTDIV,	/* 14 - DZ | UFL */
586 	FPE_FLTINV,	/* 15 - INV | DZ | UFL */
587 	FPE_FLTDIV,	/* 16 - DNML | DZ | UFL */
588 	FPE_FLTINV,	/* 17 - INV | DNML | DZ | UFL */
589 	FPE_FLTOVF,	/* 18 - OFL | UFL */
590 	FPE_FLTINV,	/* 19 - INV | OFL | UFL */
591 	FPE_FLTUND,	/* 1A - DNML | OFL | UFL */
592 	FPE_FLTINV,	/* 1B - INV | DNML | OFL | UFL */
593 	FPE_FLTDIV,	/* 1C - DZ | OFL | UFL */
594 	FPE_FLTINV,	/* 1D - INV | DZ | OFL | UFL */
595 	FPE_FLTDIV,	/* 1E - DNML | DZ | OFL | UFL */
596 	FPE_FLTINV,	/* 1F - INV | DNML | DZ | OFL | UFL */
597 	FPE_FLTRES,	/* 20 - IMP */
598 	FPE_FLTINV,	/* 21 - INV | IMP */
599 	FPE_FLTUND,	/* 22 - DNML | IMP */
600 	FPE_FLTINV,	/* 23 - INV | DNML | IMP */
601 	FPE_FLTDIV,	/* 24 - DZ | IMP */
602 	FPE_FLTINV,	/* 25 - INV | DZ | IMP */
603 	FPE_FLTDIV,	/* 26 - DNML | DZ | IMP */
604 	FPE_FLTINV,	/* 27 - INV | DNML | DZ | IMP */
605 	FPE_FLTOVF,	/* 28 - OFL | IMP */
606 	FPE_FLTINV,	/* 29 - INV | OFL | IMP */
607 	FPE_FLTUND,	/* 2A - DNML | OFL | IMP */
608 	FPE_FLTINV,	/* 2B - INV | DNML | OFL | IMP */
609 	FPE_FLTDIV,	/* 2C - DZ | OFL | IMP */
610 	FPE_FLTINV,	/* 2D - INV | DZ | OFL | IMP */
611 	FPE_FLTDIV,	/* 2E - DNML | DZ | OFL | IMP */
612 	FPE_FLTINV,	/* 2F - INV | DNML | DZ | OFL | IMP */
613 	FPE_FLTUND,	/* 30 - UFL | IMP */
614 	FPE_FLTINV,	/* 31 - INV | UFL | IMP */
615 	FPE_FLTUND,	/* 32 - DNML | UFL | IMP */
616 	FPE_FLTINV,	/* 33 - INV | DNML | UFL | IMP */
617 	FPE_FLTDIV,	/* 34 - DZ | UFL | IMP */
618 	FPE_FLTINV,	/* 35 - INV | DZ | UFL | IMP */
619 	FPE_FLTDIV,	/* 36 - DNML | DZ | UFL | IMP */
620 	FPE_FLTINV,	/* 37 - INV | DNML | DZ | UFL | IMP */
621 	FPE_FLTOVF,	/* 38 - OFL | UFL | IMP */
622 	FPE_FLTINV,	/* 39 - INV | OFL | UFL | IMP */
623 	FPE_FLTUND,	/* 3A - DNML | OFL | UFL | IMP */
624 	FPE_FLTINV,	/* 3B - INV | DNML | OFL | UFL | IMP */
625 	FPE_FLTDIV,	/* 3C - DZ | OFL | UFL | IMP */
626 	FPE_FLTINV,	/* 3D - INV | DZ | OFL | UFL | IMP */
627 	FPE_FLTDIV,	/* 3E - DNML | DZ | OFL | UFL | IMP */
628 	FPE_FLTINV,	/* 3F - INV | DNML | DZ | OFL | UFL | IMP */
629 	FPE_FLTSUB,	/* 40 - STK */
630 	FPE_FLTSUB,	/* 41 - INV | STK */
631 	FPE_FLTUND,	/* 42 - DNML | STK */
632 	FPE_FLTSUB,	/* 43 - INV | DNML | STK */
633 	FPE_FLTDIV,	/* 44 - DZ | STK */
634 	FPE_FLTSUB,	/* 45 - INV | DZ | STK */
635 	FPE_FLTDIV,	/* 46 - DNML | DZ | STK */
636 	FPE_FLTSUB,	/* 47 - INV | DNML | DZ | STK */
637 	FPE_FLTOVF,	/* 48 - OFL | STK */
638 	FPE_FLTSUB,	/* 49 - INV | OFL | STK */
639 	FPE_FLTUND,	/* 4A - DNML | OFL | STK */
640 	FPE_FLTSUB,	/* 4B - INV | DNML | OFL | STK */
641 	FPE_FLTDIV,	/* 4C - DZ | OFL | STK */
