1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1990 William Jolitz. 5 * Copyright (c) 1991 The Regents of the University of California. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)npx.c 7.2 (Berkeley) 5/12/91 33 */ 34 35 #include <sys/cdefs.h> 36 __FBSDID("$FreeBSD$"); 37 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/bus.h> 41 #include <sys/kernel.h> 42 #include <sys/lock.h> 43 #include <sys/malloc.h> 44 #include <sys/module.h> 45 #include <sys/mutex.h> 46 #include <sys/mutex.h> 47 #include <sys/proc.h> 48 #include <sys/sysctl.h> 49 #include <machine/bus.h> 50 #include <sys/rman.h> 51 #include <sys/signalvar.h> 52 #include <vm/uma.h> 53 54 #include <machine/cputypes.h> 55 #include <machine/frame.h> 56 #include <machine/intr_machdep.h> 57 #include <machine/md_var.h> 58 #include <machine/pcb.h> 59 #include <machine/psl.h> 60 #include <machine/resource.h> 61 #include <machine/specialreg.h> 62 #include <machine/segments.h> 63 #include <machine/ucontext.h> 64 65 /* 66 * Floating point support. 67 */ 68 69 #if defined(__GNUCLIKE_ASM) && !defined(lint) 70 71 #define fldcw(cw) __asm __volatile("fldcw %0" : : "m" (cw)) 72 #define fnclex() __asm __volatile("fnclex") 73 #define fninit() __asm __volatile("fninit") 74 #define fnstcw(addr) __asm __volatile("fnstcw %0" : "=m" (*(addr))) 75 #define fnstsw(addr) __asm __volatile("fnstsw %0" : "=am" (*(addr))) 76 #define fxrstor(addr) __asm __volatile("fxrstor %0" : : "m" (*(addr))) 77 #define fxsave(addr) __asm __volatile("fxsave %0" : "=m" (*(addr))) 78 #define ldmxcsr(csr) __asm __volatile("ldmxcsr %0" : : "m" (csr)) 79 #define stmxcsr(addr) __asm __volatile("stmxcsr %0" : : "m" (*(addr))) 80 81 static __inline void 82 xrstor(char *addr, uint64_t mask) 83 { 84 uint32_t low, hi; 85 86 low = mask; 87 hi = mask >> 32; 88 __asm __volatile("xrstor %0" : : "m" (*addr), "a" (low), "d" (hi)); 89 } 90 91 static __inline void 92 xsave(char *addr, uint64_t mask) 93 { 94 uint32_t low, hi; 95 96 low = mask; 97 hi = mask >> 32; 98 __asm __volatile("xsave %0" : "=m" (*addr) : "a" (low), "d" (hi) : 99 "memory"); 100 } 101 102 #else /* !(__GNUCLIKE_ASM && !lint) */ 103 104 void fldcw(u_short cw); 105 void fnclex(void); 106 void fninit(void); 107 void fnstcw(caddr_t addr); 108 void fnstsw(caddr_t addr); 109 void fxsave(caddr_t addr); 110 void fxrstor(caddr_t addr); 111 void ldmxcsr(u_int csr); 112 void stmxcsr(u_int *csr); 113 void xrstor(char *addr, uint64_t mask); 114 void xsave(char *addr, uint64_t mask); 115 116 #endif /* __GNUCLIKE_ASM && !lint */ 117 118 #define start_emulating() load_cr0(rcr0() | CR0_TS) 119 #define stop_emulating() clts() 120 121 CTASSERT(sizeof(struct savefpu) == 512); 122 CTASSERT(sizeof(struct xstate_hdr) == 64); 123 CTASSERT(sizeof(struct savefpu_ymm) == 832); 124 125 /* 126 * This requirement is to make it easier for asm code to calculate 127 * offset of the fpu save area from the pcb address. FPU save area 128 * must be 64-byte aligned. 129 */ 130 CTASSERT(sizeof(struct pcb) % XSAVE_AREA_ALIGN == 0); 131 132 /* 133 * Ensure the copy of XCR0 saved in a core is contained in the padding 134 * area. 135 */ 136 CTASSERT(X86_XSTATE_XCR0_OFFSET >= offsetof(struct savefpu, sv_pad) && 137 X86_XSTATE_XCR0_OFFSET + sizeof(uint64_t) <= sizeof(struct savefpu)); 138 139 static void fpu_clean_state(void); 140 141 SYSCTL_INT(_hw, HW_FLOATINGPT, floatingpoint, CTLFLAG_RD, 142 SYSCTL_NULL_INT_PTR, 1, "Floating point instructions executed in hardware"); 143 144 int use_xsave; /* non-static for cpu_switch.S */ 145 uint64_t xsave_mask; /* the same */ 146 static uma_zone_t fpu_save_area_zone; 147 static struct savefpu *fpu_initialstate; 148 149 struct xsave_area_elm_descr { 150 u_int offset; 151 u_int size; 152 } *xsave_area_desc; 153 154 void 155 fpusave(void *addr) 156 { 157 158 if (use_xsave) 159 xsave((char *)addr, xsave_mask); 160 else 161 fxsave((char *)addr); 162 } 163 164 void 165 fpurestore(void *addr) 166 { 167 168 if (use_xsave) 169 xrstor((char *)addr, xsave_mask); 170 else 171 fxrstor((char *)addr); 172 } 173 174 void 175 fpususpend(void *addr) 