xref: /freebsd/sys/amd64/amd64/fpu.c (revision 22cf89c938886d14f5796fc49f9f020c23ea8eaf)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1990 William Jolitz.
5  * Copyright (c) 1991 The Regents of the University of California.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)npx.c	7.2 (Berkeley) 5/12/91
33  */
34 
35 #include <sys/cdefs.h>
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/bus.h>
39 #include <sys/domainset.h>
40 #include <sys/kernel.h>
41 #include <sys/lock.h>
42 #include <sys/malloc.h>
43 #include <sys/module.h>
44 #include <sys/mutex.h>
45 #include <sys/mutex.h>
46 #include <sys/proc.h>
47 #include <sys/sysctl.h>
48 #include <sys/sysent.h>
49 #include <sys/tslog.h>
50 #include <machine/bus.h>
51 #include <sys/rman.h>
52 #include <sys/signalvar.h>
53 #include <vm/uma.h>
54 
55 #include <machine/cputypes.h>
56 #include <machine/frame.h>
57 #include <machine/intr_machdep.h>
58 #include <machine/md_var.h>
59 #include <machine/pcb.h>
60 #include <machine/psl.h>
61 #include <machine/resource.h>
62 #include <machine/specialreg.h>
63 #include <machine/segments.h>
64 #include <machine/ucontext.h>
65 #include <x86/ifunc.h>
66 
67 /*
68  * Floating point support.
69  */
70 
71 #define	fldcw(cw)		__asm __volatile("fldcw %0" : : "m" (cw))
72 #define	fnclex()		__asm __volatile("fnclex")
73 #define	fninit()		__asm __volatile("fninit")
74 #define	fnstcw(addr)		__asm __volatile("fnstcw %0" : "=m" (*(addr)))
75 #define	fnstsw(addr)		__asm __volatile("fnstsw %0" : "=am" (*(addr)))
76 #define	fxrstor(addr)		__asm __volatile("fxrstor %0" : : "m" (*(addr)))
77 #define	fxsave(addr)		__asm __volatile("fxsave %0" : "=m" (*(addr)))
78 #define	ldmxcsr(csr)		__asm __volatile("ldmxcsr %0" : : "m" (csr))
79 #define	stmxcsr(addr)		__asm __volatile("stmxcsr %0" : "=m" (*(addr)))
80 
81 static __inline void
82 xrstor32(char *addr, uint64_t mask)
83 {
84 	uint32_t low, hi;
85 
86 	low = mask;
87 	hi = mask >> 32;
88 	__asm __volatile("xrstor %0" : : "m" (*addr), "a" (low), "d" (hi));
89 }
90 
91 static __inline void
92 xrstor64(char *addr, uint64_t mask)
93 {
94 	uint32_t low, hi;
95 
96 	low = mask;
97 	hi = mask >> 32;
98 	__asm __volatile("xrstor64 %0" : : "m" (*addr), "a" (low), "d" (hi));
99 }
100 
101 static __inline void
102 xsave32(char *addr, uint64_t mask)
103 {
104 	uint32_t low, hi;
105 
106 	low = mask;
107 	hi = mask >> 32;
108 	__asm __volatile("xsave %0" : "=m" (*addr) : "a" (low), "d" (hi) :
109 	    "memory");
110 }
111 
112 static __inline void
113 xsave64(char *addr, uint64_t mask)
114 {
115 	uint32_t low, hi;
116 
117 	low = mask;
118 	hi = mask >> 32;
119 	__asm __volatile("xsave64 %0" : "=m" (*addr) : "a" (low), "d" (hi) :
120 	    "memory");
121 }
122 
123 static __inline void
124 xsaveopt32(char *addr, uint64_t mask)
125 {
126 	uint32_t low, hi;
127 
128 	low = mask;
129 	hi = mask >> 32;
130 	__asm __volatile("xsaveopt %0" : "=m" (*addr) : "a" (low), "d" (hi) :
131 	    "memory");
132 }
133 
134 static __inline void
135 xsaveopt64(char *addr, uint64_t mask)
136 {
137 	uint32_t low, hi;
138 
139 	low = mask;
140 	hi = mask >> 32;
141 	__asm __volatile("xsaveopt64 %0" : "=m" (*addr) : "a" (low), "d" (hi) :
142 	    "memory");
143 }
144 
145 #define	start_emulating()	load_cr0(rcr0() | CR0_TS)
146 #define	stop_emulating()	clts()
147 
148 CTASSERT(sizeof(struct savefpu) == 512);
149 CTASSERT(sizeof(struct xstate_hdr) == 64);
150 CTASSERT(sizeof(struct savefpu_ymm) == 832);
151 
152 /*
153  * This requirement is to make it easier for asm code to calculate
154  * offset of the fpu save area from the pcb address. FPU save area
155  * must be 64-byte aligned.
156  */
157 CTASSERT(sizeof(struct pcb) % XSAVE_AREA_ALIGN == 0);
158 
159 /*
160  * Ensure the copy of XCR0 saved in a core is contained in the padding
161  * area.
162  */
163 CTASSERT(X86_XSTATE_XCR0_OFFSET >= offsetof(struct savefpu, sv_pad) &&
164     X86_XSTATE_XCR0_OFFSET + sizeof(uint64_t) <= sizeof(struct savefpu));
165 
166 static	void	fpu_clean_state(void);
167 
168 SYSCTL_INT(_hw, HW_FLOATINGPT, floatingpoint, CTLFLAG_RD,
169     SYSCTL_NULL_INT_PTR, 1, "Floating point instructions executed in hardware");
170 
171 int use_xsave;			/* non-static for cpu_switch.S */
172 uint64_t xsave_mask;		/* the same */
173 static	uma_zone_t fpu_save_area_zone;
174 static	struct savefpu *fpu_initialstate;
175 
176 static struct xsave_area_elm_descr {
177 	u_int	offset;
178 	u_int	size;
179 } *xsave_area_desc;
180 
181 static void
182 fpusave_xsaveopt64(void *addr)
183 {
184 	xsaveopt64((char *)addr, xsave_mask);
185 }
186 
187 static void
188 fpusave_xsaveopt3264(void *addr)
189 {
190 	if (SV_CURPROC_FLAG(SV_ILP32))
191 		xsaveopt32((char *)addr, xsave_mask);
192 	else
193 		xsaveopt64((char *)addr, xsave_mask);
194 }
195 
196 static void
197 fpusave_xsave64(void *addr)
198 {
199 	xsave64((char *)addr, xsave_mask);
200 }
201 
202 static void
203 fpusave_xsave3264(void *addr)
204 {
205 	if (SV_CURPROC_FLAG(SV_ILP32))
206 		xsave32((char *)addr, xsave_mask);
207 	else
208 		xsave64((char *)addr, xsave_mask);
209 }
210 
211 static void
212 fpurestore_xrstor64(void *addr)
213 {
214 	xrstor64((char *)addr, xsave_mask);
215 }
216 
217 static void
218 fpurestore_xrstor3264(void *addr)
219 {
220 	if (SV_CURPROC_FLAG(SV_ILP32))
221 		xrstor32((char *)addr, xsave_mask);
222 	else
223 		xrstor64((char *)addr, xsave_mask);
224 }
225 
226 static void
227 fpusave_fxsave(void *addr)
228 {
229 
230 	fxsave((char *)addr);
231 }
232 
233 static void
234 fpurestore_fxrstor(void *addr)
235 {
236 
237 	fxrstor((char *)addr);
238 }
239 
240 DEFINE_IFUNC(, void, fpusave, (void *))
241 {
242 	if (!use_xsave)
243 		return (fpusave_fxsave);
244 	if ((cpu_stdext_feature & CPUID_EXTSTATE_XSAVEOPT) != 0) {
245 		return ((cpu_stdext_feature & CPUID_STDEXT_NFPUSG) != 0 ?