642 	FPE_FLTSUB,	/* 4D - INV | DZ | OFL | STK */
643 	FPE_FLTDIV,	/* 4E - DNML | DZ | OFL | STK */
644 	FPE_FLTSUB,	/* 4F - INV | DNML | DZ | OFL | STK */
645 	FPE_FLTUND,	/* 50 - UFL | STK */
646 	FPE_FLTSUB,	/* 51 - INV | UFL | STK */
647 	FPE_FLTUND,	/* 52 - DNML | UFL | STK */
648 	FPE_FLTSUB,	/* 53 - INV | DNML | UFL | STK */
649 	FPE_FLTDIV,	/* 54 - DZ | UFL | STK */
650 	FPE_FLTSUB,	/* 55 - INV | DZ | UFL | STK */
651 	FPE_FLTDIV,	/* 56 - DNML | DZ | UFL | STK */
652 	FPE_FLTSUB,	/* 57 - INV | DNML | DZ | UFL | STK */
653 	FPE_FLTOVF,	/* 58 - OFL | UFL | STK */
654 	FPE_FLTSUB,	/* 59 - INV | OFL | UFL | STK */
655 	FPE_FLTUND,	/* 5A - DNML | OFL | UFL | STK */
656 	FPE_FLTSUB,	/* 5B - INV | DNML | OFL | UFL | STK */
657 	FPE_FLTDIV,	/* 5C - DZ | OFL | UFL | STK */
658 	FPE_FLTSUB,	/* 5D - INV | DZ | OFL | UFL | STK */
659 	FPE_FLTDIV,	/* 5E - DNML | DZ | OFL | UFL | STK */
660 	FPE_FLTSUB,	/* 5F - INV | DNML | DZ | OFL | UFL | STK */
661 	FPE_FLTRES,	/* 60 - IMP | STK */
662 	FPE_FLTSUB,	/* 61 - INV | IMP | STK */
663 	FPE_FLTUND,	/* 62 - DNML | IMP | STK */
664 	FPE_FLTSUB,	/* 63 - INV | DNML | IMP | STK */
665 	FPE_FLTDIV,	/* 64 - DZ | IMP | STK */
666 	FPE_FLTSUB,	/* 65 - INV | DZ | IMP | STK */
667 	FPE_FLTDIV,	/* 66 - DNML | DZ | IMP | STK */
668 	FPE_FLTSUB,	/* 67 - INV | DNML | DZ | IMP | STK */
669 	FPE_FLTOVF,	/* 68 - OFL | IMP | STK */
670 	FPE_FLTSUB,	/* 69 - INV | OFL | IMP | STK */
671 	FPE_FLTUND,	/* 6A - DNML | OFL | IMP | STK */
672 	FPE_FLTSUB,	/* 6B - INV | DNML | OFL | IMP | STK */
673 	FPE_FLTDIV,	/* 6C - DZ | OFL | IMP | STK */
674 	FPE_FLTSUB,	/* 6D - INV | DZ | OFL | IMP | STK */
675 	FPE_FLTDIV,	/* 6E - DNML | DZ | OFL | IMP | STK */
676 	FPE_FLTSUB,	/* 6F - INV | DNML | DZ | OFL | IMP | STK */
677 	FPE_FLTUND,	/* 70 - UFL | IMP | STK */
678 	FPE_FLTSUB,	/* 71 - INV | UFL | IMP | STK */
679 	FPE_FLTUND,	/* 72 - DNML | UFL | IMP | STK */
680 	FPE_FLTSUB,	/* 73 - INV | DNML | UFL | IMP | STK */
681 	FPE_FLTDIV,	/* 74 - DZ | UFL | IMP | STK */
682 	FPE_FLTSUB,	/* 75 - INV | DZ | UFL | IMP | STK */
683 	FPE_FLTDIV,	/* 76 - DNML | DZ | UFL | IMP | STK */
684 	FPE_FLTSUB,	/* 77 - INV | DNML | DZ | UFL | IMP | STK */
685 	FPE_FLTOVF,	/* 78 - OFL | UFL | IMP | STK */
686 	FPE_FLTSUB,	/* 79 - INV | OFL | UFL | IMP | STK */
687 	FPE_FLTUND,	/* 7A - DNML | OFL | UFL | IMP | STK */
688 	FPE_FLTSUB,	/* 7B - INV | DNML | OFL | UFL | IMP | STK */
689 	FPE_FLTDIV,	/* 7C - DZ | OFL | UFL | IMP | STK */
690 	FPE_FLTSUB,	/* 7D - INV | DZ | OFL | UFL | IMP | STK */
691 	FPE_FLTDIV,	/* 7E - DNML | DZ | OFL | UFL | IMP | STK */
