1 /*- 2 * Copyright (c) 2007 Doug Rabson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 /* 31 * Stand-alone ZFS file reader. 32 */ 33 34 #include <sys/endian.h> 35 #include <sys/stat.h> 36 #include <sys/stdint.h> 37 #include <sys/list.h> 38 39 #include "zfsimpl.h" 40 #include "zfssubr.c" 41 42 43 struct zfsmount { 44 const spa_t *spa; 45 objset_phys_t objset; 46 uint64_t rootobj; 47 }; 48 static struct zfsmount zfsmount __unused; 49 50 /* 51 * The indirect_child_t represents the vdev that we will read from, when we 52 * need to read all copies of the data (e.g. for scrub or reconstruction). 53 * For plain (non-mirror) top-level vdevs (i.e. is_vdev is not a mirror), 54 * ic_vdev is the same as is_vdev. However, for mirror top-level vdevs, 55 * ic_vdev is a child of the mirror. 56 */ 57 typedef struct indirect_child { 58 void *ic_data; 59 vdev_t *ic_vdev; 60 } indirect_child_t; 61 62 /* 63 * The indirect_split_t represents one mapped segment of an i/o to the 64 * indirect vdev. For non-split (contiguously-mapped) blocks, there will be 65 * only one indirect_split_t, with is_split_offset==0 and is_size==io_size. 66 * For split blocks, there will be several of these. 67 */ 68 typedef struct indirect_split { 69 list_node_t is_node; /* link on iv_splits */ 70 71 /* 72 * is_split_offset is the offset into the i/o. 73 * This is the sum of the previous splits' is_size's. 74 */ 75 uint64_t is_split_offset; 76 77 vdev_t *is_vdev; /* top-level vdev */ 78 uint64_t is_target_offset; /* offset on is_vdev */ 79 uint64_t is_size; 80 int is_children; /* number of entries in is_child[] */ 81 82 /* 83 * is_good_child is the child that we are currently using to 84 * attempt reconstruction. 85 */ 86 int is_good_child; 87 88 indirect_child_t is_child[1]; /* variable-length */ 89 } indirect_split_t; 90 91 /* 92 * The indirect_vsd_t is associated with each i/o to the indirect vdev. 93 * It is the "Vdev-Specific Data" in the zio_t's io_vsd. 94 */ 95 typedef struct indirect_vsd { 96 boolean_t iv_split_block; 97 boolean_t iv_reconstruct; 98 99 list_t iv_splits; /* list of indirect_split_t's */ 100 } indirect_vsd_t; 101 102 /* 103 * List of all vdevs, chained through v_alllink. 104 */ 105 static vdev_list_t zfs_vdevs; 106 107 /* 108 * List of ZFS features supported for read 109 */ 110 static const char *features_for_read[] = { 111 "org.illumos:lz4_compress", 112 "com.delphix:hole_birth", 113 "com.delphix:extensible_dataset", 114 "com.delphix:embedded_data", 115 "org.open-zfs:large_blocks", 116 "org.illumos:sha512", 117 "org.illumos:skein", 118 "org.zfsonlinux:large_dnode", 119 "com.joyent:multi_vdev_crash_dump", 120 "com.delphix:spacemap_histogram", 121 "com.delphix:zpool_checkpoint", 122 "com.delphix:spacemap_v2", 123 "com.datto:encryption", 124 "org.zfsonlinux:allocation_classes", 125 "com.datto:resilver_defer", 126 "com.delphix:device_removal", 127 "com.delphix:obsolete_counts", 128 NULL 129 }; 130 131 /* 132 * List of all pools, chained through spa_link. 133 */ 134 static spa_list_t zfs_pools; 135 136 static const dnode_phys_t *dnode_cache_obj; 137 static uint64_t dnode_cache_bn; 138 static char *dnode_cache_buf; 139 static char *zap_scratch; 140 static char *zfs_temp_buf, *zfs_temp_end, *zfs_temp_ptr; 141 142 #define TEMP_SIZE (1024 * 1024) 143 144 static int zio_read(const spa_t *spa, const blkptr_t *bp, void *buf); 145 static int zfs_get_root(const spa_t *spa, uint64_t *objid); 146 static int zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result); 147 static int zap_lookup(const spa_t *spa, const dnode_phys_t *dnode, 148 const char *name, uint64_t integer_size, uint64_t num_integers, 149 void *value); 150 static int objset_get_dnode(const spa_t *, const objset_phys_t *, uint64_t, 151 dnode_phys_t *); 152 static int dnode_read(const spa_t *, const dnode_phys_t *, off_t, void *, 153 size_t); 154 static int vdev_indirect_read(vdev_t *, const blkptr_t *, void *, off_t, 155 size_t); 156 static int vdev_mirror_read(vdev_t *, const blkptr_t *, void *, off_t, size_t); 157 vdev_indirect_mapping_t *vdev_indirect_mapping_open(spa_t *, objset_phys_t *, 158 uint64_t); 159 vdev_indirect_mapping_entry_phys_t * 160 vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *, uint64_t, 161 uint64_t, uint64_t *); 162 163 static void 164 zfs_init(void) 165 { 166 STAILQ_INIT(&zfs_vdevs); 167 STAILQ_INIT(&zfs_pools); 168 169 zfs_temp_buf = malloc(TEMP_SIZE); 170 zfs_temp_end = zfs_temp_buf + TEMP_SIZE; 171 zfs_temp_ptr = zfs_temp_buf; 172 dnode_cache_buf = malloc(SPA_MAXBLOCKSIZE); 173 zap_scratch = malloc(SPA_MAXBLOCKSIZE); 174 175 zfs_init_crc(); 176 } 177 178 static void * 179 zfs_alloc(size_t size) 180 { 181 char *ptr; 182 183 if (zfs_temp_ptr + size > zfs_temp_end) { 184 panic("ZFS: out of temporary buffer space"); 185 } 186 ptr = zfs_temp_ptr; 187 zfs_temp_ptr += size; 188 189 return (ptr); 190 } 191 192 static void 193 zfs_free(void *ptr, size_t size) 194 { 195 196 zfs_temp_ptr -= size; 197 if (zfs_temp_ptr != ptr) { 198 panic("ZFS: zfs_alloc()/zfs_free() mismatch"); 199 } 200 } 201 202 static int 203 xdr_int(const unsigned char **xdr, int *ip) 204 { 205 *ip = be32dec(*xdr); 206 (*xdr) += 4; 207 return (0); 208 } 209 210 static int 211 xdr_u_int(const unsigned char **xdr, u_int *ip) 212 { 213 *ip = be32dec(*xdr); 214 (*xdr) += 4; 215 return (0); 216 } 217 218 static int 219 xdr_uint64_t(const unsigned char **xdr, uint64_t *lp) 220 { 221 u_int hi, lo; 222 223 xdr_u_int(xdr, &hi); 224 xdr_u_int(xdr, &lo); 225 *lp = (((uint64_t) hi) << 32) | lo; 226 return (0); 227 } 228 229 static int 230 nvlist_find(const unsigned char *nvlist, const char *name, int type, 231 int *elementsp, void *valuep) 232 { 233 const unsigned char *p, *pair; 234 int junk; 235 int encoded_size, decoded_size; 236 237 p = nvlist; 238 xdr_int(&p, &junk); 239 xdr_int(&p, &junk); 240 241 pair = p; 242 xdr_int(&p, &encoded_size); 243 xdr_int(&p, &decoded_size); 244 while (encoded_size && decoded_size) { 245 int namelen, pairtype, elements; 246 const char *pairname; 247 248 xdr_int(&p, &namelen); 249 pairname = (const char*) p; 250 p += roundup(namelen, 4); 251 xdr_int(&p, &pairtype); 252 253 if (!memcmp(name, pairname, namelen) && type == pairtype) { 254 xdr_int(&p, &elements); 255 if (elementsp) 256 *elementsp = elements; 257 if (type == DATA_TYPE_UINT64) { 258 xdr_uint64_t(&p, (uint64_t *) valuep); 259 return (0); 260 } else if (type == DATA_TYPE_STRING) { 261 int len; 262 xdr_int(&p, &len); 263 (*(const char**) valuep) = (const char*) p; 264 return (0); 265 } else if (type == DATA_TYPE_NVLIST 266 || type == DATA_TYPE_NVLIST_ARRAY) { 267 (*(const unsigned char**) valuep) = 268 (const unsigned char*) p; 269 return (0); 270 } else { 271 return (EIO); 272 } 273 } else { 274 /* 275 * Not the pair we are looking for, skip to the next one. 276 */ 277 p = pair + encoded_size; 278 } 279 280 pair = p; 281 xdr_int(&p, &encoded_size); 282 xdr_int(&p, &decoded_size); 283 } 284 285 return (EIO); 286 } 287 288 static int 289 nvlist_check_features_for_read(const unsigned char *nvlist) 290 { 291 const unsigned char *p, *pair; 292 int junk; 293 int encoded_size, decoded_size; 294 int rc; 295 296 rc = 0; 297 298 p = nvlist; 299 xdr_int(&p, &junk); 300 xdr_int(&p, &junk); 301 302 pair = p; 303 xdr_int(&p, &encoded_size); 304 xdr_int(&p, &decoded_size); 305 while (encoded_size && decoded_size) { 306 int namelen, pairtype; 307 const char *pairname; 308 int i, found; 309 310 found = 0; 311 312 xdr_int(&p, &namelen); 313 pairname = (const char*) p; 314 p += roundup(namelen, 4); 315 xdr_int(&p, &pairtype); 316 317 for (i = 0; features_for_read[i] != NULL; i++) { 318 if (!memcmp(pairname, features_for_read[i], namelen)) { 319 found = 1; 320 break; 321 } 322 } 323 324 if (!found) { 325 printf("ZFS: unsupported feature: %s\n", pairname); 326 rc = EIO; 327 } 328 329 p = pair + encoded_size; 330 331 pair = p; 332 xdr_int(&p, &encoded_size); 333 xdr_int(&p, &decoded_size); 334 } 335 336 return (rc); 337 } 338 339 /* 340 * Return the next nvlist in an nvlist array. 341 */ 342 static const unsigned char * 343 nvlist_next(const unsigned char *nvlist) 344 { 345 const unsigned char *p, *pair; 346 int junk; 347 int encoded_size, decoded_size; 348 349 p = nvlist; 350 xdr_int(&p, &junk); 351 xdr_int(&p, &junk); 352 353 pair = p; 354 xdr_int(&p, &encoded_size); 355 xdr_int(&p, &decoded_size); 356 while (encoded_size && decoded_size) { 357 p = pair + encoded_size; 358 359 pair = p; 360 xdr_int(&p, &encoded_size); 361 xdr_int(&p, &decoded_size); 362 } 363 364 return p; 365 } 366 367 #ifdef TEST 368 369 static const unsigned char * 370 nvlist_print(const unsigned char *nvlist, unsigned int indent) 371 { 372 static const char* typenames[] = { 373 "DATA_TYPE_UNKNOWN", 374 "DATA_TYPE_BOOLEAN", 375 "DATA_TYPE_BYTE", 376 "DATA_TYPE_INT16", 377 "DATA_TYPE_UINT16", 378 "DATA_TYPE_INT32", 379 "DATA_TYPE_UINT32", 380 "DATA_TYPE_INT64", 381 "DATA_TYPE_UINT64", 382 "DATA_TYPE_STRING", 383 "DATA_TYPE_BYTE_ARRAY", 384 "DATA_TYPE_INT16_ARRAY", 385 "DATA_TYPE_UINT16_ARRAY", 386 "DATA_TYPE_INT32_ARRAY", 387 "DATA_TYPE_UINT32_ARRAY", 388 "DATA_TYPE_INT64_ARRAY", 389 "DATA_TYPE_UINT64_ARRAY", 390 "DATA_TYPE_STRING_ARRAY", 391 "DATA_TYPE_HRTIME", 392 "DATA_TYPE_NVLIST", 393 "DATA_TYPE_NVLIST_ARRAY", 394 "DATA_TYPE_BOOLEAN_VALUE", 395 "DATA_TYPE_INT8", 396 "DATA_TYPE_UINT8", 397 "DATA_TYPE_BOOLEAN_ARRAY", 398 "DATA_TYPE_INT8_ARRAY", 399 "DATA_TYPE_UINT8_ARRAY" 400 }; 401 402 unsigned int i, j; 403 const unsigned char *p, *pair; 404 int junk; 405 int encoded_size, decoded_size; 406 407 p = nvlist; 408 xdr_int(&p, &junk); 409 xdr_int(&p, &junk); 410 411 pair = p; 412 xdr_int(&p, &encoded_size); 413 xdr_int(&p, &decoded_size); 414 while (encoded_size && decoded_size) { 415 int namelen, pairtype, elements; 416 const char *pairname; 417 418 xdr_int(&p, &namelen); 419 pairname = (const char*) p; 420 p += roundup(namelen, 4); 421 xdr_int(&p, &pairtype); 422 423 for (i = 0; i < indent; i++) 424 printf(" "); 425 printf("%s %s", typenames[pairtype], pairname); 426 427 xdr_int(&p, &elements); 428 switch (pairtype) { 429 case DATA_TYPE_UINT64: { 430 uint64_t val; 431 xdr_uint64_t(&p, &val); 432 printf(" = 0x%jx\n", (uintmax_t)val); 433 break; 434 } 435 436 case DATA_TYPE_STRING: { 437 int len; 438 xdr_int(&p, &len); 439 printf(" = \"%s\"\n", p); 440 break; 441 } 442 443 case DATA_TYPE_NVLIST: 444 printf("\n"); 