1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1990 William Jolitz. 5 * Copyright (c) 1991 The Regents of the University of California. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)npx.c 7.2 (Berkeley) 5/12/91 33 */ 34 35 #include <sys/cdefs.h> 36 __FBSDID("$FreeBSD$"); 37 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/bus.h> 41 #include <sys/domainset.h> 42 #include <sys/kernel.h> 43 #include <sys/lock.h> 44 #include <sys/malloc.h> 45 #include <sys/module.h> 46 #include <sys/mutex.h> 47 #include <sys/mutex.h> 48 #include <sys/proc.h> 49 #include <sys/sysctl.h> 50 #include <sys/sysent.h> 51 #include <machine/bus.h> 52 #include <sys/rman.h> 53 #include <sys/signalvar.h> 54 #include <vm/uma.h> 55 56 #include <machine/cputypes.h> 57 #include <machine/frame.h> 58 #include <machine/intr_machdep.h> 59 #include <machine/md_var.h> 60 #include <machine/pcb.h> 61 #include <machine/psl.h> 62 #include <machine/resource.h> 63 #include <machine/specialreg.h> 64 #include <machine/segments.h> 65 #include <machine/ucontext.h> 66 #include <x86/ifunc.h> 67 68 /* 69 * Floating point support. 70 */ 71 72 #define fldcw(cw) __asm __volatile("fldcw %0" : : "m" (cw)) 73 #define fnclex() __asm __volatile("fnclex") 74 #define fninit() __asm __volatile("fninit") 75 #define fnstcw(addr) __asm __volatile("fnstcw %0" : "=m" (*(addr))) 76 #define fnstsw(addr) __asm __volatile("fnstsw %0" : "=am" (*(addr))) 77 #define fxrstor(addr) __asm __volatile("fxrstor %0" : : "m" (*(addr))) 78 #define fxsave(addr) __asm __volatile("fxsave %0" : "=m" (*(addr))) 79 #define ldmxcsr(csr) __asm __volatile("ldmxcsr %0" : : "m" (csr)) 80 #define stmxcsr(addr) __asm __volatile("stmxcsr %0" : "=m" (*(addr))) 81 82 static __inline void 83 xrstor32(char *addr, uint64_t mask) 84 { 85 uint32_t low, hi; 86 87 low = mask; 88 hi = mask >> 32; 89 __asm __volatile("xrstor %0" : : "m" (*addr), "a" (low), "d" (hi)); 90 } 91 92 static __inline void 93 xrstor64(char *addr, uint64_t mask) 94 { 95 uint32_t low, hi; 96 97 low = mask; 98 hi = mask >> 32; 99 __asm __volatile("xrstor64 %0" : : "m" (*addr), "a" (low), "d" (hi)); 100 } 101 102 static __inline void 103 xsave32(char *addr, uint64_t mask) 104 { 105 uint32_t low, hi; 106 107 low = mask; 108 hi = mask >> 32; 109 __asm __volatile("xsave %0" : "=m" (*addr) : "a" (low), "d" (hi) : 110 "memory"); 111 } 112 113 static __inline void 114 xsave64(char *addr, uint64_t mask) 115 { 116 uint32_t low, hi; 117 118 low = mask; 119 hi = mask >> 32; 120 __asm __volatile("xsave64 %0" : "=m" (*addr) : "a" (low), "d" (hi) : 121 "memory"); 122 } 123 124 static __inline void 125 xsaveopt32(char *addr, uint64_t mask) 126 { 127 uint32_t low, hi; 128 129 low = mask; 130 hi = mask >> 32; 131 __asm __volatile("xsaveopt %0" : "=m" (*addr) : "a" (low), "d" (hi) : 132 "memory"); 133 } 134 135 static __inline void 136 xsaveopt64(char *addr, uint64_t mask) 137 { 138 uint32_t low, hi; 139 140 low = mask; 141 hi = mask >> 32; 142 __asm __volatile("xsaveopt64 %0" : "=m" (*addr) : "a" (low), "d" (hi) : 143 "memory"); 144 } 145 146 #define start_emulating() load_cr0(rcr0() | CR0_TS) 147 #define stop_emulating() clts() 148 149 CTASSERT(sizeof(struct savefpu) == 512); 150 CTASSERT(sizeof(struct xstate_hdr) == 64); 151 CTASSERT(sizeof(struct savefpu_ymm) == 832); 152 153 /* 154 * This requirement is to make it easier for asm code to calculate 155 * offset of the fpu save area from the pcb address. FPU save area 156 * must be 64-byte aligned. 157 */ 158 CTASSERT(sizeof(struct pcb) % XSAVE_AREA_ALIGN == 0); 159 160 /* 161 * Ensure the copy of XCR0 saved in a core is contained in the padding 162 * area. 163 */ 164 CTASSERT(X86_XSTATE_XCR0_OFFSET >= offsetof(struct savefpu, sv_pad) && 165 X86_XSTATE_XCR0_OFFSET + sizeof(uint64_t) <= sizeof(struct savefpu)); 166 167 static void fpu_clean_state(void); 168 169 SYSCTL_INT(_hw, HW_FLOATINGPT, floatingpoint, CTLFLAG_RD, 170 SYSCTL_NULL_INT_PTR, 1, "Floating point instructions executed in hardware"); 171 172 int use_xsave; /* non-static for cpu_switch.S */ 173 uint64_t xsave_mask; /* the same */ 174 static uma_zone_t fpu_save_area_zone; 175 static struct savefpu *fpu_initialstate; 176 177 static struct xsave_area_elm_descr { 178 u_int offset; 179 u_int size; 180 } *xsave_area_desc; 181 182 static void 183 fpusave_xsaveopt64(void *addr) 184 { 185 xsaveopt64((char *)addr, xsave_mask); 186 } 187 188 static void 189 fpusave_xsaveopt3264(void *addr) 190 { 191 if (SV_CURPROC_FLAG(SV_ILP32)) 192 xsaveopt32((char *)addr, xsave_mask); 193 else 194 xsaveopt64((char *)addr, xsave_mask); 195 } 196 197 static void 198 