xref: /freebsd/sys/amd64/amd64/fpu.c (revision 3fe8969a749c0e4a62ffdbf4f6883898027a9e19)
1 /*-
2  * Copyright (c) 1990 William Jolitz.
3  * Copyright (c) 1991 The Regents of the University of California.
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 4. Neither the name of the University nor the names of its contributors
15  *    may be used to endorse or promote products derived from this software
16  *    without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  *	from: @(#)npx.c	7.2 (Berkeley) 5/12/91
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/bus.h>
39 #include <sys/kernel.h>
40 #include <sys/lock.h>
41 #include <sys/malloc.h>
42 #include <sys/module.h>
43 #include <sys/mutex.h>
44 #include <sys/mutex.h>
45 #include <sys/proc.h>
46 #include <sys/sysctl.h>
47 #include <machine/bus.h>
48 #include <sys/rman.h>
49 #include <sys/signalvar.h>
50 #include <vm/uma.h>
51 
52 #include <machine/cputypes.h>
53 #include <machine/frame.h>
54 #include <machine/intr_machdep.h>
55 #include <machine/md_var.h>
56 #include <machine/pcb.h>
57 #include <machine/psl.h>
58 #include <machine/resource.h>
59 #include <machine/specialreg.h>
60 #include <machine/segments.h>
61 #include <machine/ucontext.h>
62 
63 /*
64  * Floating point support.
65  */
66 
67 #if defined(__GNUCLIKE_ASM) && !defined(lint)
68 
69 #define	fldcw(cw)		__asm __volatile("fldcw %0" : : "m" (cw))
70 #define	fnclex()		__asm __volatile("fnclex")
71 #define	fninit()		__asm __volatile("fninit")
72 #define	fnstcw(addr)		__asm __volatile("fnstcw %0" : "=m" (*(addr)))
73 #define	fnstsw(addr)		__asm __volatile("fnstsw %0" : "=am" (*(addr)))
74 #define	fxrstor(addr)		__asm __volatile("fxrstor %0" : : "m" (*(addr)))
75 #define	fxsave(addr)		__asm __volatile("fxsave %0" : "=m" (*(addr)))
76 #define	ldmxcsr(csr)		__asm __volatile("ldmxcsr %0" : : "m" (csr))
77 #define	stmxcsr(addr)		__asm __volatile("stmxcsr %0" : : "m" (*(addr)))
78 
79 static __inline void
80 xrstor(char *addr, uint64_t mask)
81 {
82 	uint32_t low, hi;
83 
84 	low = mask;
85 	hi = mask >> 32;
86 	__asm __volatile("xrstor %0" : : "m" (*addr), "a" (low), "d" (hi));
87 }
88 
89 static __inline void
90 xsave(char *addr, uint64_t mask)
91 {
92 	uint32_t low, hi;
93 
94 	low = mask;
95 	hi = mask >> 32;
96 	__asm __volatile("xsave %0" : "=m" (*addr) : "a" (low), "d" (hi) :
97 	    "memory");
98 }
99 
100 #else	/* !(__GNUCLIKE_ASM && !lint) */
101 
102 void	fldcw(u_short cw);
103 void	fnclex(void);
104 void	fninit(void);
105 void	fnstcw(caddr_t addr);
106 void	fnstsw(caddr_t addr);
107 void	fxsave(caddr_t addr);
108 void	fxrstor(caddr_t addr);
109 void	ldmxcsr(u_int csr);
110 void	stmxcsr(u_int *csr);
111 void	xrstor(char *addr, uint64_t mask);
112 void	xsave(char *addr, uint64_t mask);
113 
114 #endif	/* __GNUCLIKE_ASM && !lint */
115 
116 #define	start_emulating()	load_cr0(rcr0() | CR0_TS)
117 #define	stop_emulating()	clts()
118 
119 CTASSERT(sizeof(struct savefpu) == 512);
120 CTASSERT(sizeof(struct xstate_hdr) == 64);
121 CTASSERT(sizeof(struct savefpu_ymm) == 832);
122 
123 /*
124  * This requirement is to make it easier for asm code to calculate
125  * offset of the fpu save area from the pcb address. FPU save area
126  * must be 64-byte aligned.
127  */
128 CTASSERT(sizeof(struct pcb) % XSAVE_AREA_ALIGN == 0);
129 
130 static	void	fpu_clean_state(void);
131 
132 SYSCTL_INT(_hw, HW_FLOATINGPT, floatingpoint, CTLFLAG_RD,
133     SYSCTL_NULL_INT_PTR, 1, "Floating point instructions executed in hardware");
134 
135 int use_xsave;			/* non-static for cpu_switch.S */
136 uint64_t xsave_mask;		/* the same */
137 static	uma_zone_t fpu_save_area_zone;
138 static	struct savefpu *fpu_initialstate;
139 
140 struct xsave_area_elm_descr {
141 	u_int	offset;
142 	u_int	size;
143 } *xsave_area_desc;
144 
145 void
146 fpusave(void *addr)
147 {
148 
149 	if (use_xsave)
150 		xsave((char *)addr, xsave_mask);
151 	else
152 		fxsave((char *)addr);
153 }
154 
155 void
156 fpurestore(void *addr)
157 {
158 
159 	if (use_xsave)
160 		xrstor((char *)addr, xsave_mask);
161 	else
162 		fxrstor((char *)addr);
163 }
164 
165 void
166 fpususpend(void *addr)
167 {
168 	u_long cr0;
169 
170 	cr0 = rcr0();
171 	stop_emulating();
172 	fpusave(addr);
173 	load_cr0(cr0);
174 }
175 
176 void
177 fpuresume(void *addr)
178 {
179 	u_long cr0;
180 
181 	cr0 = rcr0();
182 	stop_emulating();
183 	fninit();
184 	if (use_xsave)
185 		load_xcr(XCR0, xsave_mask);
186 	fpurestore(addr);
187 	load_cr0(cr0);
188 }
189 
190 /*
191  * Enable XSAVE if supported and allowed by user.
