1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1990 William Jolitz. 5 * Copyright (c) 1991 The Regents of the University of California. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)npx.c 7.2 (Berkeley) 5/12/91 33 */ 34 35 #include <sys/cdefs.h> 36 __FBSDID("$FreeBSD$"); 37 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/bus.h> 41 #include <sys/kernel.h> 42 #include <sys/lock.h> 43 #include <sys/malloc.h> 44 #include <sys/module.h> 45 #include <sys/mutex.h> 46 #include <sys/mutex.h> 47 #include <sys/proc.h> 48 #include <sys/sysctl.h> 49 #include <machine/bus.h> 50 #include <sys/rman.h> 51 #include <sys/signalvar.h> 52 #include <vm/uma.h> 53 54 #include <machine/cputypes.h> 55 #include <machine/frame.h> 56 #include <machine/intr_machdep.h> 57 #include <machine/md_var.h> 58 #include <machine/pcb.h> 59 #include <machine/psl.h> 60 #include <machine/resource.h> 61 #include <machine/specialreg.h> 62 #include <machine/segments.h> 63 #include <machine/ucontext.h> 64 #include <x86/ifunc.h> 65 66 /* 67 * Floating point support. 68 */ 69 70 #if defined(__GNUCLIKE_ASM) && !defined(lint) 71 72 #define fldcw(cw) __asm __volatile("fldcw %0" : : "m" (cw)) 73 #define fnclex() __asm __volatile("fnclex") 74 #define fninit() __asm __volatile("fninit") 75 #define fnstcw(addr) __asm __volatile("fnstcw %0" : "=m" (*(addr))) 76 #define fnstsw(addr) __asm __volatile("fnstsw %0" : "=am" (*(addr))) 77 #define fxrstor(addr) __asm __volatile("fxrstor %0" : : "m" (*(addr))) 78 #define fxsave(addr) __asm __volatile("fxsave %0" : "=m" (*(addr))) 79 #define ldmxcsr(csr) __asm __volatile("ldmxcsr %0" : : "m" (csr)) 80 #define stmxcsr(addr) __asm __volatile("stmxcsr %0" : : "m" (*(addr))) 81 82 static __inline void 83 xrstor(char *addr, uint64_t mask) 84 { 85 uint32_t low, hi; 86 87 low = mask; 88 hi = mask >> 32; 89 __asm __volatile("xrstor %0" : : "m" (*addr), "a" (low), "d" (hi)); 90 } 91 92 static __inline void 93 xsave(char *addr, uint64_t mask) 94 { 95 uint32_t low, hi; 96 97 low = mask; 98 hi = mask >> 32; 99 __asm __volatile("xsave %0" : "=m" (*addr) : "a" (low), "d" (hi) : 100 "memory"); 101 } 102 103 static __inline void 104 xsaveopt(char *addr, uint64_t mask) 105 { 106 uint32_t low, hi; 107 108 low = mask; 109 hi = mask >> 32; 110 __asm __volatile("xsaveopt %0" : "=m" (*addr) : "a" (low), "d" (hi) : 111 "memory"); 112 } 113 114 #else /* !(__GNUCLIKE_ASM && !lint) */ 115 116 void fldcw(u_short cw); 117 void fnclex(void); 118 void fninit(void); 119 void fnstcw(caddr_t addr); 120 void fnstsw(caddr_t addr); 121 void fxsave(caddr_t addr); 122 void fxrstor(caddr_t addr); 123 void ldmxcsr(u_int csr); 124 void stmxcsr(u_int *csr); 125 void xrstor(char *addr, uint64_t mask); 126 void xsave(char *addr, uint64_t mask); 127 void xsaveopt(char *addr, uint64_t mask); 128 129 #endif /* __GNUCLIKE_ASM && !lint */ 130 131 #define start_emulating() load_cr0(rcr0() | CR0_TS) 132 #define stop_emulating() clts() 133 134 CTASSERT(sizeof(struct savefpu) == 512); 135 CTASSERT(sizeof(struct xstate_hdr) == 64); 136 CTASSERT(sizeof(struct savefpu_ymm) == 832); 137 138 /* 139 * This requirement is to make it easier for asm code to calculate 140 * offset of the fpu save area from the pcb address. FPU save area 141 * must be 64-byte aligned. 142 */ 143 CTASSERT(sizeof(struct pcb) % XSAVE_AREA_ALIGN == 0); 144 145 /* 146 * Ensure the copy of XCR0 saved in a core is contained in the padding 147 * area. 148 */ 149 CTASSERT(X86_XSTATE_XCR0_OFFSET >= offsetof(struct savefpu, sv_pad) && 150 X86_XSTATE_XCR0_OFFSET + sizeof(uint64_t) <= sizeof(struct savefpu)); 151 152 static void fpu_clean_state(void); 153 154 SYSCTL_INT(_hw, HW_FLOATINGPT, floatingpoint, CTLFLAG_RD, 155 SYSCTL_NULL_INT_PTR, 1, "Floating point instructions executed in hardware"); 156 157 int lazy_fpu_switch = 0; 158 SYSCTL_INT(_hw, OID_AUTO, lazy_fpu_switch, CTLFLAG_RWTUN | CTLFLAG_NOFETCH, 159 &lazy_fpu_switch, 0, 160 "Lazily load FPU context after context switch"); 161 162 int use_xsave; /* non-static for cpu_switch.S */ 163 uint64_t xsave_mask; /* the same */ 164 static uma_zone_t fpu_save_area_zone; 165 static struct savefpu *fpu_initialstate; 166 167 struct xsave_area_elm_descr { 168 u_int offset; 169 u_int size; 170 } *xsave_area_desc; 171 172 static void 173 fpusave_xsaveopt(void *addr) 174 { 175 176 xsaveopt((char *)addr, xsave_mask); 177 } 178 179 static void 180 fpusave_xsave(void *addr) 181 { 182 183 xsave((char *)addr, xsave_mask); 184 } 185 186 static void 187 fpurestore_xrstor(void *addr) 188 { 189 190 xrstor((char *)addr, xsave_mask); 191 } 192 193 static void 194 fpusave_fxsave(void *addr) 195 { 196 197 fxsave((char *)addr); 198 } 199 200 static void 201 fpurestore_fxrstor(void *addr) 202 { 203 204 fxrstor((char *)addr); 205 } 206 207 static void 208 init_xsave(void) 209 { 210 211 if (use_xsave) 212 return; 213 if ((cpu_feature2 & CPUID2_XSAVE) == 0) 214 return; 215 use_xsave = 1; 216 TUNABLE_INT_FETCH("hw.use_xsave", &use_xsave); 217 } 218 219 DEFINE_IFUNC(, void, fpusave, (void *)) 220 { 221 222 init_xsave(); 223 if (use_xsave) 224 return ((cpu_stdext_feature & CPUID_EXTSTATE_XSAVEOPT) != 0 ? 225 fpusave_xsaveopt : fpusave_xsave); 226 return (fpusave_fxsave); 227 } 228 229 DEFINE_IFUNC(, void, fpurestore, (void *)) 230 { 231 232 init_xsave(); 233 return (use_xsave ? fpurestore_xrstor : fpurestore_fxrstor); 234 } 235 236 void 237 fpususpend(void *addr) 238 { 239 u_long cr0; 240 241 cr0 = rcr0(); 242 stop_emulating(); 243 fpusave(addr); 244 load_cr0(cr0); 245 } 246 247 void 248 fpuresume(void *addr) 249 { 250 u_long cr0; 251 252 cr0 = rcr0(); 253 stop_emulating(); 254 fninit(); 255 if (use_xsave) 256 load_xcr(XCR0, xsave_mask); 257 fpurestore(addr); 258 load_cr0(cr0); 259 } 260 261 /* 262 * Enable XSAVE if supported and allowed by user. 263 * Calculate the xsave_mask. 264 */ 265 static void 266 fpuinit_bsp1(void) 267 { 268 u_int cp[4]; 269 uint64_t xsave_mask_user; 270 bool old_wp; 271 272 TUNABLE_INT_FETCH("hw.lazy_fpu_switch", &lazy_fpu_switch); 273 if (!use_xsave) 274 return; 275 cpuid_count(0xd, 0x0, cp); 276 xsave_mask = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE; 277 if ((cp[0] & xsave_mask) != xsave_mask) 278 panic("CPU0 does not support X87 or SSE: %x", cp[0]); 279 xsave_mask = ((uint64_t)cp[3] << 32) | cp[0]; 280 xsave_mask_user = xsave_mask; 281 TUNABLE_ULONG_FETCH("hw.xsave_mask", &xsave_mask_user); 282 xsave_mask_user |= XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE; 283 xsave_mask &= xsave_mask_user; 284 if ((xsave_mask & XFEATURE_AVX512) != XFEATURE_AVX512) 285 xsave_mask &= ~XFEATURE_AVX512; 286 if ((xsave_mask & XFEATURE_MPX) != XFEATURE_MPX) 287 xsave_mask &= ~XFEATURE_MPX; 288 289 cpuid_count(0xd, 0x1, cp); 290 if ((cp[0] & CPUID_EXTSTATE_XSAVEOPT) != 0) { 291 /* 292 * Patch the XSAVE instruction in the cpu_switch code 293 * to XSAVEOPT. We assume that XSAVE encoding used 294 * REX byte, and set the bit 4 of the r/m byte. 295 * 296 * It seems that some BIOSes give control to the OS 297 * with CR0.WP already set, making the kernel text 298 * read-only before cpu_startup(). 299 */ 300 old_wp = disable_wp(); 301 ctx_switch_xsave[3] |= 0x10; 302 restore_wp(old_wp); 303 } 304 } 305 306 /* 307 * Calculate the fpu save area size. 308 */ 309 static void 310 fpuinit_bsp2(void) 311 { 312 u_int cp[4]; 313 314 if (use_xsave) { 315 cpuid_count(0xd, 0x0, cp); 316 cpu_max_ext_state_size = cp[1]; 317 318 /* 319 * Reload the cpu_feature2, since we enabled OSXSAVE. 320 */ 321 do_cpuid(1, cp); 322 cpu_feature2 = cp[2]; 323 } else 324 cpu_max_ext_state_size = sizeof(struct savefpu); 325 } 326 327 /* 328 * Initialize the floating point unit. 329 */ 330 void 331 fpuinit(void) 332 { 333 register_t saveintr; 334 u_int mxcsr; 335 u_short control; 336 337 if (IS_BSP()) 338 fpuinit_bsp1(); 339 340 if (use_xsave) { 341 load_cr4(rcr4() | CR4_XSAVE); 342 load_xcr(XCR0, xsave_mask); 343 } 344 345 /* 346 * XCR0 shall be set up before CPU can report the save area size. 347 */ 348 if (IS_BSP()) 349 fpuinit_bsp2(); 350 351 /* 352 * It is too early for critical_enter() to work on AP. 353 */ 354 saveintr = intr_disable(); 355 stop_emulating(); 356 fninit(); 357 control = __INITIAL_FPUCW__; 358 fldcw(control); 359 mxcsr = __INITIAL_MXCSR__; 360 ldmxcsr(mxcsr); 361 start_emulating(); 362 intr_restore(saveintr); 363 } 364 365 /* 366 * On the boot CPU we generate a clean state that is used to 367 * initialize the floating point unit when it is first used by a 368 * process. 