xref: /freebsd/sys/amd64/amd64/fpu.c (revision 47dd1d1b619cc035b82b49a91a25544309ff95ae)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1990 William Jolitz.
5  * Copyright (c) 1991 The Regents of the University of California.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)npx.c	7.2 (Berkeley) 5/12/91
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/bus.h>
41 #include <sys/kernel.h>
42 #include <sys/lock.h>
43 #include <sys/malloc.h>
44 #include <sys/module.h>
45 #include <sys/mutex.h>
46 #include <sys/mutex.h>
47 #include <sys/proc.h>
48 #include <sys/sysctl.h>
49 #include <machine/bus.h>
50 #include <sys/rman.h>
51 #include <sys/signalvar.h>
52 #include <vm/uma.h>
53 
54 #include <machine/cputypes.h>
55 #include <machine/frame.h>
56 #include <machine/intr_machdep.h>
57 #include <machine/md_var.h>
58 #include <machine/pcb.h>
59 #include <machine/psl.h>
60 #include <machine/resource.h>
61 #include <machine/specialreg.h>
62 #include <machine/segments.h>
63 #include <machine/ucontext.h>
64 #include <x86/ifunc.h>
65 
66 /*
67  * Floating point support.
68  */
69 
70 #if defined(__GNUCLIKE_ASM) && !defined(lint)
71 
72 #define	fldcw(cw)		__asm __volatile("fldcw %0" : : "m" (cw))
73 #define	fnclex()		__asm __volatile("fnclex")
74 #define	fninit()		__asm __volatile("fninit")
75 #define	fnstcw(addr)		__asm __volatile("fnstcw %0" : "=m" (*(addr)))
76 #define	fnstsw(addr)		__asm __volatile("fnstsw %0" : "=am" (*(addr)))
77 #define	fxrstor(addr)		__asm __volatile("fxrstor %0" : : "m" (*(addr)))
78 #define	fxsave(addr)		__asm __volatile("fxsave %0" : "=m" (*(addr)))
79 #define	ldmxcsr(csr)		__asm __volatile("ldmxcsr %0" : : "m" (csr))
80 #define	stmxcsr(addr)		__asm __volatile("stmxcsr %0" : : "m" (*(addr)))
81 
82 static __inline void
83 xrstor(char *addr, uint64_t mask)
84 {
85 	uint32_t low, hi;
86 
87 	low = mask;
88 	hi = mask >> 32;
89 	__asm __volatile("xrstor %0" : : "m" (*addr), "a" (low), "d" (hi));
90 }
91 
92 static __inline void
93 xsave(char *addr, uint64_t mask)
94 {
95 	uint32_t low, hi;
96 
97 	low = mask;
98 	hi = mask >> 32;
99 	__asm __volatile("xsave %0" : "=m" (*addr) : "a" (low), "d" (hi) :
100 	    "memory");
101 }
102 
103 #else	/* !(__GNUCLIKE_ASM && !lint) */
104 
105 void	fldcw(u_short cw);
106 void	fnclex(void);
107 void	fninit(void);
108 void	fnstcw(caddr_t addr);
109 void	fnstsw(caddr_t addr);
110 void	fxsave(caddr_t addr);
111 void	fxrstor(caddr_t addr);
112 void	ldmxcsr(u_int csr);
113 void	stmxcsr(u_int *csr);
114 void	xrstor(char *addr, uint64_t mask);
115 void	xsave(char *addr, uint64_t mask);
116 
117 #endif	/* __GNUCLIKE_ASM && !lint */
118 
119 #define	start_emulating()	load_cr0(rcr0() | CR0_TS)
120 #define	stop_emulating()	clts()
121 
122 CTASSERT(sizeof(struct savefpu) == 512);
123 CTASSERT(sizeof(struct xstate_hdr) == 64);
124 CTASSERT(sizeof(struct savefpu_ymm) == 832);
125 
126 /*
127  * This requirement is to make it easier for asm code to calculate
128  * offset of the fpu save area from the pcb address. FPU save area
129  * must be 64-byte aligned.
130  */
131 CTASSERT(sizeof(struct pcb) % XSAVE_AREA_ALIGN == 0);
132 
133 /*
134  * Ensure the copy of XCR0 saved in a core is contained in the padding
135  * area.
136  */
137 CTASSERT(X86_XSTATE_XCR0_OFFSET >= offsetof(struct savefpu, sv_pad) &&
138     X86_XSTATE_XCR0_OFFSET + sizeof(uint64_t) <= sizeof(struct savefpu));
139 
140 static	void	fpu_clean_state(void);
141 
142 SYSCTL_INT(_hw, HW_FLOATINGPT, floatingpoint, CTLFLAG_RD,
143     SYSCTL_NULL_INT_PTR, 1, "Floating point instructions executed in hardware");
144 
145 int use_xsave;			/* non-static for cpu_switch.S */
146 uint64_t xsave_mask;		/* the same */
147 static	uma_zone_t fpu_save_area_zone;
148 static	struct savefpu *fpu_initialstate;
149 
150 struct xsave_area_elm_descr {
151 	u_int	offset;
152 	u_int	size;
153 } *xsave_area_desc;
154 
155 static void
156 fpusave_xsave(void *addr)
157 {
158 
159 	xsave((char *)addr, xsave_mask);
160 }
161 
162 static void
163 fpurestore_xrstor(void *addr)
164 {
165 
166 	xrstor((char *)addr, xsave_mask);
167 }
168 
169 static void
170 fpusave_fxsave(void *addr)
171 {
172 
173 	fxsave((char *)addr);
174 }
175 
176 static void
177 fpurestore_fxrstor(void *addr)
178 {
179 
180 	fxrstor((char *)addr);
181 }
182 
183 static void
184 init_xsave(void)
185 {
186 
187 	if (use_xsave)
188 		return;
189 	if ((cpu_feature2 & CPUID2_XSAVE) == 0)
190 		return;
191 	use_xsave = 1;
192 	TUNABLE_INT_FETCH("hw.use_xsave", &use_xsave);
193 }
194 
195 DEFINE_IFUNC(, void, fpusave, (void *), static)
196 {
197 
198 	init_xsave();
199 	return (use_xsave ? fpusave_xsave : fpusave_fxsave);
200 }
201 
202 DEFINE_IFUNC(, void, fpurestore, (void *), static)
203 {
204 
205 	init_xsave();
206 	return (use_xsave ? fpurestore_xrstor : fpurestore_fxrstor);
207 }
208 
209 void
210 fpususpend(void *addr)
211 {
212 	u_long cr0;
213 
214 	cr0 = rcr0();
215 	stop_emulating();
216 	fpusave(addr);
217 	load_cr0(cr0);
218 }
219 
220 void
221 fpuresume(void *addr)
222 {
223 	u_long cr0;
224 
225 	cr0 = rcr0();
226 	stop_emulating();
227 	fninit();
228 	if (use_xsave)
229 		load_xcr(XCR0, xsave_mask);
230 	fpurestore(addr);
231 	load_cr0(cr0);
232 }
233 
234 /*
235  * Enable XSAVE if supported and allowed by user.