192  * Calculate the xsave_mask.
193  */
194 static void
195 fpuinit_bsp1(void)
196 {
197 	u_int cp[4];
198 	uint64_t xsave_mask_user;
199 
200 	if ((cpu_feature2 & CPUID2_XSAVE) != 0) {
201 		use_xsave = 1;
202 		TUNABLE_INT_FETCH("hw.use_xsave", &use_xsave);
203 	}
204 	if (!use_xsave)
205 		return;
206 
207 	cpuid_count(0xd, 0x0, cp);
208 	xsave_mask = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
209 	if ((cp[0] & xsave_mask) != xsave_mask)
210 		panic("CPU0 does not support X87 or SSE: %x", cp[0]);
211 	xsave_mask = ((uint64_t)cp[3] << 32) | cp[0];
212 	xsave_mask_user = xsave_mask;
213 	TUNABLE_ULONG_FETCH("hw.xsave_mask", &xsave_mask_user);
214 	xsave_mask_user |= XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
215 	xsave_mask &= xsave_mask_user;
216 	if ((xsave_mask & XFEATURE_AVX512) != XFEATURE_AVX512)
217 		xsave_mask &= ~XFEATURE_AVX512;
218 	if ((xsave_mask & XFEATURE_MPX) != XFEATURE_MPX)
219 		xsave_mask &= ~XFEATURE_MPX;
220 
221 	cpuid_count(0xd, 0x1, cp);
222 	if ((cp[0] & CPUID_EXTSTATE_XSAVEOPT) != 0) {
223 		/*
224 		 * Patch the XSAVE instruction in the cpu_switch code
225 		 * to XSAVEOPT.  We assume that XSAVE encoding used
226 		 * REX byte, and set the bit 4 of the r/m byte.
227 		 */
228 		ctx_switch_xsave[3] |= 0x10;
229 	}
230 }
231 
232 /*
233  * Calculate the fpu save area size.
234  */
235 static void
236 fpuinit_bsp2(void)
237 {
238 	u_int cp[4];
239 
240 	if (use_xsave) {
241 		cpuid_count(0xd, 0x0, cp);
242 		cpu_max_ext_state_size = cp[1];
243 
244 		/*
245 		 * Reload the cpu_feature2, since we enabled OSXSAVE.
246 		 */
247 		do_cpuid(1, cp);
248 		cpu_feature2 = cp[2];
249 	} else
250 		cpu_max_ext_state_size = sizeof(struct savefpu);
251 }
252 
253 /*
254  * Initialize the floating point unit.
255  */
256 void
257 fpuinit(void)
258 {
259 	register_t saveintr;
260 	u_int mxcsr;
261 	u_short control;
262 
263 	if (IS_BSP())
264 		fpuinit_bsp1();
265 
266 	if (use_xsave) {
267 		load_cr4(rcr4() | CR4_XSAVE);
268 		load_xcr(XCR0, xsave_mask);
269 	}
270 
271 	/*
272 	 * XCR0 shall be set up before CPU can report the save area size.
273 	 */
274 	if (IS_BSP())
275 		fpuinit_bsp2();
276 
277 	/*
278 	 * It is too early for critical_enter() to work on AP.
279 	 */
280 	saveintr = intr_disable();
281 	stop_emulating();
282 	fninit();
283 	control = __INITIAL_FPUCW__;
284 	fldcw(control);
285 	mxcsr = __INITIAL_MXCSR__;
286 	ldmxcsr(mxcsr);
287 	start_emulating();
288 	intr_restore(saveintr);
289 }
290 
291 /*
292  * On the boot CPU we generate a clean state that is used to
293  * initialize the floating point unit when it is first used by a
294  * process.
295  */
296 static void
297 fpuinitstate(void *arg __unused)
298 {
299 	register_t saveintr;
300 	int cp[4], i, max_ext_n;
301 
302 	fpu_initialstate = malloc(cpu_max_ext_state_size, M_DEVBUF,
303 	    M_WAITOK | M_ZERO);
304 	saveintr = intr_disable();
305 	stop_emulating();
306 
307 	fpusave(fpu_initialstate);
308 	if (fpu_initialstate->sv_env.en_mxcsr_mask)
309 		cpu_mxcsr_mask = fpu_initialstate->sv_env.en_mxcsr_mask;
310 	else
311 		cpu_mxcsr_mask = 0xFFBF;
312 
313 	/*
314 	 * The fninit instruction does not modify XMM registers.  The
315 	 * fpusave call dumped the garbage contained in the registers
316 	 * after reset to the initial state saved.  Clear XMM
317 	 * registers file image to make the startup program state and
318 	 * signal handler XMM register content predictable.
319 	 */
320 	bzero(&fpu_initialstate->sv_xmm[0], sizeof(struct xmmacc));
321 
322 	/*
323 	 * Create a table describing the layout of the CPU Extended
324 	 * Save Area.