445 nvlist_print(p, indent + 1); 446 break; 447 448 case DATA_TYPE_NVLIST_ARRAY: 449 for (j = 0; j < elements; j++) { 450 printf("[%d]\n", j); 451 p = nvlist_print(p, indent + 1); 452 if (j != elements - 1) { 453 for (i = 0; i < indent; i++) 454 printf(" "); 455 printf("%s %s", typenames[pairtype], pairname); 456 } 457 } 458 break; 459 460 default: 461 printf("\n"); 462 } 463 464 p = pair + encoded_size; 465 466 pair = p; 467 xdr_int(&p, &encoded_size); 468 xdr_int(&p, &decoded_size); 469 } 470 471 return p; 472 } 473 474 #endif 475 476 static int 477 vdev_read_phys(vdev_t *vdev, const blkptr_t *bp, void *buf, 478 off_t offset, size_t size) 479 { 480 size_t psize; 481 int rc; 482 483 if (!vdev->v_phys_read) 484 return (EIO); 485 486 if (bp) { 487 psize = BP_GET_PSIZE(bp); 488 } else { 489 psize = size; 490 } 491 492 /*printf("ZFS: reading %zu bytes at 0x%jx to %p\n", psize, (uintmax_t)offset, buf);*/ 493 rc = vdev->v_phys_read(vdev, vdev->v_read_priv, offset, buf, psize); 494 if (rc) 495 return (rc); 496 if (bp != NULL) 497 return (zio_checksum_verify(vdev->spa, bp, buf)); 498 499 return (0); 500 } 501 502 typedef struct remap_segment { 503 vdev_t *rs_vd; 504 uint64_t rs_offset; 505 uint64_t rs_asize; 506 uint64_t rs_split_offset; 507 list_node_t rs_node; 508 } remap_segment_t; 509 510 static remap_segment_t * 511 rs_alloc(vdev_t *vd, uint64_t offset, uint64_t asize, uint64_t split_offset) 512 { 513 remap_segment_t *rs = malloc(sizeof (remap_segment_t)); 514 515 if (rs != NULL) { 516 rs->rs_vd = vd; 517 rs->rs_offset = offset; 518 rs->rs_asize = asize; 519 rs->rs_split_offset = split_offset; 520 } 521 522 return (rs); 523 } 524 525 vdev_indirect_mapping_t * 526 vdev_indirect_mapping_open(spa_t *spa, objset_phys_t *os, 527 uint64_t mapping_object) 528 { 529 vdev_indirect_mapping_t *vim; 530 vdev_indirect_mapping_phys_t *vim_phys; 531 int rc; 532 533 vim = calloc(1, sizeof (*vim)); 534 if (vim == NULL) 535 return (NULL); 536 537 vim->vim_dn = calloc(1, sizeof (*vim->vim_dn)); 538 if (vim->vim_dn == NULL) { 539 free(vim); 540 return (NULL); 541 } 542 543 rc = objset_get_dnode(spa, os, mapping_object, vim->vim_dn); 544 if (rc != 0) { 545 free(vim->vim_dn); 546 free(vim); 547 return (NULL); 548 } 549 550 vim->vim_spa = spa; 551 vim->vim_phys = malloc(sizeof (*vim->vim_phys)); 552 if (vim->vim_phys == NULL) { 553 free(vim->vim_dn); 554 free(vim); 555 return (NULL); 556 } 557 558 vim_phys = (vdev_indirect_mapping_phys_t *)DN_BONUS(vim->vim_dn); 559 *vim->vim_phys = *vim_phys; 560 561 vim->vim_objset = os; 562 vim->vim_object = mapping_object; 563 vim->vim_entries = NULL; 564 565 vim->vim_havecounts = 566 (vim->vim_dn->dn_bonuslen > VDEV_INDIRECT_MAPPING_SIZE_V0); 567 return (vim); 568 } 569 570 /* 571 * Compare an offset with an indirect mapping entry; there are three 572 * possible scenarios: 573 * 574 * 1. The offset is "less than" the mapping entry; meaning the 575 * offset is less than the source offset of the mapping entry. In 576 * this case, there is no overlap between the offset and the 577 * mapping entry and -1 will be returned. 578 * 579 * 2. The offset is "greater than" the mapping entry; meaning the 580 * offset is greater than the mapping entry's source offset plus 581 * the entry's size. In this case, there is no overlap between 582 * the offset and the mapping entry and 1 will be returned. 583 * 584 * NOTE: If the offset is actually equal to the entry's offset 585 * plus size, this is considered to be "greater" than the entry, 586 * and this case applies (i.e. 1 will be returned). Thus, the 587 * entry's "range" can be considered to be inclusive at its 588 * start, but exclusive at its end: e.g. [src, src + size). 589 * 590 * 3. The last case to consider is if the offset actually falls 591 * within the mapping entry's range. If this is the case, the 592 * offset is considered to be "equal to" the mapping entry and 593 * 0 will be returned. 594 * 595 * NOTE: If the offset is equal to the entry's source offset, 596 * this case applies and 0 will be returned. If the offset is 597 * equal to the entry's source plus its size, this case does 598 * *not* apply (see "NOTE" above for scenario 2), and 1 will be 599 * returned. 600 */ 601 static int 602 dva_mapping_overlap_compare(const void *v_key, const void *v_array_elem) 603 { 604 const uint64_t *key = v_key; 605 const vdev_indirect_mapping_entry_phys_t *array_elem = 606 v_array_elem; 607 uint64_t src_offset = DVA_MAPPING_GET_SRC_OFFSET(array_elem); 608 609 if (*key < src_offset) { 610 return (-1); 611 } else if (*key < src_offset + DVA_GET_ASIZE(&array_elem->vimep_dst)) { 612 return (0); 613 } else { 614 return (1); 615 } 616 } 617 618 /* 619 * Return array entry. 620 */ 621 static vdev_indirect_mapping_entry_phys_t * 622 vdev_indirect_mapping_entry(vdev_indirect_mapping_t *vim, uint64_t index) 623 { 624 uint64_t size; 625 off_t offset = 0; 626 int rc; 627 628 if (vim->vim_phys->vimp_num_entries == 0) 629 return (NULL); 630 631 if (vim->vim_entries == NULL) { 632 uint64_t bsize; 633 634 bsize = vim->vim_dn->dn_datablkszsec << SPA_MINBLOCKSHIFT; 635 size = vim->vim_phys->vimp_num_entries * 636 sizeof (*vim->vim_entries); 637 if (size > bsize) { 638 size = bsize / sizeof (*vim->vim_entries); 639 size *= sizeof (*vim->vim_entries); 640 } 641 vim->vim_entries = malloc(size); 642 if (vim->vim_entries == NULL) 643 return (NULL); 644 vim->vim_num_entries = size / sizeof (*vim->vim_entries); 645 offset = index * sizeof (*vim->vim_entries); 646 } 647 648 /* We have data in vim_entries */ 649 if (offset == 0) { 650 if (index >= vim->vim_entry_offset && 651 index <= vim->vim_entry_offset + vim->vim_num_entries) { 652 index -= vim->vim_entry_offset; 653 return (&vim->vim_entries[index]); 654 } 655 offset = index * sizeof (*vim->vim_entries); 656 } 657 658 vim->vim_entry_offset = index; 659 size = vim->vim_num_entries * sizeof (*vim->vim_entries); 660 rc = dnode_read(vim->vim_spa, vim->vim_dn, offset, vim->vim_entries, 661 size); 662 if (rc != 0) { 663 /* Read error, invalidate vim_entries. */ 664 free(vim->vim_entries); 665 vim->vim_entries = NULL; 666 return (NULL); 667 } 668 index -= vim->vim_entry_offset; 669 return (&vim->vim_entries[index]); 670 } 671 672 /* 673 * Returns the mapping entry for the given offset. 674 * 675 * It's possible that the given offset will not be in the mapping table 676 * (i.e. no mapping entries contain this offset), in which case, the 677 * return value value depends on the "next_if_missing" parameter. 678 * 679 * If the offset is not found in the table and "next_if_missing" is 680 * B_FALSE, then NULL will always be returned. The behavior is intended 681 * to allow consumers to get the entry corresponding to the offset 682 * parameter, iff the offset overlaps with an entry in the table. 683 * 684 * If the offset is not found in the table and "next_if_missing" is 685 * B_TRUE, then the entry nearest to the given offset will be returned, 686 * such that the entry's source offset is greater than the offset 687 * passed in (i.e. the "next" mapping entry in the table is returned, if 688 * the offset is missing from the table). If there are no entries whose 689 * source offset is greater than the passed in offset, NULL is returned. 690 */ 691 static vdev_indirect_mapping_entry_phys_t * 692 vdev_indirect_mapping_entry_for_offset(vdev_indirect_mapping_t *vim, 693 uint64_t offset) 694 { 695 ASSERT(vim->vim_phys->vimp_num_entries > 0); 696 697 vdev_indirect_mapping_entry_phys_t *entry; 698 699 uint64_t last = vim->vim_phys->vimp_num_entries - 1; 700 uint64_t base = 0; 701 702 /* 703 * We don't define these inside of the while loop because we use 704 * their value in the case that offset isn't in the mapping. 705 */ 706 uint64_t mid; 707 int result; 708 709 while (last >= base) { 710 mid = base + ((last - base) >> 1); 711 712 entry = vdev_indirect_mapping_entry(vim, mid); 713 if (entry == NULL) 714 break; 715 result = dva_mapping_overlap_compare(&offset, entry); 716 717 if (result == 0) { 718 break; 719 } else if (result < 0) { 720 last = mid - 1; 721 } else { 722 base = mid + 1; 723 } 724 } 725 return (entry); 726 } 727 728 /* 729 * Given an indirect vdev and an extent on that vdev, it duplicates the 730 * physical entries of the indirect mapping that correspond to the extent 731 * to a new array and returns a pointer to it. In addition, copied_entries 732 * is populated with the number of mapping entries that were duplicated. 733 * 734 * Finally, since we are doing an allocation, it is up to the caller to 735 * free the array allocated in this function. 736 */ 737 vdev_indirect_mapping_entry_phys_t * 738 vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *vd, uint64_t offset, 739 uint64_t asize, uint64_t *copied_entries) 740 { 741 vdev_indirect_mapping_entry_phys_t *duplicate_mappings = NULL; 742 vdev_indirect_mapping_t *vim = vd->v_mapping; 743 uint64_t entries = 0; 744 745 vdev_indirect_mapping_entry_phys_t *first_mapping = 746 vdev_indirect_mapping_entry_for_offset(vim, offset); 747 ASSERT3P(first_mapping, !=, NULL); 748 749 vdev_indirect_mapping_entry_phys_t *m = first_mapping; 750 while (asize > 0) { 751 uint64_t size = DVA_GET_ASIZE(&m->vimep_dst); 752 uint64_t inner_offset = offset - DVA_MAPPING_GET_SRC_OFFSET(m); 753 uint64_t inner_size = MIN(asize, size - inner_offset); 754 755 offset += inner_size; 756 asize -= inner_size; 757 entries++; 758 m++; 759 } 760 761 size_t copy_length = entries * sizeof (*first_mapping); 762 duplicate_mappings = malloc(copy_length); 763 if (duplicate_mappings != NULL) 764 bcopy(first_mapping, duplicate_mappings, copy_length); 765 else 766 entries = 0; 767 768 *copied_entries = entries; 769 770 return (duplicate_mappings); 771 } 772 773 static vdev_t * 774 vdev_lookup_top(spa_t *spa, uint64_t vdev) 775 { 776 vdev_t *rvd; 777 778 STAILQ_FOREACH(rvd, &spa->spa_vdevs, v_childlink) 779 if (rvd->v_id == vdev) 780 break; 781 782 return (rvd); 783 } 784 785 /* 786 * This is a callback for vdev_indirect_remap() which allocates an 787 * indirect_split_t for each split segment and adds it to iv_splits. 