xref: /freebsd/sys/amd64/amd64/fpu.c (revision 1b6c76a2fe091c74f08427e6c870851025a9cf67)
1 /*-
2  * Copyright (c) 1990 William Jolitz.
3  * Copyright (c) 1991 The Regents of the University of California.
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by the University of
17  *	California, Berkeley and its contributors.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	from: @(#)npx.c	7.2 (Berkeley) 5/12/91
35  * $FreeBSD$
36  */
37 
38 #include "opt_debug_npx.h"
39 #include "opt_math_emulate.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/bus.h>
44 #include <sys/kernel.h>
45 #include <sys/lock.h>
46 #include <sys/malloc.h>
47 #include <sys/module.h>
48 #include <sys/mutex.h>
49 #include <sys/mutex.h>
50 #include <sys/proc.h>
51 #include <sys/sysctl.h>
52 #include <machine/bus.h>
53 #include <sys/rman.h>
54 #ifdef NPX_DEBUG
55 #include <sys/syslog.h>
56 #endif
57 #include <sys/signalvar.h>
58 #include <sys/user.h>
59 
60 #ifndef SMP
61 #include <machine/asmacros.h>
62 #endif
63 #include <machine/cputypes.h>
64 #include <machine/frame.h>
65 #include <machine/md_var.h>
66 #include <machine/pcb.h>
67 #include <machine/psl.h>
68 #ifndef SMP
69 #include <machine/clock.h>
70 #endif
71 #include <machine/resource.h>
72 #include <machine/specialreg.h>
73 #include <machine/segments.h>
74 
75 #ifndef SMP
76 #include <i386/isa/icu.h>
77 #include <i386/isa/intr_machdep.h>
78 #include <i386/isa/isa.h>
79 #endif
80 #include <isa/isavar.h>
81 
82 /*
83  * 387 and 287 Numeric Coprocessor Extension (NPX) Driver.
84  */
85 
86 /* Configuration flags. */
87 #define	NPX_DISABLE_I586_OPTIMIZED_BCOPY	(1 << 0)
88 #define	NPX_DISABLE_I586_OPTIMIZED_BZERO	(1 << 1)
89 #define	NPX_DISABLE_I586_OPTIMIZED_COPYIO	(1 << 2)
90 #define	NPX_PREFER_EMULATOR			(1 << 3)
91 
92 #ifdef	__GNUC__
93 
94 #define	fldcw(addr)		__asm("fldcw %0" : : "m" (*(addr)))
95 #define	fnclex()		__asm("fnclex")
96 #define	fninit()		__asm("fninit")
97 #define	fnsave(addr)		__asm __volatile("fnsave %0" : "=m" (*(addr)))
98 #define	fnstcw(addr)		__asm __volatile("fnstcw %0" : "=m" (*(addr)))
99 #define	fnstsw(addr)		__asm __volatile("fnstsw %0" : "=m" (*(addr)))
100 #define	fp_divide_by_0()	__asm("fldz; fld1; fdiv %st,%st(1); fnop")
101 #define	frstor(addr)		__asm("frstor %0" : : "m" (*(addr)))
102 #define	start_emulating()	__asm("smsw %%ax; orb %0,%%al; lmsw %%ax" \
103 				      : : "n" (CR0_TS) : "ax")
104 #define	stop_emulating()	__asm("clts")
105 
106 #else	/* not __GNUC__ */
107 
108 void	fldcw		__P((caddr_t addr));
109 void	fnclex		__P((void));
110 void	fninit		__P((void));
111 void	fnsave		__P((caddr_t addr));
112 void	fnstcw		__P((caddr_t addr));
113 void	fnstsw		__P((caddr_t addr));
114 void	fp_divide_by_0	__P((void));
115 void	frstor		__P((caddr_t addr));
116 void	start_emulating	__P((void));
117 void	stop_emulating	__P((void));
118 
119 #endif	/* __GNUC__ */
120 
121 typedef u_char bool_t;
122 
123 static	int	npx_attach	__P((device_t dev));
124 static	void	npx_identify	__P((driver_t *driver, device_t parent));
125 #ifndef SMP
126 static	void	npx_intr	__P((void *));
127 #endif
128 static	int	npx_probe	__P((device_t dev));
129 static	int	npx_probe1	__P((device_t dev));
130 #ifdef I586_CPU_XXX
131 static	long	timezero	__P((const char *funcname,
132 				     void (*func)(void *buf, size_t len)));
133 #endif /* I586_CPU */
134 
135 int	hw_float;		/* XXX currently just alias for npx_exists */
136 
137 SYSCTL_INT(_hw,HW_FLOATINGPT, floatingpoint,
138 	CTLFLAG_RD, &hw_float, 0,
139 	"Floatingpoint instructions executed in hardware");
140 
141 #ifndef SMP
142 static	volatile u_int		npx_intrs_while_probing;
143 static	volatile u_int		npx_traps_while_probing;
144 #endif
145 
146 static	bool_t			npx_ex16;
147 static	bool_t			npx_exists;
148 static	bool_t			npx_irq13;
149 static	int			npx_irq;	/* irq number */
150 
151 #ifndef SMP
152 /*
153  * Special interrupt handlers.  Someday intr0-intr15 will be used to count
154  * interrupts.  We'll still need a special exception 16 handler.  The busy
155  * latch stuff in probeintr() can be moved to npxprobe().
