xref: /freebsd/sys/amd64/amd64/fpu.c (revision 4abd7edcbde21ba7a089c7d1a0bba8f87ebece06)
1 /*-
2  * Copyright (c) 1990 William Jolitz.
3  * Copyright (c) 1991 The Regents of the University of California.
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 4. Neither the name of the University nor the names of its contributors
15  *    may be used to endorse or promote products derived from this software
16  *    without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  *	from: @(#)npx.c	7.2 (Berkeley) 5/12/91
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/bus.h>
39 #include <sys/kernel.h>
40 #include <sys/lock.h>
41 #include <sys/malloc.h>
42 #include <sys/module.h>
43 #include <sys/mutex.h>
44 #include <sys/mutex.h>
45 #include <sys/proc.h>
46 #include <sys/sysctl.h>
47 #include <machine/bus.h>
48 #include <sys/rman.h>
49 #include <sys/signalvar.h>
50 #include <vm/uma.h>
51 
52 #include <machine/cputypes.h>
53 #include <machine/frame.h>
54 #include <machine/intr_machdep.h>
55 #include <machine/md_var.h>
56 #include <machine/pcb.h>
57 #include <machine/psl.h>
58 #include <machine/resource.h>
59 #include <machine/specialreg.h>
60 #include <machine/segments.h>
61 #include <machine/ucontext.h>
62 
63 /*
64  * Floating point support.
65  */
66 
67 #if defined(__GNUCLIKE_ASM) && !defined(lint)
68 
69 #define	fldcw(cw)		__asm __volatile("fldcw %0" : : "m" (cw))
70 #define	fnclex()		__asm __volatile("fnclex")
71 #define	fninit()		__asm __volatile("fninit")
72 #define	fnstcw(addr)		__asm __volatile("fnstcw %0" : "=m" (*(addr)))
73 #define	fnstsw(addr)		__asm __volatile("fnstsw %0" : "=am" (*(addr)))
74 #define	fxrstor(addr)		__asm __volatile("fxrstor %0" : : "m" (*(addr)))
75 #define	fxsave(addr)		__asm __volatile("fxsave %0" : "=m" (*(addr)))
76 #define	ldmxcsr(csr)		__asm __volatile("ldmxcsr %0" : : "m" (csr))
77 #define	stmxcsr(addr)		__asm __volatile("stmxcsr %0" : : "m" (*(addr)))
78 
79 static __inline void
80 xrstor(char *addr, uint64_t mask)
81 {
82 	uint32_t low, hi;
83 
84 	low = mask;
85 	hi = mask >> 32;
86 	__asm __volatile("xrstor %0" : : "m" (*addr), "a" (low), "d" (hi));
87 }
88 
89 static __inline void
90 xsave(char *addr, uint64_t mask)
91 {
92 	uint32_t low, hi;
93 
94 	low = mask;
95 	hi = mask >> 32;
96 	__asm __volatile("xsave %0" : "=m" (*addr) : "a" (low), "d" (hi) :
97 	    "memory");
98 }
99 
100 #else	/* !(__GNUCLIKE_ASM && !lint) */
101 
102 void	fldcw(u_short cw);
103 void	fnclex(void);
104 void	fninit(void);
105 void	fnstcw(caddr_t addr);
106 void	fnstsw(caddr_t addr);
107 void	fxsave(caddr_t addr);
108 void	fxrstor(caddr_t addr);
109 void	ldmxcsr(u_int csr);
110 void	stmxcsr(u_int *csr);
111 void	xrstor(char *addr, uint64_t mask);
112 void	xsave(char *addr, uint64_t mask);
113 
114 #endif	/* __GNUCLIKE_ASM && !lint */
115 
116 #define	start_emulating()	load_cr0(rcr0() | CR0_TS)
117 #define	stop_emulating()	clts()
118 
119 CTASSERT(sizeof(struct savefpu) == 512);
120 CTASSERT(sizeof(struct xstate_hdr) == 64);
121 CTASSERT(sizeof(struct savefpu_ymm) == 832);
122 
123 /*
124  * This requirement is to make it easier for asm code to calculate
125  * offset of the fpu save area from the pcb address. FPU save area
126  * must be 64-byte aligned.
127  */
128 CTASSERT(sizeof(struct pcb) % XSAVE_AREA_ALIGN == 0);
129 
130 static	void	fpu_clean_state(void);
131 
132 SYSCTL_INT(_hw, HW_FLOATINGPT, floatingpoint, CTLFLAG_RD,
133     NULL, 1, "Floating point instructions executed in hardware");
134 
135 int use_xsave;			/* non-static for cpu_switch.S */
136 uint64_t xsave_mask;		/* the same */
137 static	uma_zone_t fpu_save_area_zone;
138 static	struct savefpu *fpu_initialstate;
139 
140 struct xsave_area_elm_descr {
141 	u_int	offset;
142 	u_int	size;
143 } *xsave_area_desc;
144 
145 void
146 fpusave(void *addr)
147 {
148 
149 	if (use_xsave)
150 		xsave((char *)addr, xsave_mask);
151 	else
152 		fxsave((char *)addr);
153 }
154 
155 void
156 fpurestore(void *addr)
157 {
158 
159 	if (use_xsave)
160 		xrstor((char *)addr, xsave_mask);
161 	else
162 		fxrstor((char *)addr);
163 }
164 
165 /*
166  * Enable XSAVE if supported and allowed by user.