fpusave_xsave64(void *addr) 199 { 200 xsave64((char *)addr, xsave_mask); 201 } 202 203 static void 204 fpusave_xsave3264(void *addr) 205 { 206 if (SV_CURPROC_FLAG(SV_ILP32)) 207 xsave32((char *)addr, xsave_mask); 208 else 209 xsave64((char *)addr, xsave_mask); 210 } 211 212 static void 213 fpurestore_xrstor64(void *addr) 214 { 215 xrstor64((char *)addr, xsave_mask); 216 } 217 218 static void 219 fpurestore_xrstor3264(void *addr) 220 { 221 if (SV_CURPROC_FLAG(SV_ILP32)) 222 xrstor32((char *)addr, xsave_mask); 223 else 224 xrstor64((char *)addr, xsave_mask); 225 } 226 227 static void 228 fpusave_fxsave(void *addr) 229 { 230 231 fxsave((char *)addr); 232 } 233 234 static void 235 fpurestore_fxrstor(void *addr) 236 { 237 238 fxrstor((char *)addr); 239 } 240 241 static void 242 init_xsave(void) 243 { 244 245 if (use_xsave) 246 return; 247 if ((cpu_feature2 & CPUID2_XSAVE) == 0) 248 return; 249 use_xsave = 1; 250 TUNABLE_INT_FETCH("hw.use_xsave", &use_xsave); 251 } 252 253 DEFINE_IFUNC(, void, fpusave, (void *)) 254 { 255 256 init_xsave(); 257 if (!use_xsave) 258 return (fpusave_fxsave); 259 if ((cpu_stdext_feature & CPUID_EXTSTATE_XSAVEOPT) != 0) { 260 return ((cpu_stdext_feature & CPUID_STDEXT_NFPUSG) != 0 ? 261 fpusave_xsaveopt64 : fpusave_xsaveopt3264); 262 } 263 return ((cpu_stdext_feature & CPUID_STDEXT_NFPUSG) != 0 ? 264 fpusave_xsave64 : fpusave_xsave3264); 265 } 266 267 DEFINE_IFUNC(, void, fpurestore, (void *)) 268 { 269 270 init_xsave(); 271 if (!use_xsave) 272 return (fpurestore_fxrstor); 273 return ((cpu_stdext_feature & CPUID_STDEXT_NFPUSG) != 0 ? 274 fpurestore_xrstor64 : fpurestore_xrstor3264); 275 } 276 277 void 278 fpususpend(void *addr) 279 { 280 u_long cr0; 281 282 cr0 = rcr0(); 283 stop_emulating(); 284 fpusave(addr); 285 load_cr0(cr0); 286 } 287 288 void 289 fpuresume(void *addr) 290 { 291 u_long cr0; 292 293 cr0 = rcr0(); 294 stop_emulating(); 295 fninit(); 296 if (use_xsave) 297 load_xcr(XCR0, xsave_mask); 298 fpurestore(addr); 299 load_cr0(cr0); 300 } 301 302 /* 303 * Enable XSAVE if supported and allowed by user. 304 * Calculate the xsave_mask. 305 */ 306 static void 307 fpuinit_bsp1(void) 308 { 309 u_int cp[4]; 310 uint64_t xsave_mask_user; 311 bool old_wp; 312 313 if (!use_xsave) 314 return; 315 cpuid_count(0xd, 0x0, cp); 316 xsave_mask = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE; 317 if ((cp[0] & xsave_mask) != xsave_mask) 318 panic("CPU0 does not support X87 or SSE: %x", cp[0]); 319 xsave_mask = ((uint64_t)cp[3] << 32) | cp[0]; 320 xsave_mask_user = xsave_mask; 321 TUNABLE_ULONG_FETCH("hw.xsave_mask", &xsave_mask_user); 322 xsave_mask_user |= XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE; 323 xsave_mask &= xsave_mask_user; 324 if ((xsave_mask & XFEATURE_AVX512) != XFEATURE_AVX512) 325 xsave_mask &= ~XFEATURE_AVX512; 326 if ((xsave_mask & XFEATURE_MPX) != XFEATURE_MPX) 327 xsave_mask &= ~XFEATURE_MPX; 328 329 cpuid_count(0xd, 0x1, cp); 330 if ((cp[0] & CPUID_EXTSTATE_XSAVEOPT) != 0) { 331 /* 332 * Patch the XSAVE instruction in the cpu_switch code 333 * to XSAVEOPT. We assume that XSAVE encoding used 334 * REX byte, and set the bit 4 of the r/m byte. 335 * 336 * It seems that some BIOSes give control to the OS 337 * with CR0.WP already set, making the kernel text 338 * read-only before cpu_startup(). 339 */ 340 old_wp = disable_wp(); 341 ctx_switch_xsave32[3] |= 0x10; 342 ctx_switch_xsave[3] |= 0x10; 343 restore_wp(old_wp); 344 } 345 } 346 347 /* 348 * Calculate the fpu save area size. 349 */ 350 static void 351 fpuinit_bsp2(void) 352 { 353 u_int cp[4]; 354 355 if (use_xsave) { 356 cpuid_count(0xd, 0x0, cp); 357 cpu_max_ext_state_size = cp[1]; 358 359 /* 360 * Reload the cpu_feature2, since we enabled OSXSAVE. 361 */ 362 do_cpuid(1, cp); 363 cpu_feature2 = cp[2]; 364 } else 365 cpu_max_ext_state_size = sizeof(struct savefpu); 366 } 367 368 /* 369 * Initialize the floating point unit. 370 */ 371 void 372 fpuinit(void) 373 { 374 register_t saveintr; 375 u_int mxcsr; 376 u_short control; 377 378 if (IS_BSP()) 379 fpuinit_bsp1(); 380 381 if (use_xsave) { 382 load_cr4(rcr4() | CR4_XSAVE); 383 load_xcr(XCR0, xsave_mask); 384 } 385 386 /* 387 * XCR0 shall be set up before CPU can report the save area size. 388 */ 389 if (IS_BSP()) 390 fpuinit_bsp2(); 391 392 /* 393 * It is too early for critical_enter() to work on AP. 394 */ 395 saveintr = intr_disable(); 396 stop_emulating(); 397 fninit(); 398 control = __INITIAL_FPUCW__; 399 fldcw(control); 400 mxcsr = __INITIAL_MXCSR__; 401 ldmxcsr(mxcsr); 402 start_emulating(); 403 intr_restore(saveintr); 404 } 405 406 /* 407 * On the boot CPU we generate a clean state that is used to 408 * initialize the floating point unit when it is first used by a 409 * process. 