369 */ 370 static void 371 fpuinitstate(void *arg __unused) 372 { 373 uint64_t *xstate_bv; 374 register_t saveintr; 375 int cp[4], i, max_ext_n; 376 377 fpu_initialstate = malloc(cpu_max_ext_state_size, M_DEVBUF, 378 M_WAITOK | M_ZERO); 379 saveintr = intr_disable(); 380 stop_emulating(); 381 382 fpusave_fxsave(fpu_initialstate); 383 if (fpu_initialstate->sv_env.en_mxcsr_mask) 384 cpu_mxcsr_mask = fpu_initialstate->sv_env.en_mxcsr_mask; 385 else 386 cpu_mxcsr_mask = 0xFFBF; 387 388 /* 389 * The fninit instruction does not modify XMM registers or x87 390 * registers (MM/ST). The fpusave call dumped the garbage 391 * contained in the registers after reset to the initial state 392 * saved. Clear XMM and x87 registers file image to make the 393 * startup program state and signal handler XMM/x87 register 394 * content predictable. 395 */ 396 bzero(fpu_initialstate->sv_fp, sizeof(fpu_initialstate->sv_fp)); 397 bzero(fpu_initialstate->sv_xmm, sizeof(fpu_initialstate->sv_xmm)); 398 399 /* 400 * Create a table describing the layout of the CPU Extended 401 * Save Area. 402 */ 403 if (use_xsave) { 404 xstate_bv = (uint64_t *)((char *)(fpu_initialstate + 1) + 405 offsetof(struct xstate_hdr, xstate_bv)); 406 *xstate_bv = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE; 407 408 max_ext_n = flsl(xsave_mask); 409 xsave_area_desc = malloc(max_ext_n * sizeof(struct 410 xsave_area_elm_descr), M_DEVBUF, M_WAITOK | M_ZERO); 411 /* x87 state */ 412 xsave_area_desc[0].offset = 0; 413 xsave_area_desc[0].size = 160; 414 /* XMM */ 415 xsave_area_desc[1].offset = 160; 416 xsave_area_desc[1].size = 288 - 160; 417 418 for (i = 2; i < max_ext_n; i++) { 419 cpuid_count(0xd, i, cp); 420 xsave_area_desc[i].offset = cp[1]; 421 xsave_area_desc[i].size = cp[0]; 422 } 423 } 424 425 fpu_save_area_zone = uma_zcreate("FPU_save_area", 426 cpu_max_ext_state_size, NULL, NULL, NULL, NULL, 427 XSAVE_AREA_ALIGN - 1, 0); 428 429 start_emulating(); 430 intr_restore(saveintr); 431 } 432 /* EFIRT needs this to be initialized before we can enter our EFI environment */ 433 SYSINIT(fpuinitstate, SI_SUB_DRIVERS, SI_ORDER_FIRST, fpuinitstate, NULL); 434 435 /* 436 * Free coprocessor (if we have it). 437 */ 438 void 439 fpuexit(struct thread *td) 440 { 441 442 critical_enter(); 443 if (curthread == PCPU_GET(fpcurthread)) { 444 stop_emulating(); 445 fpusave(curpcb->pcb_save); 446 start_emulating(); 447 PCPU_SET(fpcurthread, NULL); 448 } 449 critical_exit(); 450 } 451 452 int 453 fpuformat(void) 454 { 455 456 return (_MC_FPFMT_XMM); 457 } 458 459 /* 460 * The following mechanism is used to ensure that the FPE_... value 461 * that is passed as a trapcode to the signal handler of the user 462 * process does not have more than one bit set. 463 * 464 * Multiple bits may be set if the user process modifies the control 465 * word while a status word bit is already set. While this is a sign 466 * of bad coding, we have no choise than to narrow them down to one 467 * bit, since we must not send a trapcode that is not exactly one of 468 * the FPE_ macros. 469 * 470 * The mechanism has a static table with 127 entries. Each combination 471 * of the 7 FPU status word exception bits directly translates to a 472 * position in this table, where a single FPE_... value is stored. 473 * This FPE_... value stored there is considered the "most important" 474 * of the exception bits and will be sent as the signal code. The 475 * precedence of the bits is based upon Intel Document "Numerical 476 * Applications", Chapter "Special Computational Situations". 477 * 478 * The macro to choose one of these values does these steps: 1) Throw 479 * away status word bits that cannot be masked. 2) Throw away the bits 480 * currently masked in the control word, assuming the user isn't 481 * interested in them anymore. 3) Reinsert status word bit 7 (stack 482 * fault) if it is set, which cannot be masked but must be presered. 483 * 4) Use the remaining bits to point into the trapcode table. 484 * 485 * The 6 maskable bits in order of their preference, as stated in the 486 * above referenced Intel manual: 487 * 1 Invalid operation (FP_X_INV) 488 * 1a Stack underflow 489 * 1b Stack overflow 490 * 1c Operand of unsupported format 491 * 1d SNaN operand. 