167  * Calculate the xsave_mask.
168  */
169 static void
170 fpuinit_bsp1(void)
171 {
172 	u_int cp[4];
173 	uint64_t xsave_mask_user;
174 
175 	if ((cpu_feature2 & CPUID2_XSAVE) != 0) {
176 		use_xsave = 1;
177 		TUNABLE_INT_FETCH("hw.use_xsave", &use_xsave);
178 	}
179 	if (!use_xsave)
180 		return;
181 
182 	cpuid_count(0xd, 0x0, cp);
183 	xsave_mask = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
184 	if ((cp[0] & xsave_mask) != xsave_mask)
185 		panic("CPU0 does not support X87 or SSE: %x", cp[0]);
186 	xsave_mask = ((uint64_t)cp[3] << 32) | cp[0];
187 	xsave_mask_user = xsave_mask;
188 	TUNABLE_ULONG_FETCH("hw.xsave_mask", &xsave_mask_user);
189 	xsave_mask_user |= XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
190 	xsave_mask &= xsave_mask_user;
191 
192 	cpuid_count(0xd, 0x1, cp);
193 	if ((cp[0] & CPUID_EXTSTATE_XSAVEOPT) != 0) {
194 		/*
195 		 * Patch the XSAVE instruction in the cpu_switch code
196 		 * to XSAVEOPT.  We assume that XSAVE encoding used
197 		 * REX byte, and set the bit 4 of the r/m byte.
198 		 */
199 		ctx_switch_xsave[3] |= 0x10;
200 	}
201 }
202 
203 /*
204  * Calculate the fpu save area size.
205  */
206 static void
207 fpuinit_bsp2(void)
208 {
209 	u_int cp[4];
210 
211 	if (use_xsave) {
212 		cpuid_count(0xd, 0x0, cp);
213 		cpu_max_ext_state_size = cp[1];
214 
215 		/*
216 		 * Reload the cpu_feature2, since we enabled OSXSAVE.
217 		 */
218 		do_cpuid(1, cp);
219 		cpu_feature2 = cp[2];
220 	} else
221 		cpu_max_ext_state_size = sizeof(struct savefpu);
222 }
223 
224 /*
225  * Initialize the floating point unit.
226  */
227 void
228 fpuinit(void)
229 {
230 	register_t saveintr;
231 	u_int mxcsr;
232 	u_short control;
233 
234 	if (IS_BSP())
235 		fpuinit_bsp1();
236 
237 	if (use_xsave) {
238 		load_cr4(rcr4() | CR4_XSAVE);
239 		load_xcr(XCR0, xsave_mask);
240 	}
241 
242 	/*
243 	 * XCR0 shall be set up before CPU can report the save area size.
244 	 */
245 	if (IS_BSP())
246 		fpuinit_bsp2();
247 
248 	/*
249 	 * It is too early for critical_enter() to work on AP.
250 	 */
251 	saveintr = intr_disable();
252 	stop_emulating();
253 	fninit();
254 	control = __INITIAL_FPUCW__;
255 	fldcw(control);
256 	mxcsr = __INITIAL_MXCSR__;
257 	ldmxcsr(mxcsr);
258 	start_emulating();
259 	intr_restore(saveintr);
260 }
261 
262 /*
263  * On the boot CPU we generate a clean state that is used to
264  * initialize the floating point unit when it is first used by a
265  * process.
266  */
267 static void
268 fpuinitstate(void *arg __unused)
269 {
270 	register_t saveintr;
271 	int cp[4], i, max_ext_n;
272 
273 	fpu_initialstate = malloc(cpu_max_ext_state_size, M_DEVBUF,
274 	    M_WAITOK | M_ZERO);
275 	saveintr = intr_disable();
276 	stop_emulating();
277 
278 	fpusave(fpu_initialstate);
279 	if (fpu_initialstate->sv_env.en_mxcsr_mask)
280 		cpu_mxcsr_mask = fpu_initialstate->sv_env.en_mxcsr_mask;
281 	else
282 		cpu_mxcsr_mask = 0xFFBF;
283 
284 	/*
285 	 * The fninit instruction does not modify XMM registers.  The
286 	 * fpusave call dumped the garbage contained in the registers
287 	 * after reset to the initial state saved.  Clear XMM
288 	 * registers file image to make the startup program state and
289 	 * signal handler XMM register content predictable.
290 	 */
291 	bzero(&fpu_initialstate->sv_xmm[0], sizeof(struct xmmacc));
292 
293 	/*
294 	 * Create a table describing the layout of the CPU Extended
295 	 * Save Area.
296 	 */
297 	if (use_xsave) {
298 		max_ext_n = flsl(xsave_mask);
299 		xsave_area_desc = malloc(max_ext_n * sizeof(struct
300 		    xsave_area_elm_descr), M_DEVBUF, M_WAITOK | M_ZERO);
301 		/* x87 state */
302 		xsave_area_desc[0].offset = 0;
303 		xsave_area_desc[0].size = 160;
304 		/* XMM */
305 		xsave_area_desc[1].offset = 160;
306 		xsave_area_desc[1].size = 288 - 160;
307 
308 		for (i = 2; i < max_ext_n; i++) {
309 			cpuid_count(0xd, i, cp);
310 			xsave_area_desc[i].offset = cp[1];
311 			xsave_area_desc[i].size = cp[0];
312 		}
313 	}
314 
315 	fpu_save_area_zone = uma_zcreate("FPU_save_area",
316 	    cpu_max_ext_state_size, NULL, NULL, NULL, NULL,
317 	    XSAVE_AREA_ALIGN - 1, 0);
318 
319 	start_emulating();
320 	intr_restore(saveintr);
321 }
322 SYSINIT(fpuinitstate, SI_SUB_DRIVERS, SI_ORDER_ANY, fpuinitstate, NULL);
323 
324 /*
325  * Free coprocessor (if we have it).
