xref: /freebsd/sys/amd64/amd64/fpu.c (revision 526e1dc1c0d052b9d2a6cd6da7a16eb09c971c54)
1 /*-
2  * Copyright (c) 1990 William Jolitz.
3  * Copyright (c) 1991 The Regents of the University of California.
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 4. Neither the name of the University nor the names of its contributors
15  *    may be used to endorse or promote products derived from this software
16  *    without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  *	from: @(#)npx.c	7.2 (Berkeley) 5/12/91
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/bus.h>
39 #include <sys/kernel.h>
40 #include <sys/lock.h>
41 #include <sys/malloc.h>
42 #include <sys/module.h>
43 #include <sys/mutex.h>
44 #include <sys/mutex.h>
45 #include <sys/proc.h>
46 #include <sys/sysctl.h>
47 #include <machine/bus.h>
48 #include <sys/rman.h>
49 #include <sys/signalvar.h>
50 #include <vm/uma.h>
51 
52 #include <machine/cputypes.h>
53 #include <machine/frame.h>
54 #include <machine/intr_machdep.h>
55 #include <machine/md_var.h>
56 #include <machine/pcb.h>
57 #include <machine/psl.h>
58 #include <machine/resource.h>
59 #include <machine/specialreg.h>
60 #include <machine/segments.h>
61 #include <machine/ucontext.h>
62 
63 /*
64  * Floating point support.
65  */
66 
67 #if defined(__GNUCLIKE_ASM) && !defined(lint)
68 
69 #define	fldcw(cw)		__asm __volatile("fldcw %0" : : "m" (cw))
70 #define	fnclex()		__asm __volatile("fnclex")
71 #define	fninit()		__asm __volatile("fninit")
72 #define	fnstcw(addr)		__asm __volatile("fnstcw %0" : "=m" (*(addr)))
73 #define	fnstsw(addr)		__asm __volatile("fnstsw %0" : "=am" (*(addr)))
74 #define	fxrstor(addr)		__asm __volatile("fxrstor %0" : : "m" (*(addr)))
75 #define	fxsave(addr)		__asm __volatile("fxsave %0" : "=m" (*(addr)))
76 #define	ldmxcsr(csr)		__asm __volatile("ldmxcsr %0" : : "m" (csr))
77 #define	stmxcsr(addr)		__asm __volatile("stmxcsr %0" : : "m" (*(addr)))
78 
79 static __inline void
80 xrstor(char *addr, uint64_t mask)
81 {
82 	uint32_t low, hi;
83 
84 	low = mask;
85 	hi = mask >> 32;
86 	__asm __volatile("xrstor %0" : : "m" (*addr), "a" (low), "d" (hi));
87 }
88 
89 static __inline void
90 xsave(char *addr, uint64_t mask)
91 {
92 	uint32_t low, hi;
93 
94 	low = mask;
95 	hi = mask >> 32;
96 	__asm __volatile("xsave %0" : "=m" (*addr) : "a" (low), "d" (hi) :
97 	    "memory");
98 }
99 
100 #else	/* !(__GNUCLIKE_ASM && !lint) */
101 
102 void	fldcw(u_short cw);
103 void	fnclex(void);
104 void	fninit(void);
105 void	fnstcw(caddr_t addr);
106 void	fnstsw(caddr_t addr);
107 void	fxsave(caddr_t addr);
108 void	fxrstor(caddr_t addr);
109 void	ldmxcsr(u_int csr);
110 void	stmxcsr(u_int *csr);
111 void	xrstor(char *addr, uint64_t mask);
112 void	xsave(char *addr, uint64_t mask);
113 
114 #endif	/* __GNUCLIKE_ASM && !lint */
115 
116 #define	start_emulating()	load_cr0(rcr0() | CR0_TS)
117 #define	stop_emulating()	clts()
118 
119 CTASSERT(sizeof(struct savefpu) == 512);
120 CTASSERT(sizeof(struct xstate_hdr) == 64);
121 CTASSERT(sizeof(struct savefpu_ymm) == 832);
122 
123 /*
124  * This requirement is to make it easier for asm code to calculate
125  * offset of the fpu save area from the pcb address. FPU save area
126  * must be 64-byte aligned.
127  */
128 CTASSERT(sizeof(struct pcb) % XSAVE_AREA_ALIGN == 0);
129 
130 static	void	fpu_clean_state(void);
131 
132 SYSCTL_INT(_hw, HW_FLOATINGPT, floatingpoint, CTLFLAG_RD,
133     NULL, 1, "Floating point instructions executed in hardware");
134 
135 static int use_xsaveopt;
136 int use_xsave;			/* non-static for cpu_switch.S */
137 uint64_t xsave_mask;		/* the same */
138 static	uma_zone_t fpu_save_area_zone;
139 static	struct savefpu *fpu_initialstate;
140 
141 struct xsave_area_elm_descr {
142 	u_int	offset;
143 	u_int	size;
144 } *xsave_area_desc;
145 
146 void
147 fpusave(void *addr)
148 {
149 
150 	if (use_xsave)
151 		xsave((char *)addr, xsave_mask);
152 	else
153 		fxsave((char *)addr);
154 }
155 
156 void
157 fpurestore(void *addr)
158 {
159 
160 	if (use_xsave)
161 		xrstor((char *)addr, xsave_mask);
162 	else
163 		fxrstor((char *)addr);
164 }
165 
166 /*
167  * Enable XSAVE if supported and allowed by user.