246 		    fpusave_xsaveopt64 : fpusave_xsaveopt3264);
247 	}
248 	return ((cpu_stdext_feature & CPUID_STDEXT_NFPUSG) != 0 ?
249 	    fpusave_xsave64 : fpusave_xsave3264);
250 }
251 
252 DEFINE_IFUNC(, void, fpurestore, (void *))
253 {
254 	if (!use_xsave)
255 		return (fpurestore_fxrstor);
256 	return ((cpu_stdext_feature & CPUID_STDEXT_NFPUSG) != 0 ?
257 	    fpurestore_xrstor64 : fpurestore_xrstor3264);
258 }
259 
260 void
261 fpususpend(void *addr)
262 {
263 	u_long cr0;
264 
265 	cr0 = rcr0();
266 	stop_emulating();
267 	fpusave(addr);
268 	load_cr0(cr0);
269 }
270 
271 void
272 fpuresume(void *addr)
273 {
274 	u_long cr0;
275 
276 	cr0 = rcr0();
277 	stop_emulating();
278 	fninit();
279 	if (use_xsave)
280 		load_xcr(XCR0, xsave_mask);
281 	fpurestore(addr);
282 	load_cr0(cr0);
283 }
284 
285 /*
286  * Enable XSAVE if supported and allowed by user.
287  * Calculate the xsave_mask.
288  */
289 static void
290 fpuinit_bsp1(void)
291 {
292 	u_int cp[4];
293 	uint64_t xsave_mask_user;
294 	bool old_wp;
295 
296 	if (!use_xsave)
297 		return;
298 	cpuid_count(0xd, 0x0, cp);
299 	xsave_mask = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
300 	if ((cp[0] & xsave_mask) != xsave_mask)
301 		panic("CPU0 does not support X87 or SSE: %x", cp[0]);
302 	xsave_mask = ((uint64_t)cp[3] << 32) | cp[0];
303 	xsave_mask_user = xsave_mask;
304 	TUNABLE_ULONG_FETCH("hw.xsave_mask", &xsave_mask_user);
305 	xsave_mask_user |= XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
306 	xsave_mask &= xsave_mask_user;
307 	if ((xsave_mask & XFEATURE_AVX512) != XFEATURE_AVX512)
308 		xsave_mask &= ~XFEATURE_AVX512;
309 	if ((xsave_mask & XFEATURE_MPX) != XFEATURE_MPX)
310 		xsave_mask &= ~XFEATURE_MPX;
311 
312 	cpuid_count(0xd, 0x1, cp);
313 	if ((cp[0] & CPUID_EXTSTATE_XSAVEOPT) != 0) {
314 		/*
315 		 * Patch the XSAVE instruction in the cpu_switch code
316 		 * to XSAVEOPT.  We assume that XSAVE encoding used
317 		 * REX byte, and set the bit 4 of the r/m byte.
318 		 *
319 		 * It seems that some BIOSes give control to the OS
320 		 * with CR0.WP already set, making the kernel text
321 		 * read-only before cpu_startup().
322 		 */
323 		old_wp = disable_wp();
324 		ctx_switch_xsave32[3] |= 0x10;
325 		ctx_switch_xsave[3] |= 0x10;
326 		restore_wp(old_wp);
327 	}
328 }
329 
330 /*
331  * Calculate the fpu save area size.
332  */
333 static void
334 fpuinit_bsp2(void)
335 {
336 	u_int cp[4];
337 
338 	if (use_xsave) {
339 		cpuid_count(0xd, 0x0, cp);
340 		cpu_max_ext_state_size = cp[1];
341 
342 		/*
343 		 * Reload the cpu_feature2, since we enabled OSXSAVE.
344 		 */
345 		do_cpuid(1, cp);
346 		cpu_feature2 = cp[2];
347 	} else
348 		cpu_max_ext_state_size = sizeof(struct savefpu);
349 }
350 
351 /*
352  * Initialize the floating point unit.
353  */
354 void
355 fpuinit(void)
356 {
357 	register_t saveintr;
358 	uint64_t cr4;
359 	u_int mxcsr;
360 	u_short control;
361 
362 	TSENTER();
363 	if (IS_BSP())
364 		fpuinit_bsp1();
365 
366 	if (use_xsave) {
367 		cr4 = rcr4();
368 
369 		/*
370 		 * Revert enablement of PKRU if user disabled its
371 		 * saving on context switches by clearing the bit in
372 		 * the xsave mask.  Also redundantly clear the bit in
373 		 * cpu_stdext_feature2 to prevent pmap from ever
374 		 * trying to set the page table bits.
375 		 */
376 		if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0 &&
377 		    (xsave_mask & XFEATURE_ENABLED_PKRU) == 0) {
378 			cr4 &= ~CR4_PKE;
379 			cpu_stdext_feature2 &= ~CPUID_STDEXT2_PKU;
380 		}
381 
382 		load_cr4(cr4 | CR4_XSAVE);
383 		load_xcr(XCR0, xsave_mask);
384 	}
385 
386 	/*
387 	 * XCR0 shall be set up before CPU can report the save area size.
388 	 */
389 	if (IS_BSP())
390 		fpuinit_bsp2();
391 
392 	/*
393 	 * It is too early for critical_enter() to work on AP.
394 	 */
395 	saveintr = intr_disable();
396 	stop_emulating();
397 	fninit();
398 	control = __INITIAL_FPUCW__;
399 	fldcw(control);
400 	mxcsr = __INITIAL_MXCSR__;
401 	ldmxcsr(mxcsr);
402 	start_emulating();
403 	intr_restore(saveintr);
404 	TSEXIT();
405 }
406 
407 /*
408  * On the boot CPU we generate a clean state that is used to
409  * initialize the floating point unit when it is first used by a
410  * process.
