xref: /freebsd/sys/amd64/amd64/fpu.c (revision 4d65a7c6951cea0333f1a0c1b32c38489cdfa6c5)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1990 William Jolitz.
5  * Copyright (c) 1991 The Regents of the University of California.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/bus.h>
36 #include <sys/domainset.h>
37 #include <sys/kernel.h>
38 #include <sys/lock.h>
39 #include <sys/malloc.h>
40 #include <sys/module.h>
41 #include <sys/mutex.h>
42 #include <sys/mutex.h>
43 #include <sys/proc.h>
44 #include <sys/sysctl.h>
45 #include <sys/sysent.h>
46 #include <sys/tslog.h>
47 #include <machine/bus.h>
48 #include <sys/rman.h>
49 #include <sys/signalvar.h>
50 #include <vm/uma.h>
51 
52 #include <machine/cputypes.h>
53 #include <machine/frame.h>
54 #include <machine/intr_machdep.h>
55 #include <machine/md_var.h>
56 #include <machine/pcb.h>
57 #include <machine/psl.h>
58 #include <machine/resource.h>
59 #include <machine/specialreg.h>
60 #include <machine/segments.h>
61 #include <machine/ucontext.h>
62 #include <x86/ifunc.h>
63 
64 /*
65  * Floating point support.
66  */
67 
68 #define	fldcw(cw)		__asm __volatile("fldcw %0" : : "m" (cw))
69 #define	fnclex()		__asm __volatile("fnclex")
70 #define	fninit()		__asm __volatile("fninit")
71 #define	fnstcw(addr)		__asm __volatile("fnstcw %0" : "=m" (*(addr)))
72 #define	fnstsw(addr)		__asm __volatile("fnstsw %0" : "=am" (*(addr)))
73 #define	fxrstor(addr)		__asm __volatile("fxrstor %0" : : "m" (*(addr)))
74 #define	fxsave(addr)		__asm __volatile("fxsave %0" : "=m" (*(addr)))
75 #define	ldmxcsr(csr)		__asm __volatile("ldmxcsr %0" : : "m" (csr))
76 #define	stmxcsr(addr)		__asm __volatile("stmxcsr %0" : "=m" (*(addr)))
77 
78 static __inline void
79 xrstor32(char *addr, uint64_t mask)
80 {
81 	uint32_t low, hi;
82 
83 	low = mask;
84 	hi = mask >> 32;
85 	__asm __volatile("xrstor %0" : : "m" (*addr), "a" (low), "d" (hi));
86 }
87 
88 static __inline void
89 xrstor64(char *addr, uint64_t mask)
90 {
91 	uint32_t low, hi;
92 
93 	low = mask;
94 	hi = mask >> 32;
95 	__asm __volatile("xrstor64 %0" : : "m" (*addr), "a" (low), "d" (hi));
96 }
97 
98 static __inline void
99 xsave32(char *addr, uint64_t mask)
100 {
101 	uint32_t low, hi;
102 
103 	low = mask;
104 	hi = mask >> 32;
105 	__asm __volatile("xsave %0" : "=m" (*addr) : "a" (low), "d" (hi) :
106 	    "memory");
107 }
108 
109 static __inline void
110 xsave64(char *addr, uint64_t mask)
111 {
112 	uint32_t low, hi;
113 
114 	low = mask;
115 	hi = mask >> 32;
116 	__asm __volatile("xsave64 %0" : "=m" (*addr) : "a" (low), "d" (hi) :
117 	    "memory");
118 }
119 
120 static __inline void
121 xsaveopt32(char *addr, uint64_t mask)
122 {
123 	uint32_t low, hi;
124 
125 	low = mask;
126 	hi = mask >> 32;
127 	__asm __volatile("xsaveopt %0" : "=m" (*addr) : "a" (low), "d" (hi) :
128 	    "memory");
129 }
130 
131 static __inline void
132 xsaveopt64(char *addr, uint64_t mask)
133 {
134 	uint32_t low, hi;
135 
136 	low = mask;
137 	hi = mask >> 32;
138 	__asm __volatile("xsaveopt64 %0" : "=m" (*addr) : "a" (low), "d" (hi) :
139 	    "memory");
140 }
141 
142 CTASSERT(sizeof(struct savefpu) == 512);
143 CTASSERT(sizeof(struct xstate_hdr) == 64);
144 CTASSERT(sizeof(struct savefpu_ymm) == 832);
145 
146 /*
147  * This requirement is to make it easier for asm code to calculate
148  * offset of the fpu save area from the pcb address. FPU save area
149  * must be 64-byte aligned.
150  */
151 CTASSERT(sizeof(struct pcb) % XSAVE_AREA_ALIGN == 0);
152 
153 /*
154  * Ensure the copy of XCR0 saved in a core is contained in the padding
155  * area.
156  */
157 CTASSERT(X86_XSTATE_XCR0_OFFSET >= offsetof(struct savefpu, sv_pad) &&
158     X86_XSTATE_XCR0_OFFSET + sizeof(uint64_t) <= sizeof(struct savefpu));
159 
160 static	void	fpu_clean_state(void);
161 
162 SYSCTL_INT(_hw, HW_FLOATINGPT, floatingpoint, CTLFLAG_RD,
163     SYSCTL_NULL_INT_PTR, 1, "Floating point instructions executed in hardware");
164 
165 int use_xsave;			/* non-static for cpu_switch.S */
166 uint64_t xsave_mask;		/* the same */
167 static	uma_zone_t fpu_save_area_zone;
168 static	struct savefpu *fpu_initialstate;
169 
170 static struct xsave_area_elm_descr {
171 	u_int	offset;
172 	u_int	size;
173 } *xsave_area_desc;
174 
175 static void
176 fpusave_xsaveopt64(void *addr)
177 {
178 	xsaveopt64((char *)addr, xsave_mask);
179 }
180 
181 static void
182 fpusave_xsaveopt3264(void *addr)
183 {
184 	if (SV_CURPROC_FLAG(SV_ILP32))
185 		xsaveopt32((char *)addr, xsave_mask);
186 	else
187 		xsaveopt64((char *)addr, xsave_mask);
188 }
189 
190 static void
191 fpusave_xsave64(void *addr)
192 {
193 	xsave64((char *)addr, xsave_mask);
194 }
195 
196 static void
197 fpusave_xsave3264(void *addr)
198 {
199 	if (SV_CURPROC_FLAG(SV_ILP32))
200 		xsave32((char *)addr, xsave_mask);
201 	else
202 		xsave64((char *)addr, xsave_mask);
203 }
204 
205 static void
206 fpurestore_xrstor64(void *addr)
207 {
208 	xrstor64((char *)addr, xsave_mask);
209 }
210 
211 static void
212 fpurestore_xrstor3264(void *addr)
213 {
214 	if (SV_CURPROC_FLAG(SV_ILP32))
215 		xrstor32((char *)addr, xsave_mask);
216 	else
217 		xrstor64((char *)addr, xsave_mask);
218 }
219 
220 static void
221 fpusave_fxsave(void *addr)
222 {
223 
224 	fxsave((char *)addr);
225 }
226 
227 static void
228 fpurestore_fxrstor(void *addr)
229 {
230 
231 	fxrstor((char *)addr);
232 }
233 
234 DEFINE_IFUNC(, void, fpusave, (void *))
235 {
236 	if (!use_xsave)
237 		return (fpusave_fxsave);
238 	if ((cpu_stdext_feature & CPUID_EXTSTATE_XSAVEOPT) != 0) {
239 		return ((cpu_stdext_feature & CPUID_STDEXT_NFPUSG) != 0 ?