156  */
157 inthand_t probeintr;
158 __asm("								\n\
159 	.text							\n\
160 	.p2align 2,0x90						\n\
161 	.type	" __XSTRING(CNAME(probeintr)) ",@function	\n\
162 " __XSTRING(CNAME(probeintr)) ":				\n\
163 	ss							\n\
164 	incl	" __XSTRING(CNAME(npx_intrs_while_probing)) "	\n\
165 	pushl	%eax						\n\
166 	movb	$0x20,%al	# EOI (asm in strings loses cpp features) \n\
167 	outb	%al,$0xa0	# IO_ICU2			\n\
168 	outb	%al,$0x20	# IO_ICU1			\n\
169 	movb	$0,%al						\n\
170 	outb	%al,$0xf0	# clear BUSY# latch		\n\
171 	popl	%eax						\n\
172 	iret							\n\
173 ");
174 
175 inthand_t probetrap;
176 __asm("								\n\
177 	.text							\n\
178 	.p2align 2,0x90						\n\
179 	.type	" __XSTRING(CNAME(probetrap)) ",@function	\n\
180 " __XSTRING(CNAME(probetrap)) ":				\n\
181 	ss							\n\
182 	incl	" __XSTRING(CNAME(npx_traps_while_probing)) "	\n\
183 	fnclex							\n\
184 	iret							\n\
185 ");
186 #endif /* SMP */
187 
188 /*
189  * Identify routine.  Create a connection point on our parent for probing.
190  */
191 static void
192 npx_identify(driver, parent)
193 	driver_t *driver;
194 	device_t parent;
195 {
196 	device_t child;
197 
198 	child = BUS_ADD_CHILD(parent, 0, "npx", 0);
199 	if (child == NULL)
200 		panic("npx_identify");
201 }
202 
203 #ifndef SMP
204 /*
205  * Do minimal handling of npx interrupts to convert them to traps.
206  */
207 static void
208 npx_intr(dummy)
209 	void *dummy;
210 {
211 	struct proc *p;
212 
213 	/*
214 	 * The BUSY# latch must be cleared in all cases so that the next
215 	 * unmasked npx exception causes an interrupt.
216 	 */
217 	outb(0xf0, 0);
218 
219 	/*
220 	 * npxproc is normally non-null here.  In that case, schedule an
221 	 * AST to finish the exception handling in the correct context
222 	 * (this interrupt may occur after the process has entered the
223 	 * kernel via a syscall or an interrupt).  Otherwise, the npx
224 	 * state of the process that caused this interrupt must have been
225 	 * pushed to the process' pcb, and clearing of the busy latch
226 	 * above has finished the (essentially null) handling of this
227 	 * interrupt.  Control will eventually return to the instruction
228 	 * that caused it and it will repeat.  We will eventually (usually
229 	 * soon) win the race to handle the interrupt properly.
230 	 */
231 	p = PCPU_GET(npxproc);
232 	if (p != NULL) {
233 		p->p_addr->u_pcb.pcb_flags |= PCB_NPXTRAP;
234 		mtx_lock_spin(&sched_lock);
235 		aston(p);
236 		mtx_unlock_spin(&sched_lock);
237 	}
238 }
239 
240 /*
241  * XXX these "local" variables of npx_probe() are non-local so that
242  * npxprobe1() can abuse them.
243  */
244 static	int	npx_intrno;
245 static	struct	gate_descriptor save_idt_npxintr;
246 #endif /* !SMP */
247 
248 /*
249  * Probe routine.  Initialize cr0 to give correct behaviour for [f]wait
250  * whether the device exists or not (XXX should be elsewhere).  Set flags
251  * to tell npxattach() what to do.  Modify device struct if npx doesn't
252  * need to use interrupts.  Return 1 if device exists.
253  */
254 static int
255 npx_probe(dev)
256 	device_t dev;
257 {
258 #ifdef SMP
259 
260 	if (resource_int_value("npx", 0, "irq", &npx_irq) != 0)
261 		npx_irq = 13;
262 	return npx_probe1(dev);
263 
264 #else /* SMP */
265 
266 	int	result;
267 	critical_t	savecrit;
268 	u_char	save_icu1_mask;
269 	u_char	save_icu2_mask;
270 	struct	gate_descriptor save_idt_npxtrap;
271 	/*
272 	 * This routine is now just a wrapper for npxprobe1(), to install
273 	 * special npx interrupt and trap handlers, to enable npx interrupts
274 	 * and to disable other interrupts.  Someday isa_configure() will
275 	 * install suitable handlers and run with interrupts enabled so we
276 	 * won't need to do so much here.
277 	 */
278 	if (resource_int_value("npx", 0, "irq", &npx_irq) != 0)
279 		npx_irq = 13;
280 	npx_intrno = NRSVIDT + npx_irq;
281 	savecrit = critical_enter();
282 	save_icu1_mask = inb(IO_ICU1 + 1);
283 	save_icu2_mask = inb(IO_ICU2 + 1);
284 	save_idt_npxintr = idt[npx_intrno];
285 	save_idt_npxtrap = idt[16];
286 	outb(IO_ICU1 + 1, ~IRQ_SLAVE);
287 	outb(IO_ICU2 + 1, ~(1 << (npx_irq - 8)));
288 	setidt(16, probetrap, SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
289 	setidt(npx_intrno, probeintr, SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
290 
291 	/*
292 	 * XXX This looks highly bogus, but it appears that npc_probe1
293 	 * needs interrupts enabled.  Does this make any difference
294 	 * here?