692 	FPE_FLTSUB,	/* 7F - INV | DNML | DZ | OFL | UFL | IMP | STK */
693 };
694 
695 /*
696  * Read the FP status and control words, then generate si_code value
697  * for SIGFPE.  The error code chosen will be one of the
698  * FPE_... macros.  It will be sent as the second argument to old
699  * BSD-style signal handlers and as "siginfo_t->si_code" (second
700  * argument) to SA_SIGINFO signal handlers.
701  *
702  * Some time ago, we cleared the x87 exceptions with FNCLEX there.
703  * Clearing exceptions was necessary mainly to avoid IRQ13 bugs.  The
704  * usermode code which understands the FPU hardware enough to enable
705  * the exceptions, can also handle clearing the exception state in the
706  * handler.  The only consequence of not clearing the exception is the
707  * rethrow of the SIGFPE on return from the signal handler and
708  * reexecution of the corresponding instruction.
709  *
710  * For XMM traps, the exceptions were never cleared.
711  */
712 int
713 fputrap_x87(void)
714 {
715 	struct savefpu *pcb_save;
716 	u_short control, status;
717 
718 	critical_enter();
719 
720 	/*
721 	 * Interrupt handling (for another interrupt) may have pushed the
722 	 * state to memory.  Fetch the relevant parts of the state from
723 	 * wherever they are.
724 	 */
725 	if (PCPU_GET(fpcurthread) != curthread) {
726 		pcb_save = curpcb->pcb_save;
727 		control = pcb_save->sv_env.en_cw;
728 		status = pcb_save->sv_env.en_sw;
729 	} else {
730 		fnstcw(&control);
731 		fnstsw(&status);
732 	}
733 
734 	critical_exit();
735 	return (fpetable[status & ((~control & 0x3f) | 0x40)]);
736 }
737 
738 int
739 fputrap_sse(void)
740 {
741 	u_int mxcsr;
742 
743 	critical_enter();
744 	if (PCPU_GET(fpcurthread) != curthread)
745 		mxcsr = curpcb->pcb_save->sv_env.en_mxcsr;
746 	else
747 		stmxcsr(&mxcsr);
748 	critical_exit();
749 	return (fpetable[(mxcsr & (~mxcsr >> 7)) & 0x3f]);
750 }
751 
752 static void
753 restore_fpu_curthread(struct thread *td)
754 {
755 	struct pcb *pcb;
756 
757 	/*
758 	 * Record new context early in case frstor causes a trap.
759 	 */
760 	PCPU_SET(fpcurthread, td);
761 
762 	stop_emulating();
763 	fpu_clean_state();
764 	pcb = td->td_pcb;
765 
766 	if ((pcb->pcb_flags & PCB_FPUINITDONE) == 0) {
767 		/*
768 		 * This is the first time this thread has used the FPU or
769 		 * the PCB doesn't contain a clean FPU state.  Explicitly
770 		 * load an initial state.
771 		 *
772 		 * We prefer to restore the state from the actual save
773 		 * area in PCB instead of directly loading from
774 		 * fpu_initialstate, to ignite the XSAVEOPT
775 		 * tracking engine.