325 	 */
326 	if (use_xsave) {
327 		max_ext_n = flsl(xsave_mask);
328 		xsave_area_desc = malloc(max_ext_n * sizeof(struct
329 		    xsave_area_elm_descr), M_DEVBUF, M_WAITOK | M_ZERO);
330 		/* x87 state */
331 		xsave_area_desc[0].offset = 0;
332 		xsave_area_desc[0].size = 160;
333 		/* XMM */
334 		xsave_area_desc[1].offset = 160;
335 		xsave_area_desc[1].size = 288 - 160;
336 
337 		for (i = 2; i < max_ext_n; i++) {
338 			cpuid_count(0xd, i, cp);
339 			xsave_area_desc[i].offset = cp[1];
340 			xsave_area_desc[i].size = cp[0];
341 		}
342 	}
343 
344 	fpu_save_area_zone = uma_zcreate("FPU_save_area",
345 	    cpu_max_ext_state_size, NULL, NULL, NULL, NULL,
346 	    XSAVE_AREA_ALIGN - 1, 0);
347 
348 	start_emulating();
349 	intr_restore(saveintr);
350 }
351 SYSINIT(fpuinitstate, SI_SUB_DRIVERS, SI_ORDER_ANY, fpuinitstate, NULL);
352 
353 /*
354  * Free coprocessor (if we have it).
355  */
356 void
357 fpuexit(struct thread *td)
358 {
359 
360 	critical_enter();
361 	if (curthread == PCPU_GET(fpcurthread)) {
362 		stop_emulating();
363 		fpusave(curpcb->pcb_save);
364 		start_emulating();
365 		PCPU_SET(fpcurthread, NULL);
366 	}
367 	critical_exit();
368 }
369 
370 int
371 fpuformat()
372 {
373 
374 	return (_MC_FPFMT_XMM);
375 }
376 
377 /*
378  * The following mechanism is used to ensure that the FPE_... value
379  * that is passed as a trapcode to the signal handler of the user
380  * process does not have more than one bit set.
381  *
382  * Multiple bits may be set if the user process modifies the control
383  * word while a status word bit is already set.  While this is a sign
384  * of bad coding, we have no choise than to narrow them down to one
385  * bit, since we must not send a trapcode that is not exactly one of
386  * the FPE_ macros.
387  *
388  * The mechanism has a static table with 127 entries.  Each combination
389  * of the 7 FPU status word exception bits directly translates to a
390  * position in this table, where a single FPE_... value is stored.
391  * This FPE_... value stored there is considered the "most important"
392  * of the exception bits and will be sent as the signal code.  The
393  * precedence of the bits is based upon Intel Document "Numerical
394  * Applications", Chapter "Special Computational Situations".
395  *
396  * The macro to choose one of these values does these steps: 1) Throw
397  * away status word bits that cannot be masked.  2) Throw away the bits
398  * currently masked in the control word, assuming the user isn't
399  * interested in them anymore.  3) Reinsert status word bit 7 (stack
400  * fault) if it is set, which cannot be masked but must be presered.
401  * 4) Use the remaining bits to point into the trapcode table.
402  *
403  * The 6 maskable bits in order of their preference, as stated in the
404  * above referenced Intel manual:
405  * 1  Invalid operation (FP_X_INV)
406  * 1a   Stack underflow
407  * 1b   Stack overflow
408  * 1c   Operand of unsupported format
409  * 1d   SNaN operand.
410  * 2  QNaN operand (not an exception, irrelavant here)
411  * 3  Any other invalid-operation not mentioned above or zero divide
412  *      (FP_X_INV, FP_X_DZ)
413  * 4  Denormal operand (FP_X_DNML)
414  * 5  Numeric over/underflow (FP_X_OFL, FP_X_UFL)
415  * 6  Inexact result (FP_X_IMP)
416  */
417 static char fpetable[128] = {
418 	0,
419 	FPE_FLTINV,	/*  1 - INV */
420 	FPE_FLTUND,	/*  2 - DNML */
421 	FPE_FLTINV,	/*  3 - INV | DNML */
422 	FPE_FLTDIV,	/*  4 - DZ */
423 	FPE_FLTINV,	/*  5 - INV | DZ */
424 	FPE_FLTDIV,	/*  6 - DNML | DZ */
425 	FPE_FLTINV,	/*  7 - INV | DNML | DZ */
426 	FPE_FLTOVF,	/*  8 - OFL */
427 	FPE_FLTINV,	/*  9 - INV | OFL */
428 	FPE_FLTUND,	/*  A - DNML | OFL */
429 	FPE_FLTINV,	/*  B - INV | DNML | OFL */