168  * Calculate the xsave_mask.
169  */
170 static void
171 fpuinit_bsp1(void)
172 {
173 	u_int cp[4];
174 	uint64_t xsave_mask_user;
175 
176 	if ((cpu_feature2 & CPUID2_XSAVE) != 0) {
177 		use_xsave = 1;
178 		TUNABLE_INT_FETCH("hw.use_xsave", &use_xsave);
179 	}
180 	if (!use_xsave)
181 		return;
182 
183 	cpuid_count(0xd, 0x0, cp);
184 	xsave_mask = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
185 	if ((cp[0] & xsave_mask) != xsave_mask)
186 		panic("CPU0 does not support X87 or SSE: %x", cp[0]);
187 	xsave_mask = ((uint64_t)cp[3] << 32) | cp[0];
188 	xsave_mask_user = xsave_mask;
189 	TUNABLE_ULONG_FETCH("hw.xsave_mask", &xsave_mask_user);
190 	xsave_mask_user |= XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
191 	xsave_mask &= xsave_mask_user;
192 
193 	cpuid_count(0xd, 0x1, cp);
194 	if ((cp[0] & CPUID_EXTSTATE_XSAVEOPT) != 0) {
195 		/*
196 		 * Patch the XSAVE instruction in the cpu_switch code
197 		 * to XSAVEOPT.  We assume that XSAVE encoding used
198 		 * REX byte, and set the bit 4 of the r/m byte.
199 		 */
200 		ctx_switch_xsave[3] |= 0x10;
201 		use_xsaveopt = 1;
202 	}
203 }
204 
205 /*
206  * Calculate the fpu save area size.
207  */
208 static void
209 fpuinit_bsp2(void)
210 {
211 	u_int cp[4];
212 
213 	if (use_xsave) {
214 		cpuid_count(0xd, 0x0, cp);
215 		cpu_max_ext_state_size = cp[1];
216 
217 		/*
218 		 * Reload the cpu_feature2, since we enabled OSXSAVE.
219 		 */
220 		do_cpuid(1, cp);
221 		cpu_feature2 = cp[2];
222 	} else
223 		cpu_max_ext_state_size = sizeof(struct savefpu);
224 }
225 
226 /*
227  * Initialize the floating point unit.
228  */
229 void
230 fpuinit(void)
231 {
232 	register_t saveintr;
233 	u_int mxcsr;
234 	u_short control;
235 
236 	if (IS_BSP())
237 		fpuinit_bsp1();
238 
239 	if (use_xsave) {
240 		load_cr4(rcr4() | CR4_XSAVE);
241 		load_xcr(XCR0, xsave_mask);
242 	}
243 
244 	/*
245 	 * XCR0 shall be set up before CPU can report the save area size.
246 	 */
247 	if (IS_BSP())
248 		fpuinit_bsp2();
249 
250 	/*
251 	 * It is too early for critical_enter() to work on AP.
252 	 */
253 	saveintr = intr_disable();
254 	stop_emulating();
255 	fninit();
256 	control = __INITIAL_FPUCW__;
257 	fldcw(control);
258 	mxcsr = __INITIAL_MXCSR__;
259 	ldmxcsr(mxcsr);
260 	start_emulating();
261 	intr_restore(saveintr);
262 }
263 
264 /*
265  * On the boot CPU we generate a clean state that is used to
266  * initialize the floating point unit when it is first used by a
267  * process.
268  */
269 static void
270 fpuinitstate(void *arg __unused)
271 {
272 	register_t saveintr;
273 	int cp[4], i, max_ext_n;
274 
275 	fpu_initialstate = malloc(cpu_max_ext_state_size, M_DEVBUF,
276 	    M_WAITOK | M_ZERO);
277 	saveintr = intr_disable();
278 	stop_emulating();
279 
280 	fpusave(fpu_initialstate);
281 	if (fpu_initialstate->sv_env.en_mxcsr_mask)
282 		cpu_mxcsr_mask = fpu_initialstate->sv_env.en_mxcsr_mask;
283 	else
284 		cpu_mxcsr_mask = 0xFFBF;
285 
286 	/*
287 	 * The fninit instruction does not modify XMM registers.  The
288 	 * fpusave call dumped the garbage contained in the registers
289 	 * after reset to the initial state saved.  Clear XMM
290 	 * registers file image to make the startup program state and
291 	 * signal handler XMM register content predictable.
292 	 */
293 	bzero(&fpu_initialstate->sv_xmm[0], sizeof(struct xmmacc));
294 
295 	/*
296 	 * Create a table describing the layout of the CPU Extended
297 	 * Save Area.
298 	 */
299 	if (use_xsaveopt) {
300 		max_ext_n = flsl(xsave_mask);
301 		xsave_area_desc = malloc(max_ext_n * sizeof(struct
302 		    xsave_area_elm_descr), M_DEVBUF, M_WAITOK | M_ZERO);
303 		/* x87 state */
304 		xsave_area_desc[0].offset = 0;
305 		xsave_area_desc[0].size = 160;
306 		/* XMM */
307 		xsave_area_desc[1].offset = 160;
308 		xsave_area_desc[1].size = 288 - 160;
309 
310 		for (i = 2; i < max_ext_n; i++) {
311 			cpuid_count(0xd, i, cp);
312 			xsave_area_desc[i].offset = cp[1];
313 			xsave_area_desc[i].size = cp[0];
314 		}
315 	}
316 
317 	fpu_save_area_zone = uma_zcreate("FPU_save_area",
318 	    cpu_max_ext_state_size, NULL, NULL, NULL, NULL,
319 	    XSAVE_AREA_ALIGN - 1, 0);
320 
321 	start_emulating();
322 	intr_restore(saveintr);
323 }
324 SYSINIT(fpuinitstate, SI_SUB_DRIVERS, SI_ORDER_ANY, fpuinitstate, NULL);
325 
326 /*
327  * Free coprocessor (if we have it).