176 { 177 u_long cr0; 178 179 cr0 = rcr0(); 180 stop_emulating(); 181 fpusave(addr); 182 load_cr0(cr0); 183 } 184 185 void 186 fpuresume(void *addr) 187 { 188 u_long cr0; 189 190 cr0 = rcr0(); 191 stop_emulating(); 192 fninit(); 193 if (use_xsave) 194 load_xcr(XCR0, xsave_mask); 195 fpurestore(addr); 196 load_cr0(cr0); 197 } 198 199 /* 200 * Enable XSAVE if supported and allowed by user. 201 * Calculate the xsave_mask. 202 */ 203 static void 204 fpuinit_bsp1(void) 205 { 206 u_int cp[4]; 207 uint64_t xsave_mask_user; 208 209 if ((cpu_feature2 & CPUID2_XSAVE) != 0) { 210 use_xsave = 1; 211 TUNABLE_INT_FETCH("hw.use_xsave", &use_xsave); 212 } 213 if (!use_xsave) 214 return; 215 216 cpuid_count(0xd, 0x0, cp); 217 xsave_mask = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE; 218 if ((cp[0] & xsave_mask) != xsave_mask) 219 panic("CPU0 does not support X87 or SSE: %x", cp[0]); 220 xsave_mask = ((uint64_t)cp[3] << 32) | cp[0]; 221 xsave_mask_user = xsave_mask; 222 TUNABLE_ULONG_FETCH("hw.xsave_mask", &xsave_mask_user); 223 xsave_mask_user |= XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE; 224 xsave_mask &= xsave_mask_user; 225 if ((xsave_mask & XFEATURE_AVX512) != XFEATURE_AVX512) 226 xsave_mask &= ~XFEATURE_AVX512; 227 if ((xsave_mask & XFEATURE_MPX) != XFEATURE_MPX) 228 xsave_mask &= ~XFEATURE_MPX; 229 230 cpuid_count(0xd, 0x1, cp); 231 if ((cp[0] & CPUID_EXTSTATE_XSAVEOPT) != 0) { 232 /* 233 * Patch the XSAVE instruction in the cpu_switch code 234 * to XSAVEOPT. We assume that XSAVE encoding used 235 * REX byte, and set the bit 4 of the r/m byte. 236 */ 237 ctx_switch_xsave[3] |= 0x10; 238 } 239 } 240 241 /* 242 * Calculate the fpu save area size. 243 */ 244 static void 245 fpuinit_bsp2(void) 246 { 247 u_int cp[4]; 248 249 if (use_xsave) { 250 cpuid_count(0xd, 0x0, cp); 251 cpu_max_ext_state_size = cp[1]; 252 253 /* 254 * Reload the cpu_feature2, since we enabled OSXSAVE. 255 */ 256 do_cpuid(1, cp); 257 cpu_feature2 = cp[2]; 258 } else 259 cpu_max_ext_state_size = sizeof(struct savefpu); 260 } 261 262 /* 263 * Initialize the floating point unit. 264 */ 265 void 266 fpuinit(void) 267 { 268 register_t saveintr; 269 u_int mxcsr; 270 u_short control; 271 272 if (IS_BSP()) 273 fpuinit_bsp1(); 274 275 if (use_xsave) { 276 load_cr4(rcr4() | CR4_XSAVE); 277 load_xcr(XCR0, xsave_mask); 278 } 279 280 /* 281 * XCR0 shall be set up before CPU can report the save area size. 282 */ 283 if (IS_BSP()) 284 fpuinit_bsp2(); 285 286 /* 287 * It is too early for critical_enter() to work on AP. 288 */ 289 saveintr = intr_disable(); 290 stop_emulating(); 291 fninit(); 292 control = __INITIAL_FPUCW__; 293 fldcw(control); 294 mxcsr = __INITIAL_MXCSR__; 295 ldmxcsr(mxcsr); 296 start_emulating(); 297 intr_restore(saveintr); 298 } 299 300 /* 301 * On the boot CPU we generate a clean state that is used to 302 * initialize the floating point unit when it is first used by a 303 * process. 304 */ 305 static void 306 fpuinitstate(void *arg __unused) 307 { 308 register_t saveintr; 309 int cp[4], i, max_ext_n; 310 311 fpu_initialstate = malloc(cpu_max_ext_state_size, M_DEVBUF, 312 M_WAITOK | M_ZERO); 313 saveintr = intr_disable(); 314 stop_emulating(); 315 316 fpusave(fpu_initialstate); 317 if (fpu_initialstate->sv_env.en_mxcsr_mask) 318 cpu_mxcsr_mask = fpu_initialstate->sv_env.en_mxcsr_mask; 319 else 320 cpu_mxcsr_mask = 0xFFBF; 321 322 /* 323 * The fninit instruction does not modify XMM registers or x87 324 * registers (MM/ST). The fpusave call dumped the garbage 325 * contained in the registers after reset to the initial state 326 * saved. Clear XMM and x87 registers file image to make the 327 * startup program state and signal handler XMM/x87 register 328 * content predictable. 