430 	FPE_FLTDIV,	/*  C - DZ | OFL */
431 	FPE_FLTINV,	/*  D - INV | DZ | OFL */
432 	FPE_FLTDIV,	/*  E - DNML | DZ | OFL */
433 	FPE_FLTINV,	/*  F - INV | DNML | DZ | OFL */
434 	FPE_FLTUND,	/* 10 - UFL */
435 	FPE_FLTINV,	/* 11 - INV | UFL */
436 	FPE_FLTUND,	/* 12 - DNML | UFL */
437 	FPE_FLTINV,	/* 13 - INV | DNML | UFL */
438 	FPE_FLTDIV,	/* 14 - DZ | UFL */
439 	FPE_FLTINV,	/* 15 - INV | DZ | UFL */
440 	FPE_FLTDIV,	/* 16 - DNML | DZ | UFL */
441 	FPE_FLTINV,	/* 17 - INV | DNML | DZ | UFL */
442 	FPE_FLTOVF,	/* 18 - OFL | UFL */
443 	FPE_FLTINV,	/* 19 - INV | OFL | UFL */
444 	FPE_FLTUND,	/* 1A - DNML | OFL | UFL */
445 	FPE_FLTINV,	/* 1B - INV | DNML | OFL | UFL */
446 	FPE_FLTDIV,	/* 1C - DZ | OFL | UFL */
447 	FPE_FLTINV,	/* 1D - INV | DZ | OFL | UFL */
448 	FPE_FLTDIV,	/* 1E - DNML | DZ | OFL | UFL */
449 	FPE_FLTINV,	/* 1F - INV | DNML | DZ | OFL | UFL */
450 	FPE_FLTRES,	/* 20 - IMP */
451 	FPE_FLTINV,	/* 21 - INV | IMP */
452 	FPE_FLTUND,	/* 22 - DNML | IMP */
453 	FPE_FLTINV,	/* 23 - INV | DNML | IMP */
454 	FPE_FLTDIV,	/* 24 - DZ | IMP */
455 	FPE_FLTINV,	/* 25 - INV | DZ | IMP */
456 	FPE_FLTDIV,	/* 26 - DNML | DZ | IMP */
457 	FPE_FLTINV,	/* 27 - INV | DNML | DZ | IMP */
458 	FPE_FLTOVF,	/* 28 - OFL | IMP */
459 	FPE_FLTINV,	/* 29 - INV | OFL | IMP */
460 	FPE_FLTUND,	/* 2A - DNML | OFL | IMP */
461 	FPE_FLTINV,	/* 2B - INV | DNML | OFL | IMP */
462 	FPE_FLTDIV,	/* 2C - DZ | OFL | IMP */
463 	FPE_FLTINV,	/* 2D - INV | DZ | OFL | IMP */
464 	FPE_FLTDIV,	/* 2E - DNML | DZ | OFL | IMP */
465 	FPE_FLTINV,	/* 2F - INV | DNML | DZ | OFL | IMP */
466 	FPE_FLTUND,	/* 30 - UFL | IMP */
467 	FPE_FLTINV,	/* 31 - INV | UFL | IMP */
468 	FPE_FLTUND,	/* 32 - DNML | UFL | IMP */
469 	FPE_FLTINV,	/* 33 - INV | DNML | UFL | IMP */
470 	FPE_FLTDIV,	/* 34 - DZ | UFL | IMP */
471 	FPE_FLTINV,	/* 35 - INV | DZ | UFL | IMP */
472 	FPE_FLTDIV,	/* 36 - DNML | DZ | UFL | IMP */
473 	FPE_FLTINV,	/* 37 - INV | DNML | DZ | UFL | IMP */
474 	FPE_FLTOVF,	/* 38 - OFL | UFL | IMP */
475 	FPE_FLTINV,	/* 39 - INV | OFL | UFL | IMP */
476 	FPE_FLTUND,	/* 3A - DNML | OFL | UFL | IMP */
477 	FPE_FLTINV,	/* 3B - INV | DNML | OFL | UFL | IMP */
478 	FPE_FLTDIV,	/* 3C - DZ | OFL | UFL | IMP */
479 	FPE_FLTINV,	/* 3D - INV | DZ | OFL | UFL | IMP */
480 	FPE_FLTDIV,	/* 3E - DNML | DZ | OFL | UFL | IMP */
481 	FPE_FLTINV,	/* 3F - INV | DNML | DZ | OFL | UFL | IMP */
482 	FPE_FLTSUB,	/* 40 - STK */
483 	FPE_FLTSUB,	/* 41 - INV | STK */
484 	FPE_FLTUND,	/* 42 - DNML | STK */
485 	FPE_FLTSUB,	/* 43 - INV | DNML | STK */
486 	FPE_FLTDIV,	/* 44 - DZ | STK */
487 	FPE_FLTSUB,	/* 45 - INV | DZ | STK */
488 	FPE_FLTDIV,	/* 46 - DNML | DZ | STK */
489 	FPE_FLTSUB,	/* 47 - INV | DNML | DZ | STK */
490 	FPE_FLTOVF,	/* 48 - OFL | STK */
491 	FPE_FLTSUB,	/* 49 - INV | OFL | STK */
492 	FPE_FLTUND,	/* 4A - DNML | OFL | STK */
493 	FPE_FLTSUB,	/* 4B - INV | DNML | OFL | STK */
494 	FPE_FLTDIV,	/* 4C - DZ | OFL | STK */
495 	FPE_FLTSUB,	/* 4D - INV | DZ | OFL | STK */
496 	FPE_FLTDIV,	/* 4E - DNML | DZ | OFL | STK */
497 	FPE_FLTSUB,	/* 4F - INV | DNML | DZ | OFL | STK */
498 	FPE_FLTUND,	/* 50 - UFL | STK */
499 	FPE_FLTSUB,	/* 51 - INV | UFL | STK */
500 	FPE_FLTUND,	/* 52 - DNML | UFL | STK */
501 	FPE_FLTSUB,	/* 53 - INV | DNML | UFL | STK */
502 	FPE_FLTDIV,	/* 54 - DZ | UFL | STK */
503 	FPE_FLTSUB,	/* 55 - INV | DZ | UFL | STK */
504 	FPE_FLTDIV,	/* 56 - DNML | DZ | UFL | STK */
505 	FPE_FLTSUB,	/* 57 - INV | DNML | DZ | UFL | STK */
506 	FPE_FLTOVF,	/* 58 - OFL | UFL | STK */
507 	FPE_FLTSUB,	/* 59 - INV | OFL | UFL | STK */
508 	FPE_FLTUND,	/* 5A - DNML | OFL | UFL | STK */
509 	FPE_FLTSUB,	/* 5B - INV | DNML | OFL | UFL | STK */
510 	FPE_FLTDIV,	/* 5C - DZ | OFL | UFL | STK */
511 	FPE_FLTSUB,	/* 5D - INV | DZ | OFL | UFL | STK */