410 */ 411 static void 412 fpuinitstate(void *arg __unused) 413 { 414 uint64_t *xstate_bv; 415 register_t saveintr; 416 int cp[4], i, max_ext_n; 417 418 /* Do potentially blocking operations before disabling interrupts. */ 419 fpu_save_area_zone = uma_zcreate("FPU_save_area", 420 cpu_max_ext_state_size, NULL, NULL, NULL, NULL, 421 XSAVE_AREA_ALIGN - 1, 0); 422 fpu_initialstate = uma_zalloc(fpu_save_area_zone, M_WAITOK | M_ZERO); 423 if (use_xsave) { 424 max_ext_n = flsl(xsave_mask); 425 xsave_area_desc = malloc(max_ext_n * sizeof(struct 426 xsave_area_elm_descr), M_DEVBUF, M_WAITOK | M_ZERO); 427 } 428 429 cpu_thread_alloc(&thread0); 430 431 saveintr = intr_disable(); 432 stop_emulating(); 433 434 fpusave_fxsave(fpu_initialstate); 435 if (fpu_initialstate->sv_env.en_mxcsr_mask) 436 cpu_mxcsr_mask = fpu_initialstate->sv_env.en_mxcsr_mask; 437 else 438 cpu_mxcsr_mask = 0xFFBF; 439 440 /* 441 * The fninit instruction does not modify XMM registers or x87 442 * registers (MM/ST). The fpusave call dumped the garbage 443 * contained in the registers after reset to the initial state 444 * saved. Clear XMM and x87 registers file image to make the 445 * startup program state and signal handler XMM/x87 register 446 * content predictable. 447 */ 448 bzero(fpu_initialstate->sv_fp, sizeof(fpu_initialstate->sv_fp)); 449 bzero(fpu_initialstate->sv_xmm, sizeof(fpu_initialstate->sv_xmm)); 450 451 /* 452 * Create a table describing the layout of the CPU Extended 453 * Save Area. See Intel SDM rev. 075 Vol. 1 13.4.1 "Legacy 454 * Region of an XSAVE Area" for the source of offsets/sizes. 455 */ 456 if (use_xsave) { 457 xstate_bv = (uint64_t *)((char *)(fpu_initialstate + 1) + 458 offsetof(struct xstate_hdr, xstate_bv)); 459 *xstate_bv = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE; 460 461 /* x87 state */ 462 xsave_area_desc[0].offset = 0; 463 xsave_area_desc[0].size = 160; 464 /* XMM */ 465 xsave_area_desc[1].offset = 160; 466 xsave_area_desc[1].size = 416 - 160; 467 468 for (i = 2; i < max_ext_n; i++) { 469 cpuid_count(0xd, i, cp); 470 xsave_area_desc[i].offset = cp[1]; 471 xsave_area_desc[i].size = cp[0]; 472 } 473 } 474 475 start_emulating(); 476 intr_restore(saveintr); 477 } 478 /* EFIRT needs this to be initialized before we can enter our EFI environment */ 479 SYSINIT(fpuinitstate, SI_SUB_CPU, SI_ORDER_ANY, fpuinitstate, NULL); 480 481 /* 482 * Free coprocessor (if we have it). 483 */ 484 void 485 fpuexit(struct thread *td) 486 { 487 488 critical_enter(); 489 if (curthread == PCPU_GET(fpcurthread)) { 490 stop_emulating(); 491 fpusave(curpcb->pcb_save); 492 start_emulating(); 493 PCPU_SET(fpcurthread, NULL); 494 } 495 critical_exit(); 496 } 497 498 int 499 fpuformat(void) 500 { 501 502 return (_MC_FPFMT_XMM); 503 } 504 505 /* 506 * The following mechanism is used to ensure that the FPE_... value 507 * that is passed as a trapcode to the signal handler of the user 508 * process does not have more than one bit set. 509 * 510 * Multiple bits may be set if the user process modifies the control 511 * word while a status word bit is already set. While this is a sign 512 * of bad coding, we have no choise than to narrow them down to one 513 * bit, since we must not send a trapcode that is not exactly one of 514 * the FPE_ macros. 515 * 516 * The mechanism has a static table with 127 entries. Each combination 517 * of the 7 FPU status word exception bits directly translates to a 518 * position in this table, where a single FPE_... value is stored. 519 * This FPE_... value stored there is considered the "most important" 520 * of the exception bits and will be sent as the signal code. The 521 * precedence of the bits is based upon Intel Document "Numerical 522 * Applications", Chapter "Special Computational Situations". 523 * 524 * The macro to choose one of these values does these steps: 1) Throw 525 * away status word bits that cannot be masked. 2) Throw away the bits 526 * currently masked in the control word, assuming the user isn't 527 * interested in them anymore. 3) Reinsert status word bit 7 (stack 528 * fault) if it is set, which cannot be masked but must be presered. 529 * 4) Use the remaining bits to point into the trapcode table. 530 * 531 * The 6 maskable bits in order of their preference, as stated in the 532 * above referenced Intel manual: 533 * 1 Invalid operation (FP_X_INV) 534 * 1a Stack underflow 535 * 1b Stack overflow 536 * 1c Operand of unsupported format 537 * 1d SNaN operand. 