236  * Calculate the xsave_mask.
237  */
238 static void
239 fpuinit_bsp1(void)
240 {
241 	u_int cp[4];
242 	uint64_t xsave_mask_user;
243 	bool old_wp;
244 
245 	if (!use_xsave)
246 		return;
247 	cpuid_count(0xd, 0x0, cp);
248 	xsave_mask = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
249 	if ((cp[0] & xsave_mask) != xsave_mask)
250 		panic("CPU0 does not support X87 or SSE: %x", cp[0]);
251 	xsave_mask = ((uint64_t)cp[3] << 32) | cp[0];
252 	xsave_mask_user = xsave_mask;
253 	TUNABLE_ULONG_FETCH("hw.xsave_mask", &xsave_mask_user);
254 	xsave_mask_user |= XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
255 	xsave_mask &= xsave_mask_user;
256 	if ((xsave_mask & XFEATURE_AVX512) != XFEATURE_AVX512)
257 		xsave_mask &= ~XFEATURE_AVX512;
258 	if ((xsave_mask & XFEATURE_MPX) != XFEATURE_MPX)
259 		xsave_mask &= ~XFEATURE_MPX;
260 
261 	cpuid_count(0xd, 0x1, cp);
262 	if ((cp[0] & CPUID_EXTSTATE_XSAVEOPT) != 0) {
263 		/*
264 		 * Patch the XSAVE instruction in the cpu_switch code
265 		 * to XSAVEOPT.  We assume that XSAVE encoding used
266 		 * REX byte, and set the bit 4 of the r/m byte.
267 		 *
268 		 * It seems that some BIOSes give control to the OS
269 		 * with CR0.WP already set, making the kernel text
270 		 * read-only before cpu_startup().
271 		 */
272 		old_wp = disable_wp();
273 		ctx_switch_xsave[3] |= 0x10;
274 		restore_wp(old_wp);
275 	}
276 }
277 
278 /*
279  * Calculate the fpu save area size.
280  */
281 static void
282 fpuinit_bsp2(void)
283 {
284 	u_int cp[4];
285 
286 	if (use_xsave) {
287 		cpuid_count(0xd, 0x0, cp);
288 		cpu_max_ext_state_size = cp[1];
289 
290 		/*
291 		 * Reload the cpu_feature2, since we enabled OSXSAVE.
292 		 */
293 		do_cpuid(1, cp);
294 		cpu_feature2 = cp[2];
295 	} else
296 		cpu_max_ext_state_size = sizeof(struct savefpu);
297 }
298 
299 /*
300  * Initialize the floating point unit.
301  */
302 void
303 fpuinit(void)
304 {
305 	register_t saveintr;
306 	u_int mxcsr;
307 	u_short control;
308 
309 	if (IS_BSP())
310 		fpuinit_bsp1();
311 
312 	if (use_xsave) {
313 		load_cr4(rcr4() | CR4_XSAVE);
314 		load_xcr(XCR0, xsave_mask);
315 	}
316 
317 	/*
318 	 * XCR0 shall be set up before CPU can report the save area size.
319 	 */
320 	if (IS_BSP())
321 		fpuinit_bsp2();
322 
323 	/*
324 	 * It is too early for critical_enter() to work on AP.
325 	 */
326 	saveintr = intr_disable();
327 	stop_emulating();
328 	fninit();
329 	control = __INITIAL_FPUCW__;
330 	fldcw(control);
331 	mxcsr = __INITIAL_MXCSR__;
332 	ldmxcsr(mxcsr);
333 	start_emulating();
334 	intr_restore(saveintr);
335 }
336 
337 /*
338  * On the boot CPU we generate a clean state that is used to
339  * initialize the floating point unit when it is first used by a
340  * process.
341  */
342 static void
343 fpuinitstate(void *arg __unused)
344 {
345 	register_t saveintr;
346 	int cp[4], i, max_ext_n;
347 
348 	fpu_initialstate = malloc(cpu_max_ext_state_size, M_DEVBUF,
349 	    M_WAITOK | M_ZERO);
350 	saveintr = intr_disable();
351 	stop_emulating();
352 
353 	fpusave(fpu_initialstate);
354 	if (fpu_initialstate->sv_env.en_mxcsr_mask)
355 		cpu_mxcsr_mask = fpu_initialstate->sv_env.en_mxcsr_mask;
356 	else
357 		cpu_mxcsr_mask = 0xFFBF;
358 
359 	/*
360 	 * The fninit instruction does not modify XMM registers or x87
361 	 * registers (MM/ST).  The fpusave call dumped the garbage
362 	 * contained in the registers after reset to the initial state
363 	 * saved.  Clear XMM and x87 registers file image to make the
364 	 * startup program state and signal handler XMM/x87 register
365 	 * content predictable.
366 	 */
367 	bzero(fpu_initialstate->sv_fp, sizeof(fpu_initialstate->sv_fp));
368 	bzero(fpu_initialstate->sv_xmm, sizeof(fpu_initialstate->sv_xmm));
369 
370 	/*
371 	 * Create a table describing the layout of the CPU Extended
372 	 * Save Area.
