xref: /freebsd/sys/amd64/acpica/acpi_machdep.c (revision 4ed925457ab06e83238a5db33e89ccc94b99a713)
1 /*-
2  * Copyright (c) 2001 Mitsuru IWASAKI
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include <sys/param.h>
31 #include <sys/bus.h>
32 #include <sys/kernel.h>
33 #include <sys/module.h>
34 #include <sys/sysctl.h>
35 
36 #include <vm/vm.h>
37 #include <vm/pmap.h>
38 
39 #include <contrib/dev/acpica/include/acpi.h>
40 #include <contrib/dev/acpica/include/accommon.h>
41 #include <contrib/dev/acpica/include/actables.h>
42 
43 #include <dev/acpica/acpivar.h>
44 
45 #include <machine/nexusvar.h>
46 
47 /*
48  * APM driver emulation
49  */
50 
51 #include <sys/condvar.h>
52 #include <sys/conf.h>
53 #include <sys/fcntl.h>
54 #include <sys/malloc.h>
55 #include <sys/poll.h>
56 #include <sys/uio.h>
57 
58 #include <dev/acpica/acpiio.h>
59 
60 #include <machine/apm_bios.h>
61 #include <i386/include/pc/bios.h>
62 
63 #include <i386/bios/apm.h>
64 
65 SYSCTL_DECL(_debug_acpi);
66 
67 int acpi_resume_beep;
68 TUNABLE_INT("debug.acpi.resume_beep", &acpi_resume_beep);
69 SYSCTL_INT(_debug_acpi, OID_AUTO, resume_beep, CTLFLAG_RW, &acpi_resume_beep,
70     0, "Beep the PC speaker when resuming");
71 
72 int acpi_reset_video;
73 TUNABLE_INT("hw.acpi.reset_video", &acpi_reset_video);
74 
75 static int intr_model = ACPI_INTR_PIC;
76 static int apm_active;
77 static struct clonedevs *apm_clones;
78 
79 MALLOC_DEFINE(M_APMDEV, "apmdev", "APM device emulation");
80 
81 static d_open_t		apmopen;
82 static d_close_t	apmclose;
83 static d_write_t	apmwrite;
84 static d_ioctl_t	apmioctl;
85 static d_poll_t		apmpoll;
86 static d_kqfilter_t	apmkqfilter;
87 static void		apmreadfiltdetach(struct knote *kn);
88 static int		apmreadfilt(struct knote *kn, long hint);
89 static struct filterops	apm_readfiltops = {
90 	.f_isfd = 1,
91 	.f_detach = apmreadfiltdetach,
92 	.f_event = apmreadfilt,
93 };
94 
95 static struct cdevsw apm_cdevsw = {
96 	.d_version =	D_VERSION,
97 	.d_flags =	D_TRACKCLOSE | D_NEEDMINOR,
98 	.d_open =	apmopen,
99 	.d_close =	apmclose,
100 	.d_write =	apmwrite,
101 	.d_ioctl =	apmioctl,
102 	.d_poll =	apmpoll,
103 	.d_name =	"apm",
104 	.d_kqfilter =	apmkqfilter
105 };
106 
107 static int
108 acpi_capm_convert_battstate(struct  acpi_battinfo *battp)
109 {
110 	int	state;
111 
112 	state = APM_UNKNOWN;
113 
114 	if (battp->state & ACPI_BATT_STAT_DISCHARG) {
115 		if (battp->cap >= 50)
116 			state = 0;	/* high */
117 		else
118 			state = 1;	/* low */
119 	}
120 	if (battp->state & ACPI_BATT_STAT_CRITICAL)
121 		state = 2;		/* critical */
122 	if (battp->state & ACPI_BATT_STAT_CHARGING)
123 		state = 3;		/* charging */
124 
125 	/* If still unknown, determine it based on the battery capacity. */
126 	if (state == APM_UNKNOWN) {
127 		if (battp->cap >= 50)
128 			state = 0;	/* high */
129 		else
130 			state = 1;	/* low */
131 	}
132 
133 	return (state);
134 }
135 
136 static int
137 acpi_capm_convert_battflags(struct  acpi_battinfo *battp)
138 {
139 	int	flags;
140 
141 	flags = 0;
142 
143 	if (battp->cap >= 50)
144 		flags |= APM_BATT_HIGH;
145 	else {
146 		if (battp->state & ACPI_BATT_STAT_CRITICAL)
147 			flags |= APM_BATT_CRITICAL;
148 		else
149 			flags |= APM_BATT_LOW;
150 	}
151 	if (battp->state & ACPI_BATT_STAT_CHARGING)
152 		flags |= APM_BATT_CHARGING;
153 	if (battp->state == ACPI_BATT_STAT_NOT_PRESENT)
154 		flags = APM_BATT_NOT_PRESENT;
155 
156 	return (flags);
157 }
158 
159 static int
160 acpi_capm_get_info(apm_info_t aip)