538 * 2 QNaN operand (not an exception, irrelavant here) 539 * 3 Any other invalid-operation not mentioned above or zero divide 540 * (FP_X_INV, FP_X_DZ) 541 * 4 Denormal operand (FP_X_DNML) 542 * 5 Numeric over/underflow (FP_X_OFL, FP_X_UFL) 543 * 6 Inexact result (FP_X_IMP) 544 */ 545 static char fpetable[128] = { 546 0, 547 FPE_FLTINV, /* 1 - INV */ 548 FPE_FLTUND, /* 2 - DNML */ 549 FPE_FLTINV, /* 3 - INV | DNML */ 550 FPE_FLTDIV, /* 4 - DZ */ 551 FPE_FLTINV, /* 5 - INV | DZ */ 552 FPE_FLTDIV, /* 6 - DNML | DZ */ 553 FPE_FLTINV, /* 7 - INV | DNML | DZ */ 554 FPE_FLTOVF, /* 8 - OFL */ 555 FPE_FLTINV, /* 9 - INV | OFL */ 556 FPE_FLTUND, /* A - DNML | OFL */ 557 FPE_FLTINV, /* B - INV | DNML | OFL */ 558 FPE_FLTDIV, /* C - DZ | OFL */ 559 FPE_FLTINV, /* D - INV | DZ | OFL */ 560 FPE_FLTDIV, /* E - DNML | DZ | OFL */ 561 FPE_FLTINV, /* F - INV | DNML | DZ | OFL */ 562 FPE_FLTUND, /* 10 - UFL */ 563 FPE_FLTINV, /* 11 - INV | UFL */ 564 FPE_FLTUND, /* 12 - DNML | UFL */ 565 FPE_FLTINV, /* 13 - INV | DNML | UFL */ 566 FPE_FLTDIV, /* 14 - DZ | UFL */ 567 FPE_FLTINV, /* 15 - INV | DZ | UFL */ 568 FPE_FLTDIV, /* 16 - DNML | DZ | UFL */ 569 FPE_FLTINV, /* 17 - INV | DNML | DZ | UFL */ 570 FPE_FLTOVF, /* 18 - OFL | UFL */ 571 FPE_FLTINV, /* 19 - INV | OFL | UFL */ 572 FPE_FLTUND, /* 1A - DNML | OFL | UFL */ 573 FPE_FLTINV, /* 1B - INV | DNML | OFL | UFL */ 574 FPE_FLTDIV, /* 1C - DZ | OFL | UFL */ 575 FPE_FLTINV, /* 1D - INV | DZ | OFL | UFL */ 576 FPE_FLTDIV, /* 1E - DNML | DZ | OFL | UFL */ 577 FPE_FLTINV, /* 1F - INV | DNML | DZ | OFL | UFL */ 578 FPE_FLTRES, /* 20 - IMP */ 579 FPE_FLTINV, /* 21 - INV | IMP */ 580 FPE_FLTUND, /* 22 - DNML | IMP */ 581 FPE_FLTINV, /* 23 - INV | DNML | IMP */ 582 FPE_FLTDIV, /* 24 - DZ | IMP */ 583 FPE_FLTINV, /* 25 - INV | DZ | IMP */ 584 FPE_FLTDIV, /* 26 - DNML | DZ | IMP */ 585 FPE_FLTINV, /* 27 - INV | DNML | DZ | IMP */ 586 FPE_FLTOVF, /* 28 - OFL | IMP */ 587 FPE_FLTINV, /* 29 - INV | OFL | IMP */ 588 FPE_FLTUND, /* 2A - DNML | OFL | IMP */ 589 FPE_FLTINV, /* 2B - INV | DNML | OFL | IMP */ 590 FPE_FLTDIV, /* 2C - DZ | OFL | IMP */ 591 FPE_FLTINV, /* 2D - INV | DZ | OFL | IMP */ 592 FPE_FLTDIV, /* 2E - DNML | DZ | OFL | IMP */ 593 FPE_FLTINV, /* 2F - INV | DNML | DZ | OFL | IMP */ 594 FPE_FLTUND, /* 30 - UFL | IMP */ 595 FPE_FLTINV, /* 31 - INV | UFL | IMP */ 596 FPE_FLTUND, /* 32 - DNML | UFL | IMP */ 597 FPE_FLTINV, /* 33 - INV | DNML | UFL | IMP */ 598 FPE_FLTDIV, /* 34 - DZ | UFL | IMP */ 599 FPE_FLTINV, /* 35 - INV | DZ | UFL | IMP */ 600 FPE_FLTDIV, /* 36 - DNML | DZ | UFL | IMP */ 601 FPE_FLTINV, /* 37 - INV | DNML | DZ | UFL | IMP */ 602 FPE_FLTOVF, /* 38 - OFL | UFL | IMP */ 603 FPE_FLTINV, /* 39 - INV | OFL | UFL | IMP */ 604 FPE_FLTUND, /* 3A - DNML | OFL | UFL | IMP */ 605 FPE_FLTINV, /* 3B - INV | DNML | OFL | UFL | IMP */ 606 FPE_FLTDIV, /* 3C - DZ | OFL | UFL | IMP */ 607 FPE_FLTINV, /* 3D - INV | DZ | OFL | UFL | IMP */ 608 FPE_FLTDIV, /* 3E - DNML | DZ | OFL | UFL | IMP */ 609 FPE_FLTINV, /* 3F - INV | DNML | DZ | OFL | UFL | IMP */ 610 FPE_FLTSUB, /* 40 - STK */ 611 FPE_FLTSUB, /* 41 - INV | STK */ 612 FPE_FLTUND, /* 42 - DNML | STK */ 613 FPE_FLTSUB, /* 43 - INV | DNML | STK */ 614 FPE_FLTDIV, /* 44 - DZ | STK */ 615 FPE_FLTSUB, /* 45 - INV | DZ | STK */ 616 FPE_FLTDIV, /* 46 - DNML | DZ | STK */ 617 FPE_FLTSUB, /* 47 - INV | DNML | DZ | STK */ 618 FPE_FLTOVF, /* 48 - OFL | STK */ 619 FPE_FLTSUB, /* 49 - INV | OFL | STK */ 620 FPE_FLTUND, /* 4A - DNML | OFL | STK */ 621 FPE_FLTSUB, /* 4B - INV | DNML | OFL | STK */ 622 FPE_FLTDIV, /* 4C - DZ | OFL | STK */ 623 FPE_FLTSUB, /* 4D - INV | DZ | OFL | STK */ 624 FPE_FLTDIV, /* 4E - DNML | DZ | OFL | STK */ 625 FPE_FLTSUB, /* 4F - INV | DNML | DZ | OFL | STK */ 626 FPE_FLTUND, /* 50 - UFL | STK */ 627 FPE_FLTSUB, /* 51 - INV | UFL | STK */ 628 FPE_FLTUND, /* 52 - DNML | UFL | STK */ 629 FPE_FLTSUB, /* 53 - INV | DNML | UFL | STK */ 630 FPE_FLTDIV, /* 54 - DZ | UFL | STK */ 631 FPE_FLTSUB, /* 55 - INV | DZ | UFL | STK */ 632 FPE_FLTDIV, /* 56 - DNML | DZ | UFL | STK */ 633 FPE_FLTSUB, /* 57 - INV | DNML | DZ | UFL | STK */ 634 FPE_FLTOVF, /* 58 - OFL | UFL | STK */ 635 FPE_FLTSUB, /* 59 - INV | OFL | UFL | STK */ 636 FPE_FLTUND, /* 5A - DNML | OFL | UFL | STK */ 637 FPE_FLTSUB, /* 5B - INV | DNML | OFL | UFL | STK */ 638 FPE_FLTDIV, /* 5C - DZ | OFL | UFL | STK */ 639 FPE_FLTSUB, /* 5D - INV | DZ | OFL | UFL | STK */ 640 FPE_FLTDIV, /* 5E - DNML | DZ | OFL | UFL | STK */ 641 FPE_FLTSUB, /* 5F - INV | DNML | DZ | OFL | UFL | STK */ 642 FPE_FLTRES, /* 60 - IMP | STK */ 643 FPE_FLTSUB, /* 61 - INV | IMP | STK */ 644 FPE_FLTUND, /* 62 - DNML | IMP | STK */ 