295 	 */
296 	critical_exit(savecrit);
297 	result = npx_probe1(dev);
298 	savecrit = critical_enter();
299 	outb(IO_ICU1 + 1, save_icu1_mask);
300 	outb(IO_ICU2 + 1, save_icu2_mask);
301 	idt[npx_intrno] = save_idt_npxintr;
302 	idt[16] = save_idt_npxtrap;
303 	critical_exit(savecrit);
304 	return (result);
305 
306 #endif /* SMP */
307 }
308 
309 static int
310 npx_probe1(dev)
311 	device_t dev;
312 {
313 #ifndef SMP
314 	u_short control;
315 	u_short status;
316 #endif
317 
318 	/*
319 	 * Partially reset the coprocessor, if any.  Some BIOS's don't reset
320 	 * it after a warm boot.
321 	 */
322 	outb(0xf1, 0);		/* full reset on some systems, NOP on others */
323 	outb(0xf0, 0);		/* clear BUSY# latch */
324 	/*
325 	 * Prepare to trap all ESC (i.e., NPX) instructions and all WAIT
326 	 * instructions.  We must set the CR0_MP bit and use the CR0_TS
327 	 * bit to control the trap, because setting the CR0_EM bit does
328 	 * not cause WAIT instructions to trap.  It's important to trap
329 	 * WAIT instructions - otherwise the "wait" variants of no-wait
330 	 * control instructions would degenerate to the "no-wait" variants
331 	 * after FP context switches but work correctly otherwise.  It's
332 	 * particularly important to trap WAITs when there is no NPX -
333 	 * otherwise the "wait" variants would always degenerate.
334 	 *
335 	 * Try setting CR0_NE to get correct error reporting on 486DX's.
336 	 * Setting it should fail or do nothing on lesser processors.
337 	 */
338 	load_cr0(rcr0() | CR0_MP | CR0_NE);
339 	/*
340 	 * But don't trap while we're probing.
341 	 */
342 	stop_emulating();
343 	/*
344 	 * Finish resetting the coprocessor, if any.  If there is an error
345 	 * pending, then we may get a bogus IRQ13, but probeintr() will handle
346 	 * it OK.  Bogus halts have never been observed, but we enabled
347 	 * IRQ13 and cleared the BUSY# latch early to handle them anyway.
348 	 */
349 	fninit();
350 
351 #ifdef SMP
352 	/*
353 	 * Exception 16 MUST work for SMP.
354 	 */
355 	npx_irq13 = 0;
356 	npx_ex16 = hw_float = npx_exists = 1;
357 	device_set_desc(dev, "math processor");
358 	return (0);
359 
360 #else /* !SMP */
361 	device_set_desc(dev, "math processor");
362 
363 	/*
364 	 * Don't use fwait here because it might hang.
365 	 * Don't use fnop here because it usually hangs if there is no FPU.
366 	 */
367 	DELAY(1000);		/* wait for any IRQ13 */
368 #ifdef DIAGNOSTIC
369 	if (npx_intrs_while_probing != 0)
370 		printf("fninit caused %u bogus npx interrupt(s)\n",
371 		       npx_intrs_while_probing);
372 	if (npx_traps_while_probing != 0)
373 		printf("fninit caused %u bogus npx trap(s)\n",
374 		       npx_traps_while_probing);
375 #endif
376 	/*
377 	 * Check for a status of mostly zero.
378 	 */
379 	status = 0x5a5a;
380 	fnstsw(&status);
381 	if ((status & 0xb8ff) == 0) {
382 		/*
383 		 * Good, now check for a proper control word.
384 		 */
385 		control = 0x5a5a;
386 		fnstcw(&control);
387 		if ((control & 0x1f3f) == 0x033f) {
388 			hw_float = npx_exists = 1;
389 			/*
390 			 * We have an npx, now divide by 0 to see if exception
391 			 * 16 works.
392 			 */
393 			control &= ~(1 << 2);	/* enable divide by 0 trap */
394 			fldcw(&control);
395 			npx_traps_while_probing = npx_intrs_while_probing = 0;
396 			fp_divide_by_0();
397 			if (npx_traps_while_probing != 0) {
398 				/*
399 				 * Good, exception 16 works.
400 				 */
401 				npx_ex16 = 1;
402 				return (0);
403 			}
404 			if (npx_intrs_while_probing != 0) {
405 				int	rid;
406 				struct	resource *r;
407 				void	*intr;
408 				/*
409 				 * Bad, we are stuck with IRQ13.
410 				 */
411 				npx_irq13 = 1;
412 
413 				/*
414 				 * We allocate these resources permanently,
415 				 * so there is no need to keep track of them.
416 				 */
417 				rid = 0;
418 				r = bus_alloc_resource(dev, SYS_RES_IOPORT,
419 						       &rid, IO_NPX, IO_NPX,
420 						       IO_NPXSIZE, RF_ACTIVE);
421 				if (r == 0)
422 					panic("npx: can't get ports");
423 				rid = 0;
424 				r = bus_alloc_resource(dev, SYS_RES_IRQ,
425 						       &rid, npx_irq, npx_irq,
426 						       1, RF_ACTIVE);
427 				if (r == 0)
428 					panic("npx: can't get IRQ");
429 				BUS_SETUP_INTR(device_get_parent(dev),
430 					       dev, r,
431 					       INTR_TYPE_MISC | INTR_FAST,
432 					       npx_intr, 0, &intr);
433 				if (intr == 0)
434 					panic("npx: can't create intr");
435 
436 				/*
437 				 * XXX BUS_SETUP_INTR() has changed
438 				 * idt[npx_intrno] to point to Xfastintr0
439 				 * instead of Xfastintr0.  Adjust
440 				 * save_idt_npxintr so that npxprobe()
441 				 * doesn't undo this.