411  */
412 static void
413 fpuinitstate(void *arg __unused)
414 {
415 	uint64_t *xstate_bv;
416 	register_t saveintr;
417 	int cp[4], i, max_ext_n;
418 
419 	/* Do potentially blocking operations before disabling interrupts. */
420 	fpu_save_area_zone = uma_zcreate("FPU_save_area",
421 	    cpu_max_ext_state_size, NULL, NULL, NULL, NULL,
422 	    XSAVE_AREA_ALIGN - 1, 0);
423 	fpu_initialstate = uma_zalloc(fpu_save_area_zone, M_WAITOK | M_ZERO);
424 	if (use_xsave) {
425 		max_ext_n = flsl(xsave_mask);
426 		xsave_area_desc = malloc(max_ext_n * sizeof(struct
427 		    xsave_area_elm_descr), M_DEVBUF, M_WAITOK | M_ZERO);
428 	}
429 
430 	cpu_thread_alloc(&thread0);
431 
432 	saveintr = intr_disable();
433 	stop_emulating();
434 
435 	fpusave_fxsave(fpu_initialstate);
436 	if (fpu_initialstate->sv_env.en_mxcsr_mask)
437 		cpu_mxcsr_mask = fpu_initialstate->sv_env.en_mxcsr_mask;
438 	else
439 		cpu_mxcsr_mask = 0xFFBF;
440 
441 	/*
442 	 * The fninit instruction does not modify XMM registers or x87
443 	 * registers (MM/ST).  The fpusave call dumped the garbage
444 	 * contained in the registers after reset to the initial state
445 	 * saved.  Clear XMM and x87 registers file image to make the
446 	 * startup program state and signal handler XMM/x87 register
447 	 * content predictable.
448 	 */
449 	bzero(fpu_initialstate->sv_fp, sizeof(fpu_initialstate->sv_fp));
450 	bzero(fpu_initialstate->sv_xmm, sizeof(fpu_initialstate->sv_xmm));
451 
452 	/*
453 	 * Create a table describing the layout of the CPU Extended
454 	 * Save Area.  See Intel SDM rev. 075 Vol. 1 13.4.1 "Legacy
455 	 * Region of an XSAVE Area" for the source of offsets/sizes.
456 	 */
457 	if (use_xsave) {
458 		xstate_bv = (uint64_t *)((char *)(fpu_initialstate + 1) +
459 		    offsetof(struct xstate_hdr, xstate_bv));
460 		*xstate_bv = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
461 
462 		/* x87 state */
463 		xsave_area_desc[0].offset = 0;
464 		xsave_area_desc[0].size = 160;
465 		/* XMM */
466 		xsave_area_desc[1].offset = 160;
467 		xsave_area_desc[1].size = 416 - 160;
468 
469 		for (i = 2; i < max_ext_n; i++) {
470 			cpuid_count(0xd, i, cp);
471 			xsave_area_desc[i].offset = cp[1];
472 			xsave_area_desc[i].size = cp[0];
473 		}
474 	}
475 
476 	start_emulating();
477 	intr_restore(saveintr);
478 }
479 /* EFIRT needs this to be initialized before we can enter our EFI environment */
480 SYSINIT(fpuinitstate, SI_SUB_CPU, SI_ORDER_ANY, fpuinitstate, NULL);
481 
482 /*
483  * Free coprocessor (if we have it).
484  */
485 void
486 fpuexit(struct thread *td)
487 {
488 
489 	critical_enter();
490 	if (curthread == PCPU_GET(fpcurthread)) {
491 		stop_emulating();
492 		fpusave(curpcb->pcb_save);
493 		start_emulating();
494 		PCPU_SET(fpcurthread, NULL);
495 	}
496 	critical_exit();
497 }
498 
499 int
500 fpuformat(void)
501 {
502 
503 	return (_MC_FPFMT_XMM);
504 }
505 
506 /*
507  * The following mechanism is used to ensure that the FPE_... value
508  * that is passed as a trapcode to the signal handler of the user
509  * process does not have more than one bit set.
510  *
511  * Multiple bits may be set if the user process modifies the control
512  * word while a status word bit is already set.  While this is a sign
513  * of bad coding, we have no choice than to narrow them down to one
514  * bit, since we must not send a trapcode that is not exactly one of
515  * the FPE_ macros.
516  *
517  * The mechanism has a static table with 127 entries.  Each combination
518  * of the 7 FPU status word exception bits directly translates to a
519  * position in this table, where a single FPE_... value is stored.
520  * This FPE_... value stored there is considered the "most important"
521  * of the exception bits and will be sent as the signal code.  The
522  * precedence of the bits is based upon Intel Document "Numerical
523  * Applications", Chapter "Special Computational Situations".
524  *
525  * The macro to choose one of these values does these steps: 1) Throw
526  * away status word bits that cannot be masked.  2) Throw away the bits
527  * currently masked in the control word, assuming the user isn't
528  * interested in them anymore.  3) Reinsert status word bit 7 (stack
529  * fault) if it is set, which cannot be masked but must be presered.
530  * 4) Use the remaining bits to point into the trapcode table.
531  *
532  * The 6 maskable bits in order of their preference, as stated in the
533  * above referenced Intel manual:
534  * 1  Invalid operation (FP_X_INV)
535  * 1a   Stack underflow
536  * 1b   Stack overflow
537  * 1c   Operand of unsupported format
538  * 1d   SNaN operand.