645 FPE_FLTSUB, /* 63 - INV | DNML | IMP | STK */ 646 FPE_FLTDIV, /* 64 - DZ | IMP | STK */ 647 FPE_FLTSUB, /* 65 - INV | DZ | IMP | STK */ 648 FPE_FLTDIV, /* 66 - DNML | DZ | IMP | STK */ 649 FPE_FLTSUB, /* 67 - INV | DNML | DZ | IMP | STK */ 650 FPE_FLTOVF, /* 68 - OFL | IMP | STK */ 651 FPE_FLTSUB, /* 69 - INV | OFL | IMP | STK */ 652 FPE_FLTUND, /* 6A - DNML | OFL | IMP | STK */ 653 FPE_FLTSUB, /* 6B - INV | DNML | OFL | IMP | STK */ 654 FPE_FLTDIV, /* 6C - DZ | OFL | IMP | STK */ 655 FPE_FLTSUB, /* 6D - INV | DZ | OFL | IMP | STK */ 656 FPE_FLTDIV, /* 6E - DNML | DZ | OFL | IMP | STK */ 657 FPE_FLTSUB, /* 6F - INV | DNML | DZ | OFL | IMP | STK */ 658 FPE_FLTUND, /* 70 - UFL | IMP | STK */ 659 FPE_FLTSUB, /* 71 - INV | UFL | IMP | STK */ 660 FPE_FLTUND, /* 72 - DNML | UFL | IMP | STK */ 661 FPE_FLTSUB, /* 73 - INV | DNML | UFL | IMP | STK */ 662 FPE_FLTDIV, /* 74 - DZ | UFL | IMP | STK */ 663 FPE_FLTSUB, /* 75 - INV | DZ | UFL | IMP | STK */ 664 FPE_FLTDIV, /* 76 - DNML | DZ | UFL | IMP | STK */ 665 FPE_FLTSUB, /* 77 - INV | DNML | DZ | UFL | IMP | STK */ 666 FPE_FLTOVF, /* 78 - OFL | UFL | IMP | STK */ 667 FPE_FLTSUB, /* 79 - INV | OFL | UFL | IMP | STK */ 668 FPE_FLTUND, /* 7A - DNML | OFL | UFL | IMP | STK */ 669 FPE_FLTSUB, /* 7B - INV | DNML | OFL | UFL | IMP | STK */ 670 FPE_FLTDIV, /* 7C - DZ | OFL | UFL | IMP | STK */ 671 FPE_FLTSUB, /* 7D - INV | DZ | OFL | UFL | IMP | STK */ 672 FPE_FLTDIV, /* 7E - DNML | DZ | OFL | UFL | IMP | STK */ 673 FPE_FLTSUB, /* 7F - INV | DNML | DZ | OFL | UFL | IMP | STK */ 674 }; 675 676 /* 677 * Read the FP status and control words, then generate si_code value 678 * for SIGFPE. The error code chosen will be one of the 679 * FPE_... macros. It will be sent as the second argument to old 680 * BSD-style signal handlers and as "siginfo_t->si_code" (second 681 * argument) to SA_SIGINFO signal handlers. 682 * 683 * Some time ago, we cleared the x87 exceptions with FNCLEX there. 684 * Clearing exceptions was necessary mainly to avoid IRQ13 bugs. The 685 * usermode code which understands the FPU hardware enough to enable 686 * the exceptions, can also handle clearing the exception state in the 687 * handler. The only consequence of not clearing the exception is the 688 * rethrow of the SIGFPE on return from the signal handler and 689 * reexecution of the corresponding instruction. 690 * 691 * For XMM traps, the exceptions were never cleared. 692 */ 693 int 694 fputrap_x87(void) 695 { 696 struct savefpu *pcb_save; 697 u_short control, status; 698 699 critical_enter(); 700 701 /* 702 * Interrupt handling (for another interrupt) may have pushed the 703 * state to memory. Fetch the relevant parts of the state from 704 * wherever they are. 705 */ 706 if (PCPU_GET(fpcurthread) != curthread) { 707 pcb_save = curpcb->pcb_save; 708 control = pcb_save->sv_env.en_cw; 709 status = pcb_save->sv_env.en_sw; 710 } else { 711 fnstcw(&control); 712 fnstsw(&status); 713 } 714 715 critical_exit(); 716 return (fpetable[status & ((~control & 0x3f) | 0x40)]); 717 } 718 719 int 720 fputrap_sse(void) 721 { 722 u_int mxcsr; 723 724 critical_enter(); 725 if (PCPU_GET(fpcurthread) != curthread) 726 mxcsr = curpcb->pcb_save->sv_env.en_mxcsr; 727 else 728 stmxcsr(&mxcsr); 729 critical_exit(); 730 return (fpetable[(mxcsr & (~mxcsr >> 7)) & 0x3f]); 731 } 732 733 static void 734 restore_fpu_curthread(struct thread *td) 735 { 736 struct pcb *pcb; 737 738 /* 739 * Record new context early in case frstor causes a trap. 740 */ 741 PCPU_SET(fpcurthread, td); 742 743 stop_emulating(); 744 fpu_clean_state(); 745 pcb = td->td_pcb; 746 747 if ((pcb->pcb_flags & PCB_FPUINITDONE) == 0) { 748 /* 749 * This is the first time this thread has used the FPU or 750 * the PCB doesn't contain a clean FPU state. Explicitly 751 * load an initial state. 752 * 753 * We prefer to restore the state from the actual save 754 * area in PCB instead of directly loading from 755 * fpu_initialstate, to ignite the XSAVEOPT 756 * tracking engine. 757 */ 758 bcopy(fpu_initialstate, pcb->pcb_save, 759 cpu_max_ext_state_size); 760 fpurestore(pcb->pcb_save); 761 if (pcb->pcb_initial_fpucw != __INITIAL_FPUCW__) 762 fldcw(pcb->pcb_initial_fpucw); 763 if (PCB_USER_FPU(pcb)) 764 set_pcb_flags(pcb, PCB_FPUINITDONE | 765 PCB_USERFPUINITDONE); 766 else 767 set_pcb_flags(pcb, PCB_FPUINITDONE); 768 } else 769 fpurestore(pcb->pcb_save); 770 } 771 772 /* 773 * Device Not Available (DNA, #NM) exception handler. 