776 		 */
777 		bcopy(fpu_initialstate, pcb->pcb_save,
778 		    cpu_max_ext_state_size);
779 		fpurestore(pcb->pcb_save);
780 		if (pcb->pcb_initial_fpucw != __INITIAL_FPUCW__)
781 			fldcw(pcb->pcb_initial_fpucw);
782 		if (PCB_USER_FPU(pcb))
783 			set_pcb_flags(pcb, PCB_FPUINITDONE |
784 			    PCB_USERFPUINITDONE);
785 		else
786 			set_pcb_flags(pcb, PCB_FPUINITDONE);
787 	} else
788 		fpurestore(pcb->pcb_save);
789 }
790 
791 /*
792  * Device Not Available (DNA, #NM) exception handler.
793  *
794  * It would be better to switch FP context here (if curthread !=
795  * fpcurthread) and not necessarily for every context switch, but it
796  * is too hard to access foreign pcb's.
797  */
798 void
799 fpudna(void)
800 {
801 	struct thread *td;
802 
803 	td = curthread;
804 	/*
805 	 * This handler is entered with interrupts enabled, so context
806 	 * switches may occur before critical_enter() is executed.  If
807 	 * a context switch occurs, then when we regain control, our
808 	 * state will have been completely restored.  The CPU may
809 	 * change underneath us, but the only part of our context that
810 	 * lives in the CPU is CR0.TS and that will be "restored" by
811 	 * setting it on the new CPU.
812 	 */
813 	critical_enter();
814 
815 	KASSERT((curpcb->pcb_flags & PCB_FPUNOSAVE) == 0,
816 	    ("fpudna while in fpu_kern_enter(FPU_KERN_NOCTX)"));
817 	if (__predict_false(PCPU_GET(fpcurthread) == td)) {
818 		/*
819 		 * Some virtual machines seems to set %cr0.TS at
820 		 * arbitrary moments.  Silently clear the TS bit
821 		 * regardless of the eager/lazy FPU context switch
822 		 * mode.
823 		 */
824 		stop_emulating();
825 	} else {
826 		if (__predict_false(PCPU_GET(fpcurthread) != NULL)) {
827 			panic(
828 		    "fpudna: fpcurthread = %p (%d), curthread = %p (%d)\n",
829 			    PCPU_GET(fpcurthread),
830 			    PCPU_GET(fpcurthread)->td_tid, td, td->td_tid);
831 		}
832 		restore_fpu_curthread(td);
833 	}
834 	critical_exit();
835 }
836 
837 void fpu_activate_sw(struct thread *td); /* Called from the context switch */
838 void
839 fpu_activate_sw(struct thread *td)
840 {
841 
842 	if ((td->td_pflags & TDP_KTHREAD) != 0 || !PCB_USER_FPU(td->td_pcb)) {
843 		PCPU_SET(fpcurthread, NULL);
844 		start_emulating();
845 	} else if (PCPU_GET(fpcurthread) != td) {
846 		restore_fpu_curthread(td);
847 	}
848 }
849 
850 void
851 fpudrop(void)
852 {
853 	struct thread *td;
854 
855 	td = PCPU_GET(fpcurthread);
856 	KASSERT(td == curthread, ("fpudrop: fpcurthread != curthread"));
857 	CRITICAL_ASSERT(td);
858 	PCPU_SET(fpcurthread, NULL);
859 	clear_pcb_flags(td->td_pcb, PCB_FPUINITDONE);
860 	start_emulating();
861 }
862 
863 /*
864  * Get the user state of the FPU into pcb->pcb_user_save without
865  * dropping ownership (if possible).  It returns the FPU ownership
866  * status.
867  */
868 int
869 fpugetregs(struct thread *td)
870 {
871 	struct pcb *pcb;
872 	uint64_t *xstate_bv, bit;
873 	char *sa;
874 	int max_ext_n, i, owned;
875 
876 	pcb = td->td_pcb;
877 	critical_enter();
878 	if ((pcb->pcb_flags & PCB_USERFPUINITDONE) == 0) {
879 		bcopy(fpu_initialstate, get_pcb_user_save_pcb(pcb),
880 		    cpu_max_ext_state_size);
881 		get_pcb_user_save_pcb(pcb)->sv_env.en_cw =
882 		    pcb->pcb_initial_fpucw;
883 		fpuuserinited(td);
884 		critical_exit();
885 		return (_MC_FPOWNED_PCB);
886 	}
887 	if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
888 		fpusave(get_pcb_user_save_pcb(pcb));
889 		owned = _MC_FPOWNED_FPU;
890 	} else {
891 		owned = _MC_FPOWNED_PCB;
892 	}
893 	if (use_xsave) {
894 		/*
895 		 * Handle partially saved state.