442 				 */
443 				save_idt_npxintr = idt[npx_intrno];
444 
445 				return (0);
446 			}
447 			/*
448 			 * Worse, even IRQ13 is broken.  Use emulator.
449 			 */
450 		}
451 	}
452 	/*
453 	 * Probe failed, but we want to get to npxattach to initialize the
454 	 * emulator and say that it has been installed.  XXX handle devices
455 	 * that aren't really devices better.
456 	 */
457 	return (0);
458 #endif /* SMP */
459 }
460 
461 /*
462  * Attach routine - announce which it is, and wire into system
463  */
464 int
465 npx_attach(dev)
466 	device_t dev;
467 {
468 	int flags;
469 
470 	if (resource_int_value("npx", 0, "flags", &flags) != 0)
471 		flags = 0;
472 
473 	if (flags)
474 		device_printf(dev, "flags 0x%x ", flags);
475 	if (npx_irq13) {
476 		device_printf(dev, "using IRQ 13 interface\n");
477 	} else {
478 #if defined(MATH_EMULATE) || defined(GPL_MATH_EMULATE)
479 		if (npx_ex16) {
480 			if (!(flags & NPX_PREFER_EMULATOR))
481 				device_printf(dev, "INT 16 interface\n");
482 			else {
483 				device_printf(dev, "FPU exists, but flags request "
484 				    "emulator\n");
485 				hw_float = npx_exists = 0;
486 			}
487 		} else if (npx_exists) {
488 			device_printf(dev, "error reporting broken; using 387 emulator\n");
489 			hw_float = npx_exists = 0;
490 		} else
491 			device_printf(dev, "387 emulator\n");
492 #else
493 		if (npx_ex16) {
494 			device_printf(dev, "INT 16 interface\n");
495 			if (flags & NPX_PREFER_EMULATOR) {
496 				device_printf(dev, "emulator requested, but none compiled "
497 				    "into kernel, using FPU\n");
498 			}
499 		} else
500 			device_printf(dev, "no 387 emulator in kernel and no FPU!\n");
501 #endif
502 	}
503 	npxinit(__INITIAL_NPXCW__);
504 
505 #ifdef I586_CPU_XXX
506 	if (cpu_class == CPUCLASS_586 && npx_ex16 && npx_exists &&
507 	    timezero("i586_bzero()", i586_bzero) <
508 	    timezero("bzero()", bzero) * 4 / 5) {
509 		if (!(flags & NPX_DISABLE_I586_OPTIMIZED_BCOPY)) {
510 			bcopy_vector = i586_bcopy;
511 			ovbcopy_vector = i586_bcopy;
512 		}
513 		if (!(flags & NPX_DISABLE_I586_OPTIMIZED_BZERO))
514 			bzero = i586_bzero;
515 		if (!(flags & NPX_DISABLE_I586_OPTIMIZED_COPYIO)) {
516 			copyin_vector = i586_copyin;
517 			copyout_vector = i586_copyout;
518 		}
519 	}
520 #endif
521 
522 	return (0);		/* XXX unused */
523 }
524 
525 /*
526  * Initialize floating point unit.
527  */
528 void
529 npxinit(control)
530 	u_short control;
531 {
532 	struct save87 dummy;
533 	critical_t savecrit;
534 
535 	if (!npx_exists)
536 		return;
537 	/*
538 	 * fninit has the same h/w bugs as fnsave.  Use the detoxified
539 	 * fnsave to throw away any junk in the fpu.  npxsave() initializes
540 	 * the fpu and sets npxproc = NULL as important side effects.
541 	 */
542 	savecrit = critical_enter();
543 	npxsave(&dummy);
544 	stop_emulating();
545 	fldcw(&control);
546 	if (PCPU_GET(curpcb) != NULL)
547 		fnsave(&PCPU_GET(curpcb)->pcb_savefpu);
548 	start_emulating();
549 	critical_exit(savecrit);
550 }
551 
552 /*
553  * Free coprocessor (if we have it).
554  */
555 void
556 npxexit(p)
557 	struct proc *p;
558 {
559 	critical_t savecrit;
560 
561 	savecrit = critical_enter();
562 	if (p == PCPU_GET(npxproc))
563 		npxsave(&PCPU_GET(curpcb)->pcb_savefpu);
564 	critical_exit(savecrit);
565 #ifdef NPX_DEBUG
566 	if (npx_exists) {
567 		u_int	masked_exceptions;
568 
569 		masked_exceptions = PCPU_GET(curpcb)->pcb_savefpu.sv_env.en_cw
570 		    & PCPU_GET(curpcb)->pcb_savefpu.sv_env.en_sw & 0x7f;
571 		/*
572 		 * Log exceptions that would have trapped with the old
573 		 * control word (overflow, divide by 0, and invalid operand).
574 		 */
575 		if (masked_exceptions & 0x0d)
576 			log(LOG_ERR,
577 	"pid %d (%s) exited with masked floating point exceptions 0x%02x\n",
578 			    p->p_pid, p->p_comm, masked_exceptions);
579 	}
580 #endif
581 }
582 
583 /*
584  * The following mechanism is used to ensure that the FPE_... value
585  * that is passed as a trapcode to the signal handler of the user
586  * process does not have more than one bit set.