326  */
327 void
328 fpuexit(struct thread *td)
329 {
330 
331 	critical_enter();
332 	if (curthread == PCPU_GET(fpcurthread)) {
333 		stop_emulating();
334 		fpusave(curpcb->pcb_save);
335 		start_emulating();
336 		PCPU_SET(fpcurthread, 0);
337 	}
338 	critical_exit();
339 }
340 
341 int
342 fpuformat()
343 {
344 
345 	return (_MC_FPFMT_XMM);
346 }
347 
348 /*
349  * The following mechanism is used to ensure that the FPE_... value
350  * that is passed as a trapcode to the signal handler of the user
351  * process does not have more than one bit set.
352  *
353  * Multiple bits may be set if the user process modifies the control
354  * word while a status word bit is already set.  While this is a sign
355  * of bad coding, we have no choise than to narrow them down to one
356  * bit, since we must not send a trapcode that is not exactly one of
357  * the FPE_ macros.
358  *
359  * The mechanism has a static table with 127 entries.  Each combination
360  * of the 7 FPU status word exception bits directly translates to a
361  * position in this table, where a single FPE_... value is stored.
362  * This FPE_... value stored there is considered the "most important"
363  * of the exception bits and will be sent as the signal code.  The
364  * precedence of the bits is based upon Intel Document "Numerical
365  * Applications", Chapter "Special Computational Situations".
366  *
367  * The macro to choose one of these values does these steps: 1) Throw
368  * away status word bits that cannot be masked.  2) Throw away the bits
369  * currently masked in the control word, assuming the user isn't
370  * interested in them anymore.  3) Reinsert status word bit 7 (stack
371  * fault) if it is set, which cannot be masked but must be presered.
372  * 4) Use the remaining bits to point into the trapcode table.
373  *
374  * The 6 maskable bits in order of their preference, as stated in the
375  * above referenced Intel manual:
376  * 1  Invalid operation (FP_X_INV)
377  * 1a   Stack underflow
378  * 1b   Stack overflow
379  * 1c   Operand of unsupported format
380  * 1d   SNaN operand.
381  * 2  QNaN operand (not an exception, irrelavant here)
382  * 3  Any other invalid-operation not mentioned above or zero divide
383  *      (FP_X_INV, FP_X_DZ)
384  * 4  Denormal operand (FP_X_DNML)
385  * 5  Numeric over/underflow (FP_X_OFL, FP_X_UFL)
386  * 6  Inexact result (FP_X_IMP)
387  */
388 static char fpetable[128] = {
389 	0,
390 	FPE_FLTINV,	/*  1 - INV */
391 	FPE_FLTUND,	/*  2 - DNML */
392 	FPE_FLTINV,	/*  3 - INV | DNML */
393 	FPE_FLTDIV,	/*  4 - DZ */
394 	FPE_FLTINV,	/*  5 - INV | DZ */
395 	FPE_FLTDIV,	/*  6 - DNML | DZ */
396 	FPE_FLTINV,	/*  7 - INV | DNML | DZ */
397 	FPE_FLTOVF,	/*  8 - OFL */
398 	FPE_FLTINV,	/*  9 - INV | OFL */
399 	FPE_FLTUND,	/*  A - DNML | OFL */
400 	FPE_FLTINV,	/*  B - INV | DNML | OFL */
401 	FPE_FLTDIV,	/*  C - DZ | OFL */
402 	FPE_FLTINV,	/*  D - INV | DZ | OFL */
403 	FPE_FLTDIV,	/*  E - DNML | DZ | OFL */
404 	FPE_FLTINV,	/*  F - INV | DNML | DZ | OFL */
405 	FPE_FLTUND,	/* 10 - UFL */
406 	FPE_FLTINV,	/* 11 - INV | UFL */
407 	FPE_FLTUND,	/* 12 - DNML | UFL */
408 	FPE_FLTINV,	/* 13 - INV | DNML | UFL */
409 	FPE_FLTDIV,	/* 14 - DZ | UFL */
410 	FPE_FLTINV,	/* 15 - INV | DZ | UFL */
411 	FPE_FLTDIV,	/* 16 - DNML | DZ | UFL */
412 	FPE_FLTINV,	/* 17 - INV | DNML | DZ | UFL */
413 	FPE_FLTOVF,	/* 18 - OFL | UFL */
414 	FPE_FLTINV,	/* 19 - INV | OFL | UFL */
415 	FPE_FLTUND,	/* 1A - DNML | OFL | UFL */