161 {
162 	int	acline;
163 	struct	acpi_battinfo batt;
164 
165 	aip->ai_infoversion = 1;
166 	aip->ai_major       = 1;
167 	aip->ai_minor       = 2;
168 	aip->ai_status      = apm_active;
169 	aip->ai_capabilities= 0xff00;	/* unknown */
170 
171 	if (acpi_acad_get_acline(&acline))
172 		aip->ai_acline = APM_UNKNOWN;	/* unknown */
173 	else
174 		aip->ai_acline = acline;	/* on/off */
175 
176 	if (acpi_battery_get_battinfo(NULL, &batt) != 0) {
177 		aip->ai_batt_stat = APM_UNKNOWN;
178 		aip->ai_batt_life = APM_UNKNOWN;
179 		aip->ai_batt_time = -1;		 /* unknown */
180 		aip->ai_batteries = ~0U;	 /* unknown */
181 	} else {
182 		aip->ai_batt_stat = acpi_capm_convert_battstate(&batt);
183 		aip->ai_batt_life = batt.cap;
184 		aip->ai_batt_time = (batt.min == -1) ? -1 : batt.min * 60;
185 		aip->ai_batteries = acpi_battery_get_units();
186 	}
187 
188 	return (0);
189 }
190 
191 static int
192 acpi_capm_get_pwstatus(apm_pwstatus_t app)
193 {
194 	device_t dev;
195 	int	acline, unit, error;
196 	struct	acpi_battinfo batt;
197 
198 	if (app->ap_device != PMDV_ALLDEV &&
199 	    (app->ap_device < PMDV_BATT0 || app->ap_device > PMDV_BATT_ALL))
200 		return (1);
201 
202 	if (app->ap_device == PMDV_ALLDEV)
203 		error = acpi_battery_get_battinfo(NULL, &batt);
204 	else {
205 		unit = app->ap_device - PMDV_BATT0;
206 		dev = devclass_get_device(devclass_find("battery"), unit);
207 		if (dev != NULL)
208 			error = acpi_battery_get_battinfo(dev, &batt);
209 		else
210 			error = ENXIO;
211 	}
212 	if (error)
213 		return (1);
214 
215 	app->ap_batt_stat = acpi_capm_convert_battstate(&batt);
216 	app->ap_batt_flag = acpi_capm_convert_battflags(&batt);
217 	app->ap_batt_life = batt.cap;
218 	app->ap_batt_time = (batt.min == -1) ? -1 : batt.min * 60;
219 
220 	if (acpi_acad_get_acline(&acline))
221 		app->ap_acline = APM_UNKNOWN;
222 	else
223 		app->ap_acline = acline;	/* on/off */
224 
225 	return (0);
226 }
227 
228 /* Create single-use devices for /dev/apm and /dev/apmctl. */
229 static void
230 apm_clone(void *arg, struct ucred *cred, char *name, int namelen,
231     struct cdev **dev)
232 {
233 	int ctl_dev, unit;
234 
235 	if (*dev != NULL)
236 		return;
237 	if (strcmp(name, "apmctl") == 0)
238 		ctl_dev = TRUE;
239 	else if (strcmp(name, "apm") == 0)
240 		ctl_dev = FALSE;
241 	else
242 		return;
243 
244 	/* Always create a new device and unit number. */
245 	unit = -1;
246 	if (clone_create(&apm_clones, &apm_cdevsw, &unit, dev, 0)) {
247 		if (ctl_dev) {
248 			*dev = make_dev(&apm_cdevsw, unit,
249 			    UID_ROOT, GID_OPERATOR, 0660, "apmctl%d", unit);
250 		} else {
251 			*dev = make_dev(&apm_cdevsw, unit,
252 			    UID_ROOT, GID_OPERATOR, 0664, "apm%d", unit);
253 		}
254 		if (*dev != NULL) {
255 			dev_ref(*dev);
256 			(*dev)->si_flags |= SI_CHEAPCLONE;
257 		}
258 	}
259 }
260 
261 /* Create a struct for tracking per-device suspend notification. */
262 static struct apm_clone_data *
263 apm_create_clone(struct cdev *dev, struct acpi_softc *acpi_sc)
264 {
265 	struct apm_clone_data *clone;
266 
267 	clone = malloc(sizeof(*clone), M_APMDEV, M_WAITOK);
268 	clone->cdev = dev;
269 	clone->acpi_sc = acpi_sc;
270 	clone->notify_status = APM_EV_NONE;
271 	bzero(&clone->sel_read, sizeof(clone->sel_read));
272 	knlist_init_mtx(&clone->sel_read.si_note, &acpi_mutex);
273 
274 	/*
275 	 * The acpi device is always managed by devd(8) and is considered
276 	 * writable (i.e., ack is required to allow suspend to proceed.)