512 	FPE_FLTDIV,	/* 5E - DNML | DZ | OFL | UFL | STK */
513 	FPE_FLTSUB,	/* 5F - INV | DNML | DZ | OFL | UFL | STK */
514 	FPE_FLTRES,	/* 60 - IMP | STK */
515 	FPE_FLTSUB,	/* 61 - INV | IMP | STK */
516 	FPE_FLTUND,	/* 62 - DNML | IMP | STK */
517 	FPE_FLTSUB,	/* 63 - INV | DNML | IMP | STK */
518 	FPE_FLTDIV,	/* 64 - DZ | IMP | STK */
519 	FPE_FLTSUB,	/* 65 - INV | DZ | IMP | STK */
520 	FPE_FLTDIV,	/* 66 - DNML | DZ | IMP | STK */
521 	FPE_FLTSUB,	/* 67 - INV | DNML | DZ | IMP | STK */
522 	FPE_FLTOVF,	/* 68 - OFL | IMP | STK */
523 	FPE_FLTSUB,	/* 69 - INV | OFL | IMP | STK */
524 	FPE_FLTUND,	/* 6A - DNML | OFL | IMP | STK */
525 	FPE_FLTSUB,	/* 6B - INV | DNML | OFL | IMP | STK */
526 	FPE_FLTDIV,	/* 6C - DZ | OFL | IMP | STK */
527 	FPE_FLTSUB,	/* 6D - INV | DZ | OFL | IMP | STK */
528 	FPE_FLTDIV,	/* 6E - DNML | DZ | OFL | IMP | STK */
529 	FPE_FLTSUB,	/* 6F - INV | DNML | DZ | OFL | IMP | STK */
530 	FPE_FLTUND,	/* 70 - UFL | IMP | STK */
531 	FPE_FLTSUB,	/* 71 - INV | UFL | IMP | STK */
532 	FPE_FLTUND,	/* 72 - DNML | UFL | IMP | STK */
533 	FPE_FLTSUB,	/* 73 - INV | DNML | UFL | IMP | STK */
534 	FPE_FLTDIV,	/* 74 - DZ | UFL | IMP | STK */
535 	FPE_FLTSUB,	/* 75 - INV | DZ | UFL | IMP | STK */
536 	FPE_FLTDIV,	/* 76 - DNML | DZ | UFL | IMP | STK */
537 	FPE_FLTSUB,	/* 77 - INV | DNML | DZ | UFL | IMP | STK */
538 	FPE_FLTOVF,	/* 78 - OFL | UFL | IMP | STK */
539 	FPE_FLTSUB,	/* 79 - INV | OFL | UFL | IMP | STK */
540 	FPE_FLTUND,	/* 7A - DNML | OFL | UFL | IMP | STK */
541 	FPE_FLTSUB,	/* 7B - INV | DNML | OFL | UFL | IMP | STK */
542 	FPE_FLTDIV,	/* 7C - DZ | OFL | UFL | IMP | STK */
543 	FPE_FLTSUB,	/* 7D - INV | DZ | OFL | UFL | IMP | STK */
544 	FPE_FLTDIV,	/* 7E - DNML | DZ | OFL | UFL | IMP | STK */
545 	FPE_FLTSUB,	/* 7F - INV | DNML | DZ | OFL | UFL | IMP | STK */
546 };
547 
548 /*
549  * Read the FP status and control words, then generate si_code value
550  * for SIGFPE.  The error code chosen will be one of the
551  * FPE_... macros.  It will be sent as the second argument to old
552  * BSD-style signal handlers and as "siginfo_t->si_code" (second
553  * argument) to SA_SIGINFO signal handlers.
554  *
555  * Some time ago, we cleared the x87 exceptions with FNCLEX there.
556  * Clearing exceptions was necessary mainly to avoid IRQ13 bugs.  The
557  * usermode code which understands the FPU hardware enough to enable
558  * the exceptions, can also handle clearing the exception state in the
559  * handler.  The only consequence of not clearing the exception is the
560  * rethrow of the SIGFPE on return from the signal handler and
561  * reexecution of the corresponding instruction.
562  *
563  * For XMM traps, the exceptions were never cleared.
564  */
565 int
566 fputrap_x87(void)
567 {
568 	struct savefpu *pcb_save;
569 	u_short control, status;
570 
571 	critical_enter();
572 
573 	/*
574 	 * Interrupt handling (for another interrupt) may have pushed the
575 	 * state to memory.  Fetch the relevant parts of the state from
576 	 * wherever they are.
577 	 */
578 	if (PCPU_GET(fpcurthread) != curthread) {
579 		pcb_save = curpcb->pcb_save;
580 		control = pcb_save->sv_env.en_cw;
581 		status = pcb_save->sv_env.en_sw;
582 	} else {
583 		fnstcw(&control);
584 		fnstsw(&status);
585 	}
586 
587 	critical_exit();
588 	return (fpetable[status & ((~control & 0x3f) | 0x40)]);
589 }
590 
591 int
592 fputrap_sse(void)
593 {
594 	u_int mxcsr;
595 
596 	critical_enter();
597 	if (PCPU_GET(fpcurthread) != curthread)
598 		mxcsr = curpcb->pcb_save->sv_env.en_mxcsr;
599 	else
600 		stmxcsr(&mxcsr);
601 	critical_exit();
602 	return (fpetable[(mxcsr & (~mxcsr >> 7)) & 0x3f]);
603 }
604 
605 /*
606  * Device Not Available (DNA, #NM) exception handler.