788 */ 789 static void 790 vdev_indirect_gather_splits(uint64_t split_offset, vdev_t *vd, uint64_t offset, 791 uint64_t size, void *arg) 792 { 793 int n = 1; 794 zio_t *zio = arg; 795 indirect_vsd_t *iv = zio->io_vsd; 796 797 if (vd->v_read == vdev_indirect_read) 798 return; 799 800 if (vd->v_read == vdev_mirror_read) 801 n = vd->v_nchildren; 802 803 indirect_split_t *is = 804 malloc(offsetof(indirect_split_t, is_child[n])); 805 if (is == NULL) { 806 zio->io_error = ENOMEM; 807 return; 808 } 809 bzero(is, offsetof(indirect_split_t, is_child[n])); 810 811 is->is_children = n; 812 is->is_size = size; 813 is->is_split_offset = split_offset; 814 is->is_target_offset = offset; 815 is->is_vdev = vd; 816 817 /* 818 * Note that we only consider multiple copies of the data for 819 * *mirror* vdevs. We don't for "replacing" or "spare" vdevs, even 820 * though they use the same ops as mirror, because there's only one 821 * "good" copy under the replacing/spare. 822 */ 823 if (vd->v_read == vdev_mirror_read) { 824 int i = 0; 825 vdev_t *kid; 826 827 STAILQ_FOREACH(kid, &vd->v_children, v_childlink) { 828 is->is_child[i++].ic_vdev = kid; 829 } 830 } else { 831 is->is_child[0].ic_vdev = vd; 832 } 833 834 list_insert_tail(&iv->iv_splits, is); 835 } 836 837 static void 838 vdev_indirect_remap(vdev_t *vd, uint64_t offset, uint64_t asize, void *arg) 839 { 840 list_t stack; 841 spa_t *spa = vd->spa; 842 zio_t *zio = arg; 843 remap_segment_t *rs; 844 845 list_create(&stack, sizeof (remap_segment_t), 846 offsetof(remap_segment_t, rs_node)); 847 848 rs = rs_alloc(vd, offset, asize, 0); 849 if (rs == NULL) { 850 printf("vdev_indirect_remap: out of memory.\n"); 851 zio->io_error = ENOMEM; 852 } 853 for ( ; rs != NULL; rs = list_remove_head(&stack)) { 854 vdev_t *v = rs->rs_vd; 855 uint64_t num_entries = 0; 856 /* vdev_indirect_mapping_t *vim = v->v_mapping; */ 857 vdev_indirect_mapping_entry_phys_t *mapping = 858 vdev_indirect_mapping_duplicate_adjacent_entries(v, 859 rs->rs_offset, rs->rs_asize, &num_entries); 860 861 if (num_entries == 0) 862 zio->io_error = ENOMEM; 863 864 for (uint64_t i = 0; i < num_entries; i++) { 865 vdev_indirect_mapping_entry_phys_t *m = &mapping[i]; 866 uint64_t size = DVA_GET_ASIZE(&m->vimep_dst); 867 uint64_t dst_offset = DVA_GET_OFFSET(&m->vimep_dst); 868 uint64_t dst_vdev = DVA_GET_VDEV(&m->vimep_dst); 869 uint64_t inner_offset = rs->rs_offset - 870 DVA_MAPPING_GET_SRC_OFFSET(m); 871 uint64_t inner_size = 872 MIN(rs->rs_asize, size - inner_offset); 873 vdev_t *dst_v = vdev_lookup_top(spa, dst_vdev); 874 875 if (dst_v->v_read == vdev_indirect_read) { 876 remap_segment_t *o; 877 878 o = rs_alloc(dst_v, dst_offset + inner_offset, 879 inner_size, rs->rs_split_offset); 880 if (o == NULL) { 881 printf("vdev_indirect_remap: " 882 "out of memory.\n"); 883 zio->io_error = ENOMEM; 884 break; 885 } 886 887 list_insert_head(&stack, o); 888 } 889 vdev_indirect_gather_splits(rs->rs_split_offset, dst_v, 890 dst_offset + inner_offset, 891 inner_size, arg); 892 893 /* 894 * vdev_indirect_gather_splits can have memory 895 * allocation error, we can not recover from it. 896 */ 897 if (zio->io_error != 0) 898 break; 899 900 rs->rs_offset += inner_size; 901 rs->rs_asize -= inner_size; 902 rs->rs_split_offset += inner_size; 903 } 904 905 free(mapping); 906 free(rs); 907 if (zio->io_error != 0) 908 break; 909 } 910 911 list_destroy(&stack); 912 } 913 914 static void 915 vdev_indirect_map_free(zio_t *zio) 916 { 917 indirect_vsd_t *iv = zio->io_vsd; 918 indirect_split_t *is; 919 920 while ((is = list_head(&iv->iv_splits)) != NULL) { 921 for (int c = 0; c < is->is_children; c++) { 922 indirect_child_t *ic = &is->is_child[c]; 923 free(ic->ic_data); 924 } 925 list_remove(&iv->iv_splits, is); 926 free(is); 927 } 928 free(iv); 929 } 930 931 static int 932 vdev_indirect_read(vdev_t *vdev, const blkptr_t *bp, void *buf, 933 off_t offset, size_t bytes) 934 { 935 zio_t zio = { 0 }; 936 spa_t *spa = vdev->spa; 937 indirect_vsd_t *iv = malloc(sizeof (*iv)); 938 indirect_split_t *first; 939 int rc = EIO; 940 941 if (iv == NULL) 942 return (ENOMEM); 943 bzero(iv, sizeof (*iv)); 944 945 list_create(&iv->iv_splits, 946 sizeof (indirect_split_t), offsetof(indirect_split_t, is_node)); 947 948 zio.io_spa = spa; 949 zio.io_bp = (blkptr_t *)bp; 950 zio.io_data = buf; 951 zio.io_size = bytes; 952 zio.io_offset = offset; 953 zio.io_vd = vdev; 954 zio.io_vsd = iv; 955 956 if (vdev->v_mapping == NULL) { 957 vdev_indirect_config_t *vic; 958 959 vic = &vdev->vdev_indirect_config; 960 vdev->v_mapping = vdev_indirect_mapping_open(spa, 961 &spa->spa_mos, vic->vic_mapping_object); 962 } 963 964 vdev_indirect_remap(vdev, offset, bytes, &zio); 965 if (zio.io_error != 0) 966 return (zio.io_error); 967 968 first = list_head(&iv->iv_splits); 969 if (first->is_size == zio.io_size) { 970 /* 971 * This is not a split block; we are pointing to the entire 972 * data, which will checksum the same as the original data. 973 * Pass the BP down so that the child i/o can verify the 974 * checksum, and try a different location if available 975 * (e.g. on a mirror). 976 * 977 * While this special case could be handled the same as the 978 * general (split block) case, doing it this way ensures 979 * that the vast majority of blocks on indirect vdevs 980 * (which are not split) are handled identically to blocks 981 * on non-indirect vdevs. This allows us to be less strict 982 * about performance in the general (but rare) case. 983 */ 984 rc = first->is_vdev->v_read(first->is_vdev, zio.io_bp, 985 zio.io_data, first->is_target_offset, bytes); 986 } else { 987 iv->iv_split_block = B_TRUE; 988 /* 989 * Read one copy of each split segment, from the 990 * top-level vdev. Since we don't know the 991 * checksum of each split individually, the child 992 * zio can't ensure that we get the right data. 993 * E.g. if it's a mirror, it will just read from a 994 * random (healthy) leaf vdev. We have to verify 995 * the checksum in vdev_indirect_io_done(). 996 */ 997 for (indirect_split_t *is = list_head(&iv->iv_splits); 998 is != NULL; is = list_next(&iv->iv_splits, is)) { 999 char *ptr = zio.io_data; 1000 1001 rc = is->is_vdev->v_read(is->is_vdev, zio.io_bp, 1002 ptr + is->is_split_offset, is->is_target_offset, 1003 is->is_size); 1004 } 1005 if (zio_checksum_verify(spa, zio.io_bp, zio.io_data)) 1006 rc = ECKSUM; 1007 else 1008 rc = 0; 1009 } 1010 1011 vdev_indirect_map_free(&zio); 1012 if (rc == 0) 1013 rc = zio.io_error; 1014 1015 return (rc); 1016 } 1017 1018 static int 1019 vdev_disk_read(vdev_t *vdev, const blkptr_t *bp, void *buf, 1020 off_t offset, size_t bytes) 1021 { 1022 1023 return (vdev_read_phys(vdev, bp, buf, 1024 offset + VDEV_LABEL_START_SIZE, bytes)); 1025 } 1026 1027 1028 static int 1029 vdev_mirror_read(vdev_t *vdev, const blkptr_t *bp, void *buf, 1030 off_t offset, size_t bytes) 1031 { 1032 vdev_t *kid; 1033 int rc; 1034 1035 rc = EIO; 1036 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) { 1037 if (kid->v_state != VDEV_STATE_HEALTHY) 1038 continue; 1039 rc = kid->v_read(kid, bp, buf, offset, bytes); 1040 if (!rc) 1041 return (0); 1042 } 1043 1044 return (rc); 1045 } 1046 1047 static int 1048 vdev_replacing_read(vdev_t *vdev, const blkptr_t *bp, void *buf, 1049 off_t offset, size_t bytes) 1050 { 1051 vdev_t *kid; 1052 1053 /* 1054 * Here we should have two kids: 1055 * First one which is the one we are replacing and we can trust 1056 * only this one to have valid data, but it might not be present. 1057 * Second one is that one we are replacing with. It is most likely 1058 * healthy, but we can't trust it has needed data, so we won't use it. 1059 */ 1060 kid = STAILQ_FIRST(&vdev->v_children); 1061 if (kid == NULL) 1062 return (EIO); 1063 if (kid->v_state != VDEV_STATE_HEALTHY) 1064 return (EIO); 1065 return (kid->v_read(kid, bp, buf, offset, bytes)); 1066 } 1067 1068 static vdev_t * 1069 vdev_find(uint64_t guid) 1070 { 1071 vdev_t *vdev; 1072 1073 STAILQ_FOREACH(vdev, &zfs_vdevs, v_alllink) 1074 if (vdev->v_guid == guid) 1075 return (vdev); 1076 1077 return (0); 1078 } 1079 1080 static vdev_t * 1081 vdev_create(uint64_t guid, vdev_read_t *_read) 1082 { 1083 vdev_t *vdev; 1084 vdev_indirect_config_t *vic; 1085 1086 vdev = malloc(sizeof(vdev_t)); 1087 memset(vdev, 0, sizeof(vdev_t)); 1088 STAILQ_INIT(&vdev->v_children); 1089 vdev->v_guid = guid; 1090 vdev->v_state = VDEV_STATE_OFFLINE; 1091 vdev->v_read = _read; 1092 1093 vic = &vdev->vdev_indirect_config; 1094 vic->vic_prev_indirect_vdev = UINT64_MAX; 1095 STAILQ_INSERT_TAIL(&zfs_vdevs, vdev, v_alllink); 1096 1097 return (vdev); 1098 } 1099 1100 static int 1101 vdev_init_from_nvlist(const unsigned char *nvlist, vdev_t *pvdev, 1102 vdev_t **vdevp, int is_newer) 1103 { 1104 int rc; 1105 uint64_t guid, id, ashift, nparity; 1106 const char *type; 1107 const char *path; 1108 vdev_t *vdev, *kid; 1109 const unsigned char *kids; 1110 int nkids, i, is_new; 1111 uint64_t is_offline, is_faulted, is_degraded, is_removed, isnt_present; 1112 1113 if (nvlist_find(nvlist, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64, 1114 NULL, &guid) 1115 || nvlist_find(nvlist, ZPOOL_CONFIG_ID, DATA_TYPE_UINT64, NULL, &id) 1116 || nvlist_find(nvlist, ZPOOL_CONFIG_TYPE, DATA_TYPE_STRING, 1117 NULL, &type)) { 1118 printf("ZFS: can't find vdev details\n"); 1119 return (ENOENT); 1120 } 1121 1122 if (strcmp(type, VDEV_TYPE_MIRROR) 1123 && strcmp(type, VDEV_TYPE_DISK) 1124 #ifdef ZFS_TEST 1125 && strcmp(type, VDEV_TYPE_FILE) 1126 #endif 1127 && strcmp(type, VDEV_TYPE_RAIDZ) 1128 && strcmp(type, VDEV_TYPE_INDIRECT) 1129 && strcmp(type, VDEV_TYPE_REPLACING)) { 1130 printf("ZFS: can only boot from disk, mirror, raidz1, raidz2 and raidz3 vdevs\n"); 1131 return (EIO); 1132 } 1133 1134 is_offline = is_removed = is_faulted = is_degraded = isnt_present = 0; 1135 1136 nvlist_find(nvlist, ZPOOL_CONFIG_OFFLINE, DATA_TYPE_UINT64, NULL, 1137 &is_offline); 1138 nvlist_find(nvlist, ZPOOL_CONFIG_REMOVED, DATA_TYPE_UINT64, NULL, 1139 &is_removed); 1140 nvlist_find(nvlist, ZPOOL_CONFIG_FAULTED, DATA_TYPE_UINT64, NULL, 1141 &is_faulted); 1142 nvlist_find(nvlist, ZPOOL_CONFIG_DEGRADED, DATA_TYPE_UINT64, NULL, 1143 &is_degraded); 1144 nvlist_find(nvlist, ZPOOL_CONFIG_NOT_PRESENT, DATA_TYPE_UINT64, NULL, 1145 &isnt_present); 1146 1147 vdev = vdev_find(guid); 1148 if (!vdev) { 1149 is_new = 1; 1150 1151 if (!strcmp(type, VDEV_TYPE_MIRROR)) 1152 vdev = vdev_create(guid, vdev_mirror_read); 1153 else if (!strcmp(type, VDEV_TYPE_RAIDZ)) 1154 vdev = vdev_create(guid, vdev_raidz_read); 1155 else if (!strcmp(type, VDEV_TYPE_REPLACING)) 1156 vdev = vdev_create(guid, vdev_replacing_read); 1157 else if (!strcmp(type, VDEV_TYPE_INDIRECT)) { 1158 vdev_indirect_config_t *vic; 1159 1160 vdev = vdev_create(guid, vdev_indirect_read); 1161 vdev->v_state = VDEV_STATE_HEALTHY; 1162 vic = &vdev->vdev_indirect_config; 1163 1164 nvlist_find(nvlist, 1165 ZPOOL_CONFIG_INDIRECT_OBJECT, DATA_TYPE_UINT64, 1166 NULL, &vic->vic_mapping_object); 1167 nvlist_find(nvlist, 1168 ZPOOL_CONFIG_INDIRECT_BIRTHS, DATA_TYPE_UINT64, 1169 NULL, &vic->vic_births_object); 1170 nvlist_find(nvlist, 1171 ZPOOL_CONFIG_PREV_INDIRECT_VDEV, DATA_TYPE_UINT64, 1172 NULL, &vic->vic_prev_indirect_vdev); 1173 } else 1174 vdev = vdev_create(guid, vdev_disk_read); 1175 1176 vdev->v_id = id; 1177 vdev->v_top = pvdev != NULL ? pvdev : vdev; 1178 if (nvlist_find(nvlist, ZPOOL_CONFIG_ASHIFT, 1179 DATA_TYPE_UINT64, NULL, &ashift) == 0) { 1180 vdev->v_ashift = ashift; 1181 } else { 1182 vdev->v_ashift = 0; 1183 } 1184 if (nvlist_find(nvlist, ZPOOL_CONFIG_NPARITY, 1185 DATA_TYPE_UINT64, NULL, &nparity) == 0) { 1186 vdev->v_nparity = nparity; 1187 } else { 1188 vdev->v_nparity = 0; 1189 } 1190 if (nvlist_find(nvlist, ZPOOL_CONFIG_PATH, 1191 DATA_TYPE_STRING, NULL, &path) == 0) { 1192 if (strncmp(path, "/dev/", 5) == 0) 1193 path += 5; 1194 vdev->v_name = strdup(path); 1195 } else { 1196 char *name; 1197 1198 if (!strcmp(type, "raidz")) { 1199 if (vdev->v_nparity < 1 || 1200 vdev->v_nparity > 3) { 1201 printf("ZFS: can only boot from disk, " 1202 "mirror, raidz1, raidz2 and raidz3 " 1203 "vdevs\n"); 1204 return (EIO); 1205 } 1206 asprintf(&name, "%s%d-%jd", type, 1207 vdev->v_nparity, id); 1208 } else { 1209 asprintf(&name, "%s-%jd", type, id); 1210 } 1211 if (name == NULL) 1212 return (ENOMEM); 1213 vdev->v_name = name; 1214 } 1215 } else { 1216 is_new = 0; 1217 } 1218 1219 if (is_new || is_newer) { 1220 /* 1221 * This is either new vdev or we've already seen this vdev, 1222 * but from an older vdev label, so let's refresh its state 1223 * from the newer label. 1224 */ 1225 if (is_offline) 1226 vdev->v_state = VDEV_STATE_OFFLINE; 1227 else if (is_removed) 1228 vdev->v_state = VDEV_STATE_REMOVED; 1229 else if (is_faulted) 1230 vdev->v_state = VDEV_STATE_FAULTED; 1231 else if (is_degraded) 1232 vdev->v_state = VDEV_STATE_DEGRADED; 1233 else if (isnt_present) 1234 vdev->v_state = VDEV_STATE_CANT_OPEN; 1235 } 1236 1237 rc = nvlist_find(nvlist, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY, 1238 &nkids, &kids); 1239 /* 1240 * Its ok if we don't have any kids. 1241 */ 1242 if (rc == 0) { 1243 vdev->v_nchildren = nkids; 1244 for (i = 0; i < nkids; i++) { 1245 rc = vdev_init_from_nvlist(kids, vdev, &kid, is_newer); 1246 if (rc) 1247 return (rc); 1248 if (is_new) 1249 STAILQ_INSERT_TAIL(&vdev->v_children, kid, 1250 v_childlink); 1251 kids = nvlist_next(kids); 1252 } 1253 } else { 1254 vdev->v_nchildren = 0; 1255 } 1256 1257 if (vdevp) 1258 *vdevp = vdev; 1259 return (0); 1260 } 1261 1262 static void 1263 vdev_set_state(vdev_t *vdev) 1264 { 1265 vdev_t *kid; 1266 int good_kids; 1267 int bad_kids; 1268 1269 /* 1270 * A mirror or raidz is healthy if all its kids are healthy. A 1271 * mirror is degraded if any of its kids is healthy; a raidz 1272 * is degraded if at most nparity kids are offline. 1273 */ 1274 if (STAILQ_FIRST(&vdev->v_children)) { 1275 good_kids = 0; 1276 bad_kids = 0; 1277 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) { 1278 if (kid->v_state == VDEV_STATE_HEALTHY) 1279 good_kids++; 1280 else 1281 bad_kids++; 1282 } 1283 if (bad_kids == 0) { 1284 vdev->v_state = VDEV_STATE_HEALTHY; 1285 } else { 1286 if (vdev->v_read == vdev_mirror_read) { 1287 if (good_kids) { 1288 vdev->v_state = VDEV_STATE_DEGRADED; 1289 } else { 1290 vdev->v_state = VDEV_STATE_OFFLINE; 1291 } 1292 } else if (vdev->v_read == vdev_raidz_read) { 1293 if (bad_kids > vdev->v_nparity) { 1294 vdev->v_state = VDEV_STATE_OFFLINE; 1295 } else { 1296 vdev->v_state = VDEV_STATE_DEGRADED; 1297 } 1298 } 1299 } 1300 } 1301 } 1302 1303 static spa_t * 1304 spa_find_by_guid(uint64_t guid) 1305 { 1306 spa_t *spa; 1307 1308 STAILQ_FOREACH(spa, &zfs_pools, spa_link) 1309 if (spa->spa_guid == guid) 1310 return (spa); 1311 1312 return (0); 1313 } 1314 1315 static spa_t * 1316 spa_find_by_name(const char *name) 1317 { 1318 spa_t *spa; 1319 1320 STAILQ_FOREACH(spa, &zfs_pools, spa_link) 1321 if (!strcmp(spa->spa_name, name)) 1322 return (spa); 1323 1324 return (0); 1325 } 1326 1327 #ifdef BOOT2 1328 static spa_t * 1329 spa_get_primary(void) 1330 { 1331 1332 return (STAILQ_FIRST(&zfs_pools)); 1333 } 1334 1335 static vdev_t * 1336 spa_get_primary_vdev(const spa_t *spa) 1337 { 1338 vdev_t *vdev; 1339 vdev_t *kid; 1340 1341 if (spa == NULL) 1342 spa = spa_get_primary(); 1343 if (spa == NULL) 1344 return (NULL); 1345 vdev = STAILQ_FIRST(&spa->spa_vdevs); 1346 if (vdev == NULL) 1347 return (NULL); 1348 for (kid = STAILQ_FIRST(&vdev->v_children); kid != NULL; 1349 kid = STAILQ_FIRST(&vdev->v_children)) 1350 vdev = kid; 1351 return (vdev); 1352 } 1353 #endif 1354 1355 static spa_t * 1356 spa_create(uint64_t guid, const char *name) 1357 { 1358 spa_t *spa; 1359 1360 if ((spa = calloc(1, sizeof(spa_t))) == NULL) 1361 return (NULL); 1362 if ((spa->spa_name = strdup(name)) == NULL) { 1363 free(spa); 1364 return (NULL); 1365 } 1366 STAILQ_INIT(&spa->spa_vdevs); 1367 spa->spa_guid = guid; 1368 STAILQ_INSERT_TAIL(&zfs_pools, spa, spa_link); 1369 1370 return (spa); 1371 } 1372 1373 static const char * 1374 state_name(vdev_state_t state) 1375 { 1376 static const char* names[] = { 1377 "UNKNOWN", 1378 "CLOSED", 1379 "OFFLINE", 1380 "REMOVED", 1381 "CANT_OPEN", 1382 "FAULTED", 1383 "DEGRADED", 1384 "ONLINE" 1385 }; 1386 return names[state]; 1387 } 1388 1389 #ifdef BOOT2 1390 1391 #define pager_printf printf 1392 1393 #else 1394 1395 static int 1396 pager_printf(const char *fmt, ...) 1397 { 1398 char line[80]; 1399 va_list args; 1400 1401 va_start(args, fmt); 1402 vsprintf(line, fmt, args); 1403 va_end(args); 1404 1405 return (pager_output(line)); 1406 } 1407 1408 #endif 1409 1410 #define STATUS_FORMAT " %s %s\n" 1411 1412 static int 1413 print_state(int indent, const char *name, vdev_state_t state) 1414 { 1415 char buf[512]; 1416 int i; 1417 1418 buf[0] = 0; 1419 for (i = 0; i < indent; i++) 1420 strcat(buf, " "); 1421 strcat(buf, name); 1422 1423 return (pager_printf(STATUS_FORMAT, buf, state_name(state))); 1424 } 1425 1426 static int 1427 vdev_status(vdev_t *vdev, int indent) 1428 { 1429 vdev_t *kid; 1430 int ret; 1431 ret = print_state(indent, vdev->v_name, vdev->v_state); 1432 if (ret != 0) 1433 return (ret); 1434 1435 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) { 1436 ret = vdev_status(kid, indent + 1); 1437 if (ret != 0) 1438 return (ret); 1439 } 1440 return (ret); 1441 } 1442 1443 static int 1444 spa_status(spa_t *spa) 1445 { 1446 static char bootfs[ZFS_MAXNAMELEN]; 1447 uint64_t rootid; 1448 vdev_t *vdev; 1449 int good_kids, bad_kids, degraded_kids, ret; 1450 vdev_state_t state; 1451 1452 ret = pager_printf(" pool: %s\n", spa->spa_name); 1453 if (ret != 0) 1454 return (ret); 1455 1456 if (zfs_get_root(spa, &rootid) == 0 && 1457 zfs_rlookup(spa, rootid, bootfs) == 0) { 1458 if (bootfs[0] == '\0') 1459 ret = pager_printf("bootfs: %s\n", spa->spa_name); 1460 else 1461 ret = pager_printf("bootfs: %s/%s\n", spa->spa_name, 1462 bootfs); 1463 if (ret != 0) 1464 return (ret); 1465 } 1466 ret = pager_printf("config:\n\n"); 1467 if (ret != 0) 1468 return (ret); 1469 ret = pager_printf(STATUS_FORMAT, "NAME", "STATE"); 1470 if (ret != 0) 1471 return (ret); 1472 1473 good_kids = 0; 1474 degraded_kids = 0; 1475 bad_kids = 0; 1476 STAILQ_FOREACH(vdev, &spa->spa_vdevs, v_childlink) { 1477 if (vdev->v_state == VDEV_STATE_HEALTHY) 1478 good_kids++; 1479 else if (vdev->v_state == VDEV_STATE_DEGRADED) 1480 degraded_kids++; 1481 else 1482 bad_kids++; 1483 } 1484 1485 state = VDEV_STATE_CLOSED; 1486 if (good_kids > 0 && (degraded_kids + bad_kids) == 0) 1487 state = VDEV_STATE_HEALTHY; 1488 else if ((good_kids + degraded_kids) > 0) 1489 state = VDEV_STATE_DEGRADED; 1490 1491 ret = print_state(0, spa->spa_name, state); 1492 if (ret != 0) 1493 return (ret); 1494 STAILQ_FOREACH(vdev, &spa->spa_vdevs, v_childlink) { 1495 ret = vdev_status(vdev, 1); 1496 if (ret != 0) 1497 return (ret); 1498 } 1499 return (ret); 1500 } 1501 1502 static int 1503 spa_all_status(void) 1504 { 1505 spa_t *spa; 1506 int first = 1, ret = 0; 1507 1508 STAILQ_FOREACH(spa, &zfs_pools, spa_link) { 1509 if (!first) { 1510 ret = pager_printf("\n"); 1511 if (ret != 0) 1512 return (ret); 1513 } 1514 first = 0; 1515 ret = spa_status(spa); 1516 if (ret != 0) 1517 return (ret); 1518 } 1519 return (ret); 1520 } 1521 1522 static uint64_t 1523 vdev_label_offset(uint64_t psize, int l, uint64_t offset) 1524 { 1525 uint64_t label_offset; 1526 1527 if (l < VDEV_LABELS / 2) 1528 label_offset = 0; 1529 else 1530 label_offset = psize - VDEV_LABELS * sizeof (vdev_label_t); 1531 1532 return (offset + l * sizeof (vdev_label_t) + label_offset); 1533 } 1534 1535 static int 1536 vdev_probe(vdev_phys_read_t *_read, void *read_priv, spa_t **spap) 1537 { 1538 vdev_t vtmp; 1539 vdev_phys_t *vdev_label = (vdev_phys_t *) zap_scratch; 1540 vdev_phys_t *tmp_label; 1541 spa_t *spa; 1542 vdev_t *vdev, *top_vdev, *pool_vdev; 1543 off_t off; 1544 blkptr_t bp; 1545 const unsigned char *nvlist = NULL; 1546 uint64_t val; 1547 uint64_t guid; 1548 uint64_t best_txg = 0; 1549 uint64_t pool_txg, pool_guid; 1550 uint64_t psize; 1551 const char *pool_name; 1552 const unsigned char *vdevs; 1553 const unsigned char *features; 1554 int i, l, rc, is_newer; 1555 char *upbuf; 1556 const struct uberblock *up; 1557 1558 /* 1559 * Load the vdev label and figure out which 1560 * uberblock is most current. 