587  *
588  * Multiple bits may be set if the user process modifies the control
589  * word while a status word bit is already set.  While this is a sign
590  * of bad coding, we have no choise than to narrow them down to one
591  * bit, since we must not send a trapcode that is not exactly one of
592  * the FPE_ macros.
593  *
594  * The mechanism has a static table with 127 entries.  Each combination
595  * of the 7 FPU status word exception bits directly translates to a
596  * position in this table, where a single FPE_... value is stored.
597  * This FPE_... value stored there is considered the "most important"
598  * of the exception bits and will be sent as the signal code.  The
599  * precedence of the bits is based upon Intel Document "Numerical
600  * Applications", Chapter "Special Computational Situations".
601  *
602  * The macro to choose one of these values does these steps: 1) Throw
603  * away status word bits that cannot be masked.  2) Throw away the bits
604  * currently masked in the control word, assuming the user isn't
605  * interested in them anymore.  3) Reinsert status word bit 7 (stack
606  * fault) if it is set, which cannot be masked but must be presered.
607  * 4) Use the remaining bits to point into the trapcode table.
608  *
609  * The 6 maskable bits in order of their preference, as stated in the
610  * above referenced Intel manual:
611  * 1  Invalid operation (FP_X_INV)
612  * 1a   Stack underflow
613  * 1b   Stack overflow
614  * 1c   Operand of unsupported format
615  * 1d   SNaN operand.
616  * 2  QNaN operand (not an exception, irrelavant here)
617  * 3  Any other invalid-operation not mentioned above or zero divide
618  *      (FP_X_INV, FP_X_DZ)
619  * 4  Denormal operand (FP_X_DNML)
620  * 5  Numeric over/underflow (FP_X_OFL, FP_X_UFL)
621  * 6  Inexact result (FP_X_IMP)
622  */
623 static char fpetable[128] = {
624 	0,
625 	FPE_FLTINV,	/*  1 - INV */
626 	FPE_FLTUND,	/*  2 - DNML */
627 	FPE_FLTINV,	/*  3 - INV | DNML */
628 	FPE_FLTDIV,	/*  4 - DZ */
629 	FPE_FLTINV,	/*  5 - INV | DZ */
630 	FPE_FLTDIV,	/*  6 - DNML | DZ */
631 	FPE_FLTINV,	/*  7 - INV | DNML | DZ */
632 	FPE_FLTOVF,	/*  8 - OFL */
633 	FPE_FLTINV,	/*  9 - INV | OFL */
634 	FPE_FLTUND,	/*  A - DNML | OFL */
635 	FPE_FLTINV,	/*  B - INV | DNML | OFL */
636 	FPE_FLTDIV,	/*  C - DZ | OFL */
637 	FPE_FLTINV,	/*  D - INV | DZ | OFL */
638 	FPE_FLTDIV,	/*  E - DNML | DZ | OFL */
639 	FPE_FLTINV,	/*  F - INV | DNML | DZ | OFL */
640 	FPE_FLTUND,	/* 10 - UFL */
641 	FPE_FLTINV,	/* 11 - INV | UFL */
642 	FPE_FLTUND,	/* 12 - DNML | UFL */
643 	FPE_FLTINV,	/* 13 - INV | DNML | UFL */
644 	FPE_FLTDIV,	/* 14 - DZ | UFL */
645 	FPE_FLTINV,	/* 15 - INV | DZ | UFL */
646 	FPE_FLTDIV,	/* 16 - DNML | DZ | UFL */
647 	FPE_FLTINV,	/* 17 - INV | DNML | DZ | UFL */
648 	FPE_FLTOVF,	/* 18 - OFL | UFL */
649 	FPE_FLTINV,	/* 19 - INV | OFL | UFL */
650 	FPE_FLTUND,	/* 1A - DNML | OFL | UFL */
651 	FPE_FLTINV,	/* 1B - INV | DNML | OFL | UFL */
652 	FPE_FLTDIV,	/* 1C - DZ | OFL | UFL */
653 	FPE_FLTINV,	/* 1D - INV | DZ | OFL | UFL */
654 	FPE_FLTDIV,	/* 1E - DNML | DZ | OFL | UFL */
655 	FPE_FLTINV,	/* 1F - INV | DNML | DZ | OFL | UFL */
656 	FPE_FLTRES,	/* 20 - IMP */
657 	FPE_FLTINV,	/* 21 - INV | IMP */
658 	FPE_FLTUND,	/* 22 - DNML | IMP */
659 	FPE_FLTINV,	/* 23 - INV | DNML | IMP */
660 	FPE_FLTDIV,	/* 24 - DZ | IMP */
661 	FPE_FLTINV,	/* 25 - INV | DZ | IMP */
662 	FPE_FLTDIV,	/* 26 - DNML | DZ | IMP */
663 	FPE_FLTINV,	/* 27 - INV | DNML | DZ | IMP */
664 	FPE_FLTOVF,	/* 28 - OFL | IMP */
665 	FPE_FLTINV,	/* 29 - INV | OFL | IMP */
666 	FPE_FLTUND,	/* 2A - DNML | OFL | IMP */
667 	FPE_FLTINV,	/* 2B - INV | DNML | OFL | IMP */
668 	FPE_FLTDIV,	/* 2C - DZ | OFL | IMP */