329 */ 330 bzero(fpu_initialstate->sv_fp, sizeof(fpu_initialstate->sv_fp)); 331 bzero(fpu_initialstate->sv_xmm, sizeof(fpu_initialstate->sv_xmm)); 332 333 /* 334 * Create a table describing the layout of the CPU Extended 335 * Save Area. 336 */ 337 if (use_xsave) { 338 max_ext_n = flsl(xsave_mask); 339 xsave_area_desc = malloc(max_ext_n * sizeof(struct 340 xsave_area_elm_descr), M_DEVBUF, M_WAITOK | M_ZERO); 341 /* x87 state */ 342 xsave_area_desc[0].offset = 0; 343 xsave_area_desc[0].size = 160; 344 /* XMM */ 345 xsave_area_desc[1].offset = 160; 346 xsave_area_desc[1].size = 288 - 160; 347 348 for (i = 2; i < max_ext_n; i++) { 349 cpuid_count(0xd, i, cp); 350 xsave_area_desc[i].offset = cp[1]; 351 xsave_area_desc[i].size = cp[0]; 352 } 353 } 354 355 fpu_save_area_zone = uma_zcreate("FPU_save_area", 356 cpu_max_ext_state_size, NULL, NULL, NULL, NULL, 357 XSAVE_AREA_ALIGN - 1, 0); 358 359 start_emulating(); 360 intr_restore(saveintr); 361 } 362 SYSINIT(fpuinitstate, SI_SUB_DRIVERS, SI_ORDER_ANY, fpuinitstate, NULL); 363 364 /* 365 * Free coprocessor (if we have it). 366 */ 367 void 368 fpuexit(struct thread *td) 369 { 370 371 critical_enter(); 372 if (curthread == PCPU_GET(fpcurthread)) { 373 stop_emulating(); 374 fpusave(curpcb->pcb_save); 375 start_emulating(); 376 PCPU_SET(fpcurthread, NULL); 377 } 378 critical_exit(); 379 } 380 381 int 382 fpuformat(void) 383 { 384 385 return (_MC_FPFMT_XMM); 386 } 387 388 /* 389 * The following mechanism is used to ensure that the FPE_... value 390 * that is passed as a trapcode to the signal handler of the user 391 * process does not have more than one bit set. 392 * 393 * Multiple bits may be set if the user process modifies the control 394 * word while a status word bit is already set. While this is a sign 395 * of bad coding, we have no choise than to narrow them down to one 396 * bit, since we must not send a trapcode that is not exactly one of 397 * the FPE_ macros. 398 * 399 * The mechanism has a static table with 127 entries. Each combination 400 * of the 7 FPU status word exception bits directly translates to a 401 * position in this table, where a single FPE_... value is stored. 402 * This FPE_... value stored there is considered the "most important" 403 * of the exception bits and will be sent as the signal code. The 404 * precedence of the bits is based upon Intel Document "Numerical 405 * Applications", Chapter "Special Computational Situations". 406 * 407 * The macro to choose one of these values does these steps: 1) Throw 408 * away status word bits that cannot be masked. 2) Throw away the bits 409 * currently masked in the control word, assuming the user isn't 410 * interested in them anymore. 3) Reinsert status word bit 7 (stack 411 * fault) if it is set, which cannot be masked but must be presered. 412 * 4) Use the remaining bits to point into the trapcode table. 413 * 414 * The 6 maskable bits in order of their preference, as stated in the 415 * above referenced Intel manual: 416 * 1 Invalid operation (FP_X_INV) 417 * 1a Stack underflow 418 * 1b Stack overflow 419 * 1c Operand of unsupported format 420 * 1d SNaN operand. 421 * 2 QNaN operand (not an exception, irrelavant here) 422 * 3 Any other invalid-operation not mentioned above or zero divide 423 * (FP_X_INV, FP_X_DZ) 424 * 4 Denormal operand (FP_X_DNML) 425 * 5 Numeric over/underflow (FP_X_OFL, FP_X_UFL) 426 * 6 Inexact result (FP_X_IMP) 427 */ 428 static char fpetable[128] = { 429 0, 430 FPE_FLTINV, /* 1 - INV */ 431 FPE_FLTUND, /* 2 - DNML */ 432 FPE_FLTINV, /* 3 - INV | DNML */ 433 FPE_FLTDIV, /* 4 - DZ */ 434 FPE_FLTINV, /* 5 - INV | DZ */ 435 FPE_FLTDIV, /* 6 - DNML | DZ */ 436 FPE_FLTINV, /* 7 - INV | DNML | DZ */ 437 FPE_FLTOVF, /* 8 - OFL */ 438 FPE_FLTINV, /* 9 - INV | OFL */ 439 FPE_FLTUND, /* A - DNML | OFL */ 440 FPE_FLTINV, /* B - INV | DNML | OFL */ 441 FPE_FLTDIV, /* C - DZ | OFL */ 442 FPE_FLTINV, /* D - INV | DZ | OFL */ 443 FPE_FLTDIV, /* E - DNML | DZ | OFL */ 444 FPE_FLTINV, /* F - INV | DNML | DZ | OFL */ 445 FPE_FLTUND, /* 10 - UFL */ 446 FPE_FLTINV, /* 11 - INV | UFL */ 447 FPE_FLTUND, /* 12 - DNML | UFL */ 448 FPE_FLTINV, /* 13 - INV | DNML | UFL */ 449 FPE_FLTDIV, /* 14 - DZ | UFL */ 450 FPE_FLTINV, /* 15 - INV | DZ | UFL */ 451 FPE_FLTDIV, /* 16 - DNML | DZ | UFL */ 452 FPE_FLTINV, /* 17 - INV | DNML | DZ | UFL */ 453 FPE_FLTOVF, /* 18 - OFL | UFL */ 454 FPE_FLTINV, /* 19 - INV | OFL | UFL */ 455 FPE_FLTUND, /* 