607  *
608  * It would be better to switch FP context here (if curthread !=
609  * fpcurthread) and not necessarily for every context switch, but it
610  * is too hard to access foreign pcb's.
611  */
612 void
613 fpudna(void)
614 {
615 
616 	/*
617 	 * This handler is entered with interrupts enabled, so context
618 	 * switches may occur before critical_enter() is executed.  If
619 	 * a context switch occurs, then when we regain control, our
620 	 * state will have been completely restored.  The CPU may
621 	 * change underneath us, but the only part of our context that
622 	 * lives in the CPU is CR0.TS and that will be "restored" by
623 	 * setting it on the new CPU.
624 	 */
625 	critical_enter();
626 
627 	if (PCPU_GET(fpcurthread) == curthread) {
628 		printf("fpudna: fpcurthread == curthread\n");
629 		stop_emulating();
630 		critical_exit();
631 		return;
632 	}
633 	if (PCPU_GET(fpcurthread) != NULL) {
634 		panic("fpudna: fpcurthread = %p (%d), curthread = %p (%d)\n",
635 		    PCPU_GET(fpcurthread), PCPU_GET(fpcurthread)->td_tid,
636 		    curthread, curthread->td_tid);
637 	}
638 	stop_emulating();
639 	/*
640 	 * Record new context early in case frstor causes a trap.
641 	 */
642 	PCPU_SET(fpcurthread, curthread);
643 
644 	fpu_clean_state();
645 
646 	if ((curpcb->pcb_flags & PCB_FPUINITDONE) == 0) {
647 		/*
648 		 * This is the first time this thread has used the FPU or
649 		 * the PCB doesn't contain a clean FPU state.  Explicitly
650 		 * load an initial state.
651 		 *
652 		 * We prefer to restore the state from the actual save
653 		 * area in PCB instead of directly loading from
654 		 * fpu_initialstate, to ignite the XSAVEOPT
655 		 * tracking engine.
656 		 */
657 		bcopy(fpu_initialstate, curpcb->pcb_save, cpu_max_ext_state_size);
658 		fpurestore(curpcb->pcb_save);
659 		if (curpcb->pcb_initial_fpucw != __INITIAL_FPUCW__)
660 			fldcw(curpcb->pcb_initial_fpucw);
661 		if (PCB_USER_FPU(curpcb))
662 			set_pcb_flags(curpcb,
663 			    PCB_FPUINITDONE | PCB_USERFPUINITDONE);
664 		else
665 			set_pcb_flags(curpcb, PCB_FPUINITDONE);
666 	} else
667 		fpurestore(curpcb->pcb_save);
668 	critical_exit();
669 }
670 
671 void
672 fpudrop()
673 {
674 	struct thread *td;
675 
676 	td = PCPU_GET(fpcurthread);
677 	KASSERT(td == curthread, ("fpudrop: fpcurthread != curthread"));
678 	CRITICAL_ASSERT(td);
679 	PCPU_SET(fpcurthread, NULL);
680 	clear_pcb_flags(td->td_pcb, PCB_FPUINITDONE);
681 	start_emulating();
682 }
683 
684 /*
685  * Get the user state of the FPU into pcb->pcb_user_save without
686  * dropping ownership (if possible).  It returns the FPU ownership
687  * status.
688  */
689 int
690 fpugetregs(struct thread *td)
691 {
692 	struct pcb *pcb;
693 	uint64_t *xstate_bv, bit;
694 	char *sa;
695 	int max_ext_n, i, owned;
696 
697 	pcb = td->td_pcb;
698 	if ((pcb->pcb_flags & PCB_USERFPUINITDONE) == 0) {
699 		bcopy(fpu_initialstate, get_pcb_user_save_pcb(pcb),
700 		    cpu_max_ext_state_size);
701 		get_pcb_user_save_pcb(pcb)->sv_env.en_cw =
702 		    pcb->pcb_initial_fpucw;
703 		fpuuserinited(td);
704 		return (_MC_FPOWNED_PCB);
705 	}
706 	critical_enter();
707 	if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
708 		fpusave(get_pcb_user_save_pcb(pcb));
709 		owned = _MC_FPOWNED_FPU;
710 	} else {
711 		owned = _MC_FPOWNED_PCB;
712 	}
713 	critical_exit();
714 	if (use_xsave) {
715 		/*
716 		 * Handle partially saved state.
717 		 */
718 		sa = (char *)get_pcb_user_save_pcb(pcb);
719 		xstate_bv = (uint64_t *)(sa + sizeof(struct savefpu) +
720 		    offsetof(struct xstate_hdr, xstate_bv));
721 		max_ext_n = flsl(xsave_mask);
722 		for (i = 0; i < max_ext_n; i++) {
723 			bit = 1ULL << i;
724 			if ((xsave_mask & bit) == 0 || (*xstate_bv & bit) != 0)
725 				continue;
726 			bcopy((char *)fpu_initialstate +
727 			    xsave_area_desc[i].offset,
728 			    sa + xsave_area_desc[i].offset,
729 			    xsave_area_desc[i].size);
730 			*xstate_bv |= bit;
731 		}
732 	}
733 	return (owned);
734 }
735 
736 void
737 fpuuserinited(struct thread *td)
738 {
739 	struct pcb *pcb;
740 
741 	pcb = td->td_pcb;
742 	if (PCB_USER_FPU(pcb))
743 		set_pcb_flags(pcb,
744 		    PCB_FPUINITDONE | PCB_USERFPUINITDONE);
745 	else
746 		set_pcb_flags(pcb, PCB_FPUINITDONE);
747 }
748 
749 int
750 fpusetxstate(struct thread *td, char *xfpustate, size_t xfpustate_size)
751 {
752 	struct xstate_hdr *hdr, *ehdr;
753 	size_t len, max_len;
754 	uint64_t bv;
755 
756 	/* XXXKIB should we clear all extended state in xstate_bv instead ? */
757 	if (xfpustate == NULL)
758 		return (0);
759 	if (!use_xsave)
760 		return (EOPNOTSUPP);
761 
762 	len = xfpustate_size;
763 	if (len < sizeof(struct xstate_hdr))
764 		return (EINVAL);
765 	max_len = cpu_max_ext_state_size - sizeof(struct savefpu);
766 	if (len > max_len)
767 		return (EINVAL);
768 
769 	ehdr = (struct xstate_hdr *)xfpustate;
770 	bv = ehdr->xstate_bv;
771 
772 	/*
773 	 * Avoid #gp.