277 	 */
278 	if (strcmp("acpi", devtoname(dev)) == 0)
279 		clone->flags = ACPI_EVF_DEVD | ACPI_EVF_WRITE;
280 	else
281 		clone->flags = ACPI_EVF_NONE;
282 
283 	ACPI_LOCK(acpi);
284 	STAILQ_INSERT_TAIL(&acpi_sc->apm_cdevs, clone, entries);
285 	ACPI_UNLOCK(acpi);
286 	return (clone);
287 }
288 
289 static int
290 apmopen(struct cdev *dev, int flag, int fmt, struct thread *td)
291 {
292 	struct	acpi_softc *acpi_sc;
293 	struct 	apm_clone_data *clone;
294 
295 	acpi_sc = devclass_get_softc(devclass_find("acpi"), 0);
296 	clone = apm_create_clone(dev, acpi_sc);
297 	dev->si_drv1 = clone;
298 
299 	/* If the device is opened for write, record that. */
300 	if ((flag & FWRITE) != 0)
301 		clone->flags |= ACPI_EVF_WRITE;
302 
303 	return (0);
304 }
305 
306 static int
307 apmclose(struct cdev *dev, int flag, int fmt, struct thread *td)
308 {
309 	struct	apm_clone_data *clone;
310 	struct	acpi_softc *acpi_sc;
311 
312 	clone = dev->si_drv1;
313 	acpi_sc = clone->acpi_sc;
314 
315 	/* We are about to lose a reference so check if suspend should occur */
316 	if (acpi_sc->acpi_next_sstate != 0 &&
317 	    clone->notify_status != APM_EV_ACKED)
318 		acpi_AckSleepState(clone, 0);
319 
320 	/* Remove this clone's data from the list and free it. */
321 	ACPI_LOCK(acpi);
322 	STAILQ_REMOVE(&acpi_sc->apm_cdevs, clone, apm_clone_data, entries);
323 	knlist_destroy(&clone->sel_read.si_note);
324 	ACPI_UNLOCK(acpi);
325 	free(clone, M_APMDEV);
326 	destroy_dev_sched(dev);
327 	return (0);
328 }
329 
330 static int
331 apmioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
332 {
333 	int	error;
334 	struct	apm_clone_data *clone;
335 	struct	acpi_softc *acpi_sc;
336 	struct	apm_info info;
337 	struct 	apm_event_info *ev_info;
338 	apm_info_old_t aiop;
339 
340 	error = 0;
341 	clone = dev->si_drv1;
342 	acpi_sc = clone->acpi_sc;
343 
344 	switch (cmd) {
345 	case APMIO_SUSPEND:
346 		if ((flag & FWRITE) == 0)
347 			return (EPERM);
348 		if (acpi_sc->acpi_next_sstate == 0) {
349 			if (acpi_sc->acpi_suspend_sx != ACPI_STATE_S5) {
350 				error = acpi_ReqSleepState(acpi_sc,
351 				    acpi_sc->acpi_suspend_sx);
352 			} else {
353 				printf(
354 			"power off via apm suspend not supported\n");
355 				error = ENXIO;
356 			}
357 		} else
358 			error = acpi_AckSleepState(clone, 0);
359 		break;
360 	case APMIO_STANDBY:
361 		if ((flag & FWRITE) == 0)
362 			return (EPERM);
363 		if (acpi_sc->acpi_next_sstate == 0) {
364 			if (acpi_sc->acpi_standby_sx != ACPI_STATE_S5) {
365 				error = acpi_ReqSleepState(acpi_sc,
366 				    acpi_sc->acpi_standby_sx);
367 			} else {
368 				printf(
369 			"power off via apm standby not supported\n");
370 				error = ENXIO;
371 			}
372 		} else
373 			error = acpi_AckSleepState(clone, 0);
374 		break;
375 	case APMIO_NEXTEVENT:
376 		printf("apm nextevent start\n");
377 		ACPI_LOCK(acpi);
378 		if (acpi_sc->acpi_next_sstate != 0 && clone->notify_status ==
379 		    APM_EV_NONE) {
380 			ev_info = (struct apm_event_info *)addr;