416 	FPE_FLTINV,	/* 1B - INV | DNML | OFL | UFL */
417 	FPE_FLTDIV,	/* 1C - DZ | OFL | UFL */
418 	FPE_FLTINV,	/* 1D - INV | DZ | OFL | UFL */
419 	FPE_FLTDIV,	/* 1E - DNML | DZ | OFL | UFL */
420 	FPE_FLTINV,	/* 1F - INV | DNML | DZ | OFL | UFL */
421 	FPE_FLTRES,	/* 20 - IMP */
422 	FPE_FLTINV,	/* 21 - INV | IMP */
423 	FPE_FLTUND,	/* 22 - DNML | IMP */
424 	FPE_FLTINV,	/* 23 - INV | DNML | IMP */
425 	FPE_FLTDIV,	/* 24 - DZ | IMP */
426 	FPE_FLTINV,	/* 25 - INV | DZ | IMP */
427 	FPE_FLTDIV,	/* 26 - DNML | DZ | IMP */
428 	FPE_FLTINV,	/* 27 - INV | DNML | DZ | IMP */
429 	FPE_FLTOVF,	/* 28 - OFL | IMP */
430 	FPE_FLTINV,	/* 29 - INV | OFL | IMP */
431 	FPE_FLTUND,	/* 2A - DNML | OFL | IMP */
432 	FPE_FLTINV,	/* 2B - INV | DNML | OFL | IMP */
433 	FPE_FLTDIV,	/* 2C - DZ | OFL | IMP */
434 	FPE_FLTINV,	/* 2D - INV | DZ | OFL | IMP */
435 	FPE_FLTDIV,	/* 2E - DNML | DZ | OFL | IMP */
436 	FPE_FLTINV,	/* 2F - INV | DNML | DZ | OFL | IMP */
437 	FPE_FLTUND,	/* 30 - UFL | IMP */
438 	FPE_FLTINV,	/* 31 - INV | UFL | IMP */
439 	FPE_FLTUND,	/* 32 - DNML | UFL | IMP */
440 	FPE_FLTINV,	/* 33 - INV | DNML | UFL | IMP */
441 	FPE_FLTDIV,	/* 34 - DZ | UFL | IMP */
442 	FPE_FLTINV,	/* 35 - INV | DZ | UFL | IMP */
443 	FPE_FLTDIV,	/* 36 - DNML | DZ | UFL | IMP */
444 	FPE_FLTINV,	/* 37 - INV | DNML | DZ | UFL | IMP */
445 	FPE_FLTOVF,	/* 38 - OFL | UFL | IMP */
446 	FPE_FLTINV,	/* 39 - INV | OFL | UFL | IMP */
447 	FPE_FLTUND,	/* 3A - DNML | OFL | UFL | IMP */
448 	FPE_FLTINV,	/* 3B - INV | DNML | OFL | UFL | IMP */
449 	FPE_FLTDIV,	/* 3C - DZ | OFL | UFL | IMP */
450 	FPE_FLTINV,	/* 3D - INV | DZ | OFL | UFL | IMP */
451 	FPE_FLTDIV,	/* 3E - DNML | DZ | OFL | UFL | IMP */
452 	FPE_FLTINV,	/* 3F - INV | DNML | DZ | OFL | UFL | IMP */
453 	FPE_FLTSUB,	/* 40 - STK */
454 	FPE_FLTSUB,	/* 41 - INV | STK */
455 	FPE_FLTUND,	/* 42 - DNML | STK */
456 	FPE_FLTSUB,	/* 43 - INV | DNML | STK */
457 	FPE_FLTDIV,	/* 44 - DZ | STK */
458 	FPE_FLTSUB,	/* 45 - INV | DZ | STK */
459 	FPE_FLTDIV,	/* 46 - DNML | DZ | STK */
460 	FPE_FLTSUB,	/* 47 - INV | DNML | DZ | STK */
461 	FPE_FLTOVF,	/* 48 - OFL | STK */
462 	FPE_FLTSUB,	/* 49 - INV | OFL | STK */
463 	FPE_FLTUND,	/* 4A - DNML | OFL | STK */
464 	FPE_FLTSUB,	/* 4B - INV | DNML | OFL | STK */
465 	FPE_FLTDIV,	/* 4C - DZ | OFL | STK */
466 	FPE_FLTSUB,	/* 4D - INV | DZ | OFL | STK */
467 	FPE_FLTDIV,	/* 4E - DNML | DZ | OFL | STK */
468 	FPE_FLTSUB,	/* 4F - INV | DNML | DZ | OFL | STK */
469 	FPE_FLTUND,	/* 50 - UFL | STK */
470 	FPE_FLTSUB,	/* 51 - INV | UFL | STK */
471 	FPE_FLTUND,	/* 52 - DNML | UFL | STK */
472 	FPE_FLTSUB,	/* 53 - INV | DNML | UFL | STK */
473 	FPE_FLTDIV,	/* 54 - DZ | UFL | STK */
474 	FPE_FLTSUB,	/* 55 - INV | DZ | UFL | STK */
475 	FPE_FLTDIV,	/* 56 - DNML | DZ | UFL | STK */
476 	FPE_FLTSUB,	/* 57 - INV | DNML | DZ | UFL | STK */
477 	FPE_FLTOVF,	/* 58 - OFL | UFL | STK */
478 	FPE_FLTSUB,	/* 59 - INV | OFL | UFL | STK */
479 	FPE_FLTUND,	/* 5A - DNML | OFL | UFL | STK */
480 	FPE_FLTSUB,	/* 5B - INV | DNML | OFL | UFL | STK */
481 	FPE_FLTDIV,	/* 5C - DZ | OFL | UFL | STK */
482 	FPE_FLTSUB,	/* 5D - INV | DZ | OFL | UFL | STK */
483 	FPE_FLTDIV,	/* 5E - DNML | DZ | OFL | UFL | STK */
484 	FPE_FLTSUB,	/* 5F - INV | DNML | DZ | OFL | UFL | STK */
485 	FPE_FLTRES,	/* 60 - IMP | STK */
486 	FPE_FLTSUB,	/* 61 - INV | IMP | STK */
487 	FPE_FLTUND,	/* 62 - DNML | IMP | STK */
488 	FPE_FLTSUB,	/* 63 - INV | DNML | IMP | STK */
489 	FPE_FLTDIV,	/* 64 - DZ | IMP | STK */
490 	FPE_FLTSUB,	/* 65 - INV | DZ | IMP | STK */