328  */
329 void
330 fpuexit(struct thread *td)
331 {
332 
333 	critical_enter();
334 	if (curthread == PCPU_GET(fpcurthread)) {
335 		stop_emulating();
336 		fpusave(curpcb->pcb_save);
337 		start_emulating();
338 		PCPU_SET(fpcurthread, 0);
339 	}
340 	critical_exit();
341 }
342 
343 int
344 fpuformat()
345 {
346 
347 	return (_MC_FPFMT_XMM);
348 }
349 
350 /*
351  * The following mechanism is used to ensure that the FPE_... value
352  * that is passed as a trapcode to the signal handler of the user
353  * process does not have more than one bit set.
354  *
355  * Multiple bits may be set if the user process modifies the control
356  * word while a status word bit is already set.  While this is a sign
357  * of bad coding, we have no choise than to narrow them down to one
358  * bit, since we must not send a trapcode that is not exactly one of
359  * the FPE_ macros.
360  *
361  * The mechanism has a static table with 127 entries.  Each combination
362  * of the 7 FPU status word exception bits directly translates to a
363  * position in this table, where a single FPE_... value is stored.
364  * This FPE_... value stored there is considered the "most important"
365  * of the exception bits and will be sent as the signal code.  The
366  * precedence of the bits is based upon Intel Document "Numerical
367  * Applications", Chapter "Special Computational Situations".
368  *
369  * The macro to choose one of these values does these steps: 1) Throw
370  * away status word bits that cannot be masked.  2) Throw away the bits
371  * currently masked in the control word, assuming the user isn't
372  * interested in them anymore.  3) Reinsert status word bit 7 (stack
373  * fault) if it is set, which cannot be masked but must be presered.
374  * 4) Use the remaining bits to point into the trapcode table.
375  *
376  * The 6 maskable bits in order of their preference, as stated in the
377  * above referenced Intel manual:
378  * 1  Invalid operation (FP_X_INV)
379  * 1a   Stack underflow
380  * 1b   Stack overflow
381  * 1c   Operand of unsupported format
382  * 1d   SNaN operand.
383  * 2  QNaN operand (not an exception, irrelavant here)
384  * 3  Any other invalid-operation not mentioned above or zero divide
385  *      (FP_X_INV, FP_X_DZ)
386  * 4  Denormal operand (FP_X_DNML)
387  * 5  Numeric over/underflow (FP_X_OFL, FP_X_UFL)
388  * 6  Inexact result (FP_X_IMP)
389  */
390 static char fpetable[128] = {
391 	0,
392 	FPE_FLTINV,	/*  1 - INV */
393 	FPE_FLTUND,	/*  2 - DNML */
394 	FPE_FLTINV,	/*  3 - INV | DNML */
395 	FPE_FLTDIV,	/*  4 - DZ */
396 	FPE_FLTINV,	/*  5 - INV | DZ */
397 	FPE_FLTDIV,	/*  6 - DNML | DZ */
398 	FPE_FLTINV,	/*  7 - INV | DNML | DZ */
399 	FPE_FLTOVF,	/*  8 - OFL */
400 	FPE_FLTINV,	/*  9 - INV | OFL */
401 	FPE_FLTUND,	/*  A - DNML | OFL */
402 	FPE_FLTINV,	/*  B - INV | DNML | OFL */
403 	FPE_FLTDIV,	/*  C - DZ | OFL */
404 	FPE_FLTINV,	/*  D - INV | DZ | OFL */
405 	FPE_FLTDIV,	/*  E - DNML | DZ | OFL */
406 	FPE_FLTINV,	/*  F - INV | DNML | DZ | OFL */
407 	FPE_FLTUND,	/* 10 - UFL */
408 	FPE_FLTINV,	/* 11 - INV | UFL */
409 	FPE_FLTUND,	/* 12 - DNML | UFL */
410 	FPE_FLTINV,	/* 13 - INV | DNML | UFL */
411 	FPE_FLTDIV,	/* 14 - DZ | UFL */
412 	FPE_FLTINV,	/* 15 - INV | DZ | UFL */
413 	FPE_FLTDIV,	/* 16 - DNML | DZ | UFL */
414 	FPE_FLTINV,	/* 17 - INV | DNML | DZ | UFL */
415 	FPE_FLTOVF,	/* 18 - OFL | UFL */
416 	FPE_FLTINV,	/* 19 - INV | OFL | UFL */
417 	FPE_FLTUND,	/* 1A - DNML | OFL | UFL */