539  * 2  QNaN operand (not an exception, irrelavant here)
540  * 3  Any other invalid-operation not mentioned above or zero divide
541  *      (FP_X_INV, FP_X_DZ)
542  * 4  Denormal operand (FP_X_DNML)
543  * 5  Numeric over/underflow (FP_X_OFL, FP_X_UFL)
544  * 6  Inexact result (FP_X_IMP)
545  */
546 static char fpetable[128] = {
547 	0,
548 	FPE_FLTINV,	/*  1 - INV */
549 	FPE_FLTUND,	/*  2 - DNML */
550 	FPE_FLTINV,	/*  3 - INV | DNML */
551 	FPE_FLTDIV,	/*  4 - DZ */
552 	FPE_FLTINV,	/*  5 - INV | DZ */
553 	FPE_FLTDIV,	/*  6 - DNML | DZ */
554 	FPE_FLTINV,	/*  7 - INV | DNML | DZ */
555 	FPE_FLTOVF,	/*  8 - OFL */
556 	FPE_FLTINV,	/*  9 - INV | OFL */
557 	FPE_FLTUND,	/*  A - DNML | OFL */
558 	FPE_FLTINV,	/*  B - INV | DNML | OFL */
559 	FPE_FLTDIV,	/*  C - DZ | OFL */
560 	FPE_FLTINV,	/*  D - INV | DZ | OFL */
561 	FPE_FLTDIV,	/*  E - DNML | DZ | OFL */
562 	FPE_FLTINV,	/*  F - INV | DNML | DZ | OFL */
563 	FPE_FLTUND,	/* 10 - UFL */
564 	FPE_FLTINV,	/* 11 - INV | UFL */
565 	FPE_FLTUND,	/* 12 - DNML | UFL */
566 	FPE_FLTINV,	/* 13 - INV | DNML | UFL */
567 	FPE_FLTDIV,	/* 14 - DZ | UFL */
568 	FPE_FLTINV,	/* 15 - INV | DZ | UFL */
569 	FPE_FLTDIV,	/* 16 - DNML | DZ | UFL */
570 	FPE_FLTINV,	/* 17 - INV | DNML | DZ | UFL */
571 	FPE_FLTOVF,	/* 18 - OFL | UFL */
572 	FPE_FLTINV,	/* 19 - INV | OFL | UFL */
573 	FPE_FLTUND,	/* 1A - DNML | OFL | UFL */
574 	FPE_FLTINV,	/* 1B - INV | DNML | OFL | UFL */
575 	FPE_FLTDIV,	/* 1C - DZ | OFL | UFL */
576 	FPE_FLTINV,	/* 1D - INV | DZ | OFL | UFL */
577 	FPE_FLTDIV,	/* 1E - DNML | DZ | OFL | UFL */
578 	FPE_FLTINV,	/* 1F - INV | DNML | DZ | OFL | UFL */
579 	FPE_FLTRES,	/* 20 - IMP */
580 	FPE_FLTINV,	/* 21 - INV | IMP */
581 	FPE_FLTUND,	/* 22 - DNML | IMP */
582 	FPE_FLTINV,	/* 23 - INV | DNML | IMP */
583 	FPE_FLTDIV,	/* 24 - DZ | IMP */
584 	FPE_FLTINV,	/* 25 - INV | DZ | IMP */
585 	FPE_FLTDIV,	/* 26 - DNML | DZ | IMP */
586 	FPE_FLTINV,	/* 27 - INV | DNML | DZ | IMP */
587 	FPE_FLTOVF,	/* 28 - OFL | IMP */
588 	FPE_FLTINV,	/* 29 - INV | OFL | IMP */
589 	FPE_FLTUND,	/* 2A - DNML | OFL | IMP */
590 	FPE_FLTINV,	/* 2B - INV | DNML | OFL | IMP */
591 	FPE_FLTDIV,	/* 2C - DZ | OFL | IMP */
592 	FPE_FLTINV,	/* 2D - INV | DZ | OFL | IMP */
593 	FPE_FLTDIV,	/* 2E - DNML | DZ | OFL | IMP */
594 	FPE_FLTINV,	/* 2F - INV | DNML | DZ | OFL | IMP */
595 	FPE_FLTUND,	/* 30 - UFL | IMP */
596 	FPE_FLTINV,	/* 31 - INV | UFL | IMP */
597 	FPE_FLTUND,	/* 32 - DNML | UFL | IMP */
598 	FPE_FLTINV,	/* 33 - INV | DNML | UFL | IMP */
599 	FPE_FLTDIV,	/* 34 - DZ | UFL | IMP */
600 	FPE_FLTINV,	/* 35 - INV | DZ | UFL | IMP */
601 	FPE_FLTDIV,	/* 36 - DNML | DZ | UFL | IMP */
602 	FPE_FLTINV,	/* 37 - INV | DNML | DZ | UFL | IMP */
603 	FPE_FLTOVF,	/* 38 - OFL | UFL | IMP */
604 	FPE_FLTINV,	/* 39 - INV | OFL | UFL | IMP */
605 	FPE_FLTUND,	/* 3A - DNML | OFL | UFL | IMP */
606 	FPE_FLTINV,	/* 3B - INV | DNML | OFL | UFL | IMP */
607 	FPE_FLTDIV,	/* 3C - DZ | OFL | UFL | IMP */
608 	FPE_FLTINV,	/* 3D - INV | DZ | OFL | UFL | IMP */
609 	FPE_FLTDIV,	/* 3E - DNML | DZ | OFL | UFL | IMP */
610 	FPE_FLTINV,	/* 3F - INV | DNML | DZ | OFL | UFL | IMP */
611 	FPE_FLTSUB,	/* 40 - STK */
612 	FPE_FLTSUB,	/* 41 - INV | STK */
613 	FPE_FLTUND,	/* 42 - DNML | STK */
614 	FPE_FLTSUB,	/* 43 - INV | DNML | STK */
615 	FPE_FLTDIV,	/* 44 - DZ | STK */
616 	FPE_FLTSUB,	/* 45 - INV | DZ | STK */
617 	FPE_FLTDIV,	/* 46 - DNML | DZ | STK */
618 	FPE_FLTSUB,	/* 47 - INV | DNML | DZ | STK */
619 	FPE_FLTOVF,	/* 48 - OFL | STK */
620 	FPE_FLTSUB,	/* 49 - INV | OFL | STK */
621 	FPE_FLTUND,	/* 4A - DNML | OFL | STK */
622 	FPE_FLTSUB,	/* 4B - INV | DNML | OFL | STK */
623 	FPE_FLTDIV,	/* 4C - DZ | OFL | STK */
624 	FPE_FLTSUB,	/* 4D - INV | DZ | OFL | STK */
625 	FPE_FLTDIV,	/* 4E - DNML | DZ | OFL | STK */
626 	FPE_FLTSUB,	/* 4F - INV | DNML | DZ | OFL | STK */
627 	FPE_FLTUND,	/* 50 - UFL | STK */
628 	FPE_FLTSUB,	/* 51 - INV | UFL | STK */
629 	FPE_FLTUND,	/* 52 - DNML | UFL | STK */
630 	FPE_FLTSUB,	/* 53 - INV | DNML | UFL | STK */
631 	FPE_FLTDIV,	/* 54 - DZ | UFL | STK */
632 	FPE_FLTSUB,	/* 55 - INV | DZ | UFL | STK */
633 	FPE_FLTDIV,	/* 56 - DNML | DZ | UFL | STK */
634 	FPE_FLTSUB,	/* 57 - INV | DNML | DZ | UFL | STK */
635 	FPE_FLTOVF,	/* 58 - OFL | UFL | STK */
636 	FPE_FLTSUB,	/* 59 - INV | OFL | UFL | STK */
637 	FPE_FLTUND,	/* 5A - DNML | OFL | UFL | STK */
638 	FPE_FLTSUB,	/* 5B - INV | DNML | OFL | UFL | STK */
639 	FPE_FLTDIV,	/* 5C - DZ | OFL | UFL | STK */
640 	FPE_FLTSUB,	/* 5D - INV | DZ | OFL | UFL | STK */
641 	FPE_FLTDIV,	/* 5E - DNML | DZ | OFL | UFL | STK */
642 	FPE_FLTSUB,	/* 5F - INV | DNML | DZ | OFL | UFL | STK */
643 	FPE_FLTRES,	/* 60 - IMP | STK */