896 		 */
897 		sa = (char *)get_pcb_user_save_pcb(pcb);
898 		xstate_bv = (uint64_t *)(sa + sizeof(struct savefpu) +
899 		    offsetof(struct xstate_hdr, xstate_bv));
900 		max_ext_n = flsl(xsave_mask);
901 		for (i = 0; i < max_ext_n; i++) {
902 			bit = 1ULL << i;
903 			if ((xsave_mask & bit) == 0 || (*xstate_bv & bit) != 0)
904 				continue;
905 			bcopy((char *)fpu_initialstate +
906 			    xsave_area_desc[i].offset,
907 			    sa + xsave_area_desc[i].offset,
908 			    xsave_area_desc[i].size);
909 			*xstate_bv |= bit;
910 		}
911 	}
912 	critical_exit();
913 	return (owned);
914 }
915 
916 void
917 fpuuserinited(struct thread *td)
918 {
919 	struct pcb *pcb;
920 
921 	CRITICAL_ASSERT(td);
922 	pcb = td->td_pcb;
923 	if (PCB_USER_FPU(pcb))
924 		set_pcb_flags(pcb,
925 		    PCB_FPUINITDONE | PCB_USERFPUINITDONE);
926 	else
927 		set_pcb_flags(pcb, PCB_FPUINITDONE);
928 }
929 
930 int
931 fpusetxstate(struct thread *td, char *xfpustate, size_t xfpustate_size)
932 {
933 	struct xstate_hdr *hdr, *ehdr;
934 	size_t len, max_len;
935 	uint64_t bv;
936 
937 	/* XXXKIB should we clear all extended state in xstate_bv instead ? */
938 	if (xfpustate == NULL)
939 		return (0);
940 	if (!use_xsave)
941 		return (EOPNOTSUPP);
942 
943 	len = xfpustate_size;
944 	if (len < sizeof(struct xstate_hdr))
945 		return (EINVAL);
946 	max_len = cpu_max_ext_state_size - sizeof(struct savefpu);
947 	if (len > max_len)
948 		return (EINVAL);
949 
950 	ehdr = (struct xstate_hdr *)xfpustate;
951 	bv = ehdr->xstate_bv;
952 
953 	/*
954 	 * Avoid #gp.
955 	 */
956 	if (bv & ~xsave_mask)
957 		return (EINVAL);
958 
959 	hdr = (struct xstate_hdr *)(get_pcb_user_save_td(td) + 1);
960 
961 	hdr->xstate_bv = bv;
962 	bcopy(xfpustate + sizeof(struct xstate_hdr),
963 	    (char *)(hdr + 1), len - sizeof(struct xstate_hdr));
964 
965 	return (0);
966 }
967 
968 /*
969  * Set the state of the FPU.
970  */
971 int
972 fpusetregs(struct thread *td, struct savefpu *addr, char *xfpustate,
973     size_t xfpustate_size)
974 {
975 	struct pcb *pcb;
976 	int error;
977 
978 	addr->sv_env.en_mxcsr &= cpu_mxcsr_mask;
979 	pcb = td->td_pcb;
980 	error = 0;
981 	critical_enter();
982 	if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
983 		error = fpusetxstate(td, xfpustate, xfpustate_size);
984 		if (error == 0) {
985 			bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
986 			fpurestore(get_pcb_user_save_td(td));
987 			set_pcb_flags(pcb, PCB_FPUINITDONE |
988 			    PCB_USERFPUINITDONE);
989 		}
990 	} else {
991 		error = fpusetxstate(td, xfpustate, xfpustate_size);
992 		if (error == 0) {
993 			bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
994 			fpuuserinited(td);
995 		}
996 	}
997 	critical_exit();
998 	return (error);
999 }
1000 
1001 /*
1002  * On AuthenticAMD processors, the fxrstor instruction does not restore
1003  * the x87's stored last instruction pointer, last data pointer, and last
1004  * opcode values, except in the rare case in which the exception summary
1005  * (ES) bit in the x87 status word is set to 1.