240 		    fpusave_xsaveopt64 : fpusave_xsaveopt3264);
241 	}
242 	return ((cpu_stdext_feature & CPUID_STDEXT_NFPUSG) != 0 ?
243 	    fpusave_xsave64 : fpusave_xsave3264);
244 }
245 
246 DEFINE_IFUNC(, void, fpurestore, (void *))
247 {
248 	if (!use_xsave)
249 		return (fpurestore_fxrstor);
250 	return ((cpu_stdext_feature & CPUID_STDEXT_NFPUSG) != 0 ?
251 	    fpurestore_xrstor64 : fpurestore_xrstor3264);
252 }
253 
254 void
255 fpususpend(void *addr)
256 {
257 	u_long cr0;
258 
259 	cr0 = rcr0();
260 	fpu_enable();
261 	fpusave(addr);
262 	load_cr0(cr0);
263 }
264 
265 void
266 fpuresume(void *addr)
267 {
268 	u_long cr0;
269 
270 	cr0 = rcr0();
271 	fpu_enable();
272 	fninit();
273 	if (use_xsave)
274 		load_xcr(XCR0, xsave_mask);
275 	fpurestore(addr);
276 	load_cr0(cr0);
277 }
278 
279 /*
280  * Enable XSAVE if supported and allowed by user.
281  * Calculate the xsave_mask.
282  */
283 static void
284 fpuinit_bsp1(void)
285 {
286 	u_int cp[4];
287 	uint64_t xsave_mask_user;
288 	bool old_wp;
289 
290 	if (!use_xsave)
291 		return;
292 	cpuid_count(0xd, 0x0, cp);
293 	xsave_mask = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
294 	if ((cp[0] & xsave_mask) != xsave_mask)
295 		panic("CPU0 does not support X87 or SSE: %x", cp[0]);
296 	xsave_mask = ((uint64_t)cp[3] << 32) | cp[0];
297 	xsave_mask_user = xsave_mask;
298 	TUNABLE_ULONG_FETCH("hw.xsave_mask", &xsave_mask_user);
299 	xsave_mask_user |= XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
300 	xsave_mask &= xsave_mask_user;
301 	if ((xsave_mask & XFEATURE_AVX512) != XFEATURE_AVX512)
302 		xsave_mask &= ~XFEATURE_AVX512;
303 	if ((xsave_mask & XFEATURE_MPX) != XFEATURE_MPX)
304 		xsave_mask &= ~XFEATURE_MPX;
305 
306 	cpuid_count(0xd, 0x1, cp);
307 	if ((cp[0] & CPUID_EXTSTATE_XSAVEOPT) != 0) {
308 		/*
309 		 * Patch the XSAVE instruction in the cpu_switch code
310 		 * to XSAVEOPT.  We assume that XSAVE encoding used
311 		 * REX byte, and set the bit 4 of the r/m byte.
312 		 *
313 		 * It seems that some BIOSes give control to the OS
314 		 * with CR0.WP already set, making the kernel text
315 		 * read-only before cpu_startup().
316 		 */
317 		old_wp = disable_wp();
318 		ctx_switch_xsave32[3] |= 0x10;
319 		ctx_switch_xsave[3] |= 0x10;
320 		restore_wp(old_wp);
321 	}
322 }
323 
324 /*
325  * Calculate the fpu save area size.
326  */
327 static void
328 fpuinit_bsp2(void)
329 {
330 	u_int cp[4];
331 
332 	if (use_xsave) {
333 		cpuid_count(0xd, 0x0, cp);
334 		cpu_max_ext_state_size = cp[1];
335 
336 		/*
337 		 * Reload the cpu_feature2, since we enabled OSXSAVE.
338 		 */
339 		do_cpuid(1, cp);
340 		cpu_feature2 = cp[2];
341 	} else
342 		cpu_max_ext_state_size = sizeof(struct savefpu);
343 }
344 
345 /*
346  * Initialize the floating point unit.
347  */
348 void
349 fpuinit(void)
350 {
351 	register_t saveintr;
352 	uint64_t cr4;
353 	u_int mxcsr;
354 	u_short control;
355 
356 	TSENTER();
357 	if (IS_BSP())
358 		fpuinit_bsp1();
359 
360 	if (use_xsave) {
361 		cr4 = rcr4();
362 
363 		/*
364 		 * Revert enablement of PKRU if user disabled its
365 		 * saving on context switches by clearing the bit in
366 		 * the xsave mask.  Also redundantly clear the bit in
367 		 * cpu_stdext_feature2 to prevent pmap from ever
368 		 * trying to set the page table bits.
369 		 */
370 		if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0 &&
371 		    (xsave_mask & XFEATURE_ENABLED_PKRU) == 0) {
372 			cr4 &= ~CR4_PKE;
373 			cpu_stdext_feature2 &= ~CPUID_STDEXT2_PKU;
374 		}
375 
376 		load_cr4(cr4 | CR4_XSAVE);
377 		load_xcr(XCR0, xsave_mask);
378 	}
379 
380 	/*
381 	 * XCR0 shall be set up before CPU can report the save area size.
382 	 */
383 	if (IS_BSP())
384 		fpuinit_bsp2();
385 
386 	/*
387 	 * It is too early for critical_enter() to work on AP.
388 	 */
389 	saveintr = intr_disable();
390 	fpu_enable();
391 	fninit();
392 	control = __INITIAL_FPUCW__;
393 	fldcw(control);
394 	mxcsr = __INITIAL_MXCSR__;
395 	ldmxcsr(mxcsr);
396 	fpu_disable();
397 	intr_restore(saveintr);
398 	TSEXIT();
399 }
400 
401 /*
402  * On the boot CPU we generate a clean state that is used to
403  * initialize the floating point unit when it is first used by a
404  * process.