644 	FPE_FLTSUB,	/* 61 - INV | IMP | STK */
645 	FPE_FLTUND,	/* 62 - DNML | IMP | STK */
646 	FPE_FLTSUB,	/* 63 - INV | DNML | IMP | STK */
647 	FPE_FLTDIV,	/* 64 - DZ | IMP | STK */
648 	FPE_FLTSUB,	/* 65 - INV | DZ | IMP | STK */
649 	FPE_FLTDIV,	/* 66 - DNML | DZ | IMP | STK */
650 	FPE_FLTSUB,	/* 67 - INV | DNML | DZ | IMP | STK */
651 	FPE_FLTOVF,	/* 68 - OFL | IMP | STK */
652 	FPE_FLTSUB,	/* 69 - INV | OFL | IMP | STK */
653 	FPE_FLTUND,	/* 6A - DNML | OFL | IMP | STK */
654 	FPE_FLTSUB,	/* 6B - INV | DNML | OFL | IMP | STK */
655 	FPE_FLTDIV,	/* 6C - DZ | OFL | IMP | STK */
656 	FPE_FLTSUB,	/* 6D - INV | DZ | OFL | IMP | STK */
657 	FPE_FLTDIV,	/* 6E - DNML | DZ | OFL | IMP | STK */
658 	FPE_FLTSUB,	/* 6F - INV | DNML | DZ | OFL | IMP | STK */
659 	FPE_FLTUND,	/* 70 - UFL | IMP | STK */
660 	FPE_FLTSUB,	/* 71 - INV | UFL | IMP | STK */
661 	FPE_FLTUND,	/* 72 - DNML | UFL | IMP | STK */
662 	FPE_FLTSUB,	/* 73 - INV | DNML | UFL | IMP | STK */
663 	FPE_FLTDIV,	/* 74 - DZ | UFL | IMP | STK */
664 	FPE_FLTSUB,	/* 75 - INV | DZ | UFL | IMP | STK */
665 	FPE_FLTDIV,	/* 76 - DNML | DZ | UFL | IMP | STK */
666 	FPE_FLTSUB,	/* 77 - INV | DNML | DZ | UFL | IMP | STK */
667 	FPE_FLTOVF,	/* 78 - OFL | UFL | IMP | STK */
668 	FPE_FLTSUB,	/* 79 - INV | OFL | UFL | IMP | STK */
669 	FPE_FLTUND,	/* 7A - DNML | OFL | UFL | IMP | STK */
670 	FPE_FLTSUB,	/* 7B - INV | DNML | OFL | UFL | IMP | STK */
671 	FPE_FLTDIV,	/* 7C - DZ | OFL | UFL | IMP | STK */
672 	FPE_FLTSUB,	/* 7D - INV | DZ | OFL | UFL | IMP | STK */
673 	FPE_FLTDIV,	/* 7E - DNML | DZ | OFL | UFL | IMP | STK */
674 	FPE_FLTSUB,	/* 7F - INV | DNML | DZ | OFL | UFL | IMP | STK */
675 };
676 
677 /*
678  * Read the FP status and control words, then generate si_code value
679  * for SIGFPE.  The error code chosen will be one of the
680  * FPE_... macros.  It will be sent as the second argument to old
681  * BSD-style signal handlers and as "siginfo_t->si_code" (second
682  * argument) to SA_SIGINFO signal handlers.
683  *
684  * Some time ago, we cleared the x87 exceptions with FNCLEX there.
685  * Clearing exceptions was necessary mainly to avoid IRQ13 bugs.  The
686  * usermode code which understands the FPU hardware enough to enable
687  * the exceptions, can also handle clearing the exception state in the
688  * handler.  The only consequence of not clearing the exception is the
689  * rethrow of the SIGFPE on return from the signal handler and
690  * reexecution of the corresponding instruction.
691  *
692  * For XMM traps, the exceptions were never cleared.
693  */
694 int
695 fputrap_x87(void)
696 {
697 	struct savefpu *pcb_save;
698 	u_short control, status;
699 
700 	critical_enter();
701 
702 	/*
703 	 * Interrupt handling (for another interrupt) may have pushed the
704 	 * state to memory.  Fetch the relevant parts of the state from
705 	 * wherever they are.
706 	 */
707 	if (PCPU_GET(fpcurthread) != curthread) {
708 		pcb_save = curpcb->pcb_save;
709 		control = pcb_save->sv_env.en_cw;
710 		status = pcb_save->sv_env.en_sw;
711 	} else {
712 		fnstcw(&control);
713 		fnstsw(&status);
714 	}
715 
716 	critical_exit();
717 	return (fpetable[status & ((~control & 0x3f) | 0x40)]);
718 }
719 
720 int
721 fputrap_sse(void)
722 {
723 	u_int mxcsr;
724 
725 	critical_enter();
726 	if (PCPU_GET(fpcurthread) != curthread)
727 		mxcsr = curpcb->pcb_save->sv_env.en_mxcsr;
728 	else
729 		stmxcsr(&mxcsr);
730 	critical_exit();
731 	return (fpetable[(mxcsr & (~mxcsr >> 7)) & 0x3f]);
732 }
733 
734 static void
735 restore_fpu_curthread(struct thread *td)
736 {
737 	struct pcb *pcb;
738 
739 	/*
740 	 * Record new context early in case frstor causes a trap.
741 	 */
742 	PCPU_SET(fpcurthread, td);
743 
744 	stop_emulating();
745 	fpu_clean_state();
746 	pcb = td->td_pcb;
747 
748 	if ((pcb->pcb_flags & PCB_FPUINITDONE) == 0) {
749 		/*
750 		 * This is the first time this thread has used the FPU or
751 		 * the PCB doesn't contain a clean FPU state.  Explicitly
752 		 * load an initial state.
753 		 *
754 		 * We prefer to restore the state from the actual save
755 		 * area in PCB instead of directly loading from
756 		 * fpu_initialstate, to ignite the XSAVEOPT
757 		 * tracking engine.
758 		 */
759 		bcopy(fpu_initialstate, pcb->pcb_save,
760 		    cpu_max_ext_state_size);
761 		fpurestore(pcb->pcb_save);
762 		if (pcb->pcb_initial_fpucw != __INITIAL_FPUCW__)
763 			fldcw(pcb->pcb_initial_fpucw);
764 		if (PCB_USER_FPU(pcb))
765 			set_pcb_flags(pcb, PCB_FPUINITDONE |
766 			    PCB_USERFPUINITDONE);
767 		else
768 			set_pcb_flags(pcb, PCB_FPUINITDONE);
769 	} else
770 		fpurestore(pcb->pcb_save);
771 }
772 
773 /*
774  * Device Not Available (DNA, #NM) exception handler.