1006  *
1007  * In order to avoid leaking this information across processes, we clean
1008  * these values by performing a dummy load before executing fxrstor().
1009  */
1010 static void
1011 fpu_clean_state(void)
1012 {
1013 	static float dummy_variable = 0.0;
1014 	u_short status;
1015 
1016 	/*
1017 	 * Clear the ES bit in the x87 status word if it is currently
1018 	 * set, in order to avoid causing a fault in the upcoming load.
1019 	 */
1020 	fnstsw(&status);
1021 	if (status & 0x80)
1022 		fnclex();
1023 
1024 	/*
1025 	 * Load the dummy variable into the x87 stack.  This mangles
1026 	 * the x87 stack, but we don't care since we're about to call
1027 	 * fxrstor() anyway.
1028 	 */
1029 	__asm __volatile("ffree %%st(7); flds %0" : : "m" (dummy_variable));
1030 }
1031 
1032 /*
1033  * This really sucks.  We want the acpi version only, but it requires
1034  * the isa_if.h file in order to get the definitions.
1035  */
1036 #include "opt_isa.h"
1037 #ifdef DEV_ISA
1038 #include <isa/isavar.h>
1039 /*
1040  * This sucks up the legacy ISA support assignments from PNPBIOS/ACPI.
1041  */
1042 static struct isa_pnp_id fpupnp_ids[] = {
1043 	{ 0x040cd041, "Legacy ISA coprocessor support" }, /* PNP0C04 */
1044 	{ 0 }
1045 };
1046 
1047 static int
1048 fpupnp_probe(device_t dev)
1049 {
1050 	int result;
1051 
1052 	result = ISA_PNP_PROBE(device_get_parent(dev), dev, fpupnp_ids);
1053 	if (result <= 0)
1054 		device_quiet(dev);
1055 	return (result);
1056 }
1057 
1058 static int
1059 fpupnp_attach(device_t dev)
1060 {
1061 
1062 	return (0);
1063 }
1064 
1065 static device_method_t fpupnp_methods[] = {
1066 	/* Device interface */
1067 	DEVMETHOD(device_probe,		fpupnp_probe),
1068 	DEVMETHOD(device_attach,	fpupnp_attach),
1069 	DEVMETHOD(device_detach,	bus_generic_detach),
1070 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
1071 	DEVMETHOD(device_suspend,	bus_generic_suspend),
1072 	DEVMETHOD(device_resume,	bus_generic_resume),
1073 	{ 0, 0 }
1074 };
1075 
1076 static driver_t fpupnp_driver = {
1077 	"fpupnp",
1078 	fpupnp_methods,
1079 	1,			/* no softc */
1080 };
1081 
1082 static devclass_t fpupnp_devclass;
1083 
1084 DRIVER_MODULE(fpupnp, acpi, fpupnp_driver, fpupnp_devclass, 0, 0);
1085 ISA_PNP_INFO(fpupnp_ids);
1086 #endif	/* DEV_ISA */
1087 
1088 static MALLOC_DEFINE(M_FPUKERN_CTX, "fpukern_ctx",
1089     "Kernel contexts for FPU state");
1090 
1091 #define	FPU_KERN_CTX_FPUINITDONE 0x01
1092 #define	FPU_KERN_CTX_DUMMY	 0x02	/* avoided save for the kern thread */
1093 #define	FPU_KERN_CTX_INUSE	 0x04
1094 
1095 struct fpu_kern_ctx {
1096 	struct savefpu *prev;
1097 	uint32_t flags;
1098 	char hwstate1[];
1099 };
1100 
1101 static inline size_t __pure2
1102 fpu_kern_alloc_sz(u_int max_est)
1103 {
1104 	return (sizeof(struct fpu_kern_ctx) + XSAVE_AREA_ALIGN + max_est);
1105 }