405  */
406 static void
407 fpuinitstate(void *arg __unused)
408 {
409 	uint64_t *xstate_bv;
410 	register_t saveintr;
411 	int cp[4], i, max_ext_n;
412 
413 	/* Do potentially blocking operations before disabling interrupts. */
414 	fpu_save_area_zone = uma_zcreate("FPU_save_area",
415 	    cpu_max_ext_state_size, NULL, NULL, NULL, NULL,
416 	    XSAVE_AREA_ALIGN - 1, 0);
417 	fpu_initialstate = uma_zalloc(fpu_save_area_zone, M_WAITOK | M_ZERO);
418 	if (use_xsave) {
419 		max_ext_n = flsl(xsave_mask);
420 		xsave_area_desc = malloc(max_ext_n * sizeof(struct
421 		    xsave_area_elm_descr), M_DEVBUF, M_WAITOK | M_ZERO);
422 	}
423 
424 	cpu_thread_alloc(&thread0);
425 
426 	saveintr = intr_disable();
427 	fpu_enable();
428 
429 	fpusave_fxsave(fpu_initialstate);
430 	if (fpu_initialstate->sv_env.en_mxcsr_mask)
431 		cpu_mxcsr_mask = fpu_initialstate->sv_env.en_mxcsr_mask;
432 	else
433 		cpu_mxcsr_mask = 0xFFBF;
434 
435 	/*
436 	 * The fninit instruction does not modify XMM registers or x87
437 	 * registers (MM/ST).  The fpusave call dumped the garbage
438 	 * contained in the registers after reset to the initial state
439 	 * saved.  Clear XMM and x87 registers file image to make the
440 	 * startup program state and signal handler XMM/x87 register
441 	 * content predictable.
442 	 */
443 	bzero(fpu_initialstate->sv_fp, sizeof(fpu_initialstate->sv_fp));
444 	bzero(fpu_initialstate->sv_xmm, sizeof(fpu_initialstate->sv_xmm));
445 
446 	/*
447 	 * Create a table describing the layout of the CPU Extended
448 	 * Save Area.  See Intel SDM rev. 075 Vol. 1 13.4.1 "Legacy
449 	 * Region of an XSAVE Area" for the source of offsets/sizes.
450 	 */
451 	if (use_xsave) {
452 		xstate_bv = (uint64_t *)((char *)(fpu_initialstate + 1) +
453 		    offsetof(struct xstate_hdr, xstate_bv));
454 		*xstate_bv = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
455 
456 		/* x87 state */
457 		xsave_area_desc[0].offset = 0;
458 		xsave_area_desc[0].size = 160;
459 		/* XMM */
460 		xsave_area_desc[1].offset = 160;
461 		xsave_area_desc[1].size = 416 - 160;
462 
463 		for (i = 2; i < max_ext_n; i++) {
464 			cpuid_count(0xd, i, cp);
465 			xsave_area_desc[i].offset = cp[1];
466 			xsave_area_desc[i].size = cp[0];
467 		}
468 	}
469 
470 	fpu_disable();
471 	intr_restore(saveintr);
472 }
473 /* EFIRT needs this to be initialized before we can enter our EFI environment */
474 SYSINIT(fpuinitstate, SI_SUB_CPU, SI_ORDER_ANY, fpuinitstate, NULL);
475 
476 /*
477  * Free coprocessor (if we have it).
478  */
479 void
480 fpuexit(struct thread *td)
481 {
482 
483 	critical_enter();
484 	if (curthread == PCPU_GET(fpcurthread)) {
485 		fpu_enable();
486 		fpusave(curpcb->pcb_save);
487 		fpu_disable();
488 		PCPU_SET(fpcurthread, NULL);
489 	}
490 	critical_exit();
491 }
492 
493 int
494 fpuformat(void)
495 {
496 
497 	return (_MC_FPFMT_XMM);
498 }
499 
500 /*
501  * The following mechanism is used to ensure that the FPE_... value
502  * that is passed as a trapcode to the signal handler of the user
503  * process does not have more than one bit set.
504  *
505  * Multiple bits may be set if the user process modifies the control
506  * word while a status word bit is already set.  While this is a sign
507  * of bad coding, we have no choice than to narrow them down to one
508  * bit, since we must not send a trapcode that is not exactly one of
509  * the FPE_ macros.
510  *
511  * The mechanism has a static table with 127 entries.  Each combination
512  * of the 7 FPU status word exception bits directly translates to a
513  * position in this table, where a single FPE_... value is stored.
514  * This FPE_... value stored there is considered the "most important"
515  * of the exception bits and will be sent as the signal code.  The
516  * precedence of the bits is based upon Intel Document "Numerical
517  * Applications", Chapter "Special Computational Situations".
518  *
519  * The macro to choose one of these values does these steps: 1) Throw
520  * away status word bits that cannot be masked.  2) Throw away the bits
521  * currently masked in the control word, assuming the user isn't
522  * interested in them anymore.  3) Reinsert status word bit 7 (stack
523  * fault) if it is set, which cannot be masked but must be presered.
524  * 4) Use the remaining bits to point into the trapcode table.
525  *
526  * The 6 maskable bits in order of their preference, as stated in the
527  * above referenced Intel manual:
528  * 1  Invalid operation (FP_X_INV)
529  * 1a   Stack underflow
530  * 1b   Stack overflow
531  * 1c   Operand of unsupported format
532  * 1d   SNaN operand.