492 * 2 QNaN operand (not an exception, irrelavant here) 493 * 3 Any other invalid-operation not mentioned above or zero divide 494 * (FP_X_INV, FP_X_DZ) 495 * 4 Denormal operand (FP_X_DNML) 496 * 5 Numeric over/underflow (FP_X_OFL, FP_X_UFL) 497 * 6 Inexact result (FP_X_IMP) 498 */ 499 static char fpetable[128] = { 500 0, 501 FPE_FLTINV, /* 1 - INV */ 502 FPE_FLTUND, /* 2 - DNML */ 503 FPE_FLTINV, /* 3 - INV | DNML */ 504 FPE_FLTDIV, /* 4 - DZ */ 505 FPE_FLTINV, /* 5 - INV | DZ */ 506 FPE_FLTDIV, /* 6 - DNML | DZ */ 507 FPE_FLTINV, /* 7 - INV | DNML | DZ */ 508 FPE_FLTOVF, /* 8 - OFL */ 509 FPE_FLTINV, /* 9 - INV | OFL */ 510 FPE_FLTUND, /* A - DNML | OFL */ 511 FPE_FLTINV, /* B - INV | DNML | OFL */ 512 FPE_FLTDIV, /* C - DZ | OFL */ 513 FPE_FLTINV, /* D - INV | DZ | OFL */ 514 FPE_FLTDIV, /* E - DNML | DZ | OFL */ 515 FPE_FLTINV, /* F - INV | DNML | DZ | OFL */ 516 FPE_FLTUND, /* 10 - UFL */ 517 FPE_FLTINV, /* 11 - INV | UFL */ 518 FPE_FLTUND, /* 12 - DNML | UFL */ 519 FPE_FLTINV, /* 13 - INV | DNML | UFL */ 520 FPE_FLTDIV, /* 14 - DZ | UFL */ 521 FPE_FLTINV, /* 15 - INV | DZ | UFL */ 522 FPE_FLTDIV, /* 16 - DNML | DZ | UFL */ 523 FPE_FLTINV, /* 17 - INV | DNML | DZ | UFL */ 524 FPE_FLTOVF, /* 18 - OFL | UFL */ 525 FPE_FLTINV, /* 19 - INV | OFL | UFL */ 526 FPE_FLTUND, /* 1A - DNML | OFL | UFL */ 527 FPE_FLTINV, /* 1B - INV | DNML | OFL | UFL */ 528 FPE_FLTDIV, /* 1C - DZ | OFL | UFL */ 529 FPE_FLTINV, /* 1D - INV | DZ | OFL | UFL */ 530 FPE_FLTDIV, /* 1E - DNML | DZ | OFL | UFL */ 531 FPE_FLTINV, /* 1F - INV | DNML | DZ | OFL | UFL */ 532 FPE_FLTRES, /* 20 - IMP */ 533 FPE_FLTINV, /* 21 - INV | IMP */ 534 FPE_FLTUND, /* 22 - DNML | IMP */ 535 FPE_FLTINV, /* 23 - INV | DNML | IMP */ 536 FPE_FLTDIV, /* 24 - DZ | IMP */ 537 FPE_FLTINV, /* 25 - INV | DZ | IMP */ 538 FPE_FLTDIV, /* 26 - DNML | DZ | IMP */ 539 FPE_FLTINV, /* 27 - INV | DNML | DZ | IMP */ 540 FPE_FLTOVF, /* 28 - OFL | IMP */ 541 FPE_FLTINV, /* 29 - INV | OFL | IMP */ 542 FPE_FLTUND, /* 2A - DNML | OFL | IMP */ 543 FPE_FLTINV, /* 2B - INV | DNML | OFL | IMP */ 544 FPE_FLTDIV, /* 2C - DZ | OFL | IMP */ 545 FPE_FLTINV, /* 2D - INV | DZ | OFL | IMP */ 546 FPE_FLTDIV, /* 2E - DNML | DZ | OFL | IMP */ 547 FPE_FLTINV, /* 2F - INV | DNML | DZ | OFL | IMP */ 548 FPE_FLTUND, /* 30 - UFL | IMP */ 549 FPE_FLTINV, /* 31 - INV | UFL | IMP */ 550 FPE_FLTUND, /* 32 - DNML | UFL | IMP */ 551 FPE_FLTINV, /* 33 - INV | DNML | UFL | IMP */ 552 FPE_FLTDIV, /* 34 - DZ | UFL | IMP */ 553 FPE_FLTINV, /* 35 - INV | DZ | UFL | IMP */ 554 FPE_FLTDIV, /* 36 - DNML | DZ | UFL | IMP */ 555 FPE_FLTINV, /* 37 - INV | DNML | DZ | UFL | IMP */ 556 FPE_FLTOVF, /* 38 - OFL | UFL | IMP */ 557 FPE_FLTINV, /* 39 - INV | OFL | UFL | IMP */ 558 FPE_FLTUND, /* 3A - DNML | OFL | UFL | IMP */ 559 FPE_FLTINV, /* 3B - INV | DNML | OFL | UFL | IMP */ 560 FPE_FLTDIV, /* 3C - DZ | OFL | UFL | IMP */ 561 FPE_FLTINV, /* 3D - INV | DZ | OFL | UFL | IMP */ 562 FPE_FLTDIV, /* 3E - DNML | DZ | OFL | UFL | IMP */ 563 FPE_FLTINV, /* 3F - INV | DNML | DZ | OFL | UFL | IMP */ 564 FPE_FLTSUB, /* 40 - STK */ 565 FPE_FLTSUB, /* 41 - INV | STK */ 566 FPE_FLTUND, /* 42 - DNML | STK */ 567 FPE_FLTSUB, /* 43 - INV | DNML | STK */ 568 FPE_FLTDIV, /* 44 - DZ | STK */ 569 FPE_FLTSUB, /* 45 - INV | DZ | STK */ 570 FPE_FLTDIV, /* 46 - DNML | DZ | STK */ 571 FPE_FLTSUB, /* 47 - INV | DNML | DZ | STK */ 572 FPE_FLTOVF, /* 48 - OFL | STK */ 573 FPE_FLTSUB, /* 49 - INV | OFL | STK */ 574 FPE_FLTUND, /* 4A - DNML | OFL | STK */ 575 FPE_FLTSUB, /* 4B - INV | DNML | OFL | STK */ 576 FPE_FLTDIV, /* 4C - DZ | OFL | STK */ 577 FPE_FLTSUB, /* 4D - INV | DZ | OFL | STK */ 578 FPE_FLTDIV, /* 4E - DNML | DZ | OFL | STK */ 579 FPE_FLTSUB, /* 4F - INV | DNML | DZ | OFL | STK */ 580 FPE_FLTUND, /* 50 - UFL | STK */ 581 FPE_FLTSUB, /* 51 - INV | UFL | STK */ 582 FPE_FLTUND, /* 52 - DNML | UFL | STK */ 583 FPE_FLTSUB, /* 53 - INV | DNML | UFL | STK */ 584 FPE_FLTDIV, /* 54 - DZ | UFL | STK */ 585 FPE_FLTSUB, /* 55 - INV | DZ | UFL | STK */ 586 FPE_FLTDIV, /* 56 - DNML | DZ | UFL | STK */ 587 FPE_FLTSUB, /* 57 - INV | DNML | DZ | UFL | STK */ 588 FPE_FLTOVF, /* 58 - OFL | UFL | STK */ 589 FPE_FLTSUB, /* 59 - INV | OFL | UFL | STK */ 590 FPE_FLTUND, /* 5A - DNML | OFL | UFL | STK */ 591 FPE_FLTSUB, /* 5B - INV | DNML | OFL | UFL | STK */ 592 FPE_FLTDIV, /* 5C - DZ | OFL | UFL | STK */ 593 FPE_FLTSUB, /* 5D - INV | DZ | OFL | UFL | STK */ 594 FPE_FLTDIV, /* 5E - DNML | DZ | OFL | UFL | STK */ 595 FPE_FLTSUB, /* 5F - INV | DNML | DZ | OFL | UFL | STK */ 596 FPE_FLTRES, /* 60 - IMP | STK */ 597 FPE_FLTSUB, /* 61 - INV | IMP | STK */ 598 FPE_FLTUND, /* 62 - DNML | IMP | STK */ 599 FPE_FLTSUB, /* 63 - INV | DNML | IMP | STK */ 600 FPE_FLTDIV, /* 64 - DZ | IMP | STK */ 601 FPE_FLTSUB, /* 65 - INV | DZ | IMP | STK */ 602 FPE_FLTDIV, /* 66 - DNML | DZ | IMP | STK */ 603 FPE_FLTSUB, /* 67 - INV | DNML | DZ | IMP | STK */ 604 