774 * 775 * It would be better to switch FP context here (if curthread != 776 * fpcurthread) and not necessarily for every context switch, but it 777 * is too hard to access foreign pcb's. 778 */ 779 void 780 fpudna(void) 781 { 782 struct thread *td; 783 784 td = curthread; 785 /* 786 * This handler is entered with interrupts enabled, so context 787 * switches may occur before critical_enter() is executed. If 788 * a context switch occurs, then when we regain control, our 789 * state will have been completely restored. The CPU may 790 * change underneath us, but the only part of our context that 791 * lives in the CPU is CR0.TS and that will be "restored" by 792 * setting it on the new CPU. 793 */ 794 critical_enter(); 795 796 KASSERT((curpcb->pcb_flags & PCB_FPUNOSAVE) == 0, 797 ("fpudna while in fpu_kern_enter(FPU_KERN_NOCTX)")); 798 if (__predict_false(PCPU_GET(fpcurthread) == td)) { 799 /* 800 * Some virtual machines seems to set %cr0.TS at 801 * arbitrary moments. Silently clear the TS bit 802 * regardless of the eager/lazy FPU context switch 803 * mode. 804 */ 805 stop_emulating(); 806 } else { 807 if (__predict_false(PCPU_GET(fpcurthread) != NULL)) { 808 panic( 809 "fpudna: fpcurthread = %p (%d), curthread = %p (%d)\n", 810 PCPU_GET(fpcurthread), 811 PCPU_GET(fpcurthread)->td_tid, td, td->td_tid); 812 } 813 restore_fpu_curthread(td); 814 } 815 critical_exit(); 816 } 817 818 void fpu_activate_sw(struct thread *td); /* Called from the context switch */ 819 void 820 fpu_activate_sw(struct thread *td) 821 { 822 823 if ((td->td_pflags & TDP_KTHREAD) != 0 || !PCB_USER_FPU(td->td_pcb)) { 824 PCPU_SET(fpcurthread, NULL); 825 start_emulating(); 826 } else if (PCPU_GET(fpcurthread) != td) { 827 restore_fpu_curthread(td); 828 } 829 } 830 831 void 832 fpudrop(void) 833 { 834 struct thread *td; 835 836 td = PCPU_GET(fpcurthread); 837 KASSERT(td == curthread, ("fpudrop: fpcurthread != curthread")); 838 CRITICAL_ASSERT(td); 839 PCPU_SET(fpcurthread, NULL); 840 clear_pcb_flags(td->td_pcb, PCB_FPUINITDONE); 841 start_emulating(); 842 } 843 844 /* 845 * Get the user state of the FPU into pcb->pcb_user_save without 846 * dropping ownership (if possible). It returns the FPU ownership 847 * status. 848 */ 849 int 850 fpugetregs(struct thread *td) 851 { 852 struct pcb *pcb; 853 uint64_t *xstate_bv, bit; 854 char *sa; 855 int max_ext_n, i, owned; 856 857 pcb = td->td_pcb; 858 critical_enter(); 859 if ((pcb->pcb_flags & PCB_USERFPUINITDONE) == 0) { 860 bcopy(fpu_initialstate, get_pcb_user_save_pcb(pcb), 861 cpu_max_ext_state_size); 862 get_pcb_user_save_pcb(pcb)->sv_env.en_cw = 863 pcb->pcb_initial_fpucw; 864 fpuuserinited(td); 865 critical_exit(); 866 return (_MC_FPOWNED_PCB); 867 } 868 if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) { 869 fpusave(get_pcb_user_save_pcb(pcb)); 870 owned = _MC_FPOWNED_FPU; 871 } else { 872 owned = _MC_FPOWNED_PCB; 873 } 874 if (use_xsave) { 875 /* 876 * Handle partially saved state. 877 */ 878 sa = (char *)get_pcb_user_save_pcb(pcb); 879 xstate_bv = (uint64_t *)(sa + sizeof(struct savefpu) + 880 offsetof(struct xstate_hdr, xstate_bv)); 881 max_ext_n = flsl(xsave_mask); 882 for (i = 0; i < max_ext_n; i++) { 883 bit = 1ULL << i; 884 if ((xsave_mask & bit) == 0 || (*xstate_bv & bit) != 0) 885 continue; 886 bcopy((char *)fpu_initialstate + 887 xsave_area_desc[i].offset, 888 sa + xsave_area_desc[i].offset, 889 xsave_area_desc[i].size); 890 *xstate_bv |= bit; 891 } 892 } 893 critical_exit(); 894 return (owned); 895 } 896 897 void 898 fpuuserinited(struct thread *td) 899 { 900 struct pcb *pcb; 901 902 CRITICAL_ASSERT(td); 903 pcb = td->td_pcb; 904 if (PCB_USER_FPU(pcb)) 905 set_pcb_flags(pcb, 906 PCB_FPUINITDONE | PCB_USERFPUINITDONE); 907 else 908 set_pcb_flags(pcb, PCB_FPUINITDONE); 909 } 910 911 int 912 fpusetxstate(struct thread *td, char *xfpustate, size_t xfpustate_size) 913 { 914 struct xstate_hdr *hdr, *ehdr; 915 size_t len, max_len; 916 uint64_t bv; 917 918 /* XXXKIB should we clear all extended state in xstate_bv instead ? */ 919 if (xfpustate == NULL) 920 return (0); 921 if (!use_xsave) 922 return (EOPNOTSUPP); 923 924 len = xfpustate_size; 925 if (len < sizeof(struct xstate_hdr)) 926 return (EINVAL); 927 max_len = cpu_max_ext_state_size - sizeof(struct savefpu); 928 if (len > max_len) 929 return (EINVAL); 930 931 ehdr = (struct xstate_hdr *)xfpustate; 932 bv = ehdr->xstate_bv; 933 934 /* 935 * Avoid #gp. 936 */ 937 if (bv & ~xsave_mask) 938 return (EINVAL); 939 940 hdr = (struct xstate_hdr *)(get_pcb_user_save_td(td) + 1); 941 942 hdr->xstate_bv = bv; 943 bcopy(xfpustate + sizeof(struct xstate_hdr), 944 (char *)(hdr + 1), len - sizeof(struct xstate_hdr)); 945 946 return (0); 947 } 948 949 /* 950 * Set the state of the FPU. 951 */ 952 int 953 fpusetregs(struct