774 	 */
775 	if (bv & ~xsave_mask)
776 		return (EINVAL);
777 
778 	hdr = (struct xstate_hdr *)(get_pcb_user_save_td(td) + 1);
779 
780 	hdr->xstate_bv = bv;
781 	bcopy(xfpustate + sizeof(struct xstate_hdr),
782 	    (char *)(hdr + 1), len - sizeof(struct xstate_hdr));
783 
784 	return (0);
785 }
786 
787 /*
788  * Set the state of the FPU.
789  */
790 int
791 fpusetregs(struct thread *td, struct savefpu *addr, char *xfpustate,
792     size_t xfpustate_size)
793 {
794 	struct pcb *pcb;
795 	int error;
796 
797 	pcb = td->td_pcb;
798 	critical_enter();
799 	if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
800 		error = fpusetxstate(td, xfpustate, xfpustate_size);
801 		if (error != 0) {
802 			critical_exit();
803 			return (error);
804 		}
805 		bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
806 		fpurestore(get_pcb_user_save_td(td));
807 		critical_exit();
808 		set_pcb_flags(pcb, PCB_FPUINITDONE | PCB_USERFPUINITDONE);
809 	} else {
810 		critical_exit();
811 		error = fpusetxstate(td, xfpustate, xfpustate_size);
812 		if (error != 0)
813 			return (error);
814 		bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
815 		fpuuserinited(td);
816 	}
817 	return (0);
818 }
819 
820 /*
821  * On AuthenticAMD processors, the fxrstor instruction does not restore
822  * the x87's stored last instruction pointer, last data pointer, and last
823  * opcode values, except in the rare case in which the exception summary
824  * (ES) bit in the x87 status word is set to 1.
825  *
826  * In order to avoid leaking this information across processes, we clean
827  * these values by performing a dummy load before executing fxrstor().
828  */
829 static void
830 fpu_clean_state(void)
831 {
832 	static float dummy_variable = 0.0;
833 	u_short status;
834 
835 	/*
836 	 * Clear the ES bit in the x87 status word if it is currently
837 	 * set, in order to avoid causing a fault in the upcoming load.
838 	 */
839 	fnstsw(&status);
840 	if (status & 0x80)
841 		fnclex();
842 
843 	/*
844 	 * Load the dummy variable into the x87 stack.  This mangles
845 	 * the x87 stack, but we don't care since we're about to call
846 	 * fxrstor() anyway.
847 	 */
848 	__asm __volatile("ffree %%st(7); flds %0" : : "m" (dummy_variable));
849 }
850 
851 /*
852  * This really sucks.  We want the acpi version only, but it requires
853  * the isa_if.h file in order to get the definitions.
854  */
855 #include "opt_isa.h"
856 #ifdef DEV_ISA
857 #include <isa/isavar.h>
858 /*
859  * This sucks up the legacy ISA support assignments from PNPBIOS/ACPI.
860  */
861 static struct isa_pnp_id fpupnp_ids[] = {
862 	{ 0x040cd041, "Legacy ISA coprocessor support" }, /* PNP0C04 */
863 	{ 0 }
864 };
865 
866 static int
867 fpupnp_probe(device_t dev)
868 {
869 	int result;
870 
871 	result = ISA_PNP_PROBE(device_get_parent(dev), dev, fpupnp_ids);
872 	if (result <= 0)
873 		device_quiet(dev);
874 	return (result);
875 }
876 
877 static int
878 fpupnp_attach(device_t dev)
879 {
880 
881 	return (0);
882 }
883 
884 static device_method_t fpupnp_methods[] = {
885 	/* Device interface */
886 	DEVMETHOD(device_probe,		fpupnp_probe),
887 	DEVMETHOD(device_attach,	fpupnp_attach),
888 	DEVMETHOD(device_detach,	bus_generic_detach),
889 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
890 	DEVMETHOD(device_suspend,	bus_generic_suspend),
891 	DEVMETHOD(device_resume,	bus_generic_resume),
892 
893 	{ 0, 0 }
894 };
895 
896 static driver_t fpupnp_driver = {
897 	"fpupnp",
898 	fpupnp_methods,
899 	1,			/* no softc */
900 };
901 
902 static devclass_t fpupnp_devclass;
903 
904 DRIVER_MODULE(fpupnp, acpi, fpupnp_driver, fpupnp_devclass, 0, 0);
905 #endif	/* DEV_ISA */
906 
907 static MALLOC_DEFINE(M_FPUKERN_CTX, "fpukern_ctx",
908     "Kernel contexts for FPU state");
909 
910 #define	FPU_KERN_CTX_FPUINITDONE 0x01
911 #define	FPU_KERN_CTX_DUMMY	 0x02	/* avoided save for the kern thread */
912 
913 struct fpu_kern_ctx {
914 	struct savefpu *prev;
915 	uint32_t flags;
916 	char hwstate1[];
917 };
918 
919 struct fpu_kern_ctx *
920 fpu_kern_alloc_ctx(u_int flags)
921 {
922 	struct fpu_kern_ctx *res;
923 	size_t sz;
924 
925 	sz = sizeof(struct fpu_kern_ctx) + XSAVE_AREA_ALIGN +
926 	    cpu_max_ext_state_size;
927 	res = malloc(sz, M_FPUKERN_CTX, ((flags & FPU_KERN_NOWAIT) ?