669 	FPE_FLTINV,	/* 2D - INV | DZ | OFL | IMP */
670 	FPE_FLTDIV,	/* 2E - DNML | DZ | OFL | IMP */
671 	FPE_FLTINV,	/* 2F - INV | DNML | DZ | OFL | IMP */
672 	FPE_FLTUND,	/* 30 - UFL | IMP */
673 	FPE_FLTINV,	/* 31 - INV | UFL | IMP */
674 	FPE_FLTUND,	/* 32 - DNML | UFL | IMP */
675 	FPE_FLTINV,	/* 33 - INV | DNML | UFL | IMP */
676 	FPE_FLTDIV,	/* 34 - DZ | UFL | IMP */
677 	FPE_FLTINV,	/* 35 - INV | DZ | UFL | IMP */
678 	FPE_FLTDIV,	/* 36 - DNML | DZ | UFL | IMP */
679 	FPE_FLTINV,	/* 37 - INV | DNML | DZ | UFL | IMP */
680 	FPE_FLTOVF,	/* 38 - OFL | UFL | IMP */
681 	FPE_FLTINV,	/* 39 - INV | OFL | UFL | IMP */
682 	FPE_FLTUND,	/* 3A - DNML | OFL | UFL | IMP */
683 	FPE_FLTINV,	/* 3B - INV | DNML | OFL | UFL | IMP */
684 	FPE_FLTDIV,	/* 3C - DZ | OFL | UFL | IMP */
685 	FPE_FLTINV,	/* 3D - INV | DZ | OFL | UFL | IMP */
686 	FPE_FLTDIV,	/* 3E - DNML | DZ | OFL | UFL | IMP */
687 	FPE_FLTINV,	/* 3F - INV | DNML | DZ | OFL | UFL | IMP */
688 	FPE_FLTSUB,	/* 40 - STK */
689 	FPE_FLTSUB,	/* 41 - INV | STK */
690 	FPE_FLTUND,	/* 42 - DNML | STK */
691 	FPE_FLTSUB,	/* 43 - INV | DNML | STK */
692 	FPE_FLTDIV,	/* 44 - DZ | STK */
693 	FPE_FLTSUB,	/* 45 - INV | DZ | STK */
694 	FPE_FLTDIV,	/* 46 - DNML | DZ | STK */
695 	FPE_FLTSUB,	/* 47 - INV | DNML | DZ | STK */
696 	FPE_FLTOVF,	/* 48 - OFL | STK */
697 	FPE_FLTSUB,	/* 49 - INV | OFL | STK */
698 	FPE_FLTUND,	/* 4A - DNML | OFL | STK */
699 	FPE_FLTSUB,	/* 4B - INV | DNML | OFL | STK */
700 	FPE_FLTDIV,	/* 4C - DZ | OFL | STK */
701 	FPE_FLTSUB,	/* 4D - INV | DZ | OFL | STK */
702 	FPE_FLTDIV,	/* 4E - DNML | DZ | OFL | STK */
703 	FPE_FLTSUB,	/* 4F - INV | DNML | DZ | OFL | STK */
704 	FPE_FLTUND,	/* 50 - UFL | STK */
705 	FPE_FLTSUB,	/* 51 - INV | UFL | STK */
706 	FPE_FLTUND,	/* 52 - DNML | UFL | STK */
707 	FPE_FLTSUB,	/* 53 - INV | DNML | UFL | STK */
708 	FPE_FLTDIV,	/* 54 - DZ | UFL | STK */
709 	FPE_FLTSUB,	/* 55 - INV | DZ | UFL | STK */
710 	FPE_FLTDIV,	/* 56 - DNML | DZ | UFL | STK */
711 	FPE_FLTSUB,	/* 57 - INV | DNML | DZ | UFL | STK */
712 	FPE_FLTOVF,	/* 58 - OFL | UFL | STK */
713 	FPE_FLTSUB,	/* 59 - INV | OFL | UFL | STK */
714 	FPE_FLTUND,	/* 5A - DNML | OFL | UFL | STK */
715 	FPE_FLTSUB,	/* 5B - INV | DNML | OFL | UFL | STK */
716 	FPE_FLTDIV,	/* 5C - DZ | OFL | UFL | STK */
717 	FPE_FLTSUB,	/* 5D - INV | DZ | OFL | UFL | STK */
718 	FPE_FLTDIV,	/* 5E - DNML | DZ | OFL | UFL | STK */
719 	FPE_FLTSUB,	/* 5F - INV | DNML | DZ | OFL | UFL | STK */
720 	FPE_FLTRES,	/* 60 - IMP | STK */
721 	FPE_FLTSUB,	/* 61 - INV | IMP | STK */
722 	FPE_FLTUND,	/* 62 - DNML | IMP | STK */
723 	FPE_FLTSUB,	/* 63 - INV | DNML | IMP | STK */
724 	FPE_FLTDIV,	/* 64 - DZ | IMP | STK */
725 	FPE_FLTSUB,	/* 65 - INV | DZ | IMP | STK */
726 	FPE_FLTDIV,	/* 66 - DNML | DZ | IMP | STK */
727 	FPE_FLTSUB,	/* 67 - INV | DNML | DZ | IMP | STK */
728 	FPE_FLTOVF,	/* 68 - OFL | IMP | STK */
729 	FPE_FLTSUB,	/* 69 - INV | OFL | IMP | STK */
730 	FPE_FLTUND,	/* 6A - DNML | OFL | IMP | STK */
731 	FPE_FLTSUB,	/* 6B - INV | DNML | OFL | IMP | STK */
732 	FPE_FLTDIV,	/* 6C - DZ | OFL | IMP | STK */
733 	FPE_FLTSUB,	/* 6D - INV | DZ | OFL | IMP | STK */
734 	FPE_FLTDIV,	/* 6E - DNML | DZ | OFL | IMP | STK */
735 	FPE_FLTSUB,	/* 6F - INV | DNML | DZ | OFL | IMP | STK */
736 	FPE_FLTUND,	/* 70 - UFL | IMP | STK */
737 	FPE_FLTSUB,	/* 71 - INV | UFL | IMP | STK */
738 	FPE_FLTUND,	/* 72 - DNML | UFL | IMP | STK */
739 	FPE_FLTSUB,	/* 73 - INV | DNML | UFL | IMP | STK */
740 	FPE_FLTDIV,	/* 74 - DZ | UFL | IMP | STK */
741 	FPE_FLTSUB,	/* 75 - INV | DZ | UFL | IMP | STK */
742 	FPE_FLTDIV,	/* 76 - DNML | DZ | UFL | IMP | STK */
743 	FPE_FLTSUB,	/* 77 - INV | DNML | DZ | UFL | IMP | STK */
744 	FPE_FLTOVF,	/* 78 - OFL | UFL | IMP | STK */
745 	FPE_FLTSUB,	/* 79 - INV | OFL | UFL | IMP | STK */