491 	FPE_FLTDIV,	/* 66 - DNML | DZ | IMP | STK */
492 	FPE_FLTSUB,	/* 67 - INV | DNML | DZ | IMP | STK */
493 	FPE_FLTOVF,	/* 68 - OFL | IMP | STK */
494 	FPE_FLTSUB,	/* 69 - INV | OFL | IMP | STK */
495 	FPE_FLTUND,	/* 6A - DNML | OFL | IMP | STK */
496 	FPE_FLTSUB,	/* 6B - INV | DNML | OFL | IMP | STK */
497 	FPE_FLTDIV,	/* 6C - DZ | OFL | IMP | STK */
498 	FPE_FLTSUB,	/* 6D - INV | DZ | OFL | IMP | STK */
499 	FPE_FLTDIV,	/* 6E - DNML | DZ | OFL | IMP | STK */
500 	FPE_FLTSUB,	/* 6F - INV | DNML | DZ | OFL | IMP | STK */
501 	FPE_FLTUND,	/* 70 - UFL | IMP | STK */
502 	FPE_FLTSUB,	/* 71 - INV | UFL | IMP | STK */
503 	FPE_FLTUND,	/* 72 - DNML | UFL | IMP | STK */
504 	FPE_FLTSUB,	/* 73 - INV | DNML | UFL | IMP | STK */
505 	FPE_FLTDIV,	/* 74 - DZ | UFL | IMP | STK */
506 	FPE_FLTSUB,	/* 75 - INV | DZ | UFL | IMP | STK */
507 	FPE_FLTDIV,	/* 76 - DNML | DZ | UFL | IMP | STK */
508 	FPE_FLTSUB,	/* 77 - INV | DNML | DZ | UFL | IMP | STK */
509 	FPE_FLTOVF,	/* 78 - OFL | UFL | IMP | STK */
510 	FPE_FLTSUB,	/* 79 - INV | OFL | UFL | IMP | STK */
511 	FPE_FLTUND,	/* 7A - DNML | OFL | UFL | IMP | STK */
512 	FPE_FLTSUB,	/* 7B - INV | DNML | OFL | UFL | IMP | STK */
513 	FPE_FLTDIV,	/* 7C - DZ | OFL | UFL | IMP | STK */
514 	FPE_FLTSUB,	/* 7D - INV | DZ | OFL | UFL | IMP | STK */
515 	FPE_FLTDIV,	/* 7E - DNML | DZ | OFL | UFL | IMP | STK */
516 	FPE_FLTSUB,	/* 7F - INV | DNML | DZ | OFL | UFL | IMP | STK */
517 };
518 
519 /*
520  * Read the FP status and control words, then generate si_code value
521  * for SIGFPE.  The error code chosen will be one of the
522  * FPE_... macros.  It will be sent as the second argument to old
523  * BSD-style signal handlers and as "siginfo_t->si_code" (second
524  * argument) to SA_SIGINFO signal handlers.
525  *
526  * Some time ago, we cleared the x87 exceptions with FNCLEX there.
527  * Clearing exceptions was necessary mainly to avoid IRQ13 bugs.  The
528  * usermode code which understands the FPU hardware enough to enable
529  * the exceptions, can also handle clearing the exception state in the
530  * handler.  The only consequence of not clearing the exception is the
531  * rethrow of the SIGFPE on return from the signal handler and
532  * reexecution of the corresponding instruction.
533  *
534  * For XMM traps, the exceptions were never cleared.
535  */
536 int
537 fputrap_x87(void)
538 {
539 	struct savefpu *pcb_save;
540 	u_short control, status;
541 
542 	critical_enter();
543 
544 	/*
545 	 * Interrupt handling (for another interrupt) may have pushed the
546 	 * state to memory.  Fetch the relevant parts of the state from
547 	 * wherever they are.
548 	 */
549 	if (PCPU_GET(fpcurthread) != curthread) {
550 		pcb_save = curpcb->pcb_save;
551 		control = pcb_save->sv_env.en_cw;
552 		status = pcb_save->sv_env.en_sw;
553 	} else {
554 		fnstcw(&control);
555 		fnstsw(&status);
556 	}
557 
558 	critical_exit();
559 	return (fpetable[status & ((~control & 0x3f) | 0x40)]);
560 }
561 
562 int
563 fputrap_sse(void)
564 {
565 	u_int mxcsr;
566 
567 	critical_enter();
568 	if (PCPU_GET(fpcurthread) != curthread)
569 		mxcsr = curpcb->pcb_save->sv_env.en_mxcsr;
570 	else
571 		stmxcsr(&mxcsr);
572 	critical_exit();
573 	return (fpetable[(mxcsr & (~mxcsr >> 7)) & 0x3f]);
574 }
575 
576 /*
577  * Implement device not available (DNA) exception
578  *
579  * It would be better to switch FP context here (if curthread != fpcurthread)
580  * and not necessarily for every context switch, but it is too hard to
581  * access foreign pcb's.