928 	    M_NOWAIT : M_WAITOK) | M_ZERO);
929 	return (res);
930 }
931 
932 void
933 fpu_kern_free_ctx(struct fpu_kern_ctx *ctx)
934 {
935 
936 	/* XXXKIB clear the memory ? */
937 	free(ctx, M_FPUKERN_CTX);
938 }
939 
940 static struct savefpu *
941 fpu_kern_ctx_savefpu(struct fpu_kern_ctx *ctx)
942 {
943 	vm_offset_t p;
944 
945 	p = (vm_offset_t)&ctx->hwstate1;
946 	p = roundup2(p, XSAVE_AREA_ALIGN);
947 	return ((struct savefpu *)p);
948 }
949 
950 int
951 fpu_kern_enter(struct thread *td, struct fpu_kern_ctx *ctx, u_int flags)
952 {
953 	struct pcb *pcb;
954 
955 	if ((flags & FPU_KERN_KTHR) != 0 && is_fpu_kern_thread(0)) {
956 		ctx->flags = FPU_KERN_CTX_DUMMY;
957 		return (0);
958 	}
959 	pcb = td->td_pcb;
960 	KASSERT(!PCB_USER_FPU(pcb) || pcb->pcb_save ==
961 	    get_pcb_user_save_pcb(pcb), ("mangled pcb_save"));
962 	ctx->flags = 0;
963 	if ((pcb->pcb_flags & PCB_FPUINITDONE) != 0)
964 		ctx->flags |= FPU_KERN_CTX_FPUINITDONE;
965 	fpuexit(td);
966 	ctx->prev = pcb->pcb_save;
967 	pcb->pcb_save = fpu_kern_ctx_savefpu(ctx);
968 	set_pcb_flags(pcb, PCB_KERNFPU);
969 	clear_pcb_flags(pcb, PCB_FPUINITDONE);
970 	return (0);
971 }
972 
973 int
974 fpu_kern_leave(struct thread *td, struct fpu_kern_ctx *ctx)
975 {
976 	struct pcb *pcb;
977 
978 	if (is_fpu_kern_thread(0) && (ctx->flags & FPU_KERN_CTX_DUMMY) != 0)
979 		return (0);
980 	KASSERT((ctx->flags & FPU_KERN_CTX_DUMMY) == 0, ("dummy ctx"));
981 	pcb = td->td_pcb;
982 	critical_enter();
983 	if (curthread == PCPU_GET(fpcurthread))
984 		fpudrop();
985 	critical_exit();
986 	pcb->pcb_save = ctx->prev;
987 	if (pcb->pcb_save == get_pcb_user_save_pcb(pcb)) {
988 		if ((pcb->pcb_flags & PCB_USERFPUINITDONE) != 0) {
989 			set_pcb_flags(pcb, PCB_FPUINITDONE);
990 			clear_pcb_flags(pcb, PCB_KERNFPU);
991 		} else
992 			clear_pcb_flags(pcb, PCB_FPUINITDONE | PCB_KERNFPU);
993 	} else {
994 		if ((ctx->flags & FPU_KERN_CTX_FPUINITDONE) != 0)
995 			set_pcb_flags(pcb, PCB_FPUINITDONE);
996 		else
997 			clear_pcb_flags(pcb, PCB_FPUINITDONE);
998 		KASSERT(!PCB_USER_FPU(pcb), ("unpaired fpu_kern_leave"));
999 	}
1000 	return (0);
1001 }
1002 
1003 int
1004 fpu_kern_thread(u_int flags)
1005 {
1006 
1007 	KASSERT((curthread->td_pflags & TDP_KTHREAD) != 0,
1008 	    ("Only kthread may use fpu_kern_thread"));
1009 	KASSERT(curpcb->pcb_save == get_pcb_user_save_pcb(curpcb),
1010 	    ("mangled pcb_save"));
1011 	KASSERT(PCB_USER_FPU(curpcb), ("recursive call"));
1012 
1013 	set_pcb_flags(curpcb, PCB_KERNFPU);
1014 	return (0);
1015 }
1016 
1017 int
1018 is_fpu_kern_thread(u_int flags)
1019 {
1020 
1021 	if ((curthread->td_pflags & TDP_KTHREAD) == 0)
1022 		return (0);
1023 	return ((curpcb->pcb_flags & PCB_KERNFPU) != 0);
1024 }
1025 
1026 /*
1027  * FPU save area alloc/free/init utility routines
1028  */
1029 struct savefpu *
1030 fpu_save_area_alloc(void)
1031 {
1032 
1033 	return (uma_zalloc(fpu_save_area_zone, 0));
1034 }
1035 
1036 void
1037 fpu_save_area_free(struct savefpu *fsa)
1038 {
1039 
1040 	uma_zfree(fpu_save_area_zone, fsa);
1041 }
1042 
1043 void
1044 fpu_save_area_reset(struct savefpu *fsa)
1045 {
1046 
1047 	bcopy(fpu_initialstate, fsa, cpu_max_ext_state_size);
1048 }
1049