418 	FPE_FLTINV,	/* 1B - INV | DNML | OFL | UFL */
419 	FPE_FLTDIV,	/* 1C - DZ | OFL | UFL */
420 	FPE_FLTINV,	/* 1D - INV | DZ | OFL | UFL */
421 	FPE_FLTDIV,	/* 1E - DNML | DZ | OFL | UFL */
422 	FPE_FLTINV,	/* 1F - INV | DNML | DZ | OFL | UFL */
423 	FPE_FLTRES,	/* 20 - IMP */
424 	FPE_FLTINV,	/* 21 - INV | IMP */
425 	FPE_FLTUND,	/* 22 - DNML | IMP */
426 	FPE_FLTINV,	/* 23 - INV | DNML | IMP */
427 	FPE_FLTDIV,	/* 24 - DZ | IMP */
428 	FPE_FLTINV,	/* 25 - INV | DZ | IMP */
429 	FPE_FLTDIV,	/* 26 - DNML | DZ | IMP */
430 	FPE_FLTINV,	/* 27 - INV | DNML | DZ | IMP */
431 	FPE_FLTOVF,	/* 28 - OFL | IMP */
432 	FPE_FLTINV,	/* 29 - INV | OFL | IMP */
433 	FPE_FLTUND,	/* 2A - DNML | OFL | IMP */
434 	FPE_FLTINV,	/* 2B - INV | DNML | OFL | IMP */
435 	FPE_FLTDIV,	/* 2C - DZ | OFL | IMP */
436 	FPE_FLTINV,	/* 2D - INV | DZ | OFL | IMP */
437 	FPE_FLTDIV,	/* 2E - DNML | DZ | OFL | IMP */
438 	FPE_FLTINV,	/* 2F - INV | DNML | DZ | OFL | IMP */
439 	FPE_FLTUND,	/* 30 - UFL | IMP */
440 	FPE_FLTINV,	/* 31 - INV | UFL | IMP */
441 	FPE_FLTUND,	/* 32 - DNML | UFL | IMP */
442 	FPE_FLTINV,	/* 33 - INV | DNML | UFL | IMP */
443 	FPE_FLTDIV,	/* 34 - DZ | UFL | IMP */
444 	FPE_FLTINV,	/* 35 - INV | DZ | UFL | IMP */
445 	FPE_FLTDIV,	/* 36 - DNML | DZ | UFL | IMP */
446 	FPE_FLTINV,	/* 37 - INV | DNML | DZ | UFL | IMP */
447 	FPE_FLTOVF,	/* 38 - OFL | UFL | IMP */
448 	FPE_FLTINV,	/* 39 - INV | OFL | UFL | IMP */
449 	FPE_FLTUND,	/* 3A - DNML | OFL | UFL | IMP */
450 	FPE_FLTINV,	/* 3B - INV | DNML | OFL | UFL | IMP */
451 	FPE_FLTDIV,	/* 3C - DZ | OFL | UFL | IMP */
452 	FPE_FLTINV,	/* 3D - INV | DZ | OFL | UFL | IMP */
453 	FPE_FLTDIV,	/* 3E - DNML | DZ | OFL | UFL | IMP */
454 	FPE_FLTINV,	/* 3F - INV | DNML | DZ | OFL | UFL | IMP */
455 	FPE_FLTSUB,	/* 40 - STK */
456 	FPE_FLTSUB,	/* 41 - INV | STK */
457 	FPE_FLTUND,	/* 42 - DNML | STK */
458 	FPE_FLTSUB,	/* 43 - INV | DNML | STK */
459 	FPE_FLTDIV,	/* 44 - DZ | STK */
460 	FPE_FLTSUB,	/* 45 - INV | DZ | STK */
461 	FPE_FLTDIV,	/* 46 - DNML | DZ | STK */
462 	FPE_FLTSUB,	/* 47 - INV | DNML | DZ | STK */
463 	FPE_FLTOVF,	/* 48 - OFL | STK */
464 	FPE_FLTSUB,	/* 49 - INV | OFL | STK */
465 	FPE_FLTUND,	/* 4A - DNML | OFL | STK */
466 	FPE_FLTSUB,	/* 4B - INV | DNML | OFL | STK */
467 	FPE_FLTDIV,	/* 4C - DZ | OFL | STK */
468 	FPE_FLTSUB,	/* 4D - INV | DZ | OFL | STK */
469 	FPE_FLTDIV,	/* 4E - DNML | DZ | OFL | STK */
470 	FPE_FLTSUB,	/* 4F - INV | DNML | DZ | OFL | STK */
471 	FPE_FLTUND,	/* 50 - UFL | STK */
472 	FPE_FLTSUB,	/* 51 - INV | UFL | STK */
473 	FPE_FLTUND,	/* 52 - DNML | UFL | STK */
474 	FPE_FLTSUB,	/* 53 - INV | DNML | UFL | STK */
475 	FPE_FLTDIV,	/* 54 - DZ | UFL | STK */
476 	FPE_FLTSUB,	/* 55 - INV | DZ | UFL | STK */
477 	FPE_FLTDIV,	/* 56 - DNML | DZ | UFL | STK */
478 	FPE_FLTSUB,	/* 57 - INV | DNML | DZ | UFL | STK */
479 	FPE_FLTOVF,	/* 58 - OFL | UFL | STK */
480 	FPE_FLTSUB,	/* 59 - INV | OFL | UFL | STK */
481 	FPE_FLTUND,	/* 5A - DNML | OFL | UFL | STK */
482 	FPE_FLTSUB,	/* 5B - INV | DNML | OFL | UFL | STK */
483 	FPE_FLTDIV,	/* 5C - DZ | OFL | UFL | STK */
484 	FPE_FLTSUB,	/* 5D - INV | DZ | OFL | UFL | STK */
485 	FPE_FLTDIV,	/* 5E - DNML | DZ | OFL | UFL | STK */
486 	FPE_FLTSUB,	/* 5F - INV | DNML | DZ | OFL | UFL | STK */
487 	FPE_FLTRES,	/* 60 - IMP | STK */
488 	FPE_FLTSUB,	/* 61 - INV | IMP | STK */
489 	FPE_FLTUND,	/* 62 - DNML | IMP | STK */
490 	FPE_FLTSUB,	/* 63 - INV | DNML | IMP | STK */
491 	FPE_FLTDIV,	/* 64 - DZ | IMP | STK */
492 	FPE_FLTSUB,	/* 65 - INV | DZ | IMP | STK */