1A - DNML | OFL | UFL */ 456 FPE_FLTINV, /* 1B - INV | DNML | OFL | UFL */ 457 FPE_FLTDIV, /* 1C - DZ | OFL | UFL */ 458 FPE_FLTINV, /* 1D - INV | DZ | OFL | UFL */ 459 FPE_FLTDIV, /* 1E - DNML | DZ | OFL | UFL */ 460 FPE_FLTINV, /* 1F - INV | DNML | DZ | OFL | UFL */ 461 FPE_FLTRES, /* 20 - IMP */ 462 FPE_FLTINV, /* 21 - INV | IMP */ 463 FPE_FLTUND, /* 22 - DNML | IMP */ 464 FPE_FLTINV, /* 23 - INV | DNML | IMP */ 465 FPE_FLTDIV, /* 24 - DZ | IMP */ 466 FPE_FLTINV, /* 25 - INV | DZ | IMP */ 467 FPE_FLTDIV, /* 26 - DNML | DZ | IMP */ 468 FPE_FLTINV, /* 27 - INV | DNML | DZ | IMP */ 469 FPE_FLTOVF, /* 28 - OFL | IMP */ 470 FPE_FLTINV, /* 29 - INV | OFL | IMP */ 471 FPE_FLTUND, /* 2A - DNML | OFL | IMP */ 472 FPE_FLTINV, /* 2B - INV | DNML | OFL | IMP */ 473 FPE_FLTDIV, /* 2C - DZ | OFL | IMP */ 474 FPE_FLTINV, /* 2D - INV | DZ | OFL | IMP */ 475 FPE_FLTDIV, /* 2E - DNML | DZ | OFL | IMP */ 476 FPE_FLTINV, /* 2F - INV | DNML | DZ | OFL | IMP */ 477 FPE_FLTUND, /* 30 - UFL | IMP */ 478 FPE_FLTINV, /* 31 - INV | UFL | IMP */ 479 FPE_FLTUND, /* 32 - DNML | UFL | IMP */ 480 FPE_FLTINV, /* 33 - INV | DNML | UFL | IMP */ 481 FPE_FLTDIV, /* 34 - DZ | UFL | IMP */ 482 FPE_FLTINV, /* 35 - INV | DZ | UFL | IMP */ 483 FPE_FLTDIV, /* 36 - DNML | DZ | UFL | IMP */ 484 FPE_FLTINV, /* 37 - INV | DNML | DZ | UFL | IMP */ 485 FPE_FLTOVF, /* 38 - OFL | UFL | IMP */ 486 FPE_FLTINV, /* 39 - INV | OFL | UFL | IMP */ 487 FPE_FLTUND, /* 3A - DNML | OFL | UFL | IMP */ 488 FPE_FLTINV, /* 3B - INV | DNML | OFL | UFL | IMP */ 489 FPE_FLTDIV, /* 3C - DZ | OFL | UFL | IMP */ 490 FPE_FLTINV, /* 3D - INV | DZ | OFL | UFL | IMP */ 491 FPE_FLTDIV, /* 3E - DNML | DZ | OFL | UFL | IMP */ 492 FPE_FLTINV, /* 3F - INV | DNML | DZ | OFL | UFL | IMP */ 493 FPE_FLTSUB, /* 40 - STK */ 494 FPE_FLTSUB, /* 41 - INV | STK */ 495 FPE_FLTUND, /* 42 - DNML | STK */ 496 FPE_FLTSUB, /* 43 - INV | DNML | STK */ 497 FPE_FLTDIV, /* 44 - DZ | STK */ 498 FPE_FLTSUB, /* 45 - INV | DZ | STK */ 499 FPE_FLTDIV, /* 46 - DNML | DZ | STK */ 500 FPE_FLTSUB, /* 47 - INV | DNML | DZ | STK */ 501 FPE_FLTOVF, /* 48 - OFL | STK */ 502 FPE_FLTSUB, /* 49 - INV | OFL | STK */ 503 FPE_FLTUND, /* 4A - DNML | OFL | STK */ 504 FPE_FLTSUB, /* 4B - INV | DNML | OFL | STK */ 505 FPE_FLTDIV, /* 4C - DZ | OFL | STK */ 506 FPE_FLTSUB, /* 4D - INV | DZ | OFL | STK */ 507 FPE_FLTDIV, /* 4E - DNML | DZ | OFL | STK */ 508 FPE_FLTSUB, /* 4F - INV | DNML | DZ | OFL | STK */ 509 FPE_FLTUND, /* 50 - UFL | STK */ 510 FPE_FLTSUB, /* 51 - INV | UFL | STK */ 511 FPE_FLTUND, /* 52 - DNML | UFL | STK */ 512 FPE_FLTSUB, /* 53 - INV | DNML | UFL | STK */ 513 FPE_FLTDIV, /* 54 - DZ | UFL | STK */ 514 FPE_FLTSUB, /* 55 - INV | DZ | UFL | STK */ 515 FPE_FLTDIV, /* 56 - DNML | DZ | UFL | STK */ 516 FPE_FLTSUB, /* 57 - INV | DNML | DZ | UFL | STK */ 517 FPE_FLTOVF, /* 58 - OFL | UFL | STK */ 518 FPE_FLTSUB, /* 59 - INV | OFL | UFL | STK */ 519 FPE_FLTUND, /* 5A - DNML | OFL | UFL | STK */ 520 FPE_FLTSUB, /* 5B - INV | DNML | OFL | UFL | STK */ 521 FPE_FLTDIV, /* 5C - DZ | OFL | UFL | STK */ 522 FPE_FLTSUB, /* 5D - INV | DZ | OFL | UFL | STK */ 523 FPE_FLTDIV, /* 5E - DNML | DZ | OFL | UFL | STK */ 524 FPE_FLTSUB, /* 5F - INV | DNML | DZ | OFL | UFL | STK */ 525 FPE_FLTRES, /* 60 - IMP | STK */ 526 FPE_FLTSUB, /* 61 - INV | IMP | STK */ 527 FPE_FLTUND, /* 62 - DNML | IMP | STK */ 528 FPE_FLTSUB, /* 63 - INV | DNML | IMP | STK */ 529 FPE_FLTDIV, /* 64 - DZ | IMP | STK */ 530 FPE_FLTSUB, /* 65 - INV | DZ | IMP | STK */ 531 FPE_FLTDIV, /* 66 - DNML | DZ | IMP | STK */ 532 FPE_FLTSUB, /* 67 - INV | DNML | DZ | IMP | STK */ 533 FPE_FLTOVF, /* 68 - OFL | IMP | STK */ 534 FPE_FLTSUB, /* 69 - INV | OFL | IMP | STK */ 535 FPE_FLTUND, /* 6A - DNML | OFL | IMP | STK */ 536 FPE_FLTSUB, /* 6B - INV | DNML | OFL | IMP | STK */ 537 FPE_FLTDIV, /* 6C - DZ | OFL | IMP | STK */ 538 FPE_FLTSUB, /* 6D - INV | DZ | OFL | IMP | STK */ 539 FPE_FLTDIV, /* 6E - DNML | DZ | OFL | IMP | STK */ 540 FPE_FLTSUB, /* 6F - INV | DNML | DZ | OFL | IMP | STK */ 541 FPE_FLTUND, /* 70 - UFL | IMP | STK */ 542 FPE_FLTSUB, /* 71 - INV | UFL | IMP | STK */ 543 FPE_FLTUND, /* 72 - DNML | UFL | IMP | STK */ 544 FPE_FLTSUB, /* 73 - INV | DNML | UFL | IMP | STK */ 545 FPE_FLTDIV, /* 74 - DZ | UFL | IMP | STK */ 546 FPE_FLTSUB, /* 75 - INV | DZ | UFL | IMP | STK */ 547 FPE_FLTDIV, /* 76 - DNML | DZ | UFL | IMP | STK */ 548 FPE_FLTSUB, /* 77 - INV | DNML | DZ | UFL | IMP | STK */ 549 FPE_FLTOVF, /* 78 - OFL | UFL | IMP | STK */ 550 FPE_FLTSUB, /* 79 - INV | OFL | UFL | IMP | STK */ 551 FPE_FLTUND, /* 7A - DNML | OFL | UFL | IMP | STK */ 552 FPE_FLTSUB, /* 7B - INV | DNML | OFL | UFL | IMP | STK */ 553 FPE_FLTDIV, /* 7C - DZ | OFL | UFL | IMP | STK */ 554 FPE_FLTSUB, /* 7D - INV | DZ | OFL | UFL | IMP | STK */ 555 FPE_FLTDIV, /* 7E - DNML | DZ | OFL | UFL | IMP | STK */ 556 FPE_FLTSUB, /* 7F - INV | DNML | DZ | OFL | UFL | IMP | STK */ 557 }; 558 559 /* 560 * Read the FP status and control words, then generate si_code value 561 * for SIGFPE. The error code chosen will be one of the 562 * FPE_... macros. It will be sent as the second argument to old 563 * BSD-style signal handlers and as "siginfo_t->si_code" (second 564 * argument) to SA_SIGINFO signal handlers. 565 * 566 * Some time ago, we cleared the x87 exceptions with FNCLEX there. 567 * Clearing exceptions was necessary mainly to avoid IRQ13 bugs. The 568 * usermode code which understands the FPU hardware enough to enable 569 * the exceptions, can also handle clearing the exception state in the 570 * handler. The only consequence of not clearing the exception is the 571 * rethrow of the SIGFPE on return from the signal handler and 572 * reexecution of the corresponding instruction. 573 * 574 * For XMM traps, the exceptions were never cleared. 575 */ 576 int 577 fputrap_x87(void) 578 { 579 struct savefpu *pcb_save; 580 u_short control, status; 581 582 critical_enter(); 583 584 /* 585 * Interrupt handling (for another interrupt) may have pushed the 586 * state to memory. Fetch the relevant parts of the state from 587 * wherever they are. 588 */ 589 if (PCPU_GET(fpcurthread) != curthread) { 590 pcb_save = curpcb->pcb_save; 591 control = pcb_save->sv_env.en_cw; 592 status = pcb_save->sv_env.en_sw; 593 } else { 594 fnstcw(&control); 595 fnstsw(&status); 596 } 597 598 critical_exit(); 599 return (fpetable[status & ((~control & 0x3f) | 0x40)]); 600 } 601 602 int 603 fputrap_sse(void) 604 { 605 u_int mxcsr; 606 607 critical_enter(); 608 if (PCPU_GET(fpcurthread) != curthread) 609 mxcsr = curpcb->pcb_save->sv_env.en_mxcsr; 610 else 611 stmxcsr(&mxcsr); 612 critical_exit(); 613 return (fpetable[(mxcsr & (~mxcsr >> 7)) & 0x3f]); 614 } 615 616 /* 617 * Device Not Available (DNA, #NM) exception handler. 618 * 619 * It would be better to switch FP context here (if curthread != 620 * fpcurthread) and not necessarily for every context switch, but it 621 * is too hard to access foreign pcb's. 622 */ 623 void 624 fpudna(void) 625 { 626 627 /* 628 * This handler is entered with interrupts enabled, so context 629 * switches may occur before critical_enter() is executed. If 630 * a context switch occurs, then when we regain control, our 631 * state will have been completely restored. The CPU may 632 * change underneath us, but the only part of our context that 633 * lives in the CPU is CR0.TS and that will be "restored" by 634 * setting it on the new CPU. 635 */ 636 critical_enter(); 637 638 KASSERT((curpcb->pcb_flags & PCB_FPUNOSAVE) == 0, 639 ("fpudna while in fpu_kern_enter(FPU_KERN_NOCTX)")); 640 if (PCPU_GET(fpcurthread) == curthread) { 641 printf("fpudna: fpcurthread == curthread\n"); 642 stop_emulating(); 643 critical_exit(); 644 return; 645 } 646 if (PCPU_GET(fpcurthread) != NULL) { 647 panic("fpudna: fpcurthread = %p (%d), curthread = %p (%d)\n", 648 PCPU_GET(fpcurthread), PCPU_GET(fpcurthread)->td_tid, 649 curthread, curthread->td_tid); 650 } 651 stop_emulating(); 652 /* 653 * Record new context early in case frstor causes a trap. 654 */ 655 PCPU_SET(fpcurthread, curthread); 656 657 fpu_clean_state(); 658 659 if ((curpcb->pcb_flags & PCB_FPUINITDONE) == 0) { 660 /* 661 * This is the first time this thread has used the FPU or 662 * the PCB doesn't contain a clean FPU state. Explicitly 663 * load an initial state. 