373 	 */
374 	if (use_xsave) {
375 		max_ext_n = flsl(xsave_mask);
376 		xsave_area_desc = malloc(max_ext_n * sizeof(struct
377 		    xsave_area_elm_descr), M_DEVBUF, M_WAITOK | M_ZERO);
378 		/* x87 state */
379 		xsave_area_desc[0].offset = 0;
380 		xsave_area_desc[0].size = 160;
381 		/* XMM */
382 		xsave_area_desc[1].offset = 160;
383 		xsave_area_desc[1].size = 288 - 160;
384 
385 		for (i = 2; i < max_ext_n; i++) {
386 			cpuid_count(0xd, i, cp);
387 			xsave_area_desc[i].offset = cp[1];
388 			xsave_area_desc[i].size = cp[0];
389 		}
390 	}
391 
392 	fpu_save_area_zone = uma_zcreate("FPU_save_area",
393 	    cpu_max_ext_state_size, NULL, NULL, NULL, NULL,
394 	    XSAVE_AREA_ALIGN - 1, 0);
395 
396 	start_emulating();
397 	intr_restore(saveintr);
398 }
399 /* EFIRT needs this to be initialized before we can enter our EFI environment */
400 SYSINIT(fpuinitstate, SI_SUB_DRIVERS, SI_ORDER_FIRST, fpuinitstate, NULL);
401 
402 /*
403  * Free coprocessor (if we have it).
404  */
405 void
406 fpuexit(struct thread *td)
407 {
408 
409 	critical_enter();
410 	if (curthread == PCPU_GET(fpcurthread)) {
411 		stop_emulating();
412 		fpusave(curpcb->pcb_save);
413 		start_emulating();
414 		PCPU_SET(fpcurthread, NULL);
415 	}
416 	critical_exit();
417 }
418 
419 int
420 fpuformat(void)
421 {
422 
423 	return (_MC_FPFMT_XMM);
424 }
425 
426 /*
427  * The following mechanism is used to ensure that the FPE_... value
428  * that is passed as a trapcode to the signal handler of the user
429  * process does not have more than one bit set.
430  *
431  * Multiple bits may be set if the user process modifies the control
432  * word while a status word bit is already set.  While this is a sign
433  * of bad coding, we have no choise than to narrow them down to one
434  * bit, since we must not send a trapcode that is not exactly one of
435  * the FPE_ macros.
436  *
437  * The mechanism has a static table with 127 entries.  Each combination
438  * of the 7 FPU status word exception bits directly translates to a
439  * position in this table, where a single FPE_... value is stored.
440  * This FPE_... value stored there is considered the "most important"
441  * of the exception bits and will be sent as the signal code.  The
442  * precedence of the bits is based upon Intel Document "Numerical
443  * Applications", Chapter "Special Computational Situations".
444  *
445  * The macro to choose one of these values does these steps: 1) Throw
446  * away status word bits that cannot be masked.  2) Throw away the bits
447  * currently masked in the control word, assuming the user isn't
448  * interested in them anymore.  3) Reinsert status word bit 7 (stack
449  * fault) if it is set, which cannot be masked but must be presered.
450  * 4) Use the remaining bits to point into the trapcode table.
451  *
452  * The 6 maskable bits in order of their preference, as stated in the
453  * above referenced Intel manual:
454  * 1  Invalid operation (FP_X_INV)
455  * 1a   Stack underflow
456  * 1b   Stack overflow
457  * 1c   Operand of unsupported format
458  * 1d   SNaN operand.
459  * 2  QNaN operand (not an exception, irrelavant here)
460  * 3  Any other invalid-operation not mentioned above or zero divide
461  *      (FP_X_INV, FP_X_DZ)
462  * 4  Denormal operand (FP_X_DNML)
463  * 5  Numeric over/underflow (FP_X_OFL, FP_X_UFL)
464  * 6  Inexact result (FP_X_IMP)
465  */
466 static char fpetable[128] = {
467 	0,
468 	FPE_FLTINV,	/*  1 - INV */
469 	FPE_FLTUND,	/*  2 - DNML */
470 	FPE_FLTINV,	/*  3 - INV | DNML */
471 	FPE_FLTDIV,	/*  4 - DZ */
472 	FPE_FLTINV,	/*  5 - INV | DZ */
473 	FPE_FLTDIV,	/*  6 - DNML | DZ */
474 	FPE_FLTINV,	/*  7 - INV | DNML | DZ */
475 	FPE_FLTOVF,	/*  8 - OFL */
476 	FPE_FLTINV,	/*  9 - INV | OFL */
477 	FPE_FLTUND,	/*  A - DNML | OFL */
478 	FPE_FLTINV,	/*  B - INV | DNML | OFL */
479 	FPE_FLTDIV,	/*  C - DZ | OFL */
480 	FPE_FLTINV,	/*  D - INV | DZ | OFL */
481 	FPE_FLTDIV,	/*  E - DNML | DZ | OFL */
482 	FPE_FLTINV,	/*  F - INV | DNML | DZ | OFL */
483 	FPE_FLTUND,	/* 10 - UFL */
484 	FPE_FLTINV,	/* 11 - INV | UFL */
485 	FPE_FLTUND,	/* 12 - DNML | UFL */
486 	FPE_FLTINV,	/* 13 - INV | DNML | UFL */
487 	FPE_FLTDIV,	/* 14 - DZ | UFL */