582  */
583 
584 static int err_count = 0;
585 
586 void
587 fpudna(void)
588 {
589 
590 	critical_enter();
591 	if (PCPU_GET(fpcurthread) == curthread) {
592 		printf("fpudna: fpcurthread == curthread %d times\n",
593 		    ++err_count);
594 		stop_emulating();
595 		critical_exit();
596 		return;
597 	}
598 	if (PCPU_GET(fpcurthread) != NULL) {
599 		printf("fpudna: fpcurthread = %p (%d), curthread = %p (%d)\n",
600 		       PCPU_GET(fpcurthread),
601 		       PCPU_GET(fpcurthread)->td_proc->p_pid,
602 		       curthread, curthread->td_proc->p_pid);
603 		panic("fpudna");
604 	}
605 	stop_emulating();
606 	/*
607 	 * Record new context early in case frstor causes a trap.
608 	 */
609 	PCPU_SET(fpcurthread, curthread);
610 
611 	fpu_clean_state();
612 
613 	if ((curpcb->pcb_flags & PCB_FPUINITDONE) == 0) {
614 		/*
615 		 * This is the first time this thread has used the FPU or
616 		 * the PCB doesn't contain a clean FPU state.  Explicitly
617 		 * load an initial state.
618 		 *
619 		 * We prefer to restore the state from the actual save
620 		 * area in PCB instead of directly loading from
621 		 * fpu_initialstate, to ignite the XSAVEOPT
622 		 * tracking engine.
623 		 */
624 		bcopy(fpu_initialstate, curpcb->pcb_save, cpu_max_ext_state_size);
625 		fpurestore(curpcb->pcb_save);
626 		if (curpcb->pcb_initial_fpucw != __INITIAL_FPUCW__)
627 			fldcw(curpcb->pcb_initial_fpucw);
628 		if (PCB_USER_FPU(curpcb))
629 			set_pcb_flags(curpcb,
630 			    PCB_FPUINITDONE | PCB_USERFPUINITDONE);
631 		else
632 			set_pcb_flags(curpcb, PCB_FPUINITDONE);
633 	} else
634 		fpurestore(curpcb->pcb_save);
635 	critical_exit();
636 }
637 
638 void
639 fpudrop()
640 {
641 	struct thread *td;
642 
643 	td = PCPU_GET(fpcurthread);
644 	KASSERT(td == curthread, ("fpudrop: fpcurthread != curthread"));
645 	CRITICAL_ASSERT(td);
646 	PCPU_SET(fpcurthread, NULL);
647 	clear_pcb_flags(td->td_pcb, PCB_FPUINITDONE);
648 	start_emulating();
649 }
650 
651 /*
652  * Get the user state of the FPU into pcb->pcb_user_save without
653  * dropping ownership (if possible).  It returns the FPU ownership
654  * status.
655  */
656 int
657 fpugetregs(struct thread *td)
658 {
659 	struct pcb *pcb;
660 	uint64_t *xstate_bv, bit;
661 	char *sa;
662 	int max_ext_n, i, owned;
663 
664 	pcb = td->td_pcb;
665 	if ((pcb->pcb_flags & PCB_USERFPUINITDONE) == 0) {
666 		bcopy(fpu_initialstate, get_pcb_user_save_pcb(pcb),
667 		    cpu_max_ext_state_size);
668 		get_pcb_user_save_pcb(pcb)->sv_env.en_cw =
669 		    pcb->pcb_initial_fpucw;
670 		fpuuserinited(td);
671 		return (_MC_FPOWNED_PCB);
672 	}
673 	critical_enter();
674 	if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
675 		fpusave(get_pcb_user_save_pcb(pcb));
676 		owned = _MC_FPOWNED_FPU;
677 	} else {
678 		owned = _MC_FPOWNED_PCB;
679 	}
680 	critical_exit();
681 	if (use_xsave) {
682 		/*
683 		 * Handle partially saved state.
684 		 */
685 		sa = (char *)get_pcb_user_save_pcb(pcb);
686 		xstate_bv = (uint64_t *)(sa + sizeof(struct savefpu) +
687 		    offsetof(struct xstate_hdr, xstate_bv));
688 		max_ext_n = flsl(xsave_mask);
689 		for (i = 0; i < max_ext_n; i++) {
690 			bit = 1ULL << i;
691 			if ((xsave_mask & bit) == 0 || (*xstate_bv & bit) != 0)
692 				continue;
693 			bcopy((char *)fpu_initialstate +
694 			    xsave_area_desc[i].offset,
695 			    sa + xsave_area_desc[i].offset,
696 			    xsave_area_desc[i].size);
697 			*xstate_bv |= bit;
698 		}
699 	}
700 	return (owned);
701 }
702 
703 void
704 fpuuserinited(struct thread *td)
705 {
706 	struct pcb *pcb;
707 
708 	pcb = td->td_pcb;
709 	if (PCB_USER_FPU(pcb))
710 		set_pcb_flags(pcb,
711 		    PCB_FPUINITDONE | PCB_USERFPUINITDONE);
712 	else
713 		set_pcb_flags(pcb, PCB_FPUINITDONE);
714 }
715 
716 int
717 fpusetxstate(struct thread *td, char *xfpustate, size_t xfpustate_size)
718 {
719 	struct xstate_hdr *hdr, *ehdr;
720 	size_t len, max_len;
721 	uint64_t bv;
722 
723 	/* XXXKIB should we clear all extended state in xstate_bv instead ? */
724 	if (xfpustate == NULL)
725 		return (0);
726 	if (!use_xsave)
727 		return (EOPNOTSUPP);
728 
729 	len = xfpustate_size;
730 	if (len < sizeof(struct xstate_hdr))
731 		return (EINVAL);
732 	max_len = cpu_max_ext_state_size - sizeof(struct savefpu);
733 	if (len > max_len)
734 		return (EINVAL);
735 
736 	ehdr = (struct xstate_hdr *)xfpustate;
737 	bv = ehdr->xstate_bv;
738 
739 	/*
740 	 * Avoid #gp.