493 	FPE_FLTDIV,	/* 66 - DNML | DZ | IMP | STK */
494 	FPE_FLTSUB,	/* 67 - INV | DNML | DZ | IMP | STK */
495 	FPE_FLTOVF,	/* 68 - OFL | IMP | STK */
496 	FPE_FLTSUB,	/* 69 - INV | OFL | IMP | STK */
497 	FPE_FLTUND,	/* 6A - DNML | OFL | IMP | STK */
498 	FPE_FLTSUB,	/* 6B - INV | DNML | OFL | IMP | STK */
499 	FPE_FLTDIV,	/* 6C - DZ | OFL | IMP | STK */
500 	FPE_FLTSUB,	/* 6D - INV | DZ | OFL | IMP | STK */
501 	FPE_FLTDIV,	/* 6E - DNML | DZ | OFL | IMP | STK */
502 	FPE_FLTSUB,	/* 6F - INV | DNML | DZ | OFL | IMP | STK */
503 	FPE_FLTUND,	/* 70 - UFL | IMP | STK */
504 	FPE_FLTSUB,	/* 71 - INV | UFL | IMP | STK */
505 	FPE_FLTUND,	/* 72 - DNML | UFL | IMP | STK */
506 	FPE_FLTSUB,	/* 73 - INV | DNML | UFL | IMP | STK */
507 	FPE_FLTDIV,	/* 74 - DZ | UFL | IMP | STK */
508 	FPE_FLTSUB,	/* 75 - INV | DZ | UFL | IMP | STK */
509 	FPE_FLTDIV,	/* 76 - DNML | DZ | UFL | IMP | STK */
510 	FPE_FLTSUB,	/* 77 - INV | DNML | DZ | UFL | IMP | STK */
511 	FPE_FLTOVF,	/* 78 - OFL | UFL | IMP | STK */
512 	FPE_FLTSUB,	/* 79 - INV | OFL | UFL | IMP | STK */
513 	FPE_FLTUND,	/* 7A - DNML | OFL | UFL | IMP | STK */
514 	FPE_FLTSUB,	/* 7B - INV | DNML | OFL | UFL | IMP | STK */
515 	FPE_FLTDIV,	/* 7C - DZ | OFL | UFL | IMP | STK */
516 	FPE_FLTSUB,	/* 7D - INV | DZ | OFL | UFL | IMP | STK */
517 	FPE_FLTDIV,	/* 7E - DNML | DZ | OFL | UFL | IMP | STK */
518 	FPE_FLTSUB,	/* 7F - INV | DNML | DZ | OFL | UFL | IMP | STK */
519 };
520 
521 /*
522  * Read the FP status and control words, then generate si_code value
523  * for SIGFPE.  The error code chosen will be one of the
524  * FPE_... macros.  It will be sent as the second argument to old
525  * BSD-style signal handlers and as "siginfo_t->si_code" (second
526  * argument) to SA_SIGINFO signal handlers.
527  *
528  * Some time ago, we cleared the x87 exceptions with FNCLEX there.
529  * Clearing exceptions was necessary mainly to avoid IRQ13 bugs.  The
530  * usermode code which understands the FPU hardware enough to enable
531  * the exceptions, can also handle clearing the exception state in the
532  * handler.  The only consequence of not clearing the exception is the
533  * rethrow of the SIGFPE on return from the signal handler and
534  * reexecution of the corresponding instruction.
535  *
536  * For XMM traps, the exceptions were never cleared.
537  */
538 int
539 fputrap_x87(void)
540 {
541 	struct savefpu *pcb_save;
542 	u_short control, status;
543 
544 	critical_enter();
545 
546 	/*
547 	 * Interrupt handling (for another interrupt) may have pushed the
548 	 * state to memory.  Fetch the relevant parts of the state from
549 	 * wherever they are.
550 	 */
551 	if (PCPU_GET(fpcurthread) != curthread) {
552 		pcb_save = curpcb->pcb_save;
553 		control = pcb_save->sv_env.en_cw;
554 		status = pcb_save->sv_env.en_sw;
555 	} else {
556 		fnstcw(&control);
557 		fnstsw(&status);
558 	}
559 
560 	critical_exit();
561 	return (fpetable[status & ((~control & 0x3f) | 0x40)]);
562 }
563 
564 int
565 fputrap_sse(void)
566 {
567 	u_int mxcsr;
568 
569 	critical_enter();
570 	if (PCPU_GET(fpcurthread) != curthread)
571 		mxcsr = curpcb->pcb_save->sv_env.en_mxcsr;
572 	else
573 		stmxcsr(&mxcsr);
574 	critical_exit();
575 	return (fpetable[(mxcsr & (~mxcsr >> 7)) & 0x3f]);
576 }
577 
578 /*
579  * Implement device not available (DNA) exception
580  *
581  * It would be better to switch FP context here (if curthread != fpcurthread)
582  * and not necessarily for every context switch, but it is too hard to
583  * access foreign pcb's.