1561 */ 1562 memset(&vtmp, 0, sizeof(vtmp)); 1563 vtmp.v_phys_read = _read; 1564 vtmp.v_read_priv = read_priv; 1565 psize = P2ALIGN(ldi_get_size(read_priv), 1566 (uint64_t)sizeof (vdev_label_t)); 1567 1568 /* Test for minimum pool size. */ 1569 if (psize < SPA_MINDEVSIZE) 1570 return (EIO); 1571 1572 tmp_label = zfs_alloc(sizeof(vdev_phys_t)); 1573 1574 for (l = 0; l < VDEV_LABELS; l++) { 1575 off = vdev_label_offset(psize, l, 1576 offsetof(vdev_label_t, vl_vdev_phys)); 1577 1578 BP_ZERO(&bp); 1579 BP_SET_LSIZE(&bp, sizeof(vdev_phys_t)); 1580 BP_SET_PSIZE(&bp, sizeof(vdev_phys_t)); 1581 BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_LABEL); 1582 BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF); 1583 DVA_SET_OFFSET(BP_IDENTITY(&bp), off); 1584 ZIO_SET_CHECKSUM(&bp.blk_cksum, off, 0, 0, 0); 1585 1586 if (vdev_read_phys(&vtmp, &bp, tmp_label, off, 0)) 1587 continue; 1588 1589 if (tmp_label->vp_nvlist[0] != NV_ENCODE_XDR) 1590 continue; 1591 1592 nvlist = (const unsigned char *) tmp_label->vp_nvlist + 4; 1593 if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_TXG, 1594 DATA_TYPE_UINT64, NULL, &pool_txg) != 0) 1595 continue; 1596 1597 if (best_txg <= pool_txg) { 1598 best_txg = pool_txg; 1599 memcpy(vdev_label, tmp_label, sizeof (vdev_phys_t)); 1600 } 1601 } 1602 1603 zfs_free(tmp_label, sizeof (vdev_phys_t)); 1604 1605 if (best_txg == 0) 1606 return (EIO); 1607 1608 if (vdev_label->vp_nvlist[0] != NV_ENCODE_XDR) 1609 return (EIO); 1610 1611 nvlist = (const unsigned char *) vdev_label->vp_nvlist + 4; 1612 1613 if (nvlist_find(nvlist, ZPOOL_CONFIG_VERSION, DATA_TYPE_UINT64, 1614 NULL, &val) != 0) { 1615 return (EIO); 1616 } 1617 1618 if (!SPA_VERSION_IS_SUPPORTED(val)) { 1619 printf("ZFS: unsupported ZFS version %u (should be %u)\n", 1620 (unsigned) val, (unsigned) SPA_VERSION); 1621 return (EIO); 1622 } 1623 1624 /* Check ZFS features for read */ 1625 if (nvlist_find(nvlist, ZPOOL_CONFIG_FEATURES_FOR_READ, 1626 DATA_TYPE_NVLIST, NULL, &features) == 0 && 1627 nvlist_check_features_for_read(features) != 0) { 1628 return (EIO); 1629 } 1630 1631 if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_STATE, DATA_TYPE_UINT64, 1632 NULL, &val) != 0) { 1633 return (EIO); 1634 } 1635 1636 if (val == POOL_STATE_DESTROYED) { 1637 /* We don't boot only from destroyed pools. */ 1638 return (EIO); 1639 } 1640 1641 if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_TXG, DATA_TYPE_UINT64, 1642 NULL, &pool_txg) != 0 || 1643 nvlist_find(nvlist, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64, 1644 NULL, &pool_guid) != 0 || 1645 nvlist_find(nvlist, ZPOOL_CONFIG_POOL_NAME, DATA_TYPE_STRING, 1646 NULL, &pool_name) != 0) { 1647 /* 1648 * Cache and spare devices end up here - just ignore 1649 * them. 1650 */ 1651 /*printf("ZFS: can't find pool details\n");*/ 1652 return (EIO); 1653 } 1654 1655 if (nvlist_find(nvlist, ZPOOL_CONFIG_IS_LOG, DATA_TYPE_UINT64, 1656 NULL, &val) == 0 && val != 0) { 1657 return (EIO); 1658 } 1659 1660 /* 1661 * Create the pool if this is the first time we've seen it. 1662 */ 1663 spa = spa_find_by_guid(pool_guid); 1664 if (spa == NULL) { 1665 spa = spa_create(pool_guid, pool_name); 1666 if (spa == NULL) 1667 return (ENOMEM); 1668 } 1669 if (pool_txg > spa->spa_txg) { 1670 spa->spa_txg = pool_txg; 1671 is_newer = 1; 1672 } else { 1673 is_newer = 0; 1674 } 1675 1676 /* 1677 * Get the vdev tree and create our in-core copy of it. 1678 * If we already have a vdev with this guid, this must 1679 * be some kind of alias (overlapping slices, dangerously dedicated 1680 * disks etc). 1681 */ 1682 if (nvlist_find(nvlist, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64, 1683 NULL, &guid) != 0) { 1684 return (EIO); 1685 } 1686 vdev = vdev_find(guid); 1687 if (vdev && vdev->v_phys_read) /* Has this vdev already been inited? */ 1688 return (EIO); 1689 1690 if (nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST, 1691 NULL, &vdevs)) { 1692 return (EIO); 1693 } 1694 1695 rc = vdev_init_from_nvlist(vdevs, NULL, &top_vdev, is_newer); 1696 if (rc != 0) 1697 return (rc); 1698 1699 /* 1700 * Add the toplevel vdev to the pool if its not already there. 1701 */ 1702 STAILQ_FOREACH(pool_vdev, &spa->spa_vdevs, v_childlink) 1703 if (top_vdev == pool_vdev) 1704 break; 1705 if (!pool_vdev && top_vdev) { 1706 top_vdev->spa = spa; 1707 STAILQ_INSERT_TAIL(&spa->spa_vdevs, top_vdev, v_childlink); 1708 } 1709 1710 /* 1711 * We should already have created an incomplete vdev for this 1712 * vdev. Find it and initialise it with our read proc. 1713 */ 1714 vdev = vdev_find(guid); 1715 if (vdev) { 1716 vdev->v_phys_read = _read; 1717 vdev->v_read_priv = read_priv; 1718 vdev->v_state = VDEV_STATE_HEALTHY; 1719 } else { 1720 printf("ZFS: inconsistent nvlist contents\n"); 1721 return (EIO); 1722 } 1723 1724 /* 1725 * Re-evaluate top-level vdev state. 1726 */ 1727 vdev_set_state(top_vdev); 1728 1729 /* 1730 * Ok, we are happy with the pool so far. Lets find 1731 * the best uberblock and then we can actually access 1732 * the contents of the pool. 1733 */ 1734 upbuf = zfs_alloc(VDEV_UBERBLOCK_SIZE(vdev)); 1735 up = (const struct uberblock *)upbuf; 1736 for (l = 0; l < VDEV_LABELS; l++) { 1737 for (i = 0; i < VDEV_UBERBLOCK_COUNT(vdev); i++) { 1738 off = vdev_label_offset(psize, l, 1739 VDEV_UBERBLOCK_OFFSET(vdev, i)); 1740 BP_ZERO(&bp); 1741 DVA_SET_OFFSET(&bp.blk_dva[0], off); 1742 BP_SET_LSIZE(&bp, VDEV_UBERBLOCK_SIZE(vdev)); 1743 BP_SET_PSIZE(&bp, VDEV_UBERBLOCK_SIZE(vdev)); 1744 BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_LABEL); 1745 BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF); 1746 ZIO_SET_CHECKSUM(&bp.blk_cksum, off, 0, 0, 0); 1747 1748 if (vdev_read_phys(vdev, &bp, upbuf, off, 0)) 1749 continue; 1750 1751 if (up->ub_magic != UBERBLOCK_MAGIC) 1752 continue; 1753 if (up->ub_txg < spa->spa_txg) 1754 continue; 1755 if (up->ub_txg > spa->spa_uberblock.ub_txg || 1756 (up->ub_txg == spa->spa_uberblock.ub_txg && 1757 up->ub_timestamp > 1758 spa->spa_uberblock.ub_timestamp)) { 1759 spa->spa_uberblock = *up; 1760 } 1761 } 1762 } 1763 zfs_free(upbuf, VDEV_UBERBLOCK_SIZE(vdev)); 1764 1765 vdev->spa = spa; 1766 if (spap != NULL) 1767 *spap = spa; 1768 return (0); 1769 } 1770 1771 static int 1772 ilog2(int n) 1773 { 1774 int v; 1775 1776 for (v = 0; v < 32; v++) 1777 if (n == (1 << v)) 1778 return v; 1779 return -1; 1780 } 1781 1782 static int 1783 zio_read_gang(const spa_t *spa, const blkptr_t *bp, void *buf) 1784 { 1785 blkptr_t gbh_bp; 1786 zio_gbh_phys_t zio_gb; 1787 char *pbuf; 1788 int i; 1789 1790 /* Artificial BP for gang block header. */ 1791 gbh_bp = *bp; 1792 BP_SET_PSIZE(&gbh_bp, SPA_GANGBLOCKSIZE); 1793 BP_SET_LSIZE(&gbh_bp, SPA_GANGBLOCKSIZE); 1794 BP_SET_CHECKSUM(&gbh_bp, ZIO_CHECKSUM_GANG_HEADER); 1795 BP_SET_COMPRESS(&gbh_bp, ZIO_COMPRESS_OFF); 1796 for (i = 0; i < SPA_DVAS_PER_BP; i++) 1797 DVA_SET_GANG(&gbh_bp.blk_dva[i], 0); 1798 1799 /* Read gang header block using the artificial BP. */ 1800 if (zio_read(spa, &gbh_bp, &zio_gb)) 1801 return (EIO); 1802 1803 pbuf = buf; 1804 for (i = 0; i < SPA_GBH_NBLKPTRS; i++) { 1805 blkptr_t *gbp = &zio_gb.zg_blkptr[i]; 1806 1807 if (BP_IS_HOLE(gbp)) 1808 continue; 1809 if (zio_read(spa, gbp, pbuf)) 1810 return (EIO); 1811 pbuf += BP_GET_PSIZE(gbp); 1812 } 1813 1814 if (zio_checksum_verify(spa, bp, buf)) 1815 return (EIO); 1816 return (0); 1817 } 1818 1819 static int 1820 zio_read(const spa_t *spa, const blkptr_t *bp, void *buf) 1821 { 1822 int cpfunc = BP_GET_COMPRESS(bp); 1823 uint64_t align, size; 1824 void *pbuf; 1825 int i, error; 1826 1827 /* 1828 * Process data embedded in block pointer 1829 */ 1830 if (BP_IS_EMBEDDED(bp)) { 1831 ASSERT(BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA); 1832 1833 size = BPE_GET_PSIZE(bp); 1834 ASSERT(size <= BPE_PAYLOAD_SIZE); 1835 1836 if (cpfunc != ZIO_COMPRESS_OFF) 1837 pbuf = zfs_alloc(size); 1838 else 1839 pbuf = buf; 1840 1841 decode_embedded_bp_compressed(bp, pbuf); 1842 error = 0; 1843 1844 if (cpfunc != ZIO_COMPRESS_OFF) { 1845 error = zio_decompress_data(cpfunc, pbuf, 1846 size, buf, BP_GET_LSIZE(bp)); 1847 zfs_free(pbuf, size); 1848 } 1849 if (error != 0) 1850 printf("ZFS: i/o error - unable to decompress block pointer data, error %d\n", 1851 error); 1852 return (error); 1853 } 1854 1855 error = EIO; 1856 1857 for (i = 0; i < SPA_DVAS_PER_BP; i++) { 1858 const dva_t *dva = &bp->blk_dva[i]; 1859 vdev_t *vdev; 1860 int vdevid; 1861 off_t offset; 1862 1863 if (!dva->dva_word[0] && !dva->dva_word[1]) 1864 continue; 1865 1866 vdevid = DVA_GET_VDEV(dva); 1867 offset = DVA_GET_OFFSET(dva); 1868 STAILQ_FOREACH(vdev, &spa->spa_vdevs, v_childlink) { 1869 if (vdev->v_id == vdevid) 1870 break; 1871 } 1872 if (!vdev || !vdev->v_read) 1873 continue; 1874 1875 size = BP_GET_PSIZE(bp); 1876 if (vdev->v_read == vdev_raidz_read) { 1877 align = 1ULL << vdev->v_top->v_ashift; 1878 if (P2PHASE(size, align) != 0) 1879 size = P2ROUNDUP(size, align); 1880 } 1881 if (size != BP_GET_PSIZE(bp) || cpfunc != ZIO_COMPRESS_OFF) 1882 pbuf = zfs_alloc(size); 1883 else 1884 pbuf = buf; 1885 1886 if (DVA_GET_GANG(dva)) 1887 error = zio_read_gang(spa, bp, pbuf); 1888 else 1889 error = vdev->v_read(vdev, bp, pbuf, offset, size); 1890 if (error == 0) { 1891 if (cpfunc != ZIO_COMPRESS_OFF) 1892 error = zio_decompress_data(cpfunc, pbuf, 1893 BP_GET_PSIZE(bp), buf, BP_GET_LSIZE(bp)); 1894 else if (size != BP_GET_PSIZE(bp)) 1895 bcopy(pbuf, buf, BP_GET_PSIZE(bp)); 1896 } 1897 if (buf != pbuf) 1898 zfs_free(pbuf, size); 1899 if (error == 0) 1900 break; 1901 } 1902 if (error != 0) 1903 printf("ZFS: i/o error - all block copies unavailable\n"); 1904 return (error); 1905 } 1906 1907 static int 1908 dnode_read(const spa_t *spa, const dnode_phys_t *dnode, off_t offset, void *buf, size_t buflen) 1909 { 1910 int ibshift = dnode->dn_indblkshift - SPA_BLKPTRSHIFT; 1911 int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 1912 int nlevels = dnode->dn_nlevels; 1913 int i, rc; 1914 1915 if (bsize > SPA_MAXBLOCKSIZE) { 1916 printf("ZFS: I/O error - blocks larger than %llu are not " 1917 "supported\n", SPA_MAXBLOCKSIZE); 1918 return (EIO); 1919 } 1920 1921 /* 1922 * Note: bsize may not be a power of two here so we need to do an 1923 * actual divide rather than a bitshift. 1924 */ 1925 while (buflen > 0) { 1926 uint64_t bn = offset / bsize; 1927 int boff = offset % bsize; 1928 int ibn; 1929 const blkptr_t *indbp; 1930 blkptr_t bp; 1931 1932 if (bn > dnode->dn_maxblkid) 1933 return (EIO); 1934 1935 if (dnode == dnode_cache_obj && bn == dnode_cache_bn) 1936 goto cached; 1937 1938 indbp = dnode->dn_blkptr; 1939 for (i = 0; i < nlevels; i++) { 1940 /* 1941 * Copy the bp from the indirect array so that 1942 * we can re-use the scratch buffer for multi-level 1943 * objects. 