741 	 */
742 	if (bv & ~xsave_mask)
743 		return (EINVAL);
744 
745 	hdr = (struct xstate_hdr *)(get_pcb_user_save_td(td) + 1);
746 
747 	hdr->xstate_bv = bv;
748 	bcopy(xfpustate + sizeof(struct xstate_hdr),
749 	    (char *)(hdr + 1), len - sizeof(struct xstate_hdr));
750 
751 	return (0);
752 }
753 
754 /*
755  * Set the state of the FPU.
756  */
757 int
758 fpusetregs(struct thread *td, struct savefpu *addr, char *xfpustate,
759     size_t xfpustate_size)
760 {
761 	struct pcb *pcb;
762 	int error;
763 
764 	pcb = td->td_pcb;
765 	critical_enter();
766 	if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
767 		error = fpusetxstate(td, xfpustate, xfpustate_size);
768 		if (error != 0) {
769 			critical_exit();
770 			return (error);
771 		}
772 		bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
773 		fpurestore(get_pcb_user_save_td(td));
774 		critical_exit();
775 		set_pcb_flags(pcb, PCB_FPUINITDONE | PCB_USERFPUINITDONE);
776 	} else {
777 		critical_exit();
778 		error = fpusetxstate(td, xfpustate, xfpustate_size);
779 		if (error != 0)
780 			return (error);
781 		bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
782 		fpuuserinited(td);
783 	}
784 	return (0);
785 }
786 
787 /*
788  * On AuthenticAMD processors, the fxrstor instruction does not restore
789  * the x87's stored last instruction pointer, last data pointer, and last
790  * opcode values, except in the rare case in which the exception summary
791  * (ES) bit in the x87 status word is set to 1.
792  *
793  * In order to avoid leaking this information across processes, we clean
794  * these values by performing a dummy load before executing fxrstor().
795  */
796 static void
797 fpu_clean_state(void)
798 {
799 	static float dummy_variable = 0.0;
800 	u_short status;
801 
802 	/*
803 	 * Clear the ES bit in the x87 status word if it is currently
804 	 * set, in order to avoid causing a fault in the upcoming load.
805 	 */
806 	fnstsw(&status);
807 	if (status & 0x80)
808 		fnclex();
809 
810 	/*
811 	 * Load the dummy variable into the x87 stack.  This mangles
812 	 * the x87 stack, but we don't care since we're about to call
813 	 * fxrstor() anyway.
814 	 */
815 	__asm __volatile("ffree %%st(7); flds %0" : : "m" (dummy_variable));
816 }
817 
818 /*
819  * This really sucks.  We want the acpi version only, but it requires
820  * the isa_if.h file in order to get the definitions.
821  */
822 #include "opt_isa.h"
823 #ifdef DEV_ISA
824 #include <isa/isavar.h>
825 /*
826  * This sucks up the legacy ISA support assignments from PNPBIOS/ACPI.
827  */
828 static struct isa_pnp_id fpupnp_ids[] = {
829 	{ 0x040cd041, "Legacy ISA coprocessor support" }, /* PNP0C04 */
830 	{ 0 }
831 };
832 
833 static int
834 fpupnp_probe(device_t dev)
835 {
836 	int result;
837 
838 	result = ISA_PNP_PROBE(device_get_parent(dev), dev, fpupnp_ids);
839 	if (result <= 0)
840 		device_quiet(dev);
841 	return (result);
842 }
843 
844 static int
845 fpupnp_attach(device_t dev)
846 {
847 
848 	return (0);
849 }
850 
851 static device_method_t fpupnp_methods[] = {
852 	/* Device interface */
853 	DEVMETHOD(device_probe,		fpupnp_probe),
854 	DEVMETHOD(device_attach,	fpupnp_attach),
855 	DEVMETHOD(device_detach,	bus_generic_detach),
856 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
857 	DEVMETHOD(device_suspend,	bus_generic_suspend),
858 	DEVMETHOD(device_resume,	bus_generic_resume),
859 
860 	{ 0, 0 }
861 };
862 
863 static driver_t fpupnp_driver = {
864 	"fpupnp",
865 	fpupnp_methods,
866 	1,			/* no softc */
867 };
868 
869 static devclass_t fpupnp_devclass;
870 
871 DRIVER_MODULE(fpupnp, acpi, fpupnp_driver, fpupnp_devclass, 0, 0);
872 #endif	/* DEV_ISA */
873 
874 static MALLOC_DEFINE(M_FPUKERN_CTX, "fpukern_ctx",
875     "Kernel contexts for FPU state");
876 
877 #define	FPU_KERN_CTX_FPUINITDONE 0x01
878 
879 struct fpu_kern_ctx {
880 	struct savefpu *prev;
881 	uint32_t flags;
882 	char hwstate1[];
883 };
884 
885 struct fpu_kern_ctx *
886 fpu_kern_alloc_ctx(u_int flags)
887 {
888 	struct fpu_kern_ctx *res;
889 	size_t sz;
890 
891 	sz = sizeof(struct fpu_kern_ctx) + XSAVE_AREA_ALIGN +
892 	    cpu_max_ext_state_size;
893 	res = malloc(sz, M_FPUKERN_CTX, ((flags & FPU_KERN_NOWAIT) ?