488 	FPE_FLTINV,	/* 15 - INV | DZ | UFL */
489 	FPE_FLTDIV,	/* 16 - DNML | DZ | UFL */
490 	FPE_FLTINV,	/* 17 - INV | DNML | DZ | UFL */
491 	FPE_FLTOVF,	/* 18 - OFL | UFL */
492 	FPE_FLTINV,	/* 19 - INV | OFL | UFL */
493 	FPE_FLTUND,	/* 1A - DNML | OFL | UFL */
494 	FPE_FLTINV,	/* 1B - INV | DNML | OFL | UFL */
495 	FPE_FLTDIV,	/* 1C - DZ | OFL | UFL */
496 	FPE_FLTINV,	/* 1D - INV | DZ | OFL | UFL */
497 	FPE_FLTDIV,	/* 1E - DNML | DZ | OFL | UFL */
498 	FPE_FLTINV,	/* 1F - INV | DNML | DZ | OFL | UFL */
499 	FPE_FLTRES,	/* 20 - IMP */
500 	FPE_FLTINV,	/* 21 - INV | IMP */
501 	FPE_FLTUND,	/* 22 - DNML | IMP */
502 	FPE_FLTINV,	/* 23 - INV | DNML | IMP */
503 	FPE_FLTDIV,	/* 24 - DZ | IMP */
504 	FPE_FLTINV,	/* 25 - INV | DZ | IMP */
505 	FPE_FLTDIV,	/* 26 - DNML | DZ | IMP */
506 	FPE_FLTINV,	/* 27 - INV | DNML | DZ | IMP */
507 	FPE_FLTOVF,	/* 28 - OFL | IMP */
508 	FPE_FLTINV,	/* 29 - INV | OFL | IMP */
509 	FPE_FLTUND,	/* 2A - DNML | OFL | IMP */
510 	FPE_FLTINV,	/* 2B - INV | DNML | OFL | IMP */
511 	FPE_FLTDIV,	/* 2C - DZ | OFL | IMP */
512 	FPE_FLTINV,	/* 2D - INV | DZ | OFL | IMP */
513 	FPE_FLTDIV,	/* 2E - DNML | DZ | OFL | IMP */
514 	FPE_FLTINV,	/* 2F - INV | DNML | DZ | OFL | IMP */
515 	FPE_FLTUND,	/* 30 - UFL | IMP */
516 	FPE_FLTINV,	/* 31 - INV | UFL | IMP */
517 	FPE_FLTUND,	/* 32 - DNML | UFL | IMP */
518 	FPE_FLTINV,	/* 33 - INV | DNML | UFL | IMP */
519 	FPE_FLTDIV,	/* 34 - DZ | UFL | IMP */
520 	FPE_FLTINV,	/* 35 - INV | DZ | UFL | IMP */
521 	FPE_FLTDIV,	/* 36 - DNML | DZ | UFL | IMP */
522 	FPE_FLTINV,	/* 37 - INV | DNML | DZ | UFL | IMP */
523 	FPE_FLTOVF,	/* 38 - OFL | UFL | IMP */
524 	FPE_FLTINV,	/* 39 - INV | OFL | UFL | IMP */
525 	FPE_FLTUND,	/* 3A - DNML | OFL | UFL | IMP */
526 	FPE_FLTINV,	/* 3B - INV | DNML | OFL | UFL | IMP */
527 	FPE_FLTDIV,	/* 3C - DZ | OFL | UFL | IMP */
528 	FPE_FLTINV,	/* 3D - INV | DZ | OFL | UFL | IMP */
529 	FPE_FLTDIV,	/* 3E - DNML | DZ | OFL | UFL | IMP */
530 	FPE_FLTINV,	/* 3F - INV | DNML | DZ | OFL | UFL | IMP */
531 	FPE_FLTSUB,	/* 40 - STK */
532 	FPE_FLTSUB,	/* 41 - INV | STK */
533 	FPE_FLTUND,	/* 42 - DNML | STK */
534 	FPE_FLTSUB,	/* 43 - INV | DNML | STK */
535 	FPE_FLTDIV,	/* 44 - DZ | STK */
536 	FPE_FLTSUB,	/* 45 - INV | DZ | STK */
537 	FPE_FLTDIV,	/* 46 - DNML | DZ | STK */
538 	FPE_FLTSUB,	/* 47 - INV | DNML | DZ | STK */
539 	FPE_FLTOVF,	/* 48 - OFL | STK */
540 	FPE_FLTSUB,	/* 49 - INV | OFL | STK */
541 	FPE_FLTUND,	/* 4A - DNML | OFL | STK */
542 	FPE_FLTSUB,	/* 4B - INV | DNML | OFL | STK */
543 	FPE_FLTDIV,	/* 4C - DZ | OFL | STK */
544 	FPE_FLTSUB,	/* 4D - INV | DZ | OFL | STK */
545 	FPE_FLTDIV,	/* 4E - DNML | DZ | OFL | STK */
546 	FPE_FLTSUB,	/* 4F - INV | DNML | DZ | OFL | STK */
547 	FPE_FLTUND,	/* 50 - UFL | STK */
548 	FPE_FLTSUB,	/* 51 - INV | UFL | STK */
549 	FPE_FLTUND,	/* 52 - DNML | UFL | STK */
550 	FPE_FLTSUB,	/* 53 - INV | DNML | UFL | STK */
551 	FPE_FLTDIV,	/* 54 - DZ | UFL | STK */
552 	FPE_FLTSUB,	/* 55 - INV | DZ | UFL | STK */
553 	FPE_FLTDIV,	/* 56 - DNML | DZ | UFL | STK */
554 	FPE_FLTSUB,	/* 57 - INV | DNML | DZ | UFL | STK */
555 	FPE_FLTOVF,	/* 58 - OFL | UFL | STK */
556 	FPE_FLTSUB,	/* 59 - INV | OFL | UFL | STK */
557 	FPE_FLTUND,	/* 5A - DNML | OFL | UFL | STK */
558 	FPE_FLTSUB,	/* 5B - INV | DNML | OFL | UFL | STK */
559 	FPE_FLTDIV,	/* 5C - DZ | OFL | UFL | STK */
560 	FPE_FLTSUB,	/* 5D - INV | DZ | OFL | UFL | STK */
561 	FPE_FLTDIV,	/* 5E - DNML | DZ | OFL | UFL | STK */
562 	FPE_FLTSUB,	/* 5F - INV | DNML | DZ | OFL | UFL | STK */
563 	FPE_FLTRES,	/* 60 - IMP | STK */
564 	FPE_FLTSUB,	/* 61 - INV | IMP | STK */
565 	FPE_FLTUND,	/* 62 - DNML | IMP | STK */
566 	FPE_FLTSUB,	/* 63 - INV | DNML | IMP | STK */
567 	FPE_FLTDIV,	/* 64 - DZ | IMP | STK */
568 	FPE_FLTSUB,	/* 65 - INV | DZ | IMP | STK */
569 	FPE_FLTDIV,	/* 66 - DNML | DZ | IMP | STK */
570 	FPE_FLTSUB,	/* 67 - INV | DNML | DZ | IMP | STK */
571 	FPE_FLTOVF,	/* 68 - OFL | IMP | STK */
572 	FPE_FLTSUB,	/* 69 - INV | OFL | IMP | STK */
573 	FPE_FLTUND,	/* 6A - DNML | OFL | IMP | STK */
574 	FPE_FLTSUB,	/* 6B - INV | DNML | OFL | IMP | STK */
575 	FPE_FLTDIV,	/* 6C - DZ | OFL | IMP | STK */
576 	FPE_FLTSUB,	/* 6D - INV | DZ | OFL | IMP | STK */