FPE_FLTOVF, /* 68 - OFL | IMP | STK */ 605 FPE_FLTSUB, /* 69 - INV | OFL | IMP | STK */ 606 FPE_FLTUND, /* 6A - DNML | OFL | IMP | STK */ 607 FPE_FLTSUB, /* 6B - INV | DNML | OFL | IMP | STK */ 608 FPE_FLTDIV, /* 6C - DZ | OFL | IMP | STK */ 609 FPE_FLTSUB, /* 6D - INV | DZ | OFL | IMP | STK */ 610 FPE_FLTDIV, /* 6E - DNML | DZ | OFL | IMP | STK */ 611 FPE_FLTSUB, /* 6F - INV | DNML | DZ | OFL | IMP | STK */ 612 FPE_FLTUND, /* 70 - UFL | IMP | STK */ 613 FPE_FLTSUB, /* 71 - INV | UFL | IMP | STK */ 614 FPE_FLTUND, /* 72 - DNML | UFL | IMP | STK */ 615 FPE_FLTSUB, /* 73 - INV | DNML | UFL | IMP | STK */ 616 FPE_FLTDIV, /* 74 - DZ | UFL | IMP | STK */ 617 FPE_FLTSUB, /* 75 - INV | DZ | UFL | IMP | STK */ 618 FPE_FLTDIV, /* 76 - DNML | DZ | UFL | IMP | STK */ 619 FPE_FLTSUB, /* 77 - INV | DNML | DZ | UFL | IMP | STK */ 620 FPE_FLTOVF, /* 78 - OFL | UFL | IMP | STK */ 621 FPE_FLTSUB, /* 79 - INV | OFL | UFL | IMP | STK */ 622 FPE_FLTUND, /* 7A - DNML | OFL | UFL | IMP | STK */ 623 FPE_FLTSUB, /* 7B - INV | DNML | OFL | UFL | IMP | STK */ 624 FPE_FLTDIV, /* 7C - DZ | OFL | UFL | IMP | STK */ 625 FPE_FLTSUB, /* 7D - INV | DZ | OFL | UFL | IMP | STK */ 626 FPE_FLTDIV, /* 7E - DNML | DZ | OFL | UFL | IMP | STK */ 627 FPE_FLTSUB, /* 7F - INV | DNML | DZ | OFL | UFL | IMP | STK */ 628 }; 629 630 /* 631 * Read the FP status and control words, then generate si_code value 632 * for SIGFPE. The error code chosen will be one of the 633 * FPE_... macros. It will be sent as the second argument to old 634 * BSD-style signal handlers and as "siginfo_t->si_code" (second 635 * argument) to SA_SIGINFO signal handlers. 636 * 637 * Some time ago, we cleared the x87 exceptions with FNCLEX there. 638 * Clearing exceptions was necessary mainly to avoid IRQ13 bugs. The 639 * usermode code which understands the FPU hardware enough to enable 640 * the exceptions, can also handle clearing the exception state in the 641 * handler. The only consequence of not clearing the exception is the 642 * rethrow of the SIGFPE on return from the signal handler and 643 * reexecution of the corresponding instruction. 644 * 645 * For XMM traps, the exceptions were never cleared. 646 */ 647 int 648 fputrap_x87(void) 649 { 650 struct savefpu *pcb_save; 651 u_short control, status; 652 653 critical_enter(); 654 655 /* 656 * Interrupt handling (for another interrupt) may have pushed the 657 * state to memory. Fetch the relevant parts of the state from 658 * wherever they are. 659 */ 660 if (PCPU_GET(fpcurthread) != curthread) { 661 pcb_save = curpcb->pcb_save; 662 control = pcb_save->sv_env.en_cw; 663 status = pcb_save->sv_env.en_sw; 664 } else { 665 fnstcw(&control); 666 fnstsw(&status); 667 } 668 669 critical_exit(); 670 return (fpetable[status & ((~control & 0x3f) | 0x40)]); 671 } 672 673 int 674 fputrap_sse(void) 675 { 676 u_int mxcsr; 677 678 critical_enter(); 679 if (PCPU_GET(fpcurthread) != curthread) 680 mxcsr = curpcb->pcb_save->sv_env.en_mxcsr; 681 else 682 stmxcsr(&mxcsr); 683 critical_exit(); 684 return (fpetable[(mxcsr & (~mxcsr >> 7)) & 0x3f]); 685 } 686 687 static void 688 restore_fpu_curthread(struct thread *td) 689 { 690 struct pcb *pcb; 691 692 /* 693 * Record new context early in case frstor causes a trap. 694 */ 695 PCPU_SET(fpcurthread, td); 696 697 stop_emulating(); 698 fpu_clean_state(); 699 pcb = td->td_pcb; 700 701 if ((pcb->pcb_flags & PCB_FPUINITDONE) == 0) { 702 /* 703 * This is the first time this thread has used the FPU or 704 * the PCB doesn't contain a clean FPU state. Explicitly 705 * load an initial state. 706 * 707 * We prefer to restore the state from the actual save 708 * area in PCB instead of directly loading from 709 * fpu_initialstate, to ignite the XSAVEOPT 710 * tracking engine. 711 */ 712 bcopy(fpu_initialstate, pcb->pcb_save, 713 cpu_max_ext_state_size); 714 fpurestore(pcb->pcb_save); 715 if (pcb->pcb_initial_fpucw != __INITIAL_FPUCW__) 716 fldcw(pcb->pcb_initial_fpucw); 717 if (PCB_USER_FPU(pcb)) 718 set_pcb_flags(pcb, PCB_FPUINITDONE | 719 PCB_USERFPUINITDONE); 720 else 721 set_pcb_flags(pcb, PCB_FPUINITDONE); 722 } else 723 fpurestore(pcb->pcb_save); 724 } 725 726 /* 727 * Device Not Available (DNA, #NM) exception handler. 