533  * 2  QNaN operand (not an exception, irrelavant here)
534  * 3  Any other invalid-operation not mentioned above or zero divide
535  *      (FP_X_INV, FP_X_DZ)
536  * 4  Denormal operand (FP_X_DNML)
537  * 5  Numeric over/underflow (FP_X_OFL, FP_X_UFL)
538  * 6  Inexact result (FP_X_IMP)
539  */
540 static char fpetable[128] = {
541 	0,
542 	FPE_FLTINV,	/*  1 - INV */
543 	FPE_FLTUND,	/*  2 - DNML */
544 	FPE_FLTINV,	/*  3 - INV | DNML */
545 	FPE_FLTDIV,	/*  4 - DZ */
546 	FPE_FLTINV,	/*  5 - INV | DZ */
547 	FPE_FLTDIV,	/*  6 - DNML | DZ */
548 	FPE_FLTINV,	/*  7 - INV | DNML | DZ */
549 	FPE_FLTOVF,	/*  8 - OFL */
550 	FPE_FLTINV,	/*  9 - INV | OFL */
551 	FPE_FLTUND,	/*  A - DNML | OFL */
552 	FPE_FLTINV,	/*  B - INV | DNML | OFL */
553 	FPE_FLTDIV,	/*  C - DZ | OFL */
554 	FPE_FLTINV,	/*  D - INV | DZ | OFL */
555 	FPE_FLTDIV,	/*  E - DNML | DZ | OFL */
556 	FPE_FLTINV,	/*  F - INV | DNML | DZ | OFL */
557 	FPE_FLTUND,	/* 10 - UFL */
558 	FPE_FLTINV,	/* 11 - INV | UFL */
559 	FPE_FLTUND,	/* 12 - DNML | UFL */
560 	FPE_FLTINV,	/* 13 - INV | DNML | UFL */
561 	FPE_FLTDIV,	/* 14 - DZ | UFL */
562 	FPE_FLTINV,	/* 15 - INV | DZ | UFL */
563 	FPE_FLTDIV,	/* 16 - DNML | DZ | UFL */
564 	FPE_FLTINV,	/* 17 - INV | DNML | DZ | UFL */
565 	FPE_FLTOVF,	/* 18 - OFL | UFL */
566 	FPE_FLTINV,	/* 19 - INV | OFL | UFL */
567 	FPE_FLTUND,	/* 1A - DNML | OFL | UFL */
568 	FPE_FLTINV,	/* 1B - INV | DNML | OFL | UFL */
569 	FPE_FLTDIV,	/* 1C - DZ | OFL | UFL */
570 	FPE_FLTINV,	/* 1D - INV | DZ | OFL | UFL */
571 	FPE_FLTDIV,	/* 1E - DNML | DZ | OFL | UFL */
572 	FPE_FLTINV,	/* 1F - INV | DNML | DZ | OFL | UFL */
573 	FPE_FLTRES,	/* 20 - IMP */
574 	FPE_FLTINV,	/* 21 - INV | IMP */
575 	FPE_FLTUND,	/* 22 - DNML | IMP */
576 	FPE_FLTINV,	/* 23 - INV | DNML | IMP */
577 	FPE_FLTDIV,	/* 24 - DZ | IMP */
578 	FPE_FLTINV,	/* 25 - INV | DZ | IMP */
579 	FPE_FLTDIV,	/* 26 - DNML | DZ | IMP */
580 	FPE_FLTINV,	/* 27 - INV | DNML | DZ | IMP */
581 	FPE_FLTOVF,	/* 28 - OFL | IMP */
582 	FPE_FLTINV,	/* 29 - INV | OFL | IMP */
583 	FPE_FLTUND,	/* 2A - DNML | OFL | IMP */
584 	FPE_FLTINV,	/* 2B - INV | DNML | OFL | IMP */
585 	FPE_FLTDIV,	/* 2C - DZ | OFL | IMP */
586 	FPE_FLTINV,	/* 2D - INV | DZ | OFL | IMP */
587 	FPE_FLTDIV,	/* 2E - DNML | DZ | OFL | IMP */
588 	FPE_FLTINV,	/* 2F - INV | DNML | DZ | OFL | IMP */
589 	FPE_FLTUND,	/* 30 - UFL | IMP */
590 	FPE_FLTINV,	/* 31 - INV | UFL | IMP */
591 	FPE_FLTUND,	/* 32 - DNML | UFL | IMP */
592 	FPE_FLTINV,	/* 33 - INV | DNML | UFL | IMP */
593 	FPE_FLTDIV,	/* 34 - DZ | UFL | IMP */
594 	FPE_FLTINV,	/* 35 - INV | DZ | UFL | IMP */
595 	FPE_FLTDIV,	/* 36 - DNML | DZ | UFL | IMP */
596 	FPE_FLTINV,	/* 37 - INV | DNML | DZ | UFL | IMP */
597 	FPE_FLTOVF,	/* 38 - OFL | UFL | IMP */
598 	FPE_FLTINV,	/* 39 - INV | OFL | UFL | IMP */
599 	FPE_FLTUND,	/* 3A - DNML | OFL | UFL | IMP */
600 	FPE_FLTINV,	/* 3B - INV | DNML | OFL | UFL | IMP */
601 	FPE_FLTDIV,	/* 3C - DZ | OFL | UFL | IMP */
602 	FPE_FLTINV,	/* 3D - INV | DZ | OFL | UFL | IMP */
603 	FPE_FLTDIV,	/* 3E - DNML | DZ | OFL | UFL | IMP */
604 	FPE_FLTINV,	/* 3F - INV | DNML | DZ | OFL | UFL | IMP */
605 	FPE_FLTSUB,	/* 40 - STK */
606 	FPE_FLTSUB,	/* 41 - INV | STK */
607 	FPE_FLTUND,	/* 42 - DNML | STK */
608 	FPE_FLTSUB,	/* 43 - INV | DNML | STK */
609 	FPE_FLTDIV,	/* 44 - DZ | STK */
610 	FPE_FLTSUB,	/* 45 - INV | DZ | STK */
611 	FPE_FLTDIV,	/* 46 - DNML | DZ | STK */
612 	FPE_FLTSUB,	/* 47 - INV | DNML | DZ | STK */
613 	FPE_FLTOVF,	/* 48 - OFL | STK */
614 	FPE_FLTSUB,	/* 49 - INV | OFL | STK */
615 	FPE_FLTUND,	/* 4A - DNML | OFL | STK */
616 	FPE_FLTSUB,	/* 4B - INV | DNML | OFL | STK */
617 	FPE_FLTDIV,	/* 4C - DZ | OFL | STK */
618 	FPE_FLTSUB,	/* 4D - INV | DZ | OFL | STK */
619 	FPE_FLTDIV,	/* 4E - DNML | DZ | OFL | STK */
620 	FPE_FLTSUB,	/* 4F - INV | DNML | DZ | OFL | STK */
621 	FPE_FLTUND,	/* 50 - UFL | STK */
622 	FPE_FLTSUB,	/* 51 - INV | UFL | STK */
623 	FPE_FLTUND,	/* 52 - DNML | UFL | STK */
624 	FPE_FLTSUB,	/* 53 - INV | DNML | UFL | STK */
625 	FPE_FLTDIV,	/* 54 - DZ | UFL | STK */
626 	FPE_FLTSUB,	/* 55 - INV | DZ | UFL | STK */
627 	FPE_FLTDIV,	/* 56 - DNML | DZ | UFL | STK */
628 	FPE_FLTSUB,	/* 57 - INV | DNML | DZ | UFL | STK */
629 	FPE_FLTOVF,	/* 58 - OFL | UFL | STK */
630 	FPE_FLTSUB,	/* 59 - INV | OFL | UFL | STK */
631 	FPE_FLTUND,	/* 5A - DNML | OFL | UFL | STK */
632 	FPE_FLTSUB,	/* 5B - INV | DNML | OFL | UFL | STK */
633 	FPE_FLTDIV,	/* 5C - DZ | OFL | UFL | STK */
634 	FPE_FLTSUB,	/* 5D - INV | DZ | OFL | UFL | STK */
635 	FPE_FLTDIV,	/* 5E - DNML | DZ | OFL | UFL | STK */
636 	FPE_FLTSUB,	/* 5F - INV | DNML | DZ | OFL | UFL | STK */
637 	FPE_FLTRES,	/* 60 - IMP | STK */