577 	FPE_FLTDIV,	/* 6E - DNML | DZ | OFL | IMP | STK */
578 	FPE_FLTSUB,	/* 6F - INV | DNML | DZ | OFL | IMP | STK */
579 	FPE_FLTUND,	/* 70 - UFL | IMP | STK */
580 	FPE_FLTSUB,	/* 71 - INV | UFL | IMP | STK */
581 	FPE_FLTUND,	/* 72 - DNML | UFL | IMP | STK */
582 	FPE_FLTSUB,	/* 73 - INV | DNML | UFL | IMP | STK */
583 	FPE_FLTDIV,	/* 74 - DZ | UFL | IMP | STK */
584 	FPE_FLTSUB,	/* 75 - INV | DZ | UFL | IMP | STK */
585 	FPE_FLTDIV,	/* 76 - DNML | DZ | UFL | IMP | STK */
586 	FPE_FLTSUB,	/* 77 - INV | DNML | DZ | UFL | IMP | STK */
587 	FPE_FLTOVF,	/* 78 - OFL | UFL | IMP | STK */
588 	FPE_FLTSUB,	/* 79 - INV | OFL | UFL | IMP | STK */
589 	FPE_FLTUND,	/* 7A - DNML | OFL | UFL | IMP | STK */
590 	FPE_FLTSUB,	/* 7B - INV | DNML | OFL | UFL | IMP | STK */
591 	FPE_FLTDIV,	/* 7C - DZ | OFL | UFL | IMP | STK */
592 	FPE_FLTSUB,	/* 7D - INV | DZ | OFL | UFL | IMP | STK */
593 	FPE_FLTDIV,	/* 7E - DNML | DZ | OFL | UFL | IMP | STK */
594 	FPE_FLTSUB,	/* 7F - INV | DNML | DZ | OFL | UFL | IMP | STK */
595 };
596 
597 /*
598  * Read the FP status and control words, then generate si_code value
599  * for SIGFPE.  The error code chosen will be one of the
600  * FPE_... macros.  It will be sent as the second argument to old
601  * BSD-style signal handlers and as "siginfo_t->si_code" (second
602  * argument) to SA_SIGINFO signal handlers.
603  *
604  * Some time ago, we cleared the x87 exceptions with FNCLEX there.
605  * Clearing exceptions was necessary mainly to avoid IRQ13 bugs.  The
606  * usermode code which understands the FPU hardware enough to enable
607  * the exceptions, can also handle clearing the exception state in the
608  * handler.  The only consequence of not clearing the exception is the
609  * rethrow of the SIGFPE on return from the signal handler and
610  * reexecution of the corresponding instruction.
611  *
612  * For XMM traps, the exceptions were never cleared.
613  */
614 int
615 fputrap_x87(void)
616 {
617 	struct savefpu *pcb_save;
618 	u_short control, status;
619 
620 	critical_enter();
621 
622 	/*
623 	 * Interrupt handling (for another interrupt) may have pushed the
624 	 * state to memory.  Fetch the relevant parts of the state from
625 	 * wherever they are.
626 	 */
627 	if (PCPU_GET(fpcurthread) != curthread) {
628 		pcb_save = curpcb->pcb_save;
629 		control = pcb_save->sv_env.en_cw;
630 		status = pcb_save->sv_env.en_sw;
631 	} else {
632 		fnstcw(&control);
633 		fnstsw(&status);
634 	}
635 
636 	critical_exit();
637 	return (fpetable[status & ((~control & 0x3f) | 0x40)]);
638 }
639 
640 int
641 fputrap_sse(void)
642 {
643 	u_int mxcsr;
644 
645 	critical_enter();
646 	if (PCPU_GET(fpcurthread) != curthread)
647 		mxcsr = curpcb->pcb_save->sv_env.en_mxcsr;
648 	else
649 		stmxcsr(&mxcsr);
650 	critical_exit();
651 	return (fpetable[(mxcsr & (~mxcsr >> 7)) & 0x3f]);
652 }
653 
654 /*
655  * Device Not Available (DNA, #NM) exception handler.
656  *
657  * It would be better to switch FP context here (if curthread !=
658  * fpcurthread) and not necessarily for every context switch, but it
659  * is too hard to access foreign pcb's.
660  */
661 void
662 fpudna(void)
663 {
664 
665 	/*
666 	 * This handler is entered with interrupts enabled, so context
667 	 * switches may occur before critical_enter() is executed.  If
668 	 * a context switch occurs, then when we regain control, our
669 	 * state will have been completely restored.  The CPU may
670 	 * change underneath us, but the only part of our context that
671 	 * lives in the CPU is CR0.TS and that will be "restored" by
672 	 * setting it on the new CPU.
673 	 */
674 	critical_enter();
675 
676 	KASSERT((curpcb->pcb_flags & PCB_FPUNOSAVE) == 0,
677 	    ("fpudna while in fpu_kern_enter(FPU_KERN_NOCTX)"));
678 	if (PCPU_GET(fpcurthread) == curthread) {
679 		printf("fpudna: fpcurthread == curthread\n");
680 		stop_emulating();
681 		critical_exit();
682 		return;
683 	}
684 	if (PCPU_GET(fpcurthread) != NULL) {
685 		panic("fpudna: fpcurthread = %p (%d), curthread = %p (%d)\n",
686 		    PCPU_GET(fpcurthread), PCPU_GET(fpcurthread)->td_tid,
687 		    curthread, curthread->td_tid);
688 	}
689 	stop_emulating();
690 	/*
691 	 * Record new context early in case frstor causes a trap.