746 	FPE_FLTUND,	/* 7A - DNML | OFL | UFL | IMP | STK */
747 	FPE_FLTSUB,	/* 7B - INV | DNML | OFL | UFL | IMP | STK */
748 	FPE_FLTDIV,	/* 7C - DZ | OFL | UFL | IMP | STK */
749 	FPE_FLTSUB,	/* 7D - INV | DZ | OFL | UFL | IMP | STK */
750 	FPE_FLTDIV,	/* 7E - DNML | DZ | OFL | UFL | IMP | STK */
751 	FPE_FLTSUB,	/* 7F - INV | DNML | DZ | OFL | UFL | IMP | STK */
752 };
753 
754 /*
755  * Preserve the FP status word, clear FP exceptions, then generate a SIGFPE.
756  *
757  * Clearing exceptions is necessary mainly to avoid IRQ13 bugs.  We now
758  * depend on longjmp() restoring a usable state.  Restoring the state
759  * or examining it might fail if we didn't clear exceptions.
760  *
761  * The error code chosen will be one of the FPE_... macros. It will be
762  * sent as the second argument to old BSD-style signal handlers and as
763  * "siginfo_t->si_code" (second argument) to SA_SIGINFO signal handlers.
764  *
765  * XXX the FP state is not preserved across signal handlers.  So signal
766  * handlers cannot afford to do FP unless they preserve the state or
767  * longjmp() out.  Both preserving the state and longjmp()ing may be
768  * destroyed by IRQ13 bugs.  Clearing FP exceptions is not an acceptable
769  * solution for signals other than SIGFPE.
770  */
771 int
772 npxtrap()
773 {
774 	critical_t savecrit;
775 	u_short control, status;
776 
777 	if (!npx_exists) {
778 		printf("npxtrap: npxproc = %p, curproc = %p, npx_exists = %d\n",
779 		       PCPU_GET(npxproc), curproc, npx_exists);
780 		panic("npxtrap from nowhere");
781 	}
782 	savecrit = critical_enter();
783 
784 	/*
785 	 * Interrupt handling (for another interrupt) may have pushed the
786 	 * state to memory.  Fetch the relevant parts of the state from
787 	 * wherever they are.
788 	 */
789 	if (PCPU_GET(npxproc) != curproc) {
790 		control = curproc->p_addr->u_pcb.pcb_savefpu.sv_env.en_cw;
791 		status = curproc->p_addr->u_pcb.pcb_savefpu.sv_env.en_sw;
792 	} else {
793 		fnstcw(&control);
794 		fnstsw(&status);
795 	}
796 
797 	curproc->p_addr->u_pcb.pcb_savefpu.sv_ex_sw = status;
798 	if (PCPU_GET(npxproc) != curproc)
799 		curproc->p_addr->u_pcb.pcb_savefpu.sv_env.en_sw &= ~0x80bf;
800 	else
801 		fnclex();
802 	critical_exit(savecrit);
803 	return (fpetable[status & ((~control & 0x3f) | 0x40)]);
804 }
805 
806 /*
807  * Implement device not available (DNA) exception
808  *
809  * It would be better to switch FP context here (if curproc != npxproc)
810  * and not necessarily for every context switch, but it is too hard to
811  * access foreign pcb's.
812  */
813 int
814 npxdna()
815 {
816 	critical_t s;
817 
818 	if (!npx_exists)
819 		return (0);
820 	if (PCPU_GET(npxproc) != NULL) {
821 		printf("npxdna: npxproc = %p, curproc = %p\n",
822 		       PCPU_GET(npxproc), curproc);
823 		panic("npxdna");
824 	}
825 	s = critical_enter();
826 	stop_emulating();
827 	/*
828 	 * Record new context early in case frstor causes an IRQ13.
829 	 */
830 	PCPU_SET(npxproc, CURPROC);
831 	PCPU_GET(curpcb)->pcb_savefpu.sv_ex_sw = 0;
832 	/*
833 	 * The following frstor may cause an IRQ13 when the state being
834 	 * restored has a pending error.  The error will appear to have been
835 	 * triggered by the current (npx) user instruction even when that
836 	 * instruction is a no-wait instruction that should not trigger an
837 	 * error (e.g., fnclex).  On at least one 486 system all of the
838 	 * no-wait instructions are broken the same as frstor, so our
839 	 * treatment does not amplify the breakage.  On at least one
840 	 * 386/Cyrix 387 system, fnclex works correctly while frstor and
841 	 * fnsave are broken, so our treatment breaks fnclex if it is the
842 	 * first FPU instruction after a context switch.