638 	FPE_FLTSUB,	/* 61 - INV | IMP | STK */
639 	FPE_FLTUND,	/* 62 - DNML | IMP | STK */
640 	FPE_FLTSUB,	/* 63 - INV | DNML | IMP | STK */
641 	FPE_FLTDIV,	/* 64 - DZ | IMP | STK */
642 	FPE_FLTSUB,	/* 65 - INV | DZ | IMP | STK */
643 	FPE_FLTDIV,	/* 66 - DNML | DZ | IMP | STK */
644 	FPE_FLTSUB,	/* 67 - INV | DNML | DZ | IMP | STK */
645 	FPE_FLTOVF,	/* 68 - OFL | IMP | STK */
646 	FPE_FLTSUB,	/* 69 - INV | OFL | IMP | STK */
647 	FPE_FLTUND,	/* 6A - DNML | OFL | IMP | STK */
648 	FPE_FLTSUB,	/* 6B - INV | DNML | OFL | IMP | STK */
649 	FPE_FLTDIV,	/* 6C - DZ | OFL | IMP | STK */
650 	FPE_FLTSUB,	/* 6D - INV | DZ | OFL | IMP | STK */
651 	FPE_FLTDIV,	/* 6E - DNML | DZ | OFL | IMP | STK */
652 	FPE_FLTSUB,	/* 6F - INV | DNML | DZ | OFL | IMP | STK */
653 	FPE_FLTUND,	/* 70 - UFL | IMP | STK */
654 	FPE_FLTSUB,	/* 71 - INV | UFL | IMP | STK */
655 	FPE_FLTUND,	/* 72 - DNML | UFL | IMP | STK */
656 	FPE_FLTSUB,	/* 73 - INV | DNML | UFL | IMP | STK */
657 	FPE_FLTDIV,	/* 74 - DZ | UFL | IMP | STK */
658 	FPE_FLTSUB,	/* 75 - INV | DZ | UFL | IMP | STK */
659 	FPE_FLTDIV,	/* 76 - DNML | DZ | UFL | IMP | STK */
660 	FPE_FLTSUB,	/* 77 - INV | DNML | DZ | UFL | IMP | STK */
661 	FPE_FLTOVF,	/* 78 - OFL | UFL | IMP | STK */
662 	FPE_FLTSUB,	/* 79 - INV | OFL | UFL | IMP | STK */
663 	FPE_FLTUND,	/* 7A - DNML | OFL | UFL | IMP | STK */
664 	FPE_FLTSUB,	/* 7B - INV | DNML | OFL | UFL | IMP | STK */
665 	FPE_FLTDIV,	/* 7C - DZ | OFL | UFL | IMP | STK */
666 	FPE_FLTSUB,	/* 7D - INV | DZ | OFL | UFL | IMP | STK */
667 	FPE_FLTDIV,	/* 7E - DNML | DZ | OFL | UFL | IMP | STK */
668 	FPE_FLTSUB,	/* 7F - INV | DNML | DZ | OFL | UFL | IMP | STK */
669 };
670 
671 /*
672  * Read the FP status and control words, then generate si_code value
673  * for SIGFPE.  The error code chosen will be one of the
674  * FPE_... macros.  It will be sent as the second argument to old
675  * BSD-style signal handlers and as "siginfo_t->si_code" (second
676  * argument) to SA_SIGINFO signal handlers.
677  *
678  * Some time ago, we cleared the x87 exceptions with FNCLEX there.
679  * Clearing exceptions was necessary mainly to avoid IRQ13 bugs.  The
680  * usermode code which understands the FPU hardware enough to enable
681  * the exceptions, can also handle clearing the exception state in the
682  * handler.  The only consequence of not clearing the exception is the
683  * rethrow of the SIGFPE on return from the signal handler and
684  * reexecution of the corresponding instruction.
685  *
686  * For XMM traps, the exceptions were never cleared.
687  */
688 int
689 fputrap_x87(void)
690 {
691 	struct savefpu *pcb_save;
692 	u_short control, status;
693 
694 	critical_enter();
695 
696 	/*
697 	 * Interrupt handling (for another interrupt) may have pushed the
698 	 * state to memory.  Fetch the relevant parts of the state from
699 	 * wherever they are.
700 	 */
701 	if (PCPU_GET(fpcurthread) != curthread) {
702 		pcb_save = curpcb->pcb_save;
703 		control = pcb_save->sv_env.en_cw;
704 		status = pcb_save->sv_env.en_sw;
705 	} else {
706 		fnstcw(&control);
707 		fnstsw(&status);
708 	}
709 
710 	critical_exit();
711 	return (fpetable[status & ((~control & 0x3f) | 0x40)]);
712 }
713 
714 int
715 fputrap_sse(void)
716 {
717 	u_int mxcsr;
718 
719 	critical_enter();
720 	if (PCPU_GET(fpcurthread) != curthread)
721 		mxcsr = curpcb->pcb_save->sv_env.en_mxcsr;
722 	else
723 		stmxcsr(&mxcsr);
724 	critical_exit();
725 	return (fpetable[(mxcsr & (~mxcsr >> 7)) & 0x3f]);
726 }
727 
728 static void
729 restore_fpu_curthread(struct thread *td)
730 {
731 	struct pcb *pcb;
732 
733 	/*
734 	 * Record new context early in case frstor causes a trap.
735 	 */
736 	PCPU_SET(fpcurthread, td);
737 
738 	fpu_enable();
739 	fpu_clean_state();
740 	pcb = td->td_pcb;
741 
742 	if ((pcb->pcb_flags & PCB_FPUINITDONE) == 0) {
743 		/*
744 		 * This is the first time this thread has used the FPU or
745 		 * the PCB doesn't contain a clean FPU state.  Explicitly
746 		 * load an initial state.
747 		 *
748 		 * We prefer to restore the state from the actual save
749 		 * area in PCB instead of directly loading from
750 		 * fpu_initialstate, to ignite the XSAVEOPT
751 		 * tracking engine.
752 		 */
753 		bcopy(fpu_initialstate, pcb->pcb_save,
754 		    cpu_max_ext_state_size);
755 		fpurestore(pcb->pcb_save);
756 		if (pcb->pcb_initial_fpucw != __INITIAL_FPUCW__)
757 			fldcw(pcb->pcb_initial_fpucw);
758 		if (PCB_USER_FPU(pcb))
759 			set_pcb_flags(pcb, PCB_FPUINITDONE |
760 			    PCB_USERFPUINITDONE);
761 		else
762 			set_pcb_flags(pcb, PCB_FPUINITDONE);
763 	} else
764 		fpurestore(pcb->pcb_save);
765 }
766 
767 /*
768  * Device Not Available (DNA, #NM) exception handler.