1106 
1107 static inline int __pure2
1108 fpu_kern_malloc_flags(u_int fpflags)
1109 {
1110 	return (((fpflags & FPU_KERN_NOWAIT) ? M_NOWAIT : M_WAITOK) | M_ZERO);
1111 }
1112 
1113 struct fpu_kern_ctx *
1114 fpu_kern_alloc_ctx_domain(int domain, u_int flags)
1115 {
1116 	return (malloc_domainset(fpu_kern_alloc_sz(cpu_max_ext_state_size),
1117 	    M_FPUKERN_CTX, DOMAINSET_PREF(domain),
1118 	    fpu_kern_malloc_flags(flags)));
1119 }
1120 
1121 struct fpu_kern_ctx *
1122 fpu_kern_alloc_ctx(u_int flags)
1123 {
1124 	return (malloc(fpu_kern_alloc_sz(cpu_max_ext_state_size),
1125 	    M_FPUKERN_CTX, fpu_kern_malloc_flags(flags)));
1126 }
1127 
1128 void
1129 fpu_kern_free_ctx(struct fpu_kern_ctx *ctx)
1130 {
1131 
1132 	KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) == 0, ("free'ing inuse ctx"));
1133 	/* XXXKIB clear the memory ? */
1134 	free(ctx, M_FPUKERN_CTX);
1135 }
1136 
1137 static struct savefpu *
1138 fpu_kern_ctx_savefpu(struct fpu_kern_ctx *ctx)
1139 {
1140 	vm_offset_t p;
1141 
1142 	p = (vm_offset_t)&ctx->hwstate1;
1143 	p = roundup2(p, XSAVE_AREA_ALIGN);
1144 	return ((struct savefpu *)p);
1145 }
1146 
1147 void
1148 fpu_kern_enter(struct thread *td, struct fpu_kern_ctx *ctx, u_int flags)
1149 {
1150 	struct pcb *pcb;
1151 
1152 	pcb = td->td_pcb;
1153 	KASSERT((flags & FPU_KERN_NOCTX) != 0 || ctx != NULL,
1154 	    ("ctx is required when !FPU_KERN_NOCTX"));
1155 	KASSERT(ctx == NULL || (ctx->flags & FPU_KERN_CTX_INUSE) == 0,
1156 	    ("using inuse ctx"));
1157 	KASSERT((pcb->pcb_flags & PCB_FPUNOSAVE) == 0,
1158 	    ("recursive fpu_kern_enter while in PCB_FPUNOSAVE state"));
1159 
1160 	if ((flags & FPU_KERN_NOCTX) != 0) {
1161 		critical_enter();
1162 		stop_emulating();
1163 		if (curthread == PCPU_GET(fpcurthread)) {
1164 			fpusave(curpcb->pcb_save);
1165 			PCPU_SET(fpcurthread, NULL);
1166 		} else {
1167 			KASSERT(PCPU_GET(fpcurthread) == NULL,
1168 			    ("invalid fpcurthread"));
1169 		}
1170 
1171 		/*
1172 		 * This breaks XSAVEOPT tracker, but
1173 		 * PCB_FPUNOSAVE state is supposed to never need to
1174 		 * save FPU context at all.
1175 		 */
1176 		fpurestore(fpu_initialstate);
1177 		set_pcb_flags(pcb, PCB_KERNFPU | PCB_FPUNOSAVE |
1178 		    PCB_FPUINITDONE);
1179 		return;
1180 	}
1181 	if ((flags & FPU_KERN_KTHR) != 0 && is_fpu_kern_thread(0)) {
1182 		ctx->flags = FPU_KERN_CTX_DUMMY | FPU_KERN_CTX_INUSE;
1183 		return;
1184 	}
1185 	critical_enter();
1186 	KASSERT(!PCB_USER_FPU(pcb) || pcb->pcb_save ==
1187 	    get_pcb_user_save_pcb(pcb), ("mangled pcb_save"));
1188 	ctx->flags = FPU_KERN_CTX_INUSE;
1189 	if ((pcb->pcb_flags & PCB_FPUINITDONE) != 0)
1190 		ctx->flags |= FPU_KERN_CTX_FPUINITDONE;
1191 	fpuexit(td);
1192 	ctx->prev = pcb->pcb_save;
1193 	pcb->pcb_save = fpu_kern_ctx_savefpu(ctx);
1194 	set_pcb_flags(pcb, PCB_KERNFPU);