664 * 665 * We prefer to restore the state from the actual save 666 * area in PCB instead of directly loading from 667 * fpu_initialstate, to ignite the XSAVEOPT 668 * tracking engine. 669 */ 670 bcopy(fpu_initialstate, curpcb->pcb_save, 671 cpu_max_ext_state_size); 672 fpurestore(curpcb->pcb_save); 673 if (curpcb->pcb_initial_fpucw != __INITIAL_FPUCW__) 674 fldcw(curpcb->pcb_initial_fpucw); 675 if (PCB_USER_FPU(curpcb)) 676 set_pcb_flags(curpcb, 677 PCB_FPUINITDONE | PCB_USERFPUINITDONE); 678 else 679 set_pcb_flags(curpcb, PCB_FPUINITDONE); 680 } else 681 fpurestore(curpcb->pcb_save); 682 critical_exit(); 683 } 684 685 void 686 fpudrop(void) 687 { 688 struct thread *td; 689 690 td = PCPU_GET(fpcurthread); 691 KASSERT(td == curthread, ("fpudrop: fpcurthread != curthread")); 692 CRITICAL_ASSERT(td); 693 PCPU_SET(fpcurthread, NULL); 694 clear_pcb_flags(td->td_pcb, PCB_FPUINITDONE); 695 start_emulating(); 696 } 697 698 /* 699 * Get the user state of the FPU into pcb->pcb_user_save without 700 * dropping ownership (if possible). It returns the FPU ownership 701 * status. 702 */ 703 int 704 fpugetregs(struct thread *td) 705 { 706 struct pcb *pcb; 707 uint64_t *xstate_bv, bit; 708 char *sa; 709 int max_ext_n, i, owned; 710 711 pcb = td->td_pcb; 712 if ((pcb->pcb_flags & PCB_USERFPUINITDONE) == 0) { 713 bcopy(fpu_initialstate, get_pcb_user_save_pcb(pcb), 714 cpu_max_ext_state_size); 715 get_pcb_user_save_pcb(pcb)->sv_env.en_cw = 716 pcb->pcb_initial_fpucw; 717 fpuuserinited(td); 718 return (_MC_FPOWNED_PCB); 719 } 720 critical_enter(); 721 if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) { 722 fpusave(get_pcb_user_save_pcb(pcb)); 723 owned = _MC_FPOWNED_FPU; 724 } else { 725 owned = _MC_FPOWNED_PCB; 726 } 727 critical_exit(); 728 if (use_xsave) { 729 /* 730 * Handle partially saved state. 731 */ 732 sa = (char *)get_pcb_user_save_pcb(pcb); 733 xstate_bv = (uint64_t *)(sa + sizeof(struct savefpu) + 734 offsetof(struct xstate_hdr, xstate_bv)); 735 max_ext_n = flsl(xsave_mask); 736 for (i = 0; i < max_ext_n; i++) { 737 bit = 1ULL << i; 738 if ((xsave_mask & bit) == 0 || (*xstate_bv & bit) != 0) 739 continue; 740 bcopy((char *)fpu_initialstate + 741 xsave_area_desc[i].offset, 742 sa + xsave_area_desc[i].offset, 743 xsave_area_desc[i].size); 744 *xstate_bv |= bit; 745 } 746 } 747 return (owned); 748 } 749 750 void 751 fpuuserinited(struct thread *td) 752 { 753 struct pcb *pcb; 754 755 pcb = td->td_pcb; 756 if (PCB_USER_FPU(pcb)) 757 set_pcb_flags(pcb, 758 PCB_FPUINITDONE | PCB_USERFPUINITDONE); 759 else 760 set_pcb_flags(pcb, PCB_FPUINITDONE); 761 } 762 763 int 764 fpusetxstate(struct thread *td, char *xfpustate, size_t xfpustate_size) 765 { 766 struct xstate_hdr *hdr, *ehdr; 767 size_t len, max_len; 768 uint64_t bv; 769 770 /* XXXKIB should we clear all extended state in xstate_bv instead ? */ 771 if (xfpustate == NULL) 772 return (0); 773 if (!use_xsave) 774 return (EOPNOTSUPP); 775 776 len = xfpustate_size; 777 if (len < sizeof(struct xstate_hdr)) 778 return (EINVAL); 779 max_len = cpu_max_ext_state_size - sizeof(struct savefpu); 780 if (len > max_len) 781 return (EINVAL); 782 783 ehdr = (struct xstate_hdr *)xfpustate; 784 bv = ehdr->xstate_bv; 785 786 /* 787 * Avoid #gp. 788 */ 789 if (bv & ~xsave_mask) 790 return (EINVAL); 791 792 hdr = (struct xstate_hdr *)(get_pcb_user_save_td(td) + 1); 793 794 hdr->xstate_bv = bv; 795 bcopy(xfpustate + sizeof(struct xstate_hdr), 796 (char *)(hdr + 1), len - sizeof(struct xstate_hdr)); 797 798 return (0); 799 } 800 801 /* 802 * Set the state of the FPU. 803 */ 804 int 805 fpusetregs(struct thread *td, struct savefpu *addr, char *xfpustate, 806 size_t xfpustate_size) 807 { 808 struct pcb *pcb; 809 int error; 810 811 addr->sv_env.en_mxcsr &= cpu_mxcsr_mask; 812 pcb = td->td_pcb; 813 critical_enter(); 814 if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) { 815 error = fpusetxstate(td, xfpustate, xfpustate_size); 816 if (error != 0) { 817 critical_exit(); 818 return (error); 819 } 820 bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr)); 821 fpurestore(get_pcb_user_save_td(td)); 822 critical_exit(); 823 set_pcb_flags(pcb, PCB_FPUINITDONE | PCB_USERFPUINITDONE); 824 } else { 825 critical_exit(); 826 error = fpusetxstate(td, xfpustate, xfpustate_size); 827 if (error != 0) 828 return (error); 829 bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr)); 830 fpuuserinited(td); 831 } 832 return (0); 833 } 834 835 /* 836 * On AuthenticAMD processors, the fxrstor instruction does not restore 837 * the x87's stored last instruction pointer, last data pointer, and last 838 * opcode values, except in the rare case in which the exception summary 839 * (ES) bit in the x87 status word is set to 1. 840 * 841 * In order to avoid leaking this information across processes, we clean 842 * these values by performing a dummy load before executing fxrstor(). 843 */ 844 static void 845 fpu_clean_state(void) 846 { 847 static float dummy_variable = 0.0; 848 u_short status; 849 850 /* 851 * Clear the ES bit in the x87 status word if it is currently 852 * set, in order to avoid causing a fault in the upcoming load. 853 */ 854 fnstsw(&status); 855 if (status & 0x80) 856 fnclex(); 857 858 /* 859 * Load the dummy variable into the x87 stack. This mangles 860 * the x87 stack, but we don't care since we're about to call 861 * fxrstor() anyway. 862 */ 863 __asm __volatile("ffree %%st(7); flds %0" : : "m" (dummy_variable)); 864 } 865 866 /* 867 * This really sucks. We want the acpi version only, but it requires 868 * the isa_if.h file in order to get the definitions. 869 */ 870 #include "opt_isa.h" 871 #ifdef DEV_ISA 872 #include <isa/isavar.h> 873 /* 874 * This sucks up the legacy ISA support assignments from PNPBIOS/ACPI. 875 */ 876 static struct isa_pnp_id fpupnp_ids[] = { 877 { 0x040cd041, "Legacy ISA coprocessor support" }, /* PNP0C04 */ 878 { 0 } 879 }; 880 881 static int 882 fpupnp_probe(device_t dev) 883 { 884 int result; 885 886 result = ISA_PNP_PROBE(device_get_parent(dev), dev, fpupnp_ids); 887 if (result <= 0) 888 device_quiet(dev); 889 return (result); 890 } 891 892 static int 893 fpupnp_attach(device_t dev) 894 { 895 896 return (0); 897 } 898 899 static device_method_t fpupnp_methods[] = { 900 /* Device interface */ 901 DEVMETHOD(device_probe, fpupnp_probe), 902 DEVMETHOD(device_attach, fpupnp_attach), 903 DEVMETHOD(device_detach, bus_generic_detach), 904 DEVMETHOD(device_shutdown, bus_generic_shutdown), 905 DEVMETHOD(device_suspend, bus_generic_suspend), 906 DEVMETHOD(device_resume, bus_generic_resume), 907 908 { 0, 0 } 909 }; 910 911 static driver_t fpupnp_driver = { 912 "fpupnp", 913 fpupnp_methods, 914 1, /* no softc */ 915 }; 916 917 static devclass_t fpupnp_devclass; 918 919 DRIVER_MODULE(fpupnp, acpi, fpupnp_driver, fpupnp_devclass, 0, 0); 920 ISA_PNP_INFO(fpupnp_ids); 921 #endif /* DEV_ISA */ 922 923 static MALLOC_DEFINE(M_FPUKERN_CTX, "fpukern_ctx", 924 "Kernel contexts for FPU state"); 925 926 #define FPU_KERN_CTX_FPUINITDONE 0x01 927 #define FPU_KERN_CTX_DUMMY 0x02 /* avoided save for the kern thread */ 928 #define FPU_KERN_CTX_INUSE 0x04 929 930 struct fpu_kern_ctx { 931 struct savefpu *prev; 932 uint32_t flags; 933 char hwstate1[]; 934 }; 935 936 struct fpu_kern_ctx * 937 fpu_kern_alloc_ctx(u_int flags) 938 { 939 struct fpu_kern_ctx *res; 940 size_t sz; 941 942 sz = sizeof(struct fpu_kern_ctx) + XSAVE_AREA_ALIGN + 943 cpu_max_ext_state_size; 944 res = malloc(sz, M_FPUKERN_CTX, ((flags & FPU_KERN_NOWAIT) ? 