1944 */ 1945 ibn = bn >> ((nlevels - i - 1) * ibshift); 1946 ibn &= ((1 << ibshift) - 1); 1947 bp = indbp[ibn]; 1948 if (BP_IS_HOLE(&bp)) { 1949 memset(dnode_cache_buf, 0, bsize); 1950 break; 1951 } 1952 rc = zio_read(spa, &bp, dnode_cache_buf); 1953 if (rc) 1954 return (rc); 1955 indbp = (const blkptr_t *) dnode_cache_buf; 1956 } 1957 dnode_cache_obj = dnode; 1958 dnode_cache_bn = bn; 1959 cached: 1960 1961 /* 1962 * The buffer contains our data block. Copy what we 1963 * need from it and loop. 1964 */ 1965 i = bsize - boff; 1966 if (i > buflen) i = buflen; 1967 memcpy(buf, &dnode_cache_buf[boff], i); 1968 buf = ((char*) buf) + i; 1969 offset += i; 1970 buflen -= i; 1971 } 1972 1973 return (0); 1974 } 1975 1976 /* 1977 * Lookup a value in a microzap directory. Assumes that the zap 1978 * scratch buffer contains the directory contents. 1979 */ 1980 static int 1981 mzap_lookup(const dnode_phys_t *dnode, const char *name, uint64_t *value) 1982 { 1983 const mzap_phys_t *mz; 1984 const mzap_ent_phys_t *mze; 1985 size_t size; 1986 int chunks, i; 1987 1988 /* 1989 * Microzap objects use exactly one block. Read the whole 1990 * thing. 1991 */ 1992 size = dnode->dn_datablkszsec * 512; 1993 1994 mz = (const mzap_phys_t *) zap_scratch; 1995 chunks = size / MZAP_ENT_LEN - 1; 1996 1997 for (i = 0; i < chunks; i++) { 1998 mze = &mz->mz_chunk[i]; 1999 if (!strcmp(mze->mze_name, name)) { 2000 *value = mze->mze_value; 2001 return (0); 2002 } 2003 } 2004 2005 return (ENOENT); 2006 } 2007 2008 /* 2009 * Compare a name with a zap leaf entry. Return non-zero if the name 2010 * matches. 2011 */ 2012 static int 2013 fzap_name_equal(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, const char *name) 2014 { 2015 size_t namelen; 2016 const zap_leaf_chunk_t *nc; 2017 const char *p; 2018 2019 namelen = zc->l_entry.le_name_numints; 2020 2021 nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk); 2022 p = name; 2023 while (namelen > 0) { 2024 size_t len; 2025 len = namelen; 2026 if (len > ZAP_LEAF_ARRAY_BYTES) 2027 len = ZAP_LEAF_ARRAY_BYTES; 2028 if (memcmp(p, nc->l_array.la_array, len)) 2029 return (0); 2030 p += len; 2031 namelen -= len; 2032 nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next); 2033 } 2034 2035 return 1; 2036 } 2037 2038 /* 2039 * Extract a uint64_t value from a zap leaf entry. 2040 */ 2041 static uint64_t 2042 fzap_leaf_value(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc) 2043 { 2044 const zap_leaf_chunk_t *vc; 2045 int i; 2046 uint64_t value; 2047 const uint8_t *p; 2048 2049 vc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_value_chunk); 2050 for (i = 0, value = 0, p = vc->l_array.la_array; i < 8; i++) { 2051 value = (value << 8) | p[i]; 2052 } 2053 2054 return value; 2055 } 2056 2057 static void 2058 stv(int len, void *addr, uint64_t value) 2059 { 2060 switch (len) { 2061 case 1: 2062 *(uint8_t *)addr = value; 2063 return; 2064 case 2: 2065 *(uint16_t *)addr = value; 2066 return; 2067 case 4: 2068 *(uint32_t *)addr = value; 2069 return; 2070 case 8: 2071 *(uint64_t *)addr = value; 2072 return; 2073 } 2074 } 2075 2076 /* 2077 * Extract a array from a zap leaf entry. 2078 */ 2079 static void 2080 fzap_leaf_array(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, 2081 uint64_t integer_size, uint64_t num_integers, void *buf) 2082 { 2083 uint64_t array_int_len = zc->l_entry.le_value_intlen; 2084 uint64_t value = 0; 2085 uint64_t *u64 = buf; 2086 char *p = buf; 2087 int len = MIN(zc->l_entry.le_value_numints, num_integers); 2088 int chunk = zc->l_entry.le_value_chunk; 2089 int byten = 0; 2090 2091 if (integer_size == 8 && len == 1) { 2092 *u64 = fzap_leaf_value(zl, zc); 2093 return; 2094 } 2095 2096 while (len > 0) { 2097 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(zl, chunk).l_array; 2098 int i; 2099 2100 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(zl)); 2101 for (i = 0; i < ZAP_LEAF_ARRAY_BYTES && len > 0; i++) { 2102 value = (value << 8) | la->la_array[i]; 2103 byten++; 2104 if (byten == array_int_len) { 2105 stv(integer_size, p, value); 2106 byten = 0; 2107 len--; 2108 if (len == 0) 2109 return; 2110 p += integer_size; 2111 } 2112 } 2113 chunk = la->la_next; 2114 } 2115 } 2116 2117 /* 2118 * Lookup a value in a fatzap directory. Assumes that the zap scratch 2119 * buffer contains the directory header. 2120 */ 2121 static int 2122 fzap_lookup(const spa_t *spa, const dnode_phys_t *dnode, const char *name, 2123 uint64_t integer_size, uint64_t num_integers, void *value) 2124 { 2125 int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2126 zap_phys_t zh = *(zap_phys_t *) zap_scratch; 2127 fat_zap_t z; 2128 uint64_t *ptrtbl; 2129 uint64_t hash; 2130 int rc; 2131 2132 if (zh.zap_magic != ZAP_MAGIC) 2133 return (EIO); 2134 2135 z.zap_block_shift = ilog2(bsize); 2136 z.zap_phys = (zap_phys_t *) zap_scratch; 2137 2138 /* 2139 * Figure out where the pointer table is and read it in if necessary. 2140 */ 2141 if (zh.zap_ptrtbl.zt_blk) { 2142 rc = dnode_read(spa, dnode, zh.zap_ptrtbl.zt_blk * bsize, 2143 zap_scratch, bsize); 2144 if (rc) 2145 return (rc); 2146 ptrtbl = (uint64_t *) zap_scratch; 2147 } else { 2148 ptrtbl = &ZAP_EMBEDDED_PTRTBL_ENT(&z, 0); 2149 } 2150 2151 hash = zap_hash(zh.zap_salt, name); 2152 2153 zap_leaf_t zl; 2154 zl.l_bs = z.zap_block_shift; 2155 2156 off_t off = ptrtbl[hash >> (64 - zh.zap_ptrtbl.zt_shift)] << zl.l_bs; 2157 zap_leaf_chunk_t *zc; 2158 2159 rc = dnode_read(spa, dnode, off, zap_scratch, bsize); 2160 if (rc) 2161 return (rc); 2162 2163 zl.l_phys = (zap_leaf_phys_t *) zap_scratch; 2164 2165 /* 2166 * Make sure this chunk matches our hash. 2167 */ 2168 if (zl.l_phys->l_hdr.lh_prefix_len > 0 2169 && zl.l_phys->l_hdr.lh_prefix 2170 != hash >> (64 - zl.l_phys->l_hdr.lh_prefix_len)) 2171 return (ENOENT); 2172 2173 /* 2174 * Hash within the chunk to find our entry. 2175 */ 2176 int shift = (64 - ZAP_LEAF_HASH_SHIFT(&zl) - zl.l_phys->l_hdr.lh_prefix_len); 2177 int h = (hash >> shift) & ((1 << ZAP_LEAF_HASH_SHIFT(&zl)) - 1); 2178 h = zl.l_phys->l_hash[h]; 2179 if (h == 0xffff) 2180 return (ENOENT); 2181 zc = &ZAP_LEAF_CHUNK(&zl, h); 2182 while (zc->l_entry.le_hash != hash) { 2183 if (zc->l_entry.le_next == 0xffff) { 2184 zc = NULL; 2185 break; 2186 } 2187 zc = &ZAP_LEAF_CHUNK(&zl, zc->l_entry.le_next); 2188 } 2189 if (fzap_name_equal(&zl, zc, name)) { 2190 if (zc->l_entry.le_value_intlen * zc->l_entry.le_value_numints > 2191 integer_size * num_integers) 2192 return (E2BIG); 2193 fzap_leaf_array(&zl, zc, integer_size, num_integers, value); 2194 return (0); 2195 } 2196 2197 return (ENOENT); 2198 } 2199 2200 /* 2201 * Lookup a name in a zap object and return its value as a uint64_t. 2202 */ 2203 static int 2204 zap_lookup(const spa_t *spa, const dnode_phys_t *dnode, const char *name, 2205 uint64_t integer_size, uint64_t num_integers, void *value) 2206 { 2207 int rc; 2208 uint64_t zap_type; 2209 size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2210 2211 rc = dnode_read(spa, dnode, 0, zap_scratch, size); 2212 if (rc) 2213 return (rc); 2214 2215 zap_type = *(uint64_t *) zap_scratch; 2216 if (zap_type == ZBT_MICRO) 2217 return mzap_lookup(dnode, name, value); 2218 else if (zap_type == ZBT_HEADER) { 2219 return fzap_lookup(spa, dnode, name, integer_size, 2220 num_integers, value); 2221 } 2222 printf("ZFS: invalid zap_type=%d\n", (int)zap_type); 2223 return (EIO); 2224 } 2225 2226 /* 2227 * List a microzap directory. Assumes that the zap scratch buffer contains 2228 * the directory contents. 2229 */ 2230 static int 2231 mzap_list(const dnode_phys_t *dnode, int (*callback)(const char *, uint64_t)) 2232 { 2233 const mzap_phys_t *mz; 2234 const mzap_ent_phys_t *mze; 2235 size_t size; 2236 int chunks, i, rc; 2237 2238 /* 2239 * Microzap objects use exactly one block. Read the whole 2240 * thing. 2241 */ 2242 size = dnode->dn_datablkszsec * 512; 2243 mz = (const mzap_phys_t *) zap_scratch; 2244 chunks = size / MZAP_ENT_LEN - 1; 2245 2246 for (i = 0; i < chunks; i++) { 2247 mze = &mz->mz_chunk[i]; 2248 if (mze->mze_name[0]) { 2249 rc = callback(mze->mze_name, mze->mze_value); 2250 if (rc != 0) 2251 return (rc); 2252 } 2253 } 2254 2255 return (0); 2256 } 2257 2258 /* 2259 * List a fatzap directory. Assumes that the zap scratch buffer contains 2260 * the directory header. 2261 */ 2262 static int 2263 fzap_list(const spa_t *spa, const dnode_phys_t *dnode, int (*callback)(const char *, uint64_t)) 2264 { 2265 int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2266 zap_phys_t zh = *(zap_phys_t *) zap_scratch; 2267 fat_zap_t z; 2268 int i, j, rc; 2269 2270 if (zh.zap_magic != ZAP_MAGIC) 2271 return (EIO); 2272 2273 z.zap_block_shift = ilog2(bsize); 2274 z.zap_phys = (zap_phys_t *) zap_scratch; 2275 2276 /* 2277 * This assumes that the leaf blocks start at block 1. The 2278 * documentation isn't exactly clear on this. 2279 */ 2280 zap_leaf_t zl; 2281 zl.l_bs = z.zap_block_shift; 2282 for (i = 0; i < zh.zap_num_leafs; i++) { 2283 off_t off = (i + 1) << zl.l_bs; 2284 char name[256], *p; 2285 uint64_t value; 2286 2287 if (dnode_read(spa, dnode, off, zap_scratch, bsize)) 2288 return (EIO); 2289 2290 zl.l_phys = (zap_leaf_phys_t *) zap_scratch; 2291 2292 for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) { 2293 zap_leaf_chunk_t *zc, *nc; 2294 int namelen; 2295 2296 zc = &ZAP_LEAF_CHUNK(&zl, j); 2297 if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY) 2298 continue; 2299 namelen = zc->l_entry.le_name_numints; 2300 if (namelen > sizeof(name)) 2301 namelen = sizeof(name); 2302 2303 /* 2304 * Paste the name back together. 2305 */ 2306 nc = &ZAP_LEAF_CHUNK(&zl, zc->l_entry.le_name_chunk); 2307 p = name; 2308 while (namelen > 0) { 2309 int len; 2310 len = namelen; 2311 if (len > ZAP_LEAF_ARRAY_BYTES) 2312 len = ZAP_LEAF_ARRAY_BYTES; 2313 memcpy(p, nc->l_array.la_array, len); 2314 p += len; 2315 namelen -= len; 2316 nc = &ZAP_LEAF_CHUNK(&zl, nc->l_array.la_next); 2317 } 2318 2319 /* 2320 * Assume the first eight bytes of the value are 2321 * a uint64_t. 2322 */ 2323 value = fzap_leaf_value(&zl, zc); 2324 2325 //printf("%s 0x%jx\n", name, (uintmax_t)value); 2326 rc = callback((const char *)name, value); 2327 if (rc != 0) 2328 return (rc); 2329 } 2330 } 2331 2332 return (0); 2333 } 2334 2335 static int zfs_printf(const char *name, uint64_t value __unused) 2336 { 2337 2338 printf("%s\n", name); 2339 2340 return (0); 2341 } 2342 2343 /* 2344 * List a zap directory. 