381 			if (acpi_sc->acpi_next_sstate <= ACPI_STATE_S3)
382 				ev_info->type = PMEV_STANDBYREQ;
383 			else
384 				ev_info->type = PMEV_SUSPENDREQ;
385 			ev_info->index = 0;
386 			clone->notify_status = APM_EV_NOTIFIED;
387 			printf("apm event returning %d\n", ev_info->type);
388 		} else
389 			error = EAGAIN;
390 		ACPI_UNLOCK(acpi);
391 		break;
392 	case APMIO_GETINFO_OLD:
393 		if (acpi_capm_get_info(&info))
394 			error = ENXIO;
395 		aiop = (apm_info_old_t)addr;
396 		aiop->ai_major = info.ai_major;
397 		aiop->ai_minor = info.ai_minor;
398 		aiop->ai_acline = info.ai_acline;
399 		aiop->ai_batt_stat = info.ai_batt_stat;
400 		aiop->ai_batt_life = info.ai_batt_life;
401 		aiop->ai_status = info.ai_status;
402 		break;
403 	case APMIO_GETINFO:
404 		if (acpi_capm_get_info((apm_info_t)addr))
405 			error = ENXIO;
406 		break;
407 	case APMIO_GETPWSTATUS:
408 		if (acpi_capm_get_pwstatus((apm_pwstatus_t)addr))
409 			error = ENXIO;
410 		break;
411 	case APMIO_ENABLE:
412 		if ((flag & FWRITE) == 0)
413 			return (EPERM);
414 		apm_active = 1;
415 		break;
416 	case APMIO_DISABLE:
417 		if ((flag & FWRITE) == 0)
418 			return (EPERM);
419 		apm_active = 0;
420 		break;
421 	case APMIO_HALTCPU:
422 		break;
423 	case APMIO_NOTHALTCPU:
424 		break;
425 	case APMIO_DISPLAY:
426 		if ((flag & FWRITE) == 0)
427 			return (EPERM);
428 		break;
429 	case APMIO_BIOS:
430 		if ((flag & FWRITE) == 0)
431 			return (EPERM);
432 		bzero(addr, sizeof(struct apm_bios_arg));
433 		break;
434 	default:
435 		error = EINVAL;
436 		break;
437 	}
438 
439 	return (error);
440 }
441 
442 static int
443 apmwrite(struct cdev *dev, struct uio *uio, int ioflag)
444 {
445 	return (uio->uio_resid);
446 }
447 
448 static int
449 apmpoll(struct cdev *dev, int events, struct thread *td)
450 {
451 	struct	apm_clone_data *clone;
452 	int revents;
453 
454 	revents = 0;
455 	ACPI_LOCK(acpi);
456 	clone = dev->si_drv1;
457 	if (clone->acpi_sc->acpi_next_sstate)
458 		revents |= events & (POLLIN | POLLRDNORM);
459 	else
460 		selrecord(td, &clone->sel_read);
461 	ACPI_UNLOCK(acpi);
462 	return (revents);
463 }
464 
465 static int
466 apmkqfilter(struct cdev *dev, struct knote *kn)
467 {
468 	struct	apm_clone_data *clone;
469 
470 	ACPI_LOCK(acpi);
471 	clone = dev->si_drv1;
472 	kn->kn_hook = clone;
473 	kn->kn_fop = &apm_readfiltops;
474 	knlist_add(&clone->sel_read.si_note, kn, 0);
475 	ACPI_UNLOCK(acpi);
476 	return (0);
477 }
478 
479 static void
480 apmreadfiltdetach(struct knote *kn)
481 {
482 	struct	apm_clone_data *clone;
483 
484 	ACPI_LOCK(acpi);
485 	clone = kn->kn_hook;
486 	knlist_remove(&clone->sel_read.si_note, kn, 0);
487 	ACPI_UNLOCK(acpi);
488 }
489 
490 static int
491 apmreadfilt(struct knote *kn, long hint)
492 {
493 	struct	apm_clone_data *clone;
494 	int	sleeping;
495 
496 	ACPI_LOCK(acpi);
497 	clone = kn->kn_hook;
498 	sleeping = clone->acpi_sc->acpi_next_sstate ? 1 : 0;
499 	ACPI_UNLOCK(acpi);
500 	return (sleeping);
501 }
502 
503 int
504 acpi_machdep_init(device_t dev)