775  *
776  * It would be better to switch FP context here (if curthread !=
777  * fpcurthread) and not necessarily for every context switch, but it
778  * is too hard to access foreign pcb's.
779  */
780 void
781 fpudna(void)
782 {
783 	struct thread *td;
784 
785 	td = curthread;
786 	/*
787 	 * This handler is entered with interrupts enabled, so context
788 	 * switches may occur before critical_enter() is executed.  If
789 	 * a context switch occurs, then when we regain control, our
790 	 * state will have been completely restored.  The CPU may
791 	 * change underneath us, but the only part of our context that
792 	 * lives in the CPU is CR0.TS and that will be "restored" by
793 	 * setting it on the new CPU.
794 	 */
795 	critical_enter();
796 
797 	KASSERT((curpcb->pcb_flags & PCB_FPUNOSAVE) == 0,
798 	    ("fpudna while in fpu_kern_enter(FPU_KERN_NOCTX)"));
799 	if (__predict_false(PCPU_GET(fpcurthread) == td)) {
800 		/*
801 		 * Some virtual machines seems to set %cr0.TS at
802 		 * arbitrary moments.  Silently clear the TS bit
803 		 * regardless of the eager/lazy FPU context switch
804 		 * mode.
805 		 */
806 		stop_emulating();
807 	} else {
808 		if (__predict_false(PCPU_GET(fpcurthread) != NULL)) {
809 			panic(
810 		    "fpudna: fpcurthread = %p (%d), curthread = %p (%d)\n",
811 			    PCPU_GET(fpcurthread),
812 			    PCPU_GET(fpcurthread)->td_tid, td, td->td_tid);
813 		}
814 		restore_fpu_curthread(td);
815 	}
816 	critical_exit();
817 }
818 
819 void fpu_activate_sw(struct thread *td); /* Called from the context switch */
820 void
821 fpu_activate_sw(struct thread *td)
822 {
823 
824 	if ((td->td_pflags & TDP_KTHREAD) != 0 || !PCB_USER_FPU(td->td_pcb)) {
825 		PCPU_SET(fpcurthread, NULL);
826 		start_emulating();
827 	} else if (PCPU_GET(fpcurthread) != td) {
828 		restore_fpu_curthread(td);
829 	}
830 }
831 
832 void
833 fpudrop(void)
834 {
835 	struct thread *td;
836 
837 	td = PCPU_GET(fpcurthread);
838 	KASSERT(td == curthread, ("fpudrop: fpcurthread != curthread"));
839 	CRITICAL_ASSERT(td);
840 	PCPU_SET(fpcurthread, NULL);
841 	clear_pcb_flags(td->td_pcb, PCB_FPUINITDONE);
842 	start_emulating();
843 }
844 
845 /*
846  * Get the user state of the FPU into pcb->pcb_user_save without
847  * dropping ownership (if possible).  It returns the FPU ownership
848  * status.
849  */
850 int
851 fpugetregs(struct thread *td)
852 {
853 	struct pcb *pcb;
854 	uint64_t *xstate_bv, bit;
855 	char *sa;
856 	int max_ext_n, i, owned;
857 
858 	pcb = td->td_pcb;
859 	critical_enter();
860 	if ((pcb->pcb_flags & PCB_USERFPUINITDONE) == 0) {
861 		bcopy(fpu_initialstate, get_pcb_user_save_pcb(pcb),
862 		    cpu_max_ext_state_size);
863 		get_pcb_user_save_pcb(pcb)->sv_env.en_cw =
864 		    pcb->pcb_initial_fpucw;
865 		fpuuserinited(td);
866 		critical_exit();
867 		return (_MC_FPOWNED_PCB);
868 	}
869 	if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
870 		fpusave(get_pcb_user_save_pcb(pcb));
871 		owned = _MC_FPOWNED_FPU;
872 	} else {
873 		owned = _MC_FPOWNED_PCB;
874 	}
875 	if (use_xsave) {
876 		/*
877 		 * Handle partially saved state.
878 		 */
879 		sa = (char *)get_pcb_user_save_pcb(pcb);
880 		xstate_bv = (uint64_t *)(sa + sizeof(struct savefpu) +
881 		    offsetof(struct xstate_hdr, xstate_bv));
882 		max_ext_n = flsl(xsave_mask);
883 		for (i = 0; i < max_ext_n; i++) {
884 			bit = 1ULL << i;
885 			if ((xsave_mask & bit) == 0 || (*xstate_bv & bit) != 0)
886 				continue;
887 			bcopy((char *)fpu_initialstate +
888 			    xsave_area_desc[i].offset,
889 			    sa + xsave_area_desc[i].offset,
890 			    xsave_area_desc[i].size);
891 			*xstate_bv |= bit;
892 		}
893 	}
894 	critical_exit();
895 	return (owned);
896 }
897 
898 void
899 fpuuserinited(struct thread *td)
900 {
901 	struct pcb *pcb;
902 
903 	CRITICAL_ASSERT(td);
904 	pcb = td->td_pcb;
905 	if (PCB_USER_FPU(pcb))
906 		set_pcb_flags(pcb,
907 		    PCB_FPUINITDONE | PCB_USERFPUINITDONE);
908 	else
909 		set_pcb_flags(pcb, PCB_FPUINITDONE);
910 }
911 
912 int
913 fpusetxstate(struct thread *td, char *xfpustate, size_t xfpustate_size)
914 {
915 	struct xstate_hdr *hdr, *ehdr;
916 	size_t len, max_len;
917 	uint64_t bv;
918 
919 	/* XXXKIB should we clear all extended state in xstate_bv instead ? */
920 	if (xfpustate == NULL)
921 		return (0);
922 	if (!use_xsave)
923 		return (EOPNOTSUPP);
924 
925 	len = xfpustate_size;
926 	if (len < sizeof(struct xstate_hdr))
927 		return (EINVAL);
928 	max_len = cpu_max_ext_state_size - sizeof(struct savefpu);
929 	if (len > max_len)
930 		return (EINVAL);
931 
932 	ehdr = (struct xstate_hdr *)xfpustate;
933 	bv = ehdr->xstate_bv;
934 
935 	/*
936 	 * Avoid #gp.
937 	 */
938 	if (bv & ~xsave_mask)
939 		return (EINVAL);
940 
941 	hdr = (struct xstate_hdr *)(get_pcb_user_save_td(td) + 1);
942 
943 	hdr->xstate_bv = bv;
944 	bcopy(xfpustate + sizeof(struct xstate_hdr),
945 	    (char *)(hdr + 1), len - sizeof(struct xstate_hdr));
946 
947 	return (0);
948 }
949 
950 /*
951  * Set the state of the FPU.