692 	 */
693 	PCPU_SET(fpcurthread, curthread);
694 
695 	fpu_clean_state();
696 
697 	if ((curpcb->pcb_flags & PCB_FPUINITDONE) == 0) {
698 		/*
699 		 * This is the first time this thread has used the FPU or
700 		 * the PCB doesn't contain a clean FPU state.  Explicitly
701 		 * load an initial state.
702 		 *
703 		 * We prefer to restore the state from the actual save
704 		 * area in PCB instead of directly loading from
705 		 * fpu_initialstate, to ignite the XSAVEOPT
706 		 * tracking engine.
707 		 */
708 		bcopy(fpu_initialstate, curpcb->pcb_save,
709 		    cpu_max_ext_state_size);
710 		fpurestore(curpcb->pcb_save);
711 		if (curpcb->pcb_initial_fpucw != __INITIAL_FPUCW__)
712 			fldcw(curpcb->pcb_initial_fpucw);
713 		if (PCB_USER_FPU(curpcb))
714 			set_pcb_flags(curpcb,
715 			    PCB_FPUINITDONE | PCB_USERFPUINITDONE);
716 		else
717 			set_pcb_flags(curpcb, PCB_FPUINITDONE);
718 	} else
719 		fpurestore(curpcb->pcb_save);
720 	critical_exit();
721 }
722 
723 void
724 fpudrop(void)
725 {
726 	struct thread *td;
727 
728 	td = PCPU_GET(fpcurthread);
729 	KASSERT(td == curthread, ("fpudrop: fpcurthread != curthread"));
730 	CRITICAL_ASSERT(td);
731 	PCPU_SET(fpcurthread, NULL);
732 	clear_pcb_flags(td->td_pcb, PCB_FPUINITDONE);
733 	start_emulating();
734 }
735 
736 /*
737  * Get the user state of the FPU into pcb->pcb_user_save without
738  * dropping ownership (if possible).  It returns the FPU ownership
739  * status.
740  */
741 int
742 fpugetregs(struct thread *td)
743 {
744 	struct pcb *pcb;
745 	uint64_t *xstate_bv, bit;
746 	char *sa;
747 	int max_ext_n, i, owned;
748 
749 	pcb = td->td_pcb;
750 	if ((pcb->pcb_flags & PCB_USERFPUINITDONE) == 0) {
751 		bcopy(fpu_initialstate, get_pcb_user_save_pcb(pcb),
752 		    cpu_max_ext_state_size);
753 		get_pcb_user_save_pcb(pcb)->sv_env.en_cw =
754 		    pcb->pcb_initial_fpucw;
755 		fpuuserinited(td);
756 		return (_MC_FPOWNED_PCB);
757 	}
758 	critical_enter();
759 	if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
760 		fpusave(get_pcb_user_save_pcb(pcb));
761 		owned = _MC_FPOWNED_FPU;
762 	} else {
763 		owned = _MC_FPOWNED_PCB;
764 	}
765 	critical_exit();
766 	if (use_xsave) {
767 		/*
768 		 * Handle partially saved state.
769 		 */
770 		sa = (char *)get_pcb_user_save_pcb(pcb);
771 		xstate_bv = (uint64_t *)(sa + sizeof(struct savefpu) +
772 		    offsetof(struct xstate_hdr, xstate_bv));
773 		max_ext_n = flsl(xsave_mask);
774 		for (i = 0; i < max_ext_n; i++) {
775 			bit = 1ULL << i;
776 			if ((xsave_mask & bit) == 0 || (*xstate_bv & bit) != 0)
777 				continue;
778 			bcopy((char *)fpu_initialstate +
779 			    xsave_area_desc[i].offset,
780 			    sa + xsave_area_desc[i].offset,
781 			    xsave_area_desc[i].size);
782 			*xstate_bv |= bit;
783 		}
784 	}
785 	return (owned);
786 }
787 
788 void
789 fpuuserinited(struct thread *td)
790 {
791 	struct pcb *pcb;
792 
793 	pcb = td->td_pcb;
794 	if (PCB_USER_FPU(pcb))
795 		set_pcb_flags(pcb,
796 		    PCB_FPUINITDONE | PCB_USERFPUINITDONE);
797 	else
798 		set_pcb_flags(pcb, PCB_FPUINITDONE);
799 }
800 
801 int
802 fpusetxstate(struct thread *td, char *xfpustate, size_t xfpustate_size)
803 {
804 	struct xstate_hdr *hdr, *ehdr;
805 	size_t len, max_len;
806 	uint64_t bv;
807 
808 	/* XXXKIB should we clear all extended state in xstate_bv instead ? */
809 	if (xfpustate == NULL)
810 		return (0);
811 	if (!use_xsave)
812 		return (EOPNOTSUPP);
813 
814 	len = xfpustate_size;
815 	if (len < sizeof(struct xstate_hdr))
816 		return (EINVAL);
817 	max_len = cpu_max_ext_state_size - sizeof(struct savefpu);
818 	if (len > max_len)
819 		return (EINVAL);
820 
821 	ehdr = (struct xstate_hdr *)xfpustate;
822 	bv = ehdr->xstate_bv;
823 
824 	/*
825 	 * Avoid #gp.
826 	 */
827 	if (bv & ~xsave_mask)
828 		return (EINVAL);
829 
830 	hdr = (struct xstate_hdr *)(get_pcb_user_save_td(td) + 1);
831 
832 	hdr->xstate_bv = bv;
833 	bcopy(xfpustate + sizeof(struct xstate_hdr),
834 	    (char *)(hdr + 1), len - sizeof(struct xstate_hdr));
835 
836 	return (0);
837 }
838 
839 /*
840  * Set the state of the FPU.