584  */
585 
586 static int err_count = 0;
587 
588 void
589 fpudna(void)
590 {
591 
592 	critical_enter();
593 	if (PCPU_GET(fpcurthread) == curthread) {
594 		printf("fpudna: fpcurthread == curthread %d times\n",
595 		    ++err_count);
596 		stop_emulating();
597 		critical_exit();
598 		return;
599 	}
600 	if (PCPU_GET(fpcurthread) != NULL) {
601 		printf("fpudna: fpcurthread = %p (%d), curthread = %p (%d)\n",
602 		       PCPU_GET(fpcurthread),
603 		       PCPU_GET(fpcurthread)->td_proc->p_pid,
604 		       curthread, curthread->td_proc->p_pid);
605 		panic("fpudna");
606 	}
607 	stop_emulating();
608 	/*
609 	 * Record new context early in case frstor causes a trap.
610 	 */
611 	PCPU_SET(fpcurthread, curthread);
612 
613 	fpu_clean_state();
614 
615 	if ((curpcb->pcb_flags & PCB_FPUINITDONE) == 0) {
616 		/*
617 		 * This is the first time this thread has used the FPU or
618 		 * the PCB doesn't contain a clean FPU state.  Explicitly
619 		 * load an initial state.
620 		 *
621 		 * We prefer to restore the state from the actual save
622 		 * area in PCB instead of directly loading from
623 		 * fpu_initialstate, to ignite the XSAVEOPT
624 		 * tracking engine.
625 		 */
626 		bcopy(fpu_initialstate, curpcb->pcb_save, cpu_max_ext_state_size);
627 		fpurestore(curpcb->pcb_save);
628 		if (curpcb->pcb_initial_fpucw != __INITIAL_FPUCW__)
629 			fldcw(curpcb->pcb_initial_fpucw);
630 		if (PCB_USER_FPU(curpcb))
631 			set_pcb_flags(curpcb,
632 			    PCB_FPUINITDONE | PCB_USERFPUINITDONE);
633 		else
634 			set_pcb_flags(curpcb, PCB_FPUINITDONE);
635 	} else
636 		fpurestore(curpcb->pcb_save);
637 	critical_exit();
638 }
639 
640 void
641 fpudrop()
642 {
643 	struct thread *td;
644 
645 	td = PCPU_GET(fpcurthread);
646 	KASSERT(td == curthread, ("fpudrop: fpcurthread != curthread"));
647 	CRITICAL_ASSERT(td);
648 	PCPU_SET(fpcurthread, NULL);
649 	clear_pcb_flags(td->td_pcb, PCB_FPUINITDONE);
650 	start_emulating();
651 }
652 
653 /*
654  * Get the user state of the FPU into pcb->pcb_user_save without
655  * dropping ownership (if possible).  It returns the FPU ownership
656  * status.
657  */
658 int
659 fpugetregs(struct thread *td)
660 {
661 	struct pcb *pcb;
662 	uint64_t *xstate_bv, bit;
663 	char *sa;
664 	int max_ext_n, i;
665 
666 	pcb = td->td_pcb;
667 	if ((pcb->pcb_flags & PCB_USERFPUINITDONE) == 0) {
668 		bcopy(fpu_initialstate, get_pcb_user_save_pcb(pcb),
669 		    cpu_max_ext_state_size);
670 		get_pcb_user_save_pcb(pcb)->sv_env.en_cw =
671 		    pcb->pcb_initial_fpucw;
672 		fpuuserinited(td);
673 		return (_MC_FPOWNED_PCB);
674 	}
675 	critical_enter();
676 	if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
677 		fpusave(get_pcb_user_save_pcb(pcb));
678 		critical_exit();
679 		return (_MC_FPOWNED_FPU);
680 	} else {
681 		critical_exit();
682 		if (use_xsaveopt) {
683 			/*
684 			 * Handle partially saved state.
685 			 */
686 			sa = (char *)get_pcb_user_save_pcb(pcb);
687 			xstate_bv = (uint64_t *)(sa + sizeof(struct savefpu) +
688 			    offsetof(struct xstate_hdr, xstate_bv));
689 			max_ext_n = flsl(xsave_mask);
690 			for (i = 0; i < max_ext_n; i++) {
691 				bit = 1 << i;
692 				if ((*xstate_bv & bit) != 0)
693 					continue;
694 				bcopy((char *)fpu_initialstate +
695 				    xsave_area_desc[i].offset,
696 				    sa + xsave_area_desc[i].offset,
697 				    xsave_area_desc[i].size);
698 				*xstate_bv |= bit;
699 			}
700 		}
701 		return (_MC_FPOWNED_PCB);
702 	}
703 }
704 
705 void
706 fpuuserinited(struct thread *td)
707 {
708 	struct pcb *pcb;
709 
710 	pcb = td->td_pcb;
711 	if (PCB_USER_FPU(pcb))
712 		set_pcb_flags(pcb,
713 		    PCB_FPUINITDONE | PCB_USERFPUINITDONE);
714 	else
715 		set_pcb_flags(pcb, PCB_FPUINITDONE);
716 }
717 
718 int
719 fpusetxstate(struct thread *td, char *xfpustate, size_t xfpustate_size)
720 {
721 	struct xstate_hdr *hdr, *ehdr;
722 	size_t len, max_len;
723 	uint64_t bv;
724 
725 	/* XXXKIB should we clear all extended state in xstate_bv instead ? */
726 	if (xfpustate == NULL)
727 		return (0);
728 	if (!use_xsave)
729 		return (EOPNOTSUPP);
730 
731 	len = xfpustate_size;
732 	if (len < sizeof(struct xstate_hdr))
733 		return (EINVAL);
734 	max_len = cpu_max_ext_state_size - sizeof(struct savefpu);
735 	if (len > max_len)
736 		return (EINVAL);
737 
738 	ehdr = (struct xstate_hdr *)xfpustate;
739 	bv = ehdr->xstate_bv;
740 
741 	/*
742 	 * Avoid #gp.