thread *td, struct savefpu *addr, char *xfpustate, 954 size_t xfpustate_size) 955 { 956 struct pcb *pcb; 957 int error; 958 959 addr->sv_env.en_mxcsr &= cpu_mxcsr_mask; 960 pcb = td->td_pcb; 961 error = 0; 962 critical_enter(); 963 if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) { 964 error = fpusetxstate(td, xfpustate, xfpustate_size); 965 if (error == 0) { 966 bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr)); 967 fpurestore(get_pcb_user_save_td(td)); 968 set_pcb_flags(pcb, PCB_FPUINITDONE | 969 PCB_USERFPUINITDONE); 970 } 971 } else { 972 error = fpusetxstate(td, xfpustate, xfpustate_size); 973 if (error == 0) { 974 bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr)); 975 fpuuserinited(td); 976 } 977 } 978 critical_exit(); 979 return (error); 980 } 981 982 /* 983 * On AuthenticAMD processors, the fxrstor instruction does not restore 984 * the x87's stored last instruction pointer, last data pointer, and last 985 * opcode values, except in the rare case in which the exception summary 986 * (ES) bit in the x87 status word is set to 1. 987 * 988 * In order to avoid leaking this information across processes, we clean 989 * these values by performing a dummy load before executing fxrstor(). 990 */ 991 static void 992 fpu_clean_state(void) 993 { 994 static float dummy_variable = 0.0; 995 u_short status; 996 997 /* 998 * Clear the ES bit in the x87 status word if it is currently 999 * set, in order to avoid causing a fault in the upcoming load. 1000 */ 1001 fnstsw(&status); 1002 if (status & 0x80) 1003 fnclex(); 1004 1005 /* 1006 * Load the dummy variable into the x87 stack. This mangles 1007 * the x87 stack, but we don't care since we're about to call 1008 * fxrstor() anyway. 1009 */ 1010 __asm __volatile("ffree %%st(7); flds %0" : : "m" (dummy_variable)); 1011 } 1012 1013 /* 1014 * This really sucks. We want the acpi version only, but it requires 1015 * the isa_if.h file in order to get the definitions. 1016 */ 1017 #include "opt_isa.h" 1018 #ifdef DEV_ISA 1019 #include <isa/isavar.h> 1020 /* 1021 * This sucks up the legacy ISA support assignments from PNPBIOS/ACPI. 1022 */ 1023 static struct isa_pnp_id fpupnp_ids[] = { 1024 { 0x040cd041, "Legacy ISA coprocessor support" }, /* PNP0C04 */ 1025 { 0 } 1026 }; 1027 1028 static int 1029 fpupnp_probe(device_t dev) 1030 { 1031 int result; 1032 1033 result = ISA_PNP_PROBE(device_get_parent(dev), dev, fpupnp_ids); 1034 if (result <= 0) 1035 device_quiet(dev); 1036 return (result); 1037 } 1038 1039 static int 1040 fpupnp_attach(device_t dev) 1041 { 1042 1043 return (0); 1044 } 1045 1046 static device_method_t fpupnp_methods[] = { 1047 /* Device interface */ 1048 DEVMETHOD(device_probe, fpupnp_probe), 1049 DEVMETHOD(device_attach, fpupnp_attach), 1050 DEVMETHOD(device_detach, bus_generic_detach), 1051 DEVMETHOD(device_shutdown, bus_generic_shutdown), 1052 DEVMETHOD(device_suspend, bus_generic_suspend), 1053 DEVMETHOD(device_resume, bus_generic_resume), 1054 { 0, 0 } 1055 }; 1056 1057 static driver_t fpupnp_driver = { 1058 "fpupnp", 1059 fpupnp_methods, 1060 1, /* no softc */ 1061 }; 1062 1063 static devclass_t fpupnp_devclass; 1064 1065 DRIVER_MODULE(fpupnp, acpi, fpupnp_driver, fpupnp_devclass, 0, 0); 1066 ISA_PNP_INFO(fpupnp_ids); 1067 #endif /* DEV_ISA */ 1068 1069 static MALLOC_DEFINE(M_FPUKERN_CTX, "fpukern_ctx", 1070 "Kernel contexts for FPU state"); 1071 1072 #define FPU_KERN_CTX_FPUINITDONE 0x01 1073 #define FPU_KERN_CTX_DUMMY 0x02 /* avoided save for the kern thread */ 1074 #define FPU_KERN_CTX_INUSE 0x04 1075 1076 struct fpu_kern_ctx { 1077 struct savefpu *prev; 1078 uint32_t flags; 1079 char hwstate1[]; 1080 }; 1081 1082 static inline size_t __pure2 1083 fpu_kern_alloc_sz(u_int max_est) 1084 { 1085 return (sizeof(struct fpu_kern_ctx) + XSAVE_AREA_ALIGN + max_est); 1086 } 1087 1088 static inline int __pure2 1089 fpu_kern_malloc_flags(u_int fpflags) 1090 { 1091 return (((fpflags & FPU_KERN_NOWAIT) ? M_NOWAIT : M_WAITOK) | M_ZERO); 1092 } 1093 1094 struct fpu_kern_ctx * 1095 fpu_kern_alloc_ctx_domain(int domain, u_int flags) 1096 { 1097 return (malloc_domainset(fpu_kern_alloc_sz(cpu_max_ext_state_size), 1098 M_FPUKERN_CTX, DOMAINSET_PREF(domain), 1099 fpu_kern_malloc_flags(flags))); 1100 } 1101 1102 struct fpu_kern_ctx * 1103 fpu_kern_alloc_ctx(u_int flags) 1104 { 1105 return (malloc(fpu_kern_alloc_sz(cpu_max_ext_state_size), 1106 M_FPUKERN_CTX, fpu_kern_malloc_flags(flags))); 1107 } 1108 1109 void 1110 fpu_kern_free_ctx(struct fpu_kern_ctx *ctx) 1111 { 1112 1113 KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) == 0, ("free'ing inuse ctx")); 