843 	 */
844 	frstor(&PCPU_GET(curpcb)->pcb_savefpu);
845 	critical_exit(s);
846 
847 	return (1);
848 }
849 
850 /*
851  * Wrapper for fnsave instruction, partly to handle hardware bugs.  When npx
852  * exceptions are reported via IRQ13, spurious IRQ13's may be triggered by
853  * no-wait npx instructions.  See the Intel application note AP-578 for
854  * details.  This doesn't cause any additional complications here.  IRQ13's
855  * are inherently asynchronous unless the CPU is frozen to deliver them --
856  * one that started in userland may be delivered many instructions later,
857  * after the process has entered the kernel.  It may even be delivered after
858  * the fnsave here completes.  A spurious IRQ13 for the fnsave is handled in
859  * the same way as a very-late-arriving non-spurious IRQ13 from user mode:
860  * it is normally ignored at first because we set npxproc to NULL; it is
861  * normally retriggered in npxdna() after return to user mode.
862  *
863  * npxsave() must be called with interrupts disabled, so that it clears
864  * npxproc atomically with saving the state.  We require callers to do the
865  * disabling, since most callers need to disable interrupts anyway to call
866  * npxsave() atomically with checking npxproc.
867  *
868  * A previous version of npxsave() went to great lengths to excecute fnsave
869  * with interrupts enabled in case executing it froze the CPU.  This case
870  * can't happen, at least for Intel CPU/NPX's.  Spurious IRQ13's don't imply
871  * spurious freezes.
872  */
873 void
874 npxsave(addr)
875 	struct save87 *addr;
876 {
877 
878 	stop_emulating();
879 	fnsave(addr);
880 	start_emulating();
881 	PCPU_SET(npxproc, NULL);
882 }
883 
884 #ifdef I586_CPU_XXX
885 static long
886 timezero(funcname, func)
887 	const char *funcname;
888 	void (*func) __P((void *buf, size_t len));
889 
890 {
891 	void *buf;
892 #define	BUFSIZE		1048576
893 	long usec;
894 	struct timeval finish, start;
895 
896 	buf = malloc(BUFSIZE, M_TEMP, M_NOWAIT);
897 	if (buf == NULL)
898 		return (BUFSIZE);
899 	microtime(&start);
900 	(*func)(buf, BUFSIZE);
901 	microtime(&finish);
902 	usec = 1000000 * (finish.tv_sec - start.tv_sec) +
903 	    finish.tv_usec - start.tv_usec;
904 	if (usec <= 0)
905 		usec = 1;
906 	if (bootverbose)
907 		printf("%s bandwidth = %u kBps\n", funcname,
908 		    (u_int32_t)(((BUFSIZE >> 10) * 1000000) / usec));
909 	free(buf, M_TEMP);
910 	return (usec);
911 }
912 #endif /* I586_CPU */
913 
914 static device_method_t npx_methods[] = {
915 	/* Device interface */
916 	DEVMETHOD(device_identify,	npx_identify),
917 	DEVMETHOD(device_probe,		npx_probe),
918 	DEVMETHOD(device_attach,	npx_attach),
919 	DEVMETHOD(device_detach,	bus_generic_detach),
920 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
921 	DEVMETHOD(device_suspend,	bus_generic_suspend),
922 	DEVMETHOD(device_resume,	bus_generic_resume),
923 
924 	{ 0, 0 }
925 };
926 
927 static driver_t npx_driver = {
928 	"npx",
929 	npx_methods,
930 	1,			/* no softc */
931 };
932 
933 static devclass_t npx_devclass;
934 
935 /*
936  * We prefer to attach to the root nexus so that the usual case (exception 16)
937  * doesn't describe the processor as being `on isa'.
938  */
939 DRIVER_MODULE(npx, nexus, npx_driver, npx_devclass, 0, 0);
940 
941 /*
942  * This sucks up the legacy ISA support assignments from PNPBIOS.
943  */
944 static struct isa_pnp_id npxisa_ids[] = {
945 	{ 0x040cd041, "Legacy ISA coprocessor support" }, /* PNP0C04 */
946 	{ 0 }
947 };
948 
949 static int
950 npxisa_probe(device_t dev)
951 {
952 	int result;
953 	if ((result = ISA_PNP_PROBE(device_get_parent(dev), dev, npxisa_ids)) <= 0) {
954 		device_quiet(dev);
955 	}
956 	return(result);
957 }
958 
959 static int
960 npxisa_attach(device_t dev)
961 {
962 	return (0);
963 }
964 
965 static device_method_t npxisa_methods[] = {
966 	/* Device interface */
967 	DEVMETHOD(device_probe,		npxisa_probe),
968 	DEVMETHOD(device_attach,	npxisa_attach),
969 	DEVMETHOD(device_detach,	bus_generic_detach),
970 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
971 	DEVMETHOD(device_suspend,	bus_generic_suspend),
972 	DEVMETHOD(device_resume,	bus_generic_resume),
973 
974 	{ 0, 0 }
975 };
976 
977 static driver_t npxisa_driver = {
978 	"npxisa",
979 	npxisa_methods,
980 	1,			/* no softc */
981 };
982 
983 static devclass_t npxisa_devclass;
984 
985 DRIVER_MODULE(npxisa, isa, npxisa_driver, npxisa_devclass, 0, 0);
986 
987