841  */
842 int
843 fpusetregs(struct thread *td, struct savefpu *addr, char *xfpustate,
844     size_t xfpustate_size)
845 {
846 	struct pcb *pcb;
847 	int error;
848 
849 	addr->sv_env.en_mxcsr &= cpu_mxcsr_mask;
850 	pcb = td->td_pcb;
851 	critical_enter();
852 	if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
853 		error = fpusetxstate(td, xfpustate, xfpustate_size);
854 		if (error != 0) {
855 			critical_exit();
856 			return (error);
857 		}
858 		bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
859 		fpurestore(get_pcb_user_save_td(td));
860 		critical_exit();
861 		set_pcb_flags(pcb, PCB_FPUINITDONE | PCB_USERFPUINITDONE);
862 	} else {
863 		critical_exit();
864 		error = fpusetxstate(td, xfpustate, xfpustate_size);
865 		if (error != 0)
866 			return (error);
867 		bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
868 		fpuuserinited(td);
869 	}
870 	return (0);
871 }
872 
873 /*
874  * On AuthenticAMD processors, the fxrstor instruction does not restore
875  * the x87's stored last instruction pointer, last data pointer, and last
876  * opcode values, except in the rare case in which the exception summary
877  * (ES) bit in the x87 status word is set to 1.
878  *
879  * In order to avoid leaking this information across processes, we clean
880  * these values by performing a dummy load before executing fxrstor().
881  */
882 static void
883 fpu_clean_state(void)
884 {
885 	static float dummy_variable = 0.0;
886 	u_short status;
887 
888 	/*
889 	 * Clear the ES bit in the x87 status word if it is currently
890 	 * set, in order to avoid causing a fault in the upcoming load.
891 	 */
892 	fnstsw(&status);
893 	if (status & 0x80)
894 		fnclex();
895 
896 	/*
897 	 * Load the dummy variable into the x87 stack.  This mangles
898 	 * the x87 stack, but we don't care since we're about to call
899 	 * fxrstor() anyway.
900 	 */
901 	__asm __volatile("ffree %%st(7); flds %0" : : "m" (dummy_variable));
902 }
903 
904 /*
905  * This really sucks.  We want the acpi version only, but it requires
906  * the isa_if.h file in order to get the definitions.
907  */
908 #include "opt_isa.h"
909 #ifdef DEV_ISA
910 #include <isa/isavar.h>
911 /*
912  * This sucks up the legacy ISA support assignments from PNPBIOS/ACPI.
913  */
914 static struct isa_pnp_id fpupnp_ids[] = {
915 	{ 0x040cd041, "Legacy ISA coprocessor support" }, /* PNP0C04 */
916 	{ 0 }
917 };
918 
919 static int
920 fpupnp_probe(device_t dev)
921 {
922 	int result;
923 
924 	result = ISA_PNP_PROBE(device_get_parent(dev), dev, fpupnp_ids);
925 	if (result <= 0)
926 		device_quiet(dev);
927 	return (result);
928 }
929 
930 static int
931 fpupnp_attach(device_t dev)
932 {
933 
934 	return (0);
935 }
936 
937 static device_method_t fpupnp_methods[] = {
938 	/* Device interface */
939 	DEVMETHOD(device_probe,		fpupnp_probe),
940 	DEVMETHOD(device_attach,	fpupnp_attach),
941 	DEVMETHOD(device_detach,	bus_generic_detach),
942 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
943 	DEVMETHOD(device_suspend,	bus_generic_suspend),
944 	DEVMETHOD(device_resume,	bus_generic_resume),
945 
946 	{ 0, 0 }
947 };
948 
949 static driver_t fpupnp_driver = {
950 	"fpupnp",
951 	fpupnp_methods,
952 	1,			/* no softc */
953 };
954 
955 static devclass_t fpupnp_devclass;
956 
957 DRIVER_MODULE(fpupnp, acpi, fpupnp_driver, fpupnp_devclass, 0, 0);
958 ISA_PNP_INFO(fpupnp_ids);
959 #endif	/* DEV_ISA */
960 
961 static MALLOC_DEFINE(M_FPUKERN_CTX, "fpukern_ctx",
962     "Kernel contexts for FPU state");
963 
964 #define	FPU_KERN_CTX_FPUINITDONE 0x01
965 #define	FPU_KERN_CTX_DUMMY	 0x02	/* avoided save for the kern thread */
966 #define	FPU_KERN_CTX_INUSE	 0x04
967 
968 struct fpu_kern_ctx {
969 	struct savefpu *prev;
970 	uint32_t flags;
971 	char hwstate1[];
972 };
973 
974 struct fpu_kern_ctx *
975 fpu_kern_alloc_ctx(u_int flags)
976 {
977 	struct fpu_kern_ctx *res;
978 	size_t sz;
979 
980 	sz = sizeof(struct fpu_kern_ctx) + XSAVE_AREA_ALIGN +
981 	    cpu_max_ext_state_size;
982 	res = malloc(sz, M_FPUKERN_CTX, ((flags & FPU_KERN_NOWAIT) ?
983 	    M_NOWAIT : M_WAITOK) | M_ZERO);
984 	return (res);
985 }
986 
987 void
988 fpu_kern_free_ctx(struct fpu_kern_ctx *ctx)
989 {
990 
991 	KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) == 0, ("free'ing inuse ctx"));
992 	/* XXXKIB clear the memory ? */
993 	free(ctx, M_FPUKERN_CTX);
994 }
995 
996 static struct savefpu *
997 fpu_kern_ctx_savefpu(struct fpu_kern_ctx *ctx)
998 {
999 	vm_offset_t p;
1000 
1001 	p = (vm_offset_t)&ctx->hwstate1;
1002 	p = roundup2(p, XSAVE_AREA_ALIGN);
1003 	return ((struct savefpu *)p);
1004 }
1005 
1006 void
1007 fpu_kern_enter(struct thread *td, struct fpu_kern_ctx *ctx, u_int flags)
1008 {
1009 	struct pcb *pcb;
1010 
1011 	pcb = td->td_pcb;
1012 	KASSERT((flags & FPU_KERN_NOCTX) != 0 || ctx != NULL,
1013 	    ("ctx is required when !FPU_KERN_NOCTX"));
1014 	KASSERT(ctx == NULL || (ctx->flags & FPU_KERN_CTX_INUSE) == 0,
1015 	    ("using inuse ctx"));
1016 	KASSERT((pcb->pcb_flags & PCB_FPUNOSAVE) == 0,
1017 	    ("recursive fpu_kern_enter while in PCB_FPUNOSAVE state"));
1018 
1019 	if ((flags & FPU_KERN_NOCTX) != 0) {
1020 		critical_enter();
1021 		stop_emulating();
1022 		if (curthread == PCPU_GET(fpcurthread)) {
1023 			fpusave(curpcb->pcb_save);
1024 			PCPU_SET(fpcurthread, NULL);
1025 		} else {
1026 			KASSERT(PCPU_GET(fpcurthread) == NULL,
1027 			    ("invalid fpcurthread"));
1028 		}
1029 
1030 		/*
1031 		 * This breaks XSAVEOPT tracker, but
1032 		 * PCB_FPUNOSAVE state is supposed to never need to
1033 		 * save FPU context at all.