2345 */ 2346 static int 2347 zap_list(const spa_t *spa, const dnode_phys_t *dnode) 2348 { 2349 uint64_t zap_type; 2350 size_t size = dnode->dn_datablkszsec * 512; 2351 2352 if (dnode_read(spa, dnode, 0, zap_scratch, size)) 2353 return (EIO); 2354 2355 zap_type = *(uint64_t *) zap_scratch; 2356 if (zap_type == ZBT_MICRO) 2357 return mzap_list(dnode, zfs_printf); 2358 else 2359 return fzap_list(spa, dnode, zfs_printf); 2360 } 2361 2362 static int 2363 objset_get_dnode(const spa_t *spa, const objset_phys_t *os, uint64_t objnum, dnode_phys_t *dnode) 2364 { 2365 off_t offset; 2366 2367 offset = objnum * sizeof(dnode_phys_t); 2368 return dnode_read(spa, &os->os_meta_dnode, offset, 2369 dnode, sizeof(dnode_phys_t)); 2370 } 2371 2372 static int 2373 mzap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, char *name, uint64_t value) 2374 { 2375 const mzap_phys_t *mz; 2376 const mzap_ent_phys_t *mze; 2377 size_t size; 2378 int chunks, i; 2379 2380 /* 2381 * Microzap objects use exactly one block. Read the whole 2382 * thing. 2383 */ 2384 size = dnode->dn_datablkszsec * 512; 2385 2386 mz = (const mzap_phys_t *) zap_scratch; 2387 chunks = size / MZAP_ENT_LEN - 1; 2388 2389 for (i = 0; i < chunks; i++) { 2390 mze = &mz->mz_chunk[i]; 2391 if (value == mze->mze_value) { 2392 strcpy(name, mze->mze_name); 2393 return (0); 2394 } 2395 } 2396 2397 return (ENOENT); 2398 } 2399 2400 static void 2401 fzap_name_copy(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, char *name) 2402 { 2403 size_t namelen; 2404 const zap_leaf_chunk_t *nc; 2405 char *p; 2406 2407 namelen = zc->l_entry.le_name_numints; 2408 2409 nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk); 2410 p = name; 2411 while (namelen > 0) { 2412 size_t len; 2413 len = namelen; 2414 if (len > ZAP_LEAF_ARRAY_BYTES) 2415 len = ZAP_LEAF_ARRAY_BYTES; 2416 memcpy(p, nc->l_array.la_array, len); 2417 p += len; 2418 namelen -= len; 2419 nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next); 2420 } 2421 2422 *p = '\0'; 2423 } 2424 2425 static int 2426 fzap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, char *name, uint64_t value) 2427 { 2428 int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2429 zap_phys_t zh = *(zap_phys_t *) zap_scratch; 2430 fat_zap_t z; 2431 int i, j; 2432 2433 if (zh.zap_magic != ZAP_MAGIC) 2434 return (EIO); 2435 2436 z.zap_block_shift = ilog2(bsize); 2437 z.zap_phys = (zap_phys_t *) zap_scratch; 2438 2439 /* 2440 * This assumes that the leaf blocks start at block 1. The 2441 * documentation isn't exactly clear on this. 2442 */ 2443 zap_leaf_t zl; 2444 zl.l_bs = z.zap_block_shift; 2445 for (i = 0; i < zh.zap_num_leafs; i++) { 2446 off_t off = (i + 1) << zl.l_bs; 2447 2448 if (dnode_read(spa, dnode, off, zap_scratch, bsize)) 2449 return (EIO); 2450 2451 zl.l_phys = (zap_leaf_phys_t *) zap_scratch; 2452 2453 for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) { 2454 zap_leaf_chunk_t *zc; 2455 2456 zc = &ZAP_LEAF_CHUNK(&zl, j); 2457 if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY) 2458 continue; 2459 if (zc->l_entry.le_value_intlen != 8 || 2460 zc->l_entry.le_value_numints != 1) 2461 continue; 2462 2463 if (fzap_leaf_value(&zl, zc) == value) { 2464 fzap_name_copy(&zl, zc, name); 2465 return (0); 2466 } 2467 } 2468 } 2469 2470 return (ENOENT); 2471 } 2472 2473 static int 2474 zap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, char *name, uint64_t value) 2475 { 2476 int rc; 2477 uint64_t zap_type; 2478 size_t size = dnode->dn_datablkszsec * 512; 2479 2480 rc = dnode_read(spa, dnode, 0, zap_scratch, size); 2481 if (rc) 2482 return (rc); 2483 2484 zap_type = *(uint64_t *) zap_scratch; 2485 if (zap_type == ZBT_MICRO) 2486 return mzap_rlookup(spa, dnode, name, value); 2487 else 2488 return fzap_rlookup(spa, dnode, name, value); 2489 } 2490 2491 static int 2492 zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result) 2493 { 2494 char name[256]; 2495 char component[256]; 2496 uint64_t dir_obj, parent_obj, child_dir_zapobj; 2497 dnode_phys_t child_dir_zap, dataset, dir, parent; 2498 dsl_dir_phys_t *dd; 2499 dsl_dataset_phys_t *ds; 2500 char *p; 2501 int len; 2502 2503 p = &name[sizeof(name) - 1]; 2504 *p = '\0'; 2505 2506 if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) { 2507 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum); 2508 return (EIO); 2509 } 2510 ds = (dsl_dataset_phys_t *)&dataset.dn_bonus; 2511 dir_obj = ds->ds_dir_obj; 2512 2513 for (;;) { 2514 if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir) != 0) 2515 return (EIO); 2516 dd = (dsl_dir_phys_t *)&dir.dn_bonus; 2517 2518 /* Actual loop condition. */ 2519 parent_obj = dd->dd_parent_obj; 2520 if (parent_obj == 0) 2521 break; 2522 2523 if (objset_get_dnode(spa, &spa->spa_mos, parent_obj, &parent) != 0) 2524 return (EIO); 2525 dd = (dsl_dir_phys_t *)&parent.dn_bonus; 2526 child_dir_zapobj = dd->dd_child_dir_zapobj; 2527 if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, &child_dir_zap) != 0) 2528 return (EIO); 2529 if (zap_rlookup(spa, &child_dir_zap, component, dir_obj) != 0) 2530 return (EIO); 2531 2532 len = strlen(component); 2533 p -= len; 2534 memcpy(p, component, len); 2535 --p; 2536 *p = '/'; 2537 2538 /* Actual loop iteration. */ 2539 dir_obj = parent_obj; 2540 } 2541 2542 if (*p != '\0') 2543 ++p; 2544 strcpy(result, p); 2545 2546 return (0); 2547 } 2548 2549 static int 2550 zfs_lookup_dataset(const spa_t *spa, const char *name, uint64_t *objnum) 2551 { 2552 char element[256]; 2553 uint64_t dir_obj, child_dir_zapobj; 2554 dnode_phys_t child_dir_zap, dir; 2555 dsl_dir_phys_t *dd; 2556 const char *p, *q; 2557 2558 if (objset_get_dnode(spa, &spa->spa_mos, DMU_POOL_DIRECTORY_OBJECT, &dir)) 2559 return (EIO); 2560 if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET, sizeof (dir_obj), 2561 1, &dir_obj)) 2562 return (EIO); 2563 2564 p = name; 2565 for (;;) { 2566 if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir)) 2567 return (EIO); 2568 dd = (dsl_dir_phys_t *)&dir.dn_bonus; 2569 2570 while (*p == '/') 2571 p++; 2572 /* Actual loop condition #1. */ 2573 if (*p == '\0') 2574 break; 2575 2576 q = strchr(p, '/'); 2577 if (q) { 2578 memcpy(element, p, q - p); 2579 element[q - p] = '\0'; 2580 p = q + 1; 2581 } else { 2582 strcpy(element, p); 2583 p += strlen(p); 2584 } 2585 2586 child_dir_zapobj = dd->dd_child_dir_zapobj; 2587 if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, &child_dir_zap) != 0) 2588 return (EIO); 2589 2590 /* Actual loop condition #2. */ 2591 if (zap_lookup(spa, &child_dir_zap, element, sizeof (dir_obj), 2592 1, &dir_obj) != 0) 2593 return (ENOENT); 2594 } 2595 2596 *objnum = dd->dd_head_dataset_obj; 2597 return (0); 2598 } 2599 2600 #ifndef BOOT2 2601 static int 2602 zfs_list_dataset(const spa_t *spa, uint64_t objnum/*, int pos, char *entry*/) 2603 { 2604 uint64_t dir_obj, child_dir_zapobj; 2605 dnode_phys_t child_dir_zap, dir, dataset; 2606 dsl_dataset_phys_t *ds; 2607 dsl_dir_phys_t *dd; 2608 2609 if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) { 2610 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum); 2611 return (EIO); 2612 } 2613 ds = (dsl_dataset_phys_t *) &dataset.dn_bonus; 2614 dir_obj = ds->ds_dir_obj; 2615 2616 if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir)) { 2617 printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj); 2618 return (EIO); 2619 } 2620 dd = (dsl_dir_phys_t *)&dir.dn_bonus; 2621 2622 child_dir_zapobj = dd->dd_child_dir_zapobj; 2623 if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, &child_dir_zap) != 0) { 2624 printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj); 2625 return (EIO); 2626 } 2627 2628 return (zap_list(spa, &child_dir_zap) != 0); 2629 } 2630 2631 int 2632 zfs_callback_dataset(const spa_t *spa, uint64_t objnum, int (*callback)(const char *, uint64_t)) 2633 { 2634 uint64_t dir_obj, child_dir_zapobj, zap_type; 2635 dnode_phys_t child_dir_zap, dir, dataset; 2636 dsl_dataset_phys_t *ds; 2637 dsl_dir_phys_t *dd; 2638 int err; 2639 2640 err = objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset); 2641 if (err != 0) { 2642 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum); 2643 return (err); 2644 } 2645 ds = (dsl_dataset_phys_t *) &dataset.dn_bonus; 2646 dir_obj = ds->ds_dir_obj; 2647 2648 err = objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir); 2649 if (err != 0) { 2650 printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj); 2651 return (err); 2652 } 2653 dd = (dsl_dir_phys_t *)&dir.dn_bonus; 2654 2655 child_dir_zapobj = dd->dd_child_dir_zapobj; 2656 err = objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, &child_dir_zap); 2657 if (err != 0) { 2658 printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj); 2659 return (err); 2660 } 2661 2662 err = dnode_read(spa, &child_dir_zap, 0, zap_scratch, child_dir_zap.dn_datablkszsec * 512); 2663 if (err != 0) 2664 return (err); 2665 2666 zap_type = *(uint64_t *) zap_scratch; 2667 if (zap_type == ZBT_MICRO) 2668 return mzap_list(&child_dir_zap, callback); 2669 else 2670 return fzap_list(spa, &child_dir_zap, callback); 2671 } 2672 #endif 2673 2674 /* 2675 * Find the object set given the object number of its dataset object 2676 * and return its details in *objset 2677 */ 2678 static int 2679 zfs_mount_dataset(const spa_t *spa, uint64_t objnum, objset_phys_t *objset) 2680 { 2681 dnode_phys_t dataset; 2682 dsl_dataset_phys_t *ds; 2683 2684 if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) { 2685 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum); 2686 return (EIO); 2687 } 2688 2689 ds = (dsl_dataset_phys_t *) &dataset.dn_bonus; 2690 if (zio_read(spa, &ds->ds_bp, objset)) { 2691 printf("ZFS: can't read object set for dataset %ju\n", 2692 (uintmax_t)objnum); 2693 return (EIO); 2694 } 2695 2696 return (0); 2697 } 2698 2699 /* 2700 * Find the object set pointed to by the BOOTFS property or the root 2701 * dataset if there is none and return its details in *objset 2702 */ 2703 static int 2704 zfs_get_root(const spa_t *spa, uint64_t *objid) 2705 { 2706 dnode_phys_t dir, propdir; 2707 uint64_t props, bootfs, root; 2708 2709 *objid = 0; 2710 2711 /* 2712 * Start with the MOS directory object. 2713 */ 2714 if (objset_get_dnode(spa, &spa->spa_mos, DMU_POOL_DIRECTORY_OBJECT, &dir)) { 2715 printf("ZFS: can't read MOS object directory\n"); 2716 return (EIO); 2717 } 2718 2719 /* 2720 * Lookup the pool_props and see if we can find a bootfs. 