1114 /* XXXKIB clear the memory ? */ 1115 free(ctx, M_FPUKERN_CTX); 1116 } 1117 1118 static struct savefpu * 1119 fpu_kern_ctx_savefpu(struct fpu_kern_ctx *ctx) 1120 { 1121 vm_offset_t p; 1122 1123 p = (vm_offset_t)&ctx->hwstate1; 1124 p = roundup2(p, XSAVE_AREA_ALIGN); 1125 return ((struct savefpu *)p); 1126 } 1127 1128 void 1129 fpu_kern_enter(struct thread *td, struct fpu_kern_ctx *ctx, u_int flags) 1130 { 1131 struct pcb *pcb; 1132 1133 pcb = td->td_pcb; 1134 KASSERT((flags & FPU_KERN_NOCTX) != 0 || ctx != NULL, 1135 ("ctx is required when !FPU_KERN_NOCTX")); 1136 KASSERT(ctx == NULL || (ctx->flags & FPU_KERN_CTX_INUSE) == 0, 1137 ("using inuse ctx")); 1138 KASSERT((pcb->pcb_flags & PCB_FPUNOSAVE) == 0, 1139 ("recursive fpu_kern_enter while in PCB_FPUNOSAVE state")); 1140 1141 if ((flags & FPU_KERN_NOCTX) != 0) { 1142 critical_enter(); 1143 stop_emulating(); 1144 if (curthread == PCPU_GET(fpcurthread)) { 1145 fpusave(curpcb->pcb_save); 1146 PCPU_SET(fpcurthread, NULL); 1147 } else { 1148 KASSERT(PCPU_GET(fpcurthread) == NULL, 1149 ("invalid fpcurthread")); 1150 } 1151 1152 /* 1153 * This breaks XSAVEOPT tracker, but 1154 * PCB_FPUNOSAVE state is supposed to never need to 1155 * save FPU context at all. 1156 */ 1157 fpurestore(fpu_initialstate); 1158 set_pcb_flags(pcb, PCB_KERNFPU | PCB_FPUNOSAVE | 1159 PCB_FPUINITDONE); 1160 return; 1161 } 1162 if ((flags & FPU_KERN_KTHR) != 0 && is_fpu_kern_thread(0)) { 1163 ctx->flags = FPU_KERN_CTX_DUMMY | FPU_KERN_CTX_INUSE; 1164 return; 1165 } 1166 critical_enter(); 1167 KASSERT(!PCB_USER_FPU(pcb) || pcb->pcb_save == 1168 get_pcb_user_save_pcb(pcb), ("mangled pcb_save")); 1169 ctx->flags = FPU_KERN_CTX_INUSE; 1170 if ((pcb->pcb_flags & PCB_FPUINITDONE) != 0) 1171 ctx->flags |= FPU_KERN_CTX_FPUINITDONE; 1172 fpuexit(td); 1173 ctx->prev = pcb->pcb_save; 1174 pcb->pcb_save = fpu_kern_ctx_savefpu(ctx); 1175 set_pcb_flags(pcb, PCB_KERNFPU); 1176 clear_pcb_flags(pcb, PCB_FPUINITDONE); 1177 critical_exit(); 1178 } 1179 1180 int 1181 fpu_kern_leave(struct thread *td, struct fpu_kern_ctx *ctx) 1182 { 1183 struct pcb *pcb; 1184 1185 pcb = td->td_pcb; 1186 1187 if ((pcb->pcb_flags & PCB_FPUNOSAVE) != 0) { 1188 KASSERT(ctx == NULL, ("non-null ctx after FPU_KERN_NOCTX")); 1189 KASSERT(PCPU_GET(fpcurthread) == NULL, 1190 ("non-NULL fpcurthread for PCB_FPUNOSAVE")); 1191 CRITICAL_ASSERT(td); 1192 1193 clear_pcb_flags(pcb, PCB_FPUNOSAVE | PCB_FPUINITDONE); 1194 start_emulating(); 1195 } else { 1196 KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) != 0, 1197 ("leaving not inuse ctx")); 1198 ctx->flags &= ~FPU_KERN_CTX_INUSE; 1199 1200 if (is_fpu_kern_thread(0) && 1201 (ctx->flags & FPU_KERN_CTX_DUMMY) != 0) 1202 return (0); 1203 KASSERT((ctx->flags & FPU_KERN_CTX_DUMMY) == 0, 1204 ("dummy ctx")); 1205 critical_enter(); 1206 if (curthread == PCPU_GET(fpcurthread)) 1207 fpudrop(); 1208 pcb->pcb_save = ctx->prev; 1209 } 1210 1211 if (pcb->pcb_save == get_pcb_user_save_pcb(pcb)) { 1212 if ((pcb->pcb_flags & PCB_USERFPUINITDONE) != 0) { 1213 set_pcb_flags(pcb, PCB_FPUINITDONE); 1214 if ((pcb->pcb_flags & PCB_KERNFPU_THR) == 0) 1215 clear_pcb_flags(pcb, PCB_KERNFPU); 1216 } else if ((pcb->pcb_flags & PCB_KERNFPU_THR) == 0) 1217 clear_pcb_flags(pcb, PCB_FPUINITDONE | PCB_KERNFPU); 1218 } else { 1219 if ((ctx->flags & FPU_KERN_CTX_FPUINITDONE) != 0) 1220 set_pcb_flags(pcb, PCB_FPUINITDONE); 1221 else 1222 clear_pcb_flags(pcb, PCB_FPUINITDONE); 1223 KASSERT(!PCB_USER_FPU(pcb), ("unpaired fpu_kern_leave")); 1224 } 1225 critical_exit(); 1226 return (0); 1227 } 1228 1229 int 1230 fpu_kern_thread(u_int flags) 1231 { 1232 1233 KASSERT((curthread->td_pflags & TDP_KTHREAD) != 0, 1234 ("Only kthread may use fpu_kern_thread")); 1235 KASSERT(curpcb->pcb_save == get_pcb_user_save_pcb(curpcb), 1236 ("mangled pcb_save")); 1237 KASSERT(PCB_USER_FPU(curpcb), ("recursive call")); 1238 1239 set_pcb_flags(curpcb, PCB_KERNFPU | PCB_KERNFPU_THR); 1240 return (0); 1241 } 1242 1243 int 1244 is_fpu_kern_thread(u_int flags) 1245 { 1246 1247 if ((curthread->td_pflags & TDP_KTHREAD) == 0) 1248 return (0); 1249 return ((curpcb->pcb_flags & PCB_KERNFPU_THR) != 0); 1250 } 1251 1252 /* 1253 * FPU save area alloc/free/init utility routines 1254 */ 1255 struct savefpu * 1256 fpu_save_area_alloc(void) 1257 { 1258 1259 return (uma_zalloc(fpu_save_area_zone, M_WAITOK)); 1260 } 1261 1262 void 1263 fpu_save_area_free(struct savefpu *fsa) 1264 { 1265 1266 uma_zfree(fpu_save_area_zone, fsa); 1267 } 1268 1269 void 1270 fpu_save_area_reset(struct savefpu *fsa) 1271 { 1272 1273 bcopy(fpu_initialstate, fsa, cpu_max_ext_state_size); 1274 } 1275