1034 		 */
1035 		fpurestore(fpu_initialstate);
1036 		set_pcb_flags(pcb, PCB_KERNFPU | PCB_FPUNOSAVE |
1037 		    PCB_FPUINITDONE);
1038 		return;
1039 	}
1040 	if ((flags & FPU_KERN_KTHR) != 0 && is_fpu_kern_thread(0)) {
1041 		ctx->flags = FPU_KERN_CTX_DUMMY | FPU_KERN_CTX_INUSE;
1042 		return;
1043 	}
1044 	KASSERT(!PCB_USER_FPU(pcb) || pcb->pcb_save ==
1045 	    get_pcb_user_save_pcb(pcb), ("mangled pcb_save"));
1046 	ctx->flags = FPU_KERN_CTX_INUSE;
1047 	if ((pcb->pcb_flags & PCB_FPUINITDONE) != 0)
1048 		ctx->flags |= FPU_KERN_CTX_FPUINITDONE;
1049 	fpuexit(td);
1050 	ctx->prev = pcb->pcb_save;
1051 	pcb->pcb_save = fpu_kern_ctx_savefpu(ctx);
1052 	set_pcb_flags(pcb, PCB_KERNFPU);
1053 	clear_pcb_flags(pcb, PCB_FPUINITDONE);
1054 	return;
1055 }
1056 
1057 int
1058 fpu_kern_leave(struct thread *td, struct fpu_kern_ctx *ctx)
1059 {
1060 	struct pcb *pcb;
1061 
1062 	pcb = td->td_pcb;
1063 
1064 	if ((pcb->pcb_flags & PCB_FPUNOSAVE) != 0) {
1065 		KASSERT(ctx == NULL, ("non-null ctx after FPU_KERN_NOCTX"));
1066 		KASSERT(PCPU_GET(fpcurthread) == NULL,
1067 		    ("non-NULL fpcurthread for PCB_FPUNOSAVE"));
1068 		CRITICAL_ASSERT(td);
1069 
1070 		clear_pcb_flags(pcb,  PCB_FPUNOSAVE | PCB_FPUINITDONE);
1071 		start_emulating();
1072 		critical_exit();
1073 	} else {
1074 		KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) != 0,
1075 		    ("leaving not inuse ctx"));
1076 		ctx->flags &= ~FPU_KERN_CTX_INUSE;
1077 
1078 		if (is_fpu_kern_thread(0) &&
1079 		    (ctx->flags & FPU_KERN_CTX_DUMMY) != 0)
1080 			return (0);
1081 		KASSERT((ctx->flags & FPU_KERN_CTX_DUMMY) == 0,
1082 		    ("dummy ctx"));
1083 		critical_enter();
1084 		if (curthread == PCPU_GET(fpcurthread))
1085 			fpudrop();
1086 		critical_exit();
1087 		pcb->pcb_save = ctx->prev;
1088 	}
1089 
1090 	if (pcb->pcb_save == get_pcb_user_save_pcb(pcb)) {
1091 		if ((pcb->pcb_flags & PCB_USERFPUINITDONE) != 0) {
1092 			set_pcb_flags(pcb, PCB_FPUINITDONE);
1093 			clear_pcb_flags(pcb, PCB_KERNFPU);
1094 		} else
1095 			clear_pcb_flags(pcb, PCB_FPUINITDONE | PCB_KERNFPU);
1096 	} else {
1097 		if ((ctx->flags & FPU_KERN_CTX_FPUINITDONE) != 0)
1098 			set_pcb_flags(pcb, PCB_FPUINITDONE);
1099 		else
1100 			clear_pcb_flags(pcb, PCB_FPUINITDONE);
1101 		KASSERT(!PCB_USER_FPU(pcb), ("unpaired fpu_kern_leave"));
1102 	}
1103 	return (0);
1104 }
1105 
1106 int
1107 fpu_kern_thread(u_int flags)
1108 {
1109 
1110 	KASSERT((curthread->td_pflags & TDP_KTHREAD) != 0,
1111 	    ("Only kthread may use fpu_kern_thread"));
1112 	KASSERT(curpcb->pcb_save == get_pcb_user_save_pcb(curpcb),
1113 	    ("mangled pcb_save"));
1114 	KASSERT(PCB_USER_FPU(curpcb), ("recursive call"));
1115 
1116 	set_pcb_flags(curpcb, PCB_KERNFPU);
1117 	return (0);
1118 }
1119 
1120 int
1121 is_fpu_kern_thread(u_int flags)
1122 {
1123 
1124 	if ((curthread->td_pflags & TDP_KTHREAD) == 0)
1125 		return (0);
1126 	return ((curpcb->pcb_flags & PCB_KERNFPU) != 0);
1127 }
1128 
1129 /*
1130  * FPU save area alloc/free/init utility routines
1131  */
1132 struct savefpu *
1133 fpu_save_area_alloc(void)
1134 {
1135 
1136 	return (uma_zalloc(fpu_save_area_zone, 0));
1137 }
1138 
1139 void
1140 fpu_save_area_free(struct savefpu *fsa)
1141 {
1142 
1143 	uma_zfree(fpu_save_area_zone, fsa);
1144 }
1145 
1146 void
1147 fpu_save_area_reset(struct savefpu *fsa)
1148 {
1149 
1150 	bcopy(fpu_initialstate, fsa, cpu_max_ext_state_size);
1151 }
1152