769  *
770  * It would be better to switch FP context here (if curthread !=
771  * fpcurthread) and not necessarily for every context switch, but it
772  * is too hard to access foreign pcb's.
773  */
774 void
775 fpudna(void)
776 {
777 	struct thread *td;
778 
779 	td = curthread;
780 	/*
781 	 * This handler is entered with interrupts enabled, so context
782 	 * switches may occur before critical_enter() is executed.  If
783 	 * a context switch occurs, then when we regain control, our
784 	 * state will have been completely restored.  The CPU may
785 	 * change underneath us, but the only part of our context that
786 	 * lives in the CPU is CR0.TS and that will be "restored" by
787 	 * setting it on the new CPU.
788 	 */
789 	critical_enter();
790 
791 	KASSERT((curpcb->pcb_flags & PCB_FPUNOSAVE) == 0,
792 	    ("fpudna while in fpu_kern_enter(FPU_KERN_NOCTX)"));
793 	if (__predict_false(PCPU_GET(fpcurthread) == td)) {
794 		/*
795 		 * Some virtual machines seems to set %cr0.TS at
796 		 * arbitrary moments.  Silently clear the TS bit
797 		 * regardless of the eager/lazy FPU context switch
798 		 * mode.
799 		 */
800 		fpu_enable();
801 	} else {
802 		if (__predict_false(PCPU_GET(fpcurthread) != NULL)) {
803 			panic(
804 		    "fpudna: fpcurthread = %p (%d), curthread = %p (%d)\n",
805 			    PCPU_GET(fpcurthread),
806 			    PCPU_GET(fpcurthread)->td_tid, td, td->td_tid);
807 		}
808 		restore_fpu_curthread(td);
809 	}
810 	critical_exit();
811 }
812 
813 void fpu_activate_sw(struct thread *td); /* Called from the context switch */
814 void
815 fpu_activate_sw(struct thread *td)
816 {
817 
818 	if ((td->td_pflags & TDP_KTHREAD) != 0 || !PCB_USER_FPU(td->td_pcb)) {
819 		PCPU_SET(fpcurthread, NULL);
820 		fpu_disable();
821 	} else if (PCPU_GET(fpcurthread) != td) {
822 		restore_fpu_curthread(td);
823 	}
824 }
825 
826 void
827 fpudrop(void)
828 {
829 	struct thread *td;
830 
831 	td = PCPU_GET(fpcurthread);
832 	KASSERT(td == curthread, ("fpudrop: fpcurthread != curthread"));
833 	CRITICAL_ASSERT(td);
834 	PCPU_SET(fpcurthread, NULL);
835 	clear_pcb_flags(td->td_pcb, PCB_FPUINITDONE);
836 	fpu_disable();
837 }
838 
839 /*
840  * Get the user state of the FPU into pcb->pcb_user_save without
841  * dropping ownership (if possible).  It returns the FPU ownership
842  * status.
843  */
844 int
845 fpugetregs(struct thread *td)
846 {
847 	struct pcb *pcb;
848 	uint64_t *xstate_bv, bit;
849 	char *sa;
850 	int max_ext_n, i, owned;
851 
852 	pcb = td->td_pcb;
853 	critical_enter();
854 	if ((pcb->pcb_flags & PCB_USERFPUINITDONE) == 0) {
855 		bcopy(fpu_initialstate, get_pcb_user_save_pcb(pcb),
856 		    cpu_max_ext_state_size);
857 		get_pcb_user_save_pcb(pcb)->sv_env.en_cw =
858 		    pcb->pcb_initial_fpucw;
859 		fpuuserinited(td);
860 		critical_exit();
861 		return (_MC_FPOWNED_PCB);
862 	}
863 	if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
864 		fpusave(get_pcb_user_save_pcb(pcb));
865 		owned = _MC_FPOWNED_FPU;
866 	} else {
867 		owned = _MC_FPOWNED_PCB;
868 	}
869 	if (use_xsave) {
870 		/*
871 		 * Handle partially saved state.
872 		 */
873 		sa = (char *)get_pcb_user_save_pcb(pcb);
874 		xstate_bv = (uint64_t *)(sa + sizeof(struct savefpu) +
875 		    offsetof(struct xstate_hdr, xstate_bv));
876 		max_ext_n = flsl(xsave_mask);
877 		for (i = 0; i < max_ext_n; i++) {
878 			bit = 1ULL << i;
879 			if ((xsave_mask & bit) == 0 || (*xstate_bv & bit) != 0)
880 				continue;
881 			bcopy((char *)fpu_initialstate +
882 			    xsave_area_desc[i].offset,
883 			    sa + xsave_area_desc[i].offset,
884 			    xsave_area_desc[i].size);
885 			*xstate_bv |= bit;
886 		}
887 	}
888 	critical_exit();
889 	return (owned);
890 }
891 
892 void
893 fpuuserinited(struct thread *td)
894 {
895 	struct pcb *pcb;
896 
897 	CRITICAL_ASSERT(td);
898 	pcb = td->td_pcb;
899 	if (PCB_USER_FPU(pcb))
900 		set_pcb_flags(pcb,
901 		    PCB_FPUINITDONE | PCB_USERFPUINITDONE);
902 	else
903 		set_pcb_flags(pcb, PCB_FPUINITDONE);
904 }
905 
906 int
907 fpusetxstate(struct thread *td, char *xfpustate, size_t xfpustate_size)
908 {
909 	struct xstate_hdr *hdr, *ehdr;
910 	size_t len, max_len;
911 	uint64_t bv;
912 
913 	/* XXXKIB should we clear all extended state in xstate_bv instead ? */
914 	if (xfpustate == NULL)
915 		return (0);
916 	if (!use_xsave)
917 		return (EOPNOTSUPP);
918 
919 	len = xfpustate_size;
920 	if (len < sizeof(struct xstate_hdr))
921 		return (EINVAL);
922 	max_len = cpu_max_ext_state_size - sizeof(struct savefpu);
923 	if (len > max_len)
924 		return (EINVAL);
925 
926 	ehdr = (struct xstate_hdr *)xfpustate;
927 	bv = ehdr->xstate_bv;
928 
929 	/*
930 	 * Avoid #gp.
931 	 */
932 	if (bv & ~xsave_mask)
933 		return (EINVAL);
934 
935 	hdr = (struct xstate_hdr *)(get_pcb_user_save_td(td) + 1);
936 
937 	hdr->xstate_bv = bv;
938 	bcopy(xfpustate + sizeof(struct xstate_hdr),
939 	    (char *)(hdr + 1), len - sizeof(struct xstate_hdr));
940 
941 	return (0);
942 }
943 
944 /*
945  * Set the state of the FPU.