894 	    M_NOWAIT : M_WAITOK) | M_ZERO);
895 	return (res);
896 }
897 
898 void
899 fpu_kern_free_ctx(struct fpu_kern_ctx *ctx)
900 {
901 
902 	/* XXXKIB clear the memory ? */
903 	free(ctx, M_FPUKERN_CTX);
904 }
905 
906 static struct savefpu *
907 fpu_kern_ctx_savefpu(struct fpu_kern_ctx *ctx)
908 {
909 	vm_offset_t p;
910 
911 	p = (vm_offset_t)&ctx->hwstate1;
912 	p = roundup2(p, XSAVE_AREA_ALIGN);
913 	return ((struct savefpu *)p);
914 }
915 
916 int
917 fpu_kern_enter(struct thread *td, struct fpu_kern_ctx *ctx, u_int flags)
918 {
919 	struct pcb *pcb;
920 
921 	pcb = td->td_pcb;
922 	KASSERT(!PCB_USER_FPU(pcb) || pcb->pcb_save ==
923 	    get_pcb_user_save_pcb(pcb), ("mangled pcb_save"));
924 	ctx->flags = 0;
925 	if ((pcb->pcb_flags & PCB_FPUINITDONE) != 0)
926 		ctx->flags |= FPU_KERN_CTX_FPUINITDONE;
927 	fpuexit(td);
928 	ctx->prev = pcb->pcb_save;
929 	pcb->pcb_save = fpu_kern_ctx_savefpu(ctx);
930 	set_pcb_flags(pcb, PCB_KERNFPU);
931 	clear_pcb_flags(pcb, PCB_FPUINITDONE);
932 	return (0);
933 }
934 
935 int
936 fpu_kern_leave(struct thread *td, struct fpu_kern_ctx *ctx)
937 {
938 	struct pcb *pcb;
939 
940 	pcb = td->td_pcb;
941 	critical_enter();
942 	if (curthread == PCPU_GET(fpcurthread))
943 		fpudrop();
944 	critical_exit();
945 	pcb->pcb_save = ctx->prev;
946 	if (pcb->pcb_save == get_pcb_user_save_pcb(pcb)) {
947 		if ((pcb->pcb_flags & PCB_USERFPUINITDONE) != 0) {
948 			set_pcb_flags(pcb, PCB_FPUINITDONE);
949 			clear_pcb_flags(pcb, PCB_KERNFPU);
950 		} else
951 			clear_pcb_flags(pcb, PCB_FPUINITDONE | PCB_KERNFPU);
952 	} else {
953 		if ((ctx->flags & FPU_KERN_CTX_FPUINITDONE) != 0)
954 			set_pcb_flags(pcb, PCB_FPUINITDONE);
955 		else
956 			clear_pcb_flags(pcb, PCB_FPUINITDONE);
957 		KASSERT(!PCB_USER_FPU(pcb), ("unpaired fpu_kern_leave"));
958 	}
959 	return (0);
960 }
961 
962 int
963 fpu_kern_thread(u_int flags)
964 {
965 
966 	KASSERT((curthread->td_pflags & TDP_KTHREAD) != 0,
967 	    ("Only kthread may use fpu_kern_thread"));
968 	KASSERT(curpcb->pcb_save == get_pcb_user_save_pcb(curpcb),
969 	    ("mangled pcb_save"));
970 	KASSERT(PCB_USER_FPU(curpcb), ("recursive call"));
971 
972 	set_pcb_flags(curpcb, PCB_KERNFPU);
973 	return (0);
974 }
975 
976 int
977 is_fpu_kern_thread(u_int flags)
978 {
979 
980 	if ((curthread->td_pflags & TDP_KTHREAD) == 0)
981 		return (0);
982 	return ((curpcb->pcb_flags & PCB_KERNFPU) != 0);
983 }
984 
985 /*
986  * FPU save area alloc/free/init utility routines
987  */
988 struct savefpu *
989 fpu_save_area_alloc(void)
990 {
991 
992 	return (uma_zalloc(fpu_save_area_zone, 0));
993 }
994 
995 void
996 fpu_save_area_free(struct savefpu *fsa)
997 {
998 
999 	uma_zfree(fpu_save_area_zone, fsa);
1000 }
1001 
1002 void
1003 fpu_save_area_reset(struct savefpu *fsa)
1004 {
1005 
1006 	bcopy(fpu_initialstate, fsa, cpu_max_ext_state_size);
1007 }
1008