952  */
953 int
954 fpusetregs(struct thread *td, struct savefpu *addr, char *xfpustate,
955     size_t xfpustate_size)
956 {
957 	struct pcb *pcb;
958 	int error;
959 
960 	addr->sv_env.en_mxcsr &= cpu_mxcsr_mask;
961 	pcb = td->td_pcb;
962 	error = 0;
963 	critical_enter();
964 	if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
965 		error = fpusetxstate(td, xfpustate, xfpustate_size);
966 		if (error == 0) {
967 			bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
968 			fpurestore(get_pcb_user_save_td(td));
969 			set_pcb_flags(pcb, PCB_FPUINITDONE |
970 			    PCB_USERFPUINITDONE);
971 		}
972 	} else {
973 		error = fpusetxstate(td, xfpustate, xfpustate_size);
974 		if (error == 0) {
975 			bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
976 			fpuuserinited(td);
977 		}
978 	}
979 	critical_exit();
980 	return (error);
981 }
982 
983 /*
984  * On AuthenticAMD processors, the fxrstor instruction does not restore
985  * the x87's stored last instruction pointer, last data pointer, and last
986  * opcode values, except in the rare case in which the exception summary
987  * (ES) bit in the x87 status word is set to 1.
988  *
989  * In order to avoid leaking this information across processes, we clean
990  * these values by performing a dummy load before executing fxrstor().
991  */
992 static void
993 fpu_clean_state(void)
994 {
995 	static float dummy_variable = 0.0;
996 	u_short status;
997 
998 	/*
999 	 * Clear the ES bit in the x87 status word if it is currently
1000 	 * set, in order to avoid causing a fault in the upcoming load.
1001 	 */
1002 	fnstsw(&status);
1003 	if (status & 0x80)
1004 		fnclex();
1005 
1006 	/*
1007 	 * Load the dummy variable into the x87 stack.  This mangles
1008 	 * the x87 stack, but we don't care since we're about to call
1009 	 * fxrstor() anyway.
1010 	 */
1011 	__asm __volatile("ffree %%st(7); flds %0" : : "m" (dummy_variable));
1012 }
1013 
1014 /*
1015  * This really sucks.  We want the acpi version only, but it requires
1016  * the isa_if.h file in order to get the definitions.
1017  */
1018 #include "opt_isa.h"
1019 #ifdef DEV_ISA
1020 #include <isa/isavar.h>
1021 /*
1022  * This sucks up the legacy ISA support assignments from PNPBIOS/ACPI.
1023  */
1024 static struct isa_pnp_id fpupnp_ids[] = {
1025 	{ 0x040cd041, "Legacy ISA coprocessor support" }, /* PNP0C04 */
1026 	{ 0 }
1027 };
1028 
1029 static int
1030 fpupnp_probe(device_t dev)
1031 {
1032 	int result;
1033 
1034 	result = ISA_PNP_PROBE(device_get_parent(dev), dev, fpupnp_ids);
1035 	if (result <= 0)
1036 		device_quiet(dev);
1037 	return (result);
1038 }
1039 
1040 static int
1041 fpupnp_attach(device_t dev)
1042 {
1043 
1044 	return (0);
1045 }
1046 
1047 static device_method_t fpupnp_methods[] = {
1048 	/* Device interface */
1049 	DEVMETHOD(device_probe,		fpupnp_probe),
1050 	DEVMETHOD(device_attach,	fpupnp_attach),
1051 	DEVMETHOD(device_detach,	bus_generic_detach),
1052 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
1053 	DEVMETHOD(device_suspend,	bus_generic_suspend),
1054 	DEVMETHOD(device_resume,	bus_generic_resume),
1055 	{ 0, 0 }
1056 };
1057 
1058 static driver_t fpupnp_driver = {
1059 	"fpupnp",
1060 	fpupnp_methods,
1061 	1,			/* no softc */
1062 };
1063 
1064 DRIVER_MODULE(fpupnp, acpi, fpupnp_driver, 0, 0);
1065 ISA_PNP_INFO(fpupnp_ids);
1066 #endif	/* DEV_ISA */
1067 
1068 static MALLOC_DEFINE(M_FPUKERN_CTX, "fpukern_ctx",
1069     "Kernel contexts for FPU state");
1070 
1071 #define	FPU_KERN_CTX_FPUINITDONE 0x01
1072 #define	FPU_KERN_CTX_DUMMY	 0x02	/* avoided save for the kern thread */
1073 #define	FPU_KERN_CTX_INUSE	 0x04
1074 
1075 struct fpu_kern_ctx {
1076 	struct savefpu *prev;
1077 	uint32_t flags;
1078 	char hwstate1[];
1079 };
1080 
1081 static inline size_t __pure2
1082 fpu_kern_alloc_sz(u_int max_est)
1083 {
1084 	return (sizeof(struct fpu_kern_ctx) + XSAVE_AREA_ALIGN + max_est);
1085 }
1086 
1087 static inline int __pure2
1088 fpu_kern_malloc_flags(u_int fpflags)
1089 {
1090 	return (((fpflags & FPU_KERN_NOWAIT) ? M_NOWAIT : M_WAITOK) | M_ZERO);
1091 }
1092 
1093 struct fpu_kern_ctx *
1094 fpu_kern_alloc_ctx_domain(int domain, u_int flags)
1095 {
1096 	return (malloc_domainset(fpu_kern_alloc_sz(cpu_max_ext_state_size),
1097 	    M_FPUKERN_CTX, DOMAINSET_PREF(domain),
1098 	    fpu_kern_malloc_flags(flags)));
1099 }
1100 
1101 struct fpu_kern_ctx *
1102 fpu_kern_alloc_ctx(u_int flags)
1103 {
1104 	return (malloc(fpu_kern_alloc_sz(cpu_max_ext_state_size),
1105 	    M_FPUKERN_CTX, fpu_kern_malloc_flags(flags)));
1106 }
1107 
1108 void
1109 fpu_kern_free_ctx(struct fpu_kern_ctx *ctx)
1110 {
1111 
1112 	KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) == 0, ("free'ing inuse ctx"));
1113 	/* XXXKIB clear the memory ? */
1114 	free(ctx, M_FPUKERN_CTX);
1115 }
1116 
1117 static struct savefpu *
1118 fpu_kern_ctx_savefpu(struct fpu_kern_ctx *ctx)
1119 {
1120 	vm_offset_t p;
1121 
1122 	p = (vm_offset_t)&ctx->hwstate1;
1123 	p = roundup2(p, XSAVE_AREA_ALIGN);
1124 	return ((struct savefpu *)p);
1125 }
1126 
1127 void
1128 fpu_kern_enter(struct thread *td, struct fpu_kern_ctx *ctx, u_int flags)
1129 {
1130 	struct pcb *pcb;
1131 
1132 	pcb = td->td_pcb;
1133 	KASSERT((flags & FPU_KERN_NOCTX) != 0 || ctx != NULL,
1134 	    ("ctx is required when !FPU_KERN_NOCTX"));
1135 	KASSERT(ctx == NULL || (ctx->flags & FPU_KERN_CTX_INUSE) == 0,
1136 	    ("using inuse ctx"));
1137 	KASSERT((pcb->pcb_flags & PCB_FPUNOSAVE) == 0,
1138 	    ("recursive fpu_kern_enter while in PCB_FPUNOSAVE state"));
1139 
1140 	if ((flags & FPU_KERN_NOCTX) != 0) {
1141 		critical_enter();
1142 		stop_emulating();
1143 		if (curthread == PCPU_GET(fpcurthread)) {
1144 			fpusave(curpcb->pcb_save);
1145 			PCPU_SET(fpcurthread, NULL);
1146 		} else {
1147 			KASSERT(PCPU_GET(fpcurthread) == NULL,
1148 			    ("invalid fpcurthread"));
1149 		}
1150 
1151 		/*
1152 		 * This breaks XSAVEOPT tracker, but
1153 		 * PCB_FPUNOSAVE state is supposed to never need to
1154 		 * save FPU context at all.