1195 	clear_pcb_flags(pcb, PCB_FPUINITDONE);
1196 	critical_exit();
1197 }
1198 
1199 int
1200 fpu_kern_leave(struct thread *td, struct fpu_kern_ctx *ctx)
1201 {
1202 	struct pcb *pcb;
1203 
1204 	pcb = td->td_pcb;
1205 
1206 	if ((pcb->pcb_flags & PCB_FPUNOSAVE) != 0) {
1207 		KASSERT(ctx == NULL, ("non-null ctx after FPU_KERN_NOCTX"));
1208 		KASSERT(PCPU_GET(fpcurthread) == NULL,
1209 		    ("non-NULL fpcurthread for PCB_FPUNOSAVE"));
1210 		CRITICAL_ASSERT(td);
1211 
1212 		clear_pcb_flags(pcb,  PCB_FPUNOSAVE | PCB_FPUINITDONE);
1213 		start_emulating();
1214 	} else {
1215 		KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) != 0,
1216 		    ("leaving not inuse ctx"));
1217 		ctx->flags &= ~FPU_KERN_CTX_INUSE;
1218 
1219 		if (is_fpu_kern_thread(0) &&
1220 		    (ctx->flags & FPU_KERN_CTX_DUMMY) != 0)
1221 			return (0);
1222 		KASSERT((ctx->flags & FPU_KERN_CTX_DUMMY) == 0,
1223 		    ("dummy ctx"));
1224 		critical_enter();
1225 		if (curthread == PCPU_GET(fpcurthread))
1226 			fpudrop();
1227 		pcb->pcb_save = ctx->prev;
1228 	}
1229 
1230 	if (pcb->pcb_save == get_pcb_user_save_pcb(pcb)) {
1231 		if ((pcb->pcb_flags & PCB_USERFPUINITDONE) != 0) {
1232 			set_pcb_flags(pcb, PCB_FPUINITDONE);
1233 			if ((pcb->pcb_flags & PCB_KERNFPU_THR) == 0)
1234 				clear_pcb_flags(pcb, PCB_KERNFPU);
1235 		} else if ((pcb->pcb_flags & PCB_KERNFPU_THR) == 0)
1236 			clear_pcb_flags(pcb, PCB_FPUINITDONE | PCB_KERNFPU);
1237 	} else {
1238 		if ((ctx->flags & FPU_KERN_CTX_FPUINITDONE) != 0)
1239 			set_pcb_flags(pcb, PCB_FPUINITDONE);
1240 		else
1241 			clear_pcb_flags(pcb, PCB_FPUINITDONE);
1242 		KASSERT(!PCB_USER_FPU(pcb), ("unpaired fpu_kern_leave"));
1243 	}
1244 	critical_exit();
1245 	return (0);
1246 }
1247 
1248 int
1249 fpu_kern_thread(u_int flags)
1250 {
1251 
1252 	KASSERT((curthread->td_pflags & TDP_KTHREAD) != 0,
1253 	    ("Only kthread may use fpu_kern_thread"));
1254 	KASSERT(curpcb->pcb_save == get_pcb_user_save_pcb(curpcb),
1255 	    ("mangled pcb_save"));
1256 	KASSERT(PCB_USER_FPU(curpcb), ("recursive call"));
1257 
1258 	set_pcb_flags(curpcb, PCB_KERNFPU | PCB_KERNFPU_THR);
1259 	return (0);
1260 }
1261 
1262 int
1263 is_fpu_kern_thread(u_int flags)
1264 {
1265 
1266 	if ((curthread->td_pflags & TDP_KTHREAD) == 0)
1267 		return (0);
1268 	return ((curpcb->pcb_flags & PCB_KERNFPU_THR) != 0);
1269 }
1270 
1271 /*
1272  * FPU save area alloc/free/init utility routines
1273  */
1274 struct savefpu *
1275 fpu_save_area_alloc(void)
1276 {
1277 
1278 	return (uma_zalloc(fpu_save_area_zone, M_WAITOK));
1279 }
1280 
1281 void
1282 fpu_save_area_free(struct savefpu *fsa)
1283 {
1284 
1285 	uma_zfree(fpu_save_area_zone, fsa);
1286 }
1287 
1288 void
1289 fpu_save_area_reset(struct savefpu *fsa)
1290 {
1291 
1292 	bcopy(fpu_initialstate, fsa, cpu_max_ext_state_size);
1293 }
1294