505 {
506 	struct acpi_softc	*sc;
507 
508 	sc = devclass_get_softc(devclass_find("acpi"), 0);
509 
510 	/* Create a clone for /dev/acpi also. */
511 	STAILQ_INIT(&sc->apm_cdevs);
512 	sc->acpi_clone = apm_create_clone(sc->acpi_dev_t, sc);
513 	clone_setup(&apm_clones);
514 	EVENTHANDLER_REGISTER(dev_clone, apm_clone, 0, 1000);
515 
516 	if (intr_model != ACPI_INTR_PIC)
517 		acpi_SetIntrModel(intr_model);
518 
519 	SYSCTL_ADD_UINT(&sc->acpi_sysctl_ctx,
520 	    SYSCTL_CHILDREN(sc->acpi_sysctl_tree), OID_AUTO,
521 	    "reset_video", CTLFLAG_RW, &acpi_reset_video, 0,
522 	    "Call the VESA reset BIOS vector on the resume path");
523 
524 	return (0);
525 }
526 
527 void
528 acpi_SetDefaultIntrModel(int model)
529 {
530 
531 	intr_model = model;
532 }
533 
534 int
535 acpi_machdep_quirks(int *quirks)
536 {
537 	return (0);
538 }
539 
540 void
541 acpi_cpu_c1()
542 {
543 	__asm __volatile("sti; hlt");
544 }
545 
546 /*
547  * Support for mapping ACPI tables during early boot.  Currently this
548  * uses the crashdump map to map each table.  However, the crashdump
549  * map is created in pmap_bootstrap() right after the direct map, so
550  * we should be able to just use pmap_mapbios() here instead.
551  *
552  * This makes the following assumptions about how we use this KVA:
553  * pages 0 and 1 are used to map in the header of each table found via
554  * the RSDT or XSDT and pages 2 to n are used to map in the RSDT or
555  * XSDT.  This has to use 2 pages for the table headers in case a
556  * header spans a page boundary.
557  *
558  * XXX: We don't ensure the table fits in the available address space
559  * in the crashdump map.
560  */
561 
562 /*
563  * Map some memory using the crashdump map.  'offset' is an offset in
564  * pages into the crashdump map to use for the start of the mapping.
565  */
566 static void *
567 table_map(vm_paddr_t pa, int offset, vm_offset_t length)
568 {
569 	vm_offset_t va, off;
570 	void *data;
571 
572 	off = pa & PAGE_MASK;
573 	length = roundup(length + off, PAGE_SIZE);
574 	pa = pa & PG_FRAME;
575 	va = (vm_offset_t)pmap_kenter_temporary(pa, offset) +
576 	    (offset * PAGE_SIZE);
577 	data = (void *)(va + off);
578 	length -= PAGE_SIZE;
579 	while (length > 0) {
580 		va += PAGE_SIZE;
581 		pa += PAGE_SIZE;
582 		length -= PAGE_SIZE;
583 		pmap_kenter(va, pa);
584 		invlpg(va);
585 	}
586 	return (data);
587 }
588 
589 /* Unmap memory previously mapped with table_map(). */
590 static void
591 table_unmap(void *data, vm_offset_t length)
592 {
593 	vm_offset_t va, off;
594 
595 	va = (vm_offset_t)data;
596 	off = va & PAGE_MASK;
597 	length = roundup(length + off, PAGE_SIZE);
598 	va &= ~PAGE_MASK;
599 	while (length > 0) {
600 		pmap_kremove(va);
601 		invlpg(va);
602 		va += PAGE_SIZE;
603 		length -= PAGE_SIZE;
604 	}
605 }
606 
607 /*
608  * Map a table at a given offset into the crashdump map.  It first
609  * maps the header to determine the table length and then maps the
610  * entire table.