946  */
947 int
948 fpusetregs(struct thread *td, struct savefpu *addr, char *xfpustate,
949     size_t xfpustate_size)
950 {
951 	struct pcb *pcb;
952 	int error;
953 
954 	addr->sv_env.en_mxcsr &= cpu_mxcsr_mask;
955 	pcb = td->td_pcb;
956 	error = 0;
957 	critical_enter();
958 	if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
959 		error = fpusetxstate(td, xfpustate, xfpustate_size);
960 		if (error == 0) {
961 			bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
962 			fpurestore(get_pcb_user_save_td(td));
963 			set_pcb_flags(pcb, PCB_FPUINITDONE |
964 			    PCB_USERFPUINITDONE);
965 		}
966 	} else {
967 		error = fpusetxstate(td, xfpustate, xfpustate_size);
968 		if (error == 0) {
969 			bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
970 			fpuuserinited(td);
971 		}
972 	}
973 	critical_exit();
974 	return (error);
975 }
976 
977 /*
978  * On AuthenticAMD processors, the fxrstor instruction does not restore
979  * the x87's stored last instruction pointer, last data pointer, and last
980  * opcode values, except in the rare case in which the exception summary
981  * (ES) bit in the x87 status word is set to 1.
982  *
983  * In order to avoid leaking this information across processes, we clean
984  * these values by performing a dummy load before executing fxrstor().
985  */
986 static void
987 fpu_clean_state(void)
988 {
989 	static float dummy_variable = 0.0;
990 	u_short status;
991 
992 	/*
993 	 * Clear the ES bit in the x87 status word if it is currently
994 	 * set, in order to avoid causing a fault in the upcoming load.
995 	 */
996 	fnstsw(&status);
997 	if (status & 0x80)
998 		fnclex();
999 
1000 	/*
1001 	 * Load the dummy variable into the x87 stack.  This mangles
1002 	 * the x87 stack, but we don't care since we're about to call
1003 	 * fxrstor() anyway.
1004 	 */
1005 	__asm __volatile("ffree %%st(7); flds %0" : : "m" (dummy_variable));
1006 }
1007 
1008 /*
1009  * This really sucks.  We want the acpi version only, but it requires
1010  * the isa_if.h file in order to get the definitions.
1011  */
1012 #include "opt_isa.h"
1013 #ifdef DEV_ISA
1014 #include <isa/isavar.h>
1015 /*
1016  * This sucks up the legacy ISA support assignments from PNPBIOS/ACPI.
1017  */
1018 static struct isa_pnp_id fpupnp_ids[] = {
1019 	{ 0x040cd041, "Legacy ISA coprocessor support" }, /* PNP0C04 */
1020 	{ 0 }
1021 };
1022 
1023 static int
1024 fpupnp_probe(device_t dev)
1025 {
1026 	int result;
1027 
1028 	result = ISA_PNP_PROBE(device_get_parent(dev), dev, fpupnp_ids);
1029 	if (result <= 0)
1030 		device_quiet(dev);
1031 	return (result);
1032 }
1033 
1034 static int
1035 fpupnp_attach(device_t dev)
1036 {
1037 
1038 	return (0);
1039 }
1040 
1041 static device_method_t fpupnp_methods[] = {
1042 	/* Device interface */
1043 	DEVMETHOD(device_probe,		fpupnp_probe),
1044 	DEVMETHOD(device_attach,	fpupnp_attach),
1045 	DEVMETHOD(device_detach,	bus_generic_detach),
1046 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
1047 	DEVMETHOD(device_suspend,	bus_generic_suspend),
1048 	DEVMETHOD(device_resume,	bus_generic_resume),
1049 	{ 0, 0 }
1050 };
1051 
1052 static driver_t fpupnp_driver = {
1053 	"fpupnp",
1054 	fpupnp_methods,
1055 	1,			/* no softc */
1056 };
1057 
1058 DRIVER_MODULE(fpupnp, acpi, fpupnp_driver, 0, 0);
1059 ISA_PNP_INFO(fpupnp_ids);
1060 #endif	/* DEV_ISA */
1061 
1062 static MALLOC_DEFINE(M_FPUKERN_CTX, "fpukern_ctx",
1063     "Kernel contexts for FPU state");
1064 
1065 #define	FPU_KERN_CTX_FPUINITDONE 0x01
1066 #define	FPU_KERN_CTX_DUMMY	 0x02	/* avoided save for the kern thread */
1067 #define	FPU_KERN_CTX_INUSE	 0x04
1068 
1069 struct fpu_kern_ctx {
1070 	struct savefpu *prev;
1071 	uint32_t flags;
1072 	char hwstate1[];
1073 };
1074 
1075 static inline size_t __pure2
1076 fpu_kern_alloc_sz(u_int max_est)
1077 {
1078 	return (sizeof(struct fpu_kern_ctx) + XSAVE_AREA_ALIGN + max_est);
1079 }
1080 
1081 static inline int __pure2
1082 fpu_kern_malloc_flags(u_int fpflags)
1083 {
1084 	return (((fpflags & FPU_KERN_NOWAIT) ? M_NOWAIT : M_WAITOK) | M_ZERO);
1085 }
1086 
1087 struct fpu_kern_ctx *
1088 fpu_kern_alloc_ctx_domain(int domain, u_int flags)
1089 {
1090 	return (malloc_domainset(fpu_kern_alloc_sz(cpu_max_ext_state_size),
1091 	    M_FPUKERN_CTX, DOMAINSET_PREF(domain),
1092 	    fpu_kern_malloc_flags(flags)));
1093 }
1094 
1095 struct fpu_kern_ctx *
1096 fpu_kern_alloc_ctx(u_int flags)
1097 {
1098 	return (malloc(fpu_kern_alloc_sz(cpu_max_ext_state_size),
1099 	    M_FPUKERN_CTX, fpu_kern_malloc_flags(flags)));
1100 }
1101 
1102 void
1103 fpu_kern_free_ctx(struct fpu_kern_ctx *ctx)
1104 {
1105 
1106 	KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) == 0, ("free'ing inuse ctx"));
1107 	/* XXXKIB clear the memory ? */
1108 	free(ctx, M_FPUKERN_CTX);
1109 }
1110 
1111 static struct savefpu *
1112 fpu_kern_ctx_savefpu(struct fpu_kern_ctx *ctx)
1113 {
1114 	vm_offset_t p;
1115 
1116 	p = (vm_offset_t)&ctx->hwstate1;
1117 	p = roundup2(p, XSAVE_AREA_ALIGN);
1118 	return ((struct savefpu *)p);
1119 }
1120 
1121 void
1122 fpu_kern_enter(struct thread *td, struct fpu_kern_ctx *ctx, u_int flags)
1123 {
1124 	struct pcb *pcb;
1125 
1126 	pcb = td->td_pcb;
1127 	KASSERT((flags & FPU_KERN_NOCTX) != 0 || ctx != NULL,
1128 	    ("ctx is required when !FPU_KERN_NOCTX"));
1129 	KASSERT(ctx == NULL || (ctx->flags & FPU_KERN_CTX_INUSE) == 0,
1130 	    ("using inuse ctx"));
1131 	KASSERT((pcb->pcb_flags & PCB_FPUNOSAVE) == 0,
1132 	    ("recursive fpu_kern_enter while in PCB_FPUNOSAVE state"));
1133 
1134 	if ((flags & FPU_KERN_NOCTX) != 0) {
1135 		critical_enter();
1136 		fpu_enable();
1137 		if (curthread == PCPU_GET(fpcurthread)) {
1138 			fpusave(curpcb->pcb_save);
1139 			PCPU_SET(fpcurthread, NULL);
1140 		} else {
1141 			KASSERT(PCPU_GET(fpcurthread) == NULL,
1142 			    ("invalid fpcurthread"));
1143 		}
1144 
1145 		/*
1146 		 * This breaks XSAVEOPT tracker, but
1147 		 * PCB_FPUNOSAVE state is supposed to never need to
1148 		 * save FPU context at all.