743 	 */
744 	if (bv & ~xsave_mask)
745 		return (EINVAL);
746 	if ((bv & (XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE)) !=
747 	    (XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE))
748 		return (EINVAL);
749 
750 	hdr = (struct xstate_hdr *)(get_pcb_user_save_td(td) + 1);
751 
752 	hdr->xstate_bv = bv;
753 	bcopy(xfpustate + sizeof(struct xstate_hdr),
754 	    (char *)(hdr + 1), len - sizeof(struct xstate_hdr));
755 
756 	return (0);
757 }
758 
759 /*
760  * Set the state of the FPU.
761  */
762 int
763 fpusetregs(struct thread *td, struct savefpu *addr, char *xfpustate,
764     size_t xfpustate_size)
765 {
766 	struct pcb *pcb;
767 	int error;
768 
769 	pcb = td->td_pcb;
770 	critical_enter();
771 	if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
772 		error = fpusetxstate(td, xfpustate, xfpustate_size);
773 		if (error != 0) {
774 			critical_exit();
775 			return (error);
776 		}
777 		bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
778 		fpurestore(get_pcb_user_save_td(td));
779 		critical_exit();
780 		set_pcb_flags(pcb, PCB_FPUINITDONE | PCB_USERFPUINITDONE);
781 	} else {
782 		critical_exit();
783 		error = fpusetxstate(td, xfpustate, xfpustate_size);
784 		if (error != 0)
785 			return (error);
786 		bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
787 		fpuuserinited(td);
788 	}
789 	return (0);
790 }
791 
792 /*
793  * On AuthenticAMD processors, the fxrstor instruction does not restore
794  * the x87's stored last instruction pointer, last data pointer, and last
795  * opcode values, except in the rare case in which the exception summary
796  * (ES) bit in the x87 status word is set to 1.
797  *
798  * In order to avoid leaking this information across processes, we clean
799  * these values by performing a dummy load before executing fxrstor().
800  */
801 static void
802 fpu_clean_state(void)
803 {
804 	static float dummy_variable = 0.0;
805 	u_short status;
806 
807 	/*
808 	 * Clear the ES bit in the x87 status word if it is currently
809 	 * set, in order to avoid causing a fault in the upcoming load.
810 	 */
811 	fnstsw(&status);
812 	if (status & 0x80)
813 		fnclex();
814 
815 	/*
816 	 * Load the dummy variable into the x87 stack.  This mangles
817 	 * the x87 stack, but we don't care since we're about to call
818 	 * fxrstor() anyway.
819 	 */
820 	__asm __volatile("ffree %%st(7); flds %0" : : "m" (dummy_variable));
821 }
822 
823 /*
824  * This really sucks.  We want the acpi version only, but it requires
825  * the isa_if.h file in order to get the definitions.
826  */
827 #include "opt_isa.h"
828 #ifdef DEV_ISA
829 #include <isa/isavar.h>
830 /*
831  * This sucks up the legacy ISA support assignments from PNPBIOS/ACPI.
832  */
833 static struct isa_pnp_id fpupnp_ids[] = {
834 	{ 0x040cd041, "Legacy ISA coprocessor support" }, /* PNP0C04 */
835 	{ 0 }
836 };
837 
838 static int
839 fpupnp_probe(device_t dev)
840 {
841 	int result;
842 
843 	result = ISA_PNP_PROBE(device_get_parent(dev), dev, fpupnp_ids);
844 	if (result <= 0)
845 		device_quiet(dev);
846 	return (result);
847 }
848 
849 static int
850 fpupnp_attach(device_t dev)
851 {
852 
853 	return (0);
854 }
855 
856 static device_method_t fpupnp_methods[] = {
857 	/* Device interface */
858 	DEVMETHOD(device_probe,		fpupnp_probe),
859 	DEVMETHOD(device_attach,	fpupnp_attach),
860 	DEVMETHOD(device_detach,	bus_generic_detach),
861 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
862 	DEVMETHOD(device_suspend,	bus_generic_suspend),
863 	DEVMETHOD(device_resume,	bus_generic_resume),
864 
865 	{ 0, 0 }
866 };
867 
868 static driver_t fpupnp_driver = {
869 	"fpupnp",
870 	fpupnp_methods,
871 	1,			/* no softc */
872 };
873 
874 static devclass_t fpupnp_devclass;
875 
876 DRIVER_MODULE(fpupnp, acpi, fpupnp_driver, fpupnp_devclass, 0, 0);
877 #endif	/* DEV_ISA */
878 
879 static MALLOC_DEFINE(M_FPUKERN_CTX, "fpukern_ctx",
880     "Kernel contexts for FPU state");
881 
882 #define	FPU_KERN_CTX_FPUINITDONE 0x01
883 
884 struct fpu_kern_ctx {
885 	struct savefpu *prev;
886 	uint32_t flags;
887 	char hwstate1[];
888 };
889 
890 struct fpu_kern_ctx *
891 fpu_kern_alloc_ctx(u_int flags)
892 {
893 	struct fpu_kern_ctx *res;
894 	size_t sz;
895 
896 	sz = sizeof(struct fpu_kern_ctx) + XSAVE_AREA_ALIGN +
897 	    cpu_max_ext_state_size;
898 	res = malloc(sz, M_FPUKERN_CTX, ((flags & FPU_KERN_NOWAIT) ?