611  */
612 static void *
613 map_table(vm_paddr_t pa, int offset, const char *sig)
614 {
615 	ACPI_TABLE_HEADER *header;
616 	vm_offset_t length;
617 	void *table;
618 
619 	header = table_map(pa, offset, sizeof(ACPI_TABLE_HEADER));
620 	if (strncmp(header->Signature, sig, ACPI_NAME_SIZE) != 0) {
621 		table_unmap(header, sizeof(ACPI_TABLE_HEADER));
622 		return (NULL);
623 	}
624 	length = header->Length;
625 	table_unmap(header, sizeof(ACPI_TABLE_HEADER));
626 	table = table_map(pa, offset, length);
627 	if (ACPI_FAILURE(AcpiTbChecksum(table, length))) {
628 		if (bootverbose)
629 			printf("ACPI: Failed checksum for table %s\n", sig);
630 		table_unmap(table, length);
631 		return (NULL);
632 	}
633 	return (table);
634 }
635 
636 /*
637  * See if a given ACPI table is the requested table.  Returns the
638  * length of the able if it matches or zero on failure.
639  */
640 static int
641 probe_table(vm_paddr_t address, const char *sig)
642 {
643 	ACPI_TABLE_HEADER *table;
644 
645 	table = table_map(address, 0, sizeof(ACPI_TABLE_HEADER));
646 	if (table == NULL) {
647 		if (bootverbose)
648 			printf("ACPI: Failed to map table at 0x%jx\n",
649 			    (uintmax_t)address);
650 		return (0);
651 	}
652 	if (bootverbose)
653 		printf("Table '%.4s' at 0x%jx\n", table->Signature,
654 		    (uintmax_t)address);
655 
656 	if (strncmp(table->Signature, sig, ACPI_NAME_SIZE) != 0) {
657 		table_unmap(table, sizeof(ACPI_TABLE_HEADER));
658 		return (0);
659 	}
660 	table_unmap(table, sizeof(ACPI_TABLE_HEADER));
661 	return (1);
662 }
663 
664 /*
665  * Try to map a table at a given physical address previously returned
666  * by acpi_find_table().
667  */
668 void *
669 acpi_map_table(vm_paddr_t pa, const char *sig)
670 {
671 
672 	return (map_table(pa, 0, sig));
673 }
674 
675 /* Unmap a table previously mapped via acpi_map_table(). */
676 void
677 acpi_unmap_table(void *table)
678 {
679 	ACPI_TABLE_HEADER *header;
680 
681 	header = (ACPI_TABLE_HEADER *)table;
682 	table_unmap(table, header->Length);
683 }
684 
685 /*
686  * Return the physical address of the requested table or zero if one
687  * is not found.
688  */
689 vm_paddr_t
690 acpi_find_table(const char *sig)
691 {
692 	ACPI_PHYSICAL_ADDRESS rsdp_ptr;
693 	ACPI_TABLE_RSDP *rsdp;
694 	ACPI_TABLE_RSDT *rsdt;
695 	ACPI_TABLE_XSDT *xsdt;
696 	ACPI_TABLE_HEADER *table;
697 	vm_paddr_t addr;
698 	int i, count;
699 
700 	if (resource_disabled("acpi", 0))
701 		return (0);
702 
703 	/*
704 	 * Map in the RSDP.  Since ACPI uses AcpiOsMapMemory() which in turn
705 	 * calls pmap_mapbios() to find the RSDP, we assume that we can use
706 	 * pmap_mapbios() to map the RSDP.
707 	 */
708 	if ((rsdp_ptr = AcpiOsGetRootPointer()) == 0)
709 		return (0);
710 	rsdp = pmap_mapbios(rsdp_ptr, sizeof(ACPI_TABLE_RSDP));
711 	if (rsdp == NULL) {
712 		if (bootverbose)
713 			printf("ACPI: Failed to map RSDP\n");
714 		return (0);
715 	}
716 
717 	/*
718 	 * For ACPI >= 2.0, use the XSDT if it is available.
719 	 * Otherwise, use the RSDT.  We map the XSDT or RSDT at page 2
720 	 * in the crashdump area.  Pages 0 and 1 are used to map in the
721 	 * headers of candidate ACPI tables.