1149 		 */
1150 		fpurestore(fpu_initialstate);
1151 		set_pcb_flags(pcb, PCB_KERNFPU | PCB_FPUNOSAVE |
1152 		    PCB_FPUINITDONE);
1153 		return;
1154 	}
1155 	if ((flags & FPU_KERN_KTHR) != 0 && is_fpu_kern_thread(0)) {
1156 		ctx->flags = FPU_KERN_CTX_DUMMY | FPU_KERN_CTX_INUSE;
1157 		return;
1158 	}
1159 	critical_enter();
1160 	KASSERT(!PCB_USER_FPU(pcb) || pcb->pcb_save ==
1161 	    get_pcb_user_save_pcb(pcb), ("mangled pcb_save"));
1162 	ctx->flags = FPU_KERN_CTX_INUSE;
1163 	if ((pcb->pcb_flags & PCB_FPUINITDONE) != 0)
1164 		ctx->flags |= FPU_KERN_CTX_FPUINITDONE;
1165 	fpuexit(td);
1166 	ctx->prev = pcb->pcb_save;
1167 	pcb->pcb_save = fpu_kern_ctx_savefpu(ctx);
1168 	set_pcb_flags(pcb, PCB_KERNFPU);
1169 	clear_pcb_flags(pcb, PCB_FPUINITDONE);
1170 	critical_exit();
1171 }
1172 
1173 int
1174 fpu_kern_leave(struct thread *td, struct fpu_kern_ctx *ctx)
1175 {
1176 	struct pcb *pcb;
1177 
1178 	pcb = td->td_pcb;
1179 
1180 	if ((pcb->pcb_flags & PCB_FPUNOSAVE) != 0) {
1181 		KASSERT(ctx == NULL, ("non-null ctx after FPU_KERN_NOCTX"));
1182 		KASSERT(PCPU_GET(fpcurthread) == NULL,
1183 		    ("non-NULL fpcurthread for PCB_FPUNOSAVE"));
1184 		CRITICAL_ASSERT(td);
1185 
1186 		clear_pcb_flags(pcb,  PCB_FPUNOSAVE | PCB_FPUINITDONE);
1187 		fpu_disable();
1188 	} else {
1189 		KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) != 0,
1190 		    ("leaving not inuse ctx"));
1191 		ctx->flags &= ~FPU_KERN_CTX_INUSE;
1192 
1193 		if (is_fpu_kern_thread(0) &&
1194 		    (ctx->flags & FPU_KERN_CTX_DUMMY) != 0)
1195 			return (0);
1196 		KASSERT((ctx->flags & FPU_KERN_CTX_DUMMY) == 0,
1197 		    ("dummy ctx"));
1198 		critical_enter();
1199 		if (curthread == PCPU_GET(fpcurthread))
1200 			fpudrop();
1201 		pcb->pcb_save = ctx->prev;
1202 	}
1203 
1204 	if (pcb->pcb_save == get_pcb_user_save_pcb(pcb)) {
1205 		if ((pcb->pcb_flags & PCB_USERFPUINITDONE) != 0) {
1206 			set_pcb_flags(pcb, PCB_FPUINITDONE);
1207 			if ((pcb->pcb_flags & PCB_KERNFPU_THR) == 0)
1208 				clear_pcb_flags(pcb, PCB_KERNFPU);
1209 		} else if ((pcb->pcb_flags & PCB_KERNFPU_THR) == 0)
1210 			clear_pcb_flags(pcb, PCB_FPUINITDONE | PCB_KERNFPU);
1211 	} else {
1212 		if ((ctx->flags & FPU_KERN_CTX_FPUINITDONE) != 0)
1213 			set_pcb_flags(pcb, PCB_FPUINITDONE);
1214 		else
1215 			clear_pcb_flags(pcb, PCB_FPUINITDONE);
1216 		KASSERT(!PCB_USER_FPU(pcb), ("unpaired fpu_kern_leave"));
1217 	}
1218 	critical_exit();
1219 	return (0);
1220 }
1221 
1222 int
1223 fpu_kern_thread(u_int flags)
1224 {
1225 
1226 	KASSERT((curthread->td_pflags & TDP_KTHREAD) != 0,
1227 	    ("Only kthread may use fpu_kern_thread"));
1228 	KASSERT(curpcb->pcb_save == get_pcb_user_save_pcb(curpcb),
1229 	    ("mangled pcb_save"));
1230 	KASSERT(PCB_USER_FPU(curpcb), ("recursive call"));
1231 
1232 	set_pcb_flags(curpcb, PCB_KERNFPU | PCB_KERNFPU_THR);
1233 	return (0);
1234 }
1235 
1236 int
1237 is_fpu_kern_thread(u_int flags)
1238 {
1239 
1240 	if ((curthread->td_pflags & TDP_KTHREAD) == 0)
1241 		return (0);
1242 	return ((curpcb->pcb_flags & PCB_KERNFPU_THR) != 0);
1243 }
1244 
1245 /*
1246  * FPU save area alloc/free/init utility routines
1247  */
1248 struct savefpu *
1249 fpu_save_area_alloc(void)
1250 {
1251 
1252 	return (uma_zalloc(fpu_save_area_zone, M_WAITOK));
1253 }
1254 
1255 void
1256 fpu_save_area_free(struct savefpu *fsa)
1257 {
1258 
1259 	uma_zfree(fpu_save_area_zone, fsa);
1260 }
1261 
1262 void
1263 fpu_save_area_reset(struct savefpu *fsa)
1264 {
1265 
1266 	bcopy(fpu_initialstate, fsa, cpu_max_ext_state_size);
1267 }
1268