2721 */ 2722 if (zap_lookup(spa, &dir, DMU_POOL_PROPS, sizeof (props), 1, &props) == 0 2723 && objset_get_dnode(spa, &spa->spa_mos, props, &propdir) == 0 2724 && zap_lookup(spa, &propdir, "bootfs", sizeof (bootfs), 1, &bootfs) == 0 2725 && bootfs != 0) 2726 { 2727 *objid = bootfs; 2728 return (0); 2729 } 2730 /* 2731 * Lookup the root dataset directory 2732 */ 2733 if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET, sizeof (root), 1, &root) 2734 || objset_get_dnode(spa, &spa->spa_mos, root, &dir)) { 2735 printf("ZFS: can't find root dsl_dir\n"); 2736 return (EIO); 2737 } 2738 2739 /* 2740 * Use the information from the dataset directory's bonus buffer 2741 * to find the dataset object and from that the object set itself. 2742 */ 2743 dsl_dir_phys_t *dd = (dsl_dir_phys_t *) &dir.dn_bonus; 2744 *objid = dd->dd_head_dataset_obj; 2745 return (0); 2746 } 2747 2748 static int 2749 zfs_mount(const spa_t *spa, uint64_t rootobj, struct zfsmount *mount) 2750 { 2751 2752 mount->spa = spa; 2753 2754 /* 2755 * Find the root object set if not explicitly provided 2756 */ 2757 if (rootobj == 0 && zfs_get_root(spa, &rootobj)) { 2758 printf("ZFS: can't find root filesystem\n"); 2759 return (EIO); 2760 } 2761 2762 if (zfs_mount_dataset(spa, rootobj, &mount->objset)) { 2763 printf("ZFS: can't open root filesystem\n"); 2764 return (EIO); 2765 } 2766 2767 mount->rootobj = rootobj; 2768 2769 return (0); 2770 } 2771 2772 /* 2773 * callback function for feature name checks. 2774 */ 2775 static int 2776 check_feature(const char *name, uint64_t value) 2777 { 2778 int i; 2779 2780 if (value == 0) 2781 return (0); 2782 if (name[0] == '\0') 2783 return (0); 2784 2785 for (i = 0; features_for_read[i] != NULL; i++) { 2786 if (strcmp(name, features_for_read[i]) == 0) 2787 return (0); 2788 } 2789 printf("ZFS: unsupported feature: %s\n", name); 2790 return (EIO); 2791 } 2792 2793 /* 2794 * Checks whether the MOS features that are active are supported. 2795 */ 2796 static int 2797 check_mos_features(const spa_t *spa) 2798 { 2799 dnode_phys_t dir; 2800 uint64_t objnum, zap_type; 2801 size_t size; 2802 int rc; 2803 2804 if ((rc = objset_get_dnode(spa, &spa->spa_mos, DMU_OT_OBJECT_DIRECTORY, 2805 &dir)) != 0) 2806 return (rc); 2807 if ((rc = zap_lookup(spa, &dir, DMU_POOL_FEATURES_FOR_READ, 2808 sizeof (objnum), 1, &objnum)) != 0) { 2809 /* 2810 * It is older pool without features. As we have already 2811 * tested the label, just return without raising the error. 2812 */ 2813 return (0); 2814 } 2815 2816 if ((rc = objset_get_dnode(spa, &spa->spa_mos, objnum, &dir)) != 0) 2817 return (rc); 2818 2819 if (dir.dn_type != DMU_OTN_ZAP_METADATA) 2820 return (EIO); 2821 2822 size = dir.dn_datablkszsec * 512; 2823 if (dnode_read(spa, &dir, 0, zap_scratch, size)) 2824 return (EIO); 2825 2826 zap_type = *(uint64_t *) zap_scratch; 2827 if (zap_type == ZBT_MICRO) 2828 rc = mzap_list(&dir, check_feature); 2829 else 2830 rc = fzap_list(spa, &dir, check_feature); 2831 2832 return (rc); 2833 } 2834 2835 static int 2836 load_nvlist(spa_t *spa, uint64_t obj, unsigned char **value) 2837 { 2838 dnode_phys_t dir; 2839 size_t size; 2840 int rc; 2841 unsigned char *nv; 2842 2843 *value = NULL; 2844 if ((rc = objset_get_dnode(spa, &spa->spa_mos, obj, &dir)) != 0) 2845 return (rc); 2846 if (dir.dn_type != DMU_OT_PACKED_NVLIST && 2847 dir.dn_bonustype != DMU_OT_PACKED_NVLIST_SIZE) { 2848 return (EIO); 2849 } 2850 2851 if (dir.dn_bonuslen != sizeof (uint64_t)) 2852 return (EIO); 2853 2854 size = *(uint64_t *)DN_BONUS(&dir); 2855 nv = malloc(size); 2856 if (nv == NULL) 2857 return (ENOMEM); 2858 2859 rc = dnode_read(spa, &dir, 0, nv, size); 2860 if (rc != 0) { 2861 free(nv); 2862 nv = NULL; 2863 return (rc); 2864 } 2865 *value = nv; 2866 return (rc); 2867 } 2868 2869 static int 2870 zfs_spa_init(spa_t *spa) 2871 { 2872 dnode_phys_t dir; 2873 uint64_t config_object; 2874 unsigned char *nvlist; 2875 char *type; 2876 const unsigned char *nv; 2877 int nkids, rc; 2878 2879 if (zio_read(spa, &spa->spa_uberblock.ub_rootbp, &spa->spa_mos)) { 2880 printf("ZFS: can't read MOS of pool %s\n", spa->spa_name); 2881 return (EIO); 2882 } 2883 if (spa->spa_mos.os_type != DMU_OST_META) { 2884 printf("ZFS: corrupted MOS of pool %s\n", spa->spa_name); 2885 return (EIO); 2886 } 2887 2888 if (objset_get_dnode(spa, &spa->spa_mos, DMU_POOL_DIRECTORY_OBJECT, 2889 &dir)) { 2890 printf("ZFS: failed to read pool %s directory object\n", 2891 spa->spa_name); 2892 return (EIO); 2893 } 2894 /* this is allowed to fail, older pools do not have salt */ 2895 rc = zap_lookup(spa, &dir, DMU_POOL_CHECKSUM_SALT, 1, 2896 sizeof (spa->spa_cksum_salt.zcs_bytes), 2897 spa->spa_cksum_salt.zcs_bytes); 2898 2899 rc = check_mos_features(spa); 2900 if (rc != 0) { 2901 printf("ZFS: pool %s is not supported\n", spa->spa_name); 2902 return (rc); 2903 } 2904 2905 rc = zap_lookup(spa, &dir, DMU_POOL_CONFIG, 2906 sizeof (config_object), 1, &config_object); 2907 if (rc != 0) { 2908 printf("ZFS: can not read MOS %s\n", DMU_POOL_CONFIG); 2909 return (EIO); 2910 } 2911 rc = load_nvlist(spa, config_object, &nvlist); 2912 if (rc != 0) 2913 return (rc); 2914 2915 /* Update vdevs from MOS config. */ 2916 if (nvlist_find(nvlist + 4, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST, 2917 NULL, &nv)) { 2918 rc = EIO; 2919 goto done; 2920 } 2921 2922 if (nvlist_find(nv, ZPOOL_CONFIG_TYPE, DATA_TYPE_STRING, 2923 NULL, &type)) { 2924 printf("ZFS: can't find vdev details\n"); 2925 rc = ENOENT; 2926 goto done; 2927 } 2928 if (strcmp(type, VDEV_TYPE_ROOT) != 0) { 2929 rc = ENOENT; 2930 goto done; 2931 } 2932 2933 rc = nvlist_find(nv, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY, 2934 &nkids, &nv); 2935 if (rc != 0) 2936 goto done; 2937 2938 for (int i = 0; i < nkids; i++) { 2939 vdev_t *vd, *prev, *kid = NULL; 2940 rc = vdev_init_from_nvlist(nv, NULL, &kid, 0); 2941 if (rc != 0) { 2942 printf("vdev_init_from_nvlist: %d\n", rc); 2943 break; 2944 } 2945 kid->spa = spa; 2946 prev = NULL; 2947 STAILQ_FOREACH(vd, &spa->spa_vdevs, v_childlink) { 2948 /* Already present? */ 2949 if (kid->v_id == vd->v_id) { 2950 kid = NULL; 2951 break; 2952 } 2953 if (vd->v_id > kid->v_id) { 2954 if (prev == NULL) { 2955 STAILQ_INSERT_HEAD(&spa->spa_vdevs, 2956 kid, v_childlink); 2957 } else { 2958 STAILQ_INSERT_AFTER(&spa->spa_vdevs, 2959 prev, kid, v_childlink); 2960 } 2961 kid = NULL; 2962 break; 2963 } 2964 prev = vd; 2965 } 2966 if (kid != NULL) 2967 STAILQ_INSERT_TAIL(&spa->spa_vdevs, kid, v_childlink); 2968 nv = nvlist_next(nv); 2969 } 2970 rc = 0; 2971 done: 2972 free(nvlist); 2973 return (rc); 2974 } 2975 2976 static int 2977 zfs_dnode_stat(const spa_t *spa, dnode_phys_t *dn, struct stat *sb) 2978 { 2979 2980 if (dn->dn_bonustype != DMU_OT_SA) { 2981 znode_phys_t *zp = (znode_phys_t *)dn->dn_bonus; 2982 2983 sb->st_mode = zp->zp_mode; 2984 sb->st_uid = zp->zp_uid; 2985 sb->st_gid = zp->zp_gid; 2986 sb->st_size = zp->zp_size; 2987 } else { 2988 sa_hdr_phys_t *sahdrp; 2989 int hdrsize; 2990 size_t size = 0; 2991 void *buf = NULL; 2992 2993 if (dn->dn_bonuslen != 0) 2994 sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn); 2995 else { 2996 if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0) { 2997 blkptr_t *bp = DN_SPILL_BLKPTR(dn); 2998 int error; 2999 3000 size = BP_GET_LSIZE(bp); 3001 buf = zfs_alloc(size); 3002 error = zio_read(spa, bp, buf); 3003 if (error != 0) { 3004 zfs_free(buf, size); 3005 return (error); 3006 } 3007 sahdrp = buf; 3008 } else { 3009 return (EIO); 3010 } 3011 } 3012 hdrsize = SA_HDR_SIZE(sahdrp); 3013 sb->st_mode = *(uint64_t *)((char *)sahdrp + hdrsize + 3014 SA_MODE_OFFSET); 3015 sb->st_uid = *(uint64_t *)((char *)sahdrp + hdrsize + 3016 SA_UID_OFFSET); 3017 sb->st_gid = *(uint64_t *)((char *)sahdrp + hdrsize + 3018 SA_GID_OFFSET); 3019 sb->st_size = *(uint64_t *)((char *)sahdrp + hdrsize + 3020 SA_SIZE_OFFSET); 3021 if (buf != NULL) 3022 zfs_free(buf, size); 3023 } 3024 3025 return (0); 3026 } 3027 3028 static int 3029 zfs_dnode_readlink(const spa_t *spa, dnode_phys_t *dn, char *path, size_t psize) 3030 { 3031 int rc = 0; 3032 3033 if (dn->dn_bonustype == DMU_OT_SA) { 3034 sa_hdr_phys_t *sahdrp = NULL; 3035 size_t size = 0; 3036 void *buf = NULL; 3037 int hdrsize; 3038 char *p; 3039 3040 if (dn->dn_bonuslen != 0) 3041 sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn); 3042 else { 3043 blkptr_t *bp; 3044 3045 if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) == 0) 3046 return (EIO); 3047 bp = DN_SPILL_BLKPTR(dn); 3048 3049 size = BP_GET_LSIZE(bp); 3050 buf = zfs_alloc(size); 3051 rc = zio_read(spa, bp, buf); 3052 if (rc != 0) { 3053 zfs_free(buf, size); 3054 return (rc); 3055 } 3056 sahdrp = buf; 3057 } 3058 hdrsize = SA_HDR_SIZE(sahdrp); 3059 p = (char *)((uintptr_t)sahdrp + hdrsize + SA_SYMLINK_OFFSET); 3060 memcpy(path, p, psize); 3061 if (buf != NULL) 3062 zfs_free(buf, size); 3063 return (0); 3064 } 3065 /* 3066 * Second test is purely to silence bogus compiler 3067 * warning about accessing past the end of dn_bonus. 3068 */ 3069 if (psize + sizeof(znode_phys_t) <= dn->dn_bonuslen && 3070 sizeof(znode_phys_t) <= sizeof(dn->dn_bonus)) { 3071 memcpy(path, &dn->dn_bonus[sizeof(znode_phys_t)], psize); 3072 } else { 3073 rc = dnode_read(spa, dn, 0, path, psize); 3074 } 3075 return (rc); 3076 } 3077 3078 struct obj_list { 3079 uint64_t objnum; 3080 STAILQ_ENTRY(obj_list) entry; 3081 }; 3082 3083 /* 3084 * Lookup a file and return its dnode. 3085 */ 3086 static int 3087 zfs_lookup(const struct zfsmount *mount, const char *upath, dnode_phys_t *dnode) 3088 { 3089 int rc; 3090 uint64_t objnum; 3091 const spa_t *spa; 3092 dnode_phys_t dn; 3093 const char *p, *q; 3094 char element[256]; 3095 char path[1024]; 3096 int symlinks_followed = 0; 3097 struct stat sb; 3098 struct obj_list *entry, *tentry; 3099 STAILQ_HEAD(, obj_list) on_cache = STAILQ_HEAD_INITIALIZER(on_cache); 3100 3101 spa = mount->spa; 3102 if (mount->objset.os_type != DMU_OST_ZFS) { 3103 printf("ZFS: unexpected object set type %ju\n", 3104 (uintmax_t)mount->objset.os_type); 3105 return (EIO); 3106 } 3107 3108 if ((entry = malloc(sizeof(struct obj_list))) == NULL) 3109 return (ENOMEM); 3110 3111 /* 3112 * Get the root directory dnode. 3113 */ 3114 rc = objset_get_dnode(spa, &mount->objset, MASTER_NODE_OBJ, &dn); 3115 if (rc) { 3116 free(entry); 3117 return (rc); 3118 } 3119 3120 rc = zap_lookup(spa, &dn, ZFS_ROOT_OBJ, sizeof (objnum), 1, &objnum); 3121 if (rc) { 3122 free(entry); 3123 return (rc); 3124 } 3125 entry->objnum = objnum; 3126 STAILQ_INSERT_HEAD(&on_cache, entry, entry); 3127 3