722 	 */
723 	addr = 0;
724 	if (rsdp->Revision >= 2 && rsdp->XsdtPhysicalAddress != 0) {
725 		/*
726 		 * AcpiOsGetRootPointer only verifies the checksum for
727 		 * the version 1.0 portion of the RSDP.  Version 2.0 has
728 		 * an additional checksum that we verify first.
729 		 */
730 		if (AcpiTbChecksum((UINT8 *)rsdp, ACPI_RSDP_XCHECKSUM_LENGTH)) {
731 			if (bootverbose)
732 				printf("ACPI: RSDP failed extended checksum\n");
733 			return (0);
734 		}
735 		xsdt = map_table(rsdp->XsdtPhysicalAddress, 2, ACPI_SIG_XSDT);
736 		if (xsdt == NULL) {
737 			if (bootverbose)
738 				printf("ACPI: Failed to map XSDT\n");
739 			return (0);
740 		}
741 		count = (xsdt->Header.Length - sizeof(ACPI_TABLE_HEADER)) /
742 		    sizeof(UINT64);
743 		for (i = 0; i < count; i++)
744 			if (probe_table(xsdt->TableOffsetEntry[i], sig)) {
745 				addr = xsdt->TableOffsetEntry[i];
746 				break;
747 			}
748 		acpi_unmap_table(xsdt);
749 	} else {
750 		rsdt = map_table(rsdp->RsdtPhysicalAddress, 2, ACPI_SIG_RSDT);
751 		if (rsdt == NULL) {
752 			if (bootverbose)
753 				printf("ACPI: Failed to map RSDT\n");
754 			return (0);
755 		}
756 		count = (rsdt->Header.Length - sizeof(ACPI_TABLE_HEADER)) /
757 		    sizeof(UINT32);
758 		for (i = 0; i < count; i++)
759 			if (probe_table(rsdt->TableOffsetEntry[i], sig)) {
760 				addr = rsdt->TableOffsetEntry[i];
761 				break;
762 			}
763 		acpi_unmap_table(rsdt);
764 	}
765 	pmap_unmapbios((vm_offset_t)rsdp, sizeof(ACPI_TABLE_RSDP));
766 	if (addr == 0) {
767 		if (bootverbose)
768 			printf("ACPI: No %s table found\n", sig);
769 		return (0);
770 	}
771 	if (bootverbose)
772 		printf("%s: Found table at 0x%jx\n", sig, (uintmax_t)addr);
773 
774 	/*
775 	 * Verify that we can map the full table and that its checksum is
776 	 * correct, etc.
777 	 */
778 	table = map_table(addr, 0, sig);
779 	if (table == NULL)
780 		return (0);
781 	acpi_unmap_table(table);
782 
783 	return (addr);
784 }
785 
786 /*
787  * ACPI nexus(4) driver.
788  */
789 static int
790 nexus_acpi_probe(device_t dev)
791 {
792 	int error;
793 
794 	error = acpi_identify();
795 	if (error)
796 		return (error);
797 
798 	return (BUS_PROBE_DEFAULT);
799 }
800 
801 static int
802 nexus_acpi_attach(device_t dev)
803 {
804 	device_t acpi_dev;
805 	int error;
806 
807 	nexus_init_resources();
808 	bus_generic_probe(dev);
809 	acpi_dev = BUS_ADD_CHILD(dev, 10, "acpi", 0);
810 	if (acpi_dev == NULL)
811 		panic("failed to add acpi0 device");
812 
813 	error = bus_generic_attach(dev);
814 	if (error == 0)
815 		acpi_install_wakeup_handler(device_get_softc(acpi_dev));
816 
817 	return (error);
818 }
819 
820 static device_method_t nexus_acpi_methods[] = {
821 	/* Device interface */
822 	DEVMETHOD(device_probe,		nexus_acpi_probe),
823 	DEVMETHOD(device_attach,	nexus_acpi_attach),
824 
825 	{ 0, 0 }
826 };
827 
828 DEFINE_CLASS_1(nexus, nexus_acpi_driver, nexus_acpi_methods, 1, nexus_driver);
829 static devclass_t nexus_devclass;
830 
831 DRIVER_MODULE(nexus_acpi, root, nexus_acpi_driver, nexus_devclass, 0, 0);
832