1155 		 */
1156 		fpurestore(fpu_initialstate);
1157 		set_pcb_flags(pcb, PCB_KERNFPU | PCB_FPUNOSAVE |
1158 		    PCB_FPUINITDONE);
1159 		return;
1160 	}
1161 	if ((flags & FPU_KERN_KTHR) != 0 && is_fpu_kern_thread(0)) {
1162 		ctx->flags = FPU_KERN_CTX_DUMMY | FPU_KERN_CTX_INUSE;
1163 		return;
1164 	}
1165 	critical_enter();
1166 	KASSERT(!PCB_USER_FPU(pcb) || pcb->pcb_save ==
1167 	    get_pcb_user_save_pcb(pcb), ("mangled pcb_save"));
1168 	ctx->flags = FPU_KERN_CTX_INUSE;
1169 	if ((pcb->pcb_flags & PCB_FPUINITDONE) != 0)
1170 		ctx->flags |= FPU_KERN_CTX_FPUINITDONE;
1171 	fpuexit(td);
1172 	ctx->prev = pcb->pcb_save;
1173 	pcb->pcb_save = fpu_kern_ctx_savefpu(ctx);
1174 	set_pcb_flags(pcb, PCB_KERNFPU);
1175 	clear_pcb_flags(pcb, PCB_FPUINITDONE);
1176 	critical_exit();
1177 }
1178 
1179 int
1180 fpu_kern_leave(struct thread *td, struct fpu_kern_ctx *ctx)
1181 {
1182 	struct pcb *pcb;
1183 
1184 	pcb = td->td_pcb;
1185 
1186 	if ((pcb->pcb_flags & PCB_FPUNOSAVE) != 0) {
1187 		KASSERT(ctx == NULL, ("non-null ctx after FPU_KERN_NOCTX"));
1188 		KASSERT(PCPU_GET(fpcurthread) == NULL,
1189 		    ("non-NULL fpcurthread for PCB_FPUNOSAVE"));
1190 		CRITICAL_ASSERT(td);
1191 
1192 		clear_pcb_flags(pcb,  PCB_FPUNOSAVE | PCB_FPUINITDONE);
1193 		start_emulating();
1194 	} else {
1195 		KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) != 0,
1196 		    ("leaving not inuse ctx"));
1197 		ctx->flags &= ~FPU_KERN_CTX_INUSE;
1198 
1199 		if (is_fpu_kern_thread(0) &&
1200 		    (ctx->flags & FPU_KERN_CTX_DUMMY) != 0)
1201 			return (0);
1202 		KASSERT((ctx->flags & FPU_KERN_CTX_DUMMY) == 0,
1203 		    ("dummy ctx"));
1204 		critical_enter();
1205 		if (curthread == PCPU_GET(fpcurthread))
1206 			fpudrop();
1207 		pcb->pcb_save = ctx->prev;
1208 	}
1209 
1210 	if (pcb->pcb_save == get_pcb_user_save_pcb(pcb)) {
1211 		if ((pcb->pcb_flags & PCB_USERFPUINITDONE) != 0) {
1212 			set_pcb_flags(pcb, PCB_FPUINITDONE);
1213 			if ((pcb->pcb_flags & PCB_KERNFPU_THR) == 0)
1214 				clear_pcb_flags(pcb, PCB_KERNFPU);
1215 		} else if ((pcb->pcb_flags & PCB_KERNFPU_THR) == 0)
1216 			clear_pcb_flags(pcb, PCB_FPUINITDONE | PCB_KERNFPU);
1217 	} else {
1218 		if ((ctx->flags & FPU_KERN_CTX_FPUINITDONE) != 0)
1219 			set_pcb_flags(pcb, PCB_FPUINITDONE);
1220 		else
1221 			clear_pcb_flags(pcb, PCB_FPUINITDONE);
1222 		KASSERT(!PCB_USER_FPU(pcb), ("unpaired fpu_kern_leave"));
1223 	}
1224 	critical_exit();
1225 	return (0);
1226 }
1227 
1228 int
1229 fpu_kern_thread(u_int flags)
1230 {
1231 
1232 	KASSERT((curthread->td_pflags & TDP_KTHREAD) != 0,
1233 	    ("Only kthread may use fpu_kern_thread"));
1234 	KASSERT(curpcb->pcb_save == get_pcb_user_save_pcb(curpcb),
1235 	    ("mangled pcb_save"));
1236 	KASSERT(PCB_USER_FPU(curpcb), ("recursive call"));
1237 
1238 	set_pcb_flags(curpcb, PCB_KERNFPU | PCB_KERNFPU_THR);
1239 	return (0);
1240 }
1241 
1242 int
1243 is_fpu_kern_thread(u_int flags)
1244 {
1245 
1246 	if ((curthread->td_pflags & TDP_KTHREAD) == 0)
1247 		return (0);
1248 	return ((curpcb->pcb_flags & PCB_KERNFPU_THR) != 0);
1249 }
1250 
1251 /*
1252  * FPU save area alloc/free/init utility routines
1253  */
1254 struct savefpu *
1255 fpu_save_area_alloc(void)
1256 {
1257 
1258 	return (uma_zalloc(fpu_save_area_zone, M_WAITOK));
1259 }
1260 
1261 void
1262 fpu_save_area_free(struct savefpu *fsa)
1263 {
1264 
1265 	uma_zfree(fpu_save_area_zone, fsa);
1266 }
1267 
1268 void
1269 fpu_save_area_reset(struct savefpu *fsa)
1270 {
1271 
1272 	bcopy(fpu_initialstate, fsa, cpu_max_ext_state_size);
1273 }
1274