728 * 729 * It would be better to switch FP context here (if curthread != 730 * fpcurthread) and not necessarily for every context switch, but it 731 * is too hard to access foreign pcb's. 732 */ 733 void 734 fpudna(void) 735 { 736 struct thread *td; 737 738 td = curthread; 739 /* 740 * This handler is entered with interrupts enabled, so context 741 * switches may occur before critical_enter() is executed. If 742 * a context switch occurs, then when we regain control, our 743 * state will have been completely restored. The CPU may 744 * change underneath us, but the only part of our context that 745 * lives in the CPU is CR0.TS and that will be "restored" by 746 * setting it on the new CPU. 747 */ 748 critical_enter(); 749 750 KASSERT((curpcb->pcb_flags & PCB_FPUNOSAVE) == 0, 751 ("fpudna while in fpu_kern_enter(FPU_KERN_NOCTX)")); 752 if (__predict_false(PCPU_GET(fpcurthread) == td)) { 753 /* 754 * Some virtual machines seems to set %cr0.TS at 755 * arbitrary moments. Silently clear the TS bit 756 * regardless of the eager/lazy FPU context switch 757 * mode. 758 */ 759 stop_emulating(); 760 } else { 761 if (__predict_false(PCPU_GET(fpcurthread) != NULL)) { 762 panic( 763 "fpudna: fpcurthread = %p (%d), curthread = %p (%d)\n", 764 PCPU_GET(fpcurthread), 765 PCPU_GET(fpcurthread)->td_tid, td, td->td_tid); 766 } 767 restore_fpu_curthread(td); 768 } 769 critical_exit(); 770 } 771 772 void fpu_activate_sw(struct thread *td); /* Called from the context switch */ 773 void 774 fpu_activate_sw(struct thread *td) 775 { 776 777 if (lazy_fpu_switch || (td->td_pflags & TDP_KTHREAD) != 0 || 778 !PCB_USER_FPU(td->td_pcb)) { 779 PCPU_SET(fpcurthread, NULL); 780 start_emulating(); 781 } else if (PCPU_GET(fpcurthread) != td) { 782 restore_fpu_curthread(td); 783 } 784 } 785 786 void 787 fpudrop(void) 788 { 789 struct thread *td; 790 791 td = PCPU_GET(fpcurthread); 792 KASSERT(td == curthread, ("fpudrop: fpcurthread != curthread")); 793 CRITICAL_ASSERT(td); 794 PCPU_SET(fpcurthread, NULL); 795 clear_pcb_flags(td->td_pcb, PCB_FPUINITDONE); 796 start_emulating(); 797 } 798 799 /* 800 * Get the user state of the FPU into pcb->pcb_user_save without 801 * dropping ownership (if possible). It returns the FPU ownership 802 * status. 803 */ 804 int 805 fpugetregs(struct thread *td) 806 { 807 struct pcb *pcb; 808 uint64_t *xstate_bv, bit; 809 char *sa; 810 int max_ext_n, i, owned; 811 812 pcb = td->td_pcb; 813 critical_enter(); 814 if ((pcb->pcb_flags & PCB_USERFPUINITDONE) == 0) { 815 bcopy(fpu_initialstate, get_pcb_user_save_pcb(pcb), 816 cpu_max_ext_state_size); 817 get_pcb_user_save_pcb(pcb)->sv_env.en_cw = 818 pcb->pcb_initial_fpucw; 819 fpuuserinited(td); 820 critical_exit(); 821 return (_MC_FPOWNED_PCB); 822 } 823 if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) { 824 fpusave(get_pcb_user_save_pcb(pcb)); 825 owned = _MC_FPOWNED_FPU; 826 } else { 827 owned = _MC_FPOWNED_PCB; 828 } 829 if (use_xsave) { 830 /* 831 * Handle partially saved state. 832 */ 833 sa = (char *)get_pcb_user_save_pcb(pcb); 834 xstate_bv = (uint64_t *)(sa + sizeof(struct savefpu) + 835 offsetof(struct xstate_hdr, xstate_bv)); 836 max_ext_n = flsl(xsave_mask); 837 for (i = 0; i < max_ext_n; i++) { 838 bit = 1ULL << i; 839 if ((xsave_mask & bit) == 0 || (*xstate_bv & bit) != 0) 840 continue; 841 bcopy((char *)fpu_initialstate + 842 xsave_area_desc[i].offset, 843 sa + xsave_area_desc[i].offset, 844 xsave_area_desc[i].size); 845 *xstate_bv |= bit; 846 } 847 } 848 critical_exit(); 849 return (owned); 850 } 851 852 void 853 fpuuserinited(struct thread *td) 854 { 855 struct pcb *pcb; 856 857 CRITICAL_ASSERT(td); 858 pcb = td->td_pcb; 859 if (PCB_USER_FPU(pcb)) 860 set_pcb_flags(pcb, 861 PCB_FPUINITDONE | PCB_USERFPUINITDONE); 862 else 863 set_pcb_flags(pcb, PCB_FPUINITDONE); 864 } 865 866 int 867 fpusetxstate(struct thread *td, char *xfpustate, size_t xfpustate_size) 868 { 869 struct xstate_hdr *hdr, *ehdr; 870 size_t len, max_len; 871 uint64_t bv; 872 873 /* XXXKIB should we clear all extended state in xstate_bv instead ? */ 874 if (xfpustate == NULL) 875 return (0); 876 if (!use_xsave) 877 return (EOPNOTSUPP); 878 879 len = xfpustate_size; 880 if (len < sizeof(struct xstate_hdr)) 881 return (EINVAL); 882 max_len = cpu_max_ext_state_size - sizeof(struct savefpu); 883 if (len > max_len) 884 return (EINVAL); 885 886 ehdr = (struct xstate_hdr *)xfpustate; 887 bv = ehdr->xstate_bv; 888 889 /* 890 * Avoid #gp. 891 */ 892 if (bv & ~xsave_mask) 893 return (EINVAL); 894 895 hdr = (struct xstate_hdr *)(get_pcb_user_save_td(td) + 1); 896 897 hdr->xstate_bv = bv; 898 bcopy(xfpustate + sizeof(struct xstate_hdr), 899 (char *)(hdr + 1), len - sizeof(struct xstate_hdr)); 900 901 return (0); 902 } 903 904 /* 905 * Set the state of the FPU. 906 */ 907 int 908 fpusetregs(struct thread *td, struct savefpu *addr, char *xfpustate, 909 size_t xfpustate_size) 910 { 911 struct pcb *pcb; 912 int error; 913 914 addr->sv_env.en_mxcsr &= cpu_mxcsr_mask; 915 pcb = td->td_pcb; 916 error = 0; 917 critical_enter(); 918 if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) { 919 error = fpusetxstate(td, xfpustate, xfpustate_size); 920 if (error == 0) { 921 bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr)); 922 fpurestore(get_pcb_user_save_td(td)); 923 set_pcb_flags(pcb, PCB_FPUINITDONE | 924 PCB_USERFPUINITDONE); 925 } 926 } else { 927 error = fpusetxstate(td, xfpustate, xfpustate_size); 928 if (error == 0) { 929 bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr)); 930 fpuuserinited(td); 931 } 932 } 933 critical_exit(); 934 return (error); 935 } 936 937 /* 938 * On AuthenticAMD processors, the fxrstor instruction does not restore 939 * the x87's stored last instruction pointer, last data pointer, and last 940 * opcode values, except in the rare case in which the exception summary 941 * (ES) bit in the x87 status word is set to 1. 942 * 943 * In order to avoid leaking this information across processes, we clean 944 * these values by performing a dummy load before executing fxrstor(). 945 */ 946 static void 947 fpu_clean_state(void) 948 { 949 static float dummy_variable = 0.0; 950 u_short status; 951 952 /* 953 * Clear the ES bit in the x87 status word if it is currently 954 * set, in order to avoid causing a fault in the upcoming load. 955 */ 956 fnstsw(&status); 957 if (status & 0x80) 958 fnclex(); 959 960 /* 961 * Load the dummy variable into the x87 stack. This mangles 962 * the x87 stack, but we don't care since we're about to call 963 * fxrstor() anyway. 964 */ 965 __asm __volatile("ffree %%st(7); flds %0" : : "m" (dummy_variable)); 966 } 967 968 /* 969 * This really sucks. We want the acpi version only, but it requires 970 * the isa_if.h file in order to get the definitions. 971 */ 972 #include "opt_isa.h" 973 #ifdef DEV_ISA 974 #include <isa/isavar.h> 975 /* 976 * This sucks up the legacy ISA support assignments from PNPBIOS/ACPI. 977 */ 978 static struct isa_pnp_id fpupnp_ids[] = { 979 { 0x040cd041, "Legacy ISA coprocessor support" }, /* PNP0C04 */ 980 { 0 } 981 }; 982 983 static int 984 fpupnp_probe(device_t dev) 985 { 986 int result; 987 988 result = ISA_PNP_PROBE(device_get_parent(dev), dev, fpupnp_ids); 989 if (result <= 0) 990 device_quiet(dev); 991 return (result); 992 } 993 994 static int 995 fpupnp_attach(device_t dev) 996 { 997 998 return (0); 999 } 1000 1001 static device_method_t fpupnp_methods[] = { 1002 /* Device interface */ 1003 DEVMETHOD(device_probe, fpupnp_probe), 1004 DEVMETHOD(device_attach, fpupnp_attach), 1005 DEVMETHOD(device_detach, bus_generic_detach), 1006 DEVMETHOD(device_shutdown, bus_generic_shutdown), 1007 DEVMETHOD(device_suspend, bus_generic_suspend), 1008 DEVMETHOD(device_resume, bus_generic_resume), 1009 1010 { 0, 0 } 1011 }; 1012 1013 static driver_t fpupnp_driver = { 1014 "fpupnp", 1015 fpupnp_methods, 1016 1, /* no softc */ 1017 }; 1018 1019 static devclass_t fpupnp_devclass; 1020 1021 DRIVER_MODULE(fpupnp, acpi, fpupnp_driver, fpupnp_devclass, 0, 0); 1022 ISA_PNP_INFO(fpupnp_ids); 1023 #endif /* DEV_ISA */ 1024 1025 static MALLOC_DEFINE(M_FPUKERN_CTX, "fpukern_ctx", 1026 "Kernel contexts for FPU state"); 1027 1028 #define FPU_KERN_CTX_FPUINITDONE 0x01 1029 #define FPU_KERN_CTX_DUMMY 0x02 /* avoided save for the kern thread */ 1030 #define FPU_KERN_CTX_INUSE 0x04 1031 1032 struct fpu_kern_ctx { 1033 struct savefpu *prev; 1034 uint32_t flags; 1035 char hwstate1[]; 1036 }; 1037 1038 struct fpu_kern_ctx * 1039 fpu_kern_alloc_ctx(u_int flags) 1040 { 1041 struct fpu_kern_ctx *res; 1042 size_t sz; 1043 1044 sz = sizeof(struct fpu_kern_ctx) + XSAVE_AREA_ALIGN + 1045 cpu_max_ext_state_size; 1046 res = malloc(sz, M_FPUKERN_CTX, ((flags & FPU_KERN_NOWAIT) ? 