945 M_NOWAIT : M_WAITOK) | M_ZERO); 946 return (res); 947 } 948 949 void 950 fpu_kern_free_ctx(struct fpu_kern_ctx *ctx) 951 { 952 953 KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) == 0, ("free'ing inuse ctx")); 954 /* XXXKIB clear the memory ? */ 955 free(ctx, M_FPUKERN_CTX); 956 } 957 958 static struct savefpu * 959 fpu_kern_ctx_savefpu(struct fpu_kern_ctx *ctx) 960 { 961 vm_offset_t p; 962 963 p = (vm_offset_t)&ctx->hwstate1; 964 p = roundup2(p, XSAVE_AREA_ALIGN); 965 return ((struct savefpu *)p); 966 } 967 968 void 969 fpu_kern_enter(struct thread *td, struct fpu_kern_ctx *ctx, u_int flags) 970 { 971 struct pcb *pcb; 972 973 pcb = td->td_pcb; 974 KASSERT((flags & FPU_KERN_NOCTX) != 0 || ctx != NULL, 975 ("ctx is required when !FPU_KERN_NOCTX")); 976 KASSERT(ctx == NULL || (ctx->flags & FPU_KERN_CTX_INUSE) == 0, 977 ("using inuse ctx")); 978 KASSERT((pcb->pcb_flags & PCB_FPUNOSAVE) == 0, 979 ("recursive fpu_kern_enter while in PCB_FPUNOSAVE state")); 980 981 if ((flags & FPU_KERN_NOCTX) != 0) { 982 critical_enter(); 983 stop_emulating(); 984 if (curthread == PCPU_GET(fpcurthread)) { 985 fpusave(curpcb->pcb_save); 986 PCPU_SET(fpcurthread, NULL); 987 } else { 988 KASSERT(PCPU_GET(fpcurthread) == NULL, 989 ("invalid fpcurthread")); 990 } 991 992 /* 993 * This breaks XSAVEOPT tracker, but 994 * PCB_FPUNOSAVE state is supposed to never need to 995 * save FPU context at all. 996 */ 997 fpurestore(fpu_initialstate); 998 set_pcb_flags(pcb, PCB_KERNFPU | PCB_FPUNOSAVE | 999 PCB_FPUINITDONE); 1000 return; 1001 } 1002 if ((flags & FPU_KERN_KTHR) != 0 && is_fpu_kern_thread(0)) { 1003 ctx->flags = FPU_KERN_CTX_DUMMY | FPU_KERN_CTX_INUSE; 1004 return; 1005 } 1006 KASSERT(!PCB_USER_FPU(pcb) || pcb->pcb_save == 1007 get_pcb_user_save_pcb(pcb), ("mangled pcb_save")); 1008 ctx->flags = FPU_KERN_CTX_INUSE; 1009 if ((pcb->pcb_flags & PCB_FPUINITDONE) != 0) 1010 ctx->flags |= FPU_KERN_CTX_FPUINITDONE; 1011 fpuexit(td); 1012 ctx->prev = pcb->pcb_save; 1013 pcb->pcb_save = fpu_kern_ctx_savefpu(ctx); 1014 set_pcb_flags(pcb, PCB_KERNFPU); 1015 clear_pcb_flags(pcb, PCB_FPUINITDONE); 1016 return; 1017 } 1018 1019 int 1020 fpu_kern_leave(struct thread *td, struct fpu_kern_ctx *ctx) 1021 { 1022 struct pcb *pcb; 1023 1024 pcb = td->td_pcb; 1025 1026 if ((pcb->pcb_flags & PCB_FPUNOSAVE) != 0) { 1027 KASSERT(ctx == NULL, ("non-null ctx after FPU_KERN_NOCTX")); 1028 KASSERT(PCPU_GET(fpcurthread) == NULL, 1029 ("non-NULL fpcurthread for PCB_FPUNOSAVE")); 1030 CRITICAL_ASSERT(td); 1031 1032 clear_pcb_flags(pcb, PCB_FPUNOSAVE | PCB_FPUINITDONE); 1033 start_emulating(); 1034 critical_exit(); 1035 } else { 1036 KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) != 0, 1037 ("leaving not inuse ctx")); 1038 ctx->flags &= ~FPU_KERN_CTX_INUSE; 1039 1040 if (is_fpu_kern_thread(0) && 1041 (ctx->flags & FPU_KERN_CTX_DUMMY) != 0) 1042 return (0); 1043 KASSERT((ctx->flags & FPU_KERN_CTX_DUMMY) == 0, 1044 ("dummy ctx")); 1045 critical_enter(); 1046 if (curthread == PCPU_GET(fpcurthread)) 1047 fpudrop(); 1048 critical_exit(); 1049 pcb->pcb_save = ctx->prev; 1050 } 1051 1052 if (pcb->pcb_save == get_pcb_user_save_pcb(pcb)) { 1053 if ((pcb->pcb_flags & PCB_USERFPUINITDONE) != 0) { 1054 set_pcb_flags(pcb, PCB_FPUINITDONE); 1055 clear_pcb_flags(pcb, PCB_KERNFPU); 1056 } else 1057 clear_pcb_flags(pcb, PCB_FPUINITDONE | PCB_KERNFPU); 1058 } else { 1059 if ((ctx->flags & FPU_KERN_CTX_FPUINITDONE) != 0) 1060 set_pcb_flags(pcb, PCB_FPUINITDONE); 1061 else 1062 clear_pcb_flags(pcb, PCB_FPUINITDONE); 1063 KASSERT(!PCB_USER_FPU(pcb), ("unpaired fpu_kern_leave")); 1064 } 1065 return (0); 1066 } 1067 1068 int 1069 fpu_kern_thread(u_int flags) 1070 { 1071 1072 KASSERT((curthread->td_pflags & TDP_KTHREAD) != 0, 1073 ("Only kthread may use fpu_kern_thread")); 1074 KASSERT(curpcb->pcb_save == get_pcb_user_save_pcb(curpcb), 1075 ("mangled pcb_save")); 1076 KASSERT(PCB_USER_FPU(curpcb), ("recursive call")); 1077 1078 set_pcb_flags(curpcb, PCB_KERNFPU); 1079 return (0); 1080 } 1081 1082 int 1083 is_fpu_kern_thread(u_int flags) 1084 { 1085 1086 if ((curthread->td_pflags & TDP_KTHREAD) == 0) 1087 return (0); 1088 return ((curpcb->pcb_flags & PCB_KERNFPU) != 0); 1089 } 1090 1091 /* 1092 * FPU save area alloc/free/init utility routines 1093 */ 1094 struct savefpu * 1095 fpu_save_area_alloc(void) 1096 { 1097 1098 return (uma_zalloc(fpu_save_area_zone, 0)); 1099 } 1100 1101 void 1102 fpu_save_area_free(struct savefpu *fsa) 1103 { 1104 1105 uma_zfree(fpu_save_area_zone, fsa); 1106 } 1107 1108 void 1109 fpu_save_area_reset(struct savefpu *fsa) 1110 { 1111 1112 bcopy(fpu_initialstate, fsa, cpu_max_ext_state_size); 1113 } 1114