899 	    M_NOWAIT : M_WAITOK) | M_ZERO);
900 	return (res);
901 }
902 
903 void
904 fpu_kern_free_ctx(struct fpu_kern_ctx *ctx)
905 {
906 
907 	/* XXXKIB clear the memory ? */
908 	free(ctx, M_FPUKERN_CTX);
909 }
910 
911 static struct savefpu *
912 fpu_kern_ctx_savefpu(struct fpu_kern_ctx *ctx)
913 {
914 	vm_offset_t p;
915 
916 	p = (vm_offset_t)&ctx->hwstate1;
917 	p = roundup2(p, XSAVE_AREA_ALIGN);
918 	return ((struct savefpu *)p);
919 }
920 
921 int
922 fpu_kern_enter(struct thread *td, struct fpu_kern_ctx *ctx, u_int flags)
923 {
924 	struct pcb *pcb;
925 
926 	pcb = td->td_pcb;
927 	KASSERT(!PCB_USER_FPU(pcb) || pcb->pcb_save ==
928 	    get_pcb_user_save_pcb(pcb), ("mangled pcb_save"));
929 	ctx->flags = 0;
930 	if ((pcb->pcb_flags & PCB_FPUINITDONE) != 0)
931 		ctx->flags |= FPU_KERN_CTX_FPUINITDONE;
932 	fpuexit(td);
933 	ctx->prev = pcb->pcb_save;
934 	pcb->pcb_save = fpu_kern_ctx_savefpu(ctx);
935 	set_pcb_flags(pcb, PCB_KERNFPU);
936 	clear_pcb_flags(pcb, PCB_FPUINITDONE);
937 	return (0);
938 }
939 
940 int
941 fpu_kern_leave(struct thread *td, struct fpu_kern_ctx *ctx)
942 {
943 	struct pcb *pcb;
944 
945 	pcb = td->td_pcb;
946 	critical_enter();
947 	if (curthread == PCPU_GET(fpcurthread))
948 		fpudrop();
949 	critical_exit();
950 	pcb->pcb_save = ctx->prev;
951 	if (pcb->pcb_save == get_pcb_user_save_pcb(pcb)) {
952 		if ((pcb->pcb_flags & PCB_USERFPUINITDONE) != 0) {
953 			set_pcb_flags(pcb, PCB_FPUINITDONE);
954 			clear_pcb_flags(pcb, PCB_KERNFPU);
955 		} else
956 			clear_pcb_flags(pcb, PCB_FPUINITDONE | PCB_KERNFPU);
957 	} else {
958 		if ((ctx->flags & FPU_KERN_CTX_FPUINITDONE) != 0)
959 			set_pcb_flags(pcb, PCB_FPUINITDONE);
960 		else
961 			clear_pcb_flags(pcb, PCB_FPUINITDONE);
962 		KASSERT(!PCB_USER_FPU(pcb), ("unpaired fpu_kern_leave"));
963 	}
964 	return (0);
965 }
966 
967 int
968 fpu_kern_thread(u_int flags)
969 {
970 
971 	KASSERT((curthread->td_pflags & TDP_KTHREAD) != 0,
972 	    ("Only kthread may use fpu_kern_thread"));
973 	KASSERT(curpcb->pcb_save == get_pcb_user_save_pcb(curpcb),
974 	    ("mangled pcb_save"));
975 	KASSERT(PCB_USER_FPU(curpcb), ("recursive call"));
976 
977 	set_pcb_flags(curpcb, PCB_KERNFPU);
978 	return (0);
979 }
980 
981 int
982 is_fpu_kern_thread(u_int flags)
983 {
984 
985 	if ((curthread->td_pflags & TDP_KTHREAD) == 0)
986 		return (0);
987 	return ((curpcb->pcb_flags & PCB_KERNFPU) != 0);
988 }
989 
990 /*
991  * FPU save area alloc/free/init utility routines
992  */
993 struct savefpu *
994 fpu_save_area_alloc(void)
995 {
996 
997 	return (uma_zalloc(fpu_save_area_zone, 0));
998 }
999 
1000 void
1001 fpu_save_area_free(struct savefpu *fsa)
1002 {
1003 
1004 	uma_zfree(fpu_save_area_zone, fsa);
1005 }
1006 
1007 void
1008 fpu_save_area_reset(struct savefpu *fsa)
1009 {
1010 
1011 	bcopy(fpu_initialstate, fsa, cpu_max_ext_state_size);
1012 }
1013