1047 M_NOWAIT : M_WAITOK) | M_ZERO); 1048 return (res); 1049 } 1050 1051 void 1052 fpu_kern_free_ctx(struct fpu_kern_ctx *ctx) 1053 { 1054 1055 KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) == 0, ("free'ing inuse ctx")); 1056 /* XXXKIB clear the memory ? */ 1057 free(ctx, M_FPUKERN_CTX); 1058 } 1059 1060 static struct savefpu * 1061 fpu_kern_ctx_savefpu(struct fpu_kern_ctx *ctx) 1062 { 1063 vm_offset_t p; 1064 1065 p = (vm_offset_t)&ctx->hwstate1; 1066 p = roundup2(p, XSAVE_AREA_ALIGN); 1067 return ((struct savefpu *)p); 1068 } 1069 1070 void 1071 fpu_kern_enter(struct thread *td, struct fpu_kern_ctx *ctx, u_int flags) 1072 { 1073 struct pcb *pcb; 1074 1075 pcb = td->td_pcb; 1076 KASSERT((flags & FPU_KERN_NOCTX) != 0 || ctx != NULL, 1077 ("ctx is required when !FPU_KERN_NOCTX")); 1078 KASSERT(ctx == NULL || (ctx->flags & FPU_KERN_CTX_INUSE) == 0, 1079 ("using inuse ctx")); 1080 KASSERT((pcb->pcb_flags & PCB_FPUNOSAVE) == 0, 1081 ("recursive fpu_kern_enter while in PCB_FPUNOSAVE state")); 1082 1083 if ((flags & FPU_KERN_NOCTX) != 0) { 1084 critical_enter(); 1085 stop_emulating(); 1086 if (curthread == PCPU_GET(fpcurthread)) { 1087 fpusave(curpcb->pcb_save); 1088 PCPU_SET(fpcurthread, NULL); 1089 } else { 1090 KASSERT(PCPU_GET(fpcurthread) == NULL, 1091 ("invalid fpcurthread")); 1092 } 1093 1094 /* 1095 * This breaks XSAVEOPT tracker, but 1096 * PCB_FPUNOSAVE state is supposed to never need to 1097 * save FPU context at all. 1098 */ 1099 fpurestore(fpu_initialstate); 1100 set_pcb_flags(pcb, PCB_KERNFPU | PCB_FPUNOSAVE | 1101 PCB_FPUINITDONE); 1102 return; 1103 } 1104 if ((flags & FPU_KERN_KTHR) != 0 && is_fpu_kern_thread(0)) { 1105 ctx->flags = FPU_KERN_CTX_DUMMY | FPU_KERN_CTX_INUSE; 1106 return; 1107 } 1108 critical_enter(); 1109 KASSERT(!PCB_USER_FPU(pcb) || pcb->pcb_save == 1110 get_pcb_user_save_pcb(pcb), ("mangled pcb_save")); 1111 ctx->flags = FPU_KERN_CTX_INUSE; 1112 if ((pcb->pcb_flags & PCB_FPUINITDONE) != 0) 1113 ctx->flags |= FPU_KERN_CTX_FPUINITDONE; 1114 fpuexit(td); 1115 ctx->prev = pcb->pcb_save; 1116 pcb->pcb_save = fpu_kern_ctx_savefpu(ctx); 1117 set_pcb_flags(pcb, PCB_KERNFPU); 1118 clear_pcb_flags(pcb, PCB_FPUINITDONE); 1119 critical_exit(); 1120 } 1121 1122 int 1123 fpu_kern_leave(struct thread *td, struct fpu_kern_ctx *ctx) 1124 { 1125 struct pcb *pcb; 1126 1127 pcb = td->td_pcb; 1128 1129 if ((pcb->pcb_flags & PCB_FPUNOSAVE) != 0) { 1130 KASSERT(ctx == NULL, ("non-null ctx after FPU_KERN_NOCTX")); 1131 KASSERT(PCPU_GET(fpcurthread) == NULL, 1132 ("non-NULL fpcurthread for PCB_FPUNOSAVE")); 1133 CRITICAL_ASSERT(td); 1134 1135 clear_pcb_flags(pcb, PCB_FPUNOSAVE | PCB_FPUINITDONE); 1136 start_emulating(); 1137 } else { 1138 KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) != 0, 1139 ("leaving not inuse ctx")); 1140 ctx->flags &= ~FPU_KERN_CTX_INUSE; 1141 1142 if (is_fpu_kern_thread(0) && 1143 (ctx->flags & FPU_KERN_CTX_DUMMY) != 0) 1144 return (0); 1145 KASSERT((ctx->flags & FPU_KERN_CTX_DUMMY) == 0, 1146 ("dummy ctx")); 1147 critical_enter(); 1148 if (curthread == PCPU_GET(fpcurthread)) 1149 fpudrop(); 1150 pcb->pcb_save = ctx->prev; 1151 } 1152 1153 if (pcb->pcb_save == get_pcb_user_save_pcb(pcb)) { 1154 if ((pcb->pcb_flags & PCB_USERFPUINITDONE) != 0) { 1155 set_pcb_flags(pcb, PCB_FPUINITDONE); 1156 clear_pcb_flags(pcb, PCB_KERNFPU); 1157 } else 1158 clear_pcb_flags(pcb, PCB_FPUINITDONE | PCB_KERNFPU); 1159 } else { 1160 if ((ctx->flags & FPU_KERN_CTX_FPUINITDONE) != 0) 1161 set_pcb_flags(pcb, PCB_FPUINITDONE); 1162 else 1163 clear_pcb_flags(pcb, PCB_FPUINITDONE); 1164 KASSERT(!PCB_USER_FPU(pcb), ("unpaired fpu_kern_leave")); 1165 } 1166 critical_exit(); 1167 return (0); 1168 } 1169 1170 int 1171 fpu_kern_thread(u_int flags) 1172 { 1173 1174 KASSERT((curthread->td_pflags & TDP_KTHREAD) != 0, 1175 ("Only kthread may use fpu_kern_thread")); 1176 KASSERT(curpcb->pcb_save == get_pcb_user_save_pcb(curpcb), 1177 ("mangled pcb_save")); 1178 KASSERT(PCB_USER_FPU(curpcb), ("recursive call")); 1179 1180 set_pcb_flags(curpcb, PCB_KERNFPU); 1181 return (0); 1182 } 1183 1184 int 1185 is_fpu_kern_thread(u_int flags) 1186 { 1187 1188 if ((curthread->td_pflags & TDP_KTHREAD) == 0) 1189 return (0); 1190 return ((curpcb->pcb_flags & PCB_KERNFPU) != 0); 1191 } 1192 1193 /* 1194 * FPU save area alloc/free/init utility routines 1195 */ 1196 struct savefpu * 1197 fpu_save_area_alloc(void) 1198 { 1199 1200 return (uma_zalloc(fpu_save_area_zone, 0)); 1201 } 1202 1203 void 1204 fpu_save_area_free(struct savefpu *fsa) 1205 { 1206 1207 uma_zfree(fpu_save_area_zone, fsa); 1208 } 1209 1210 void 1211 fpu_save_area_reset(struct savefpu *fsa) 1212 { 1213 1214 bcopy(fpu_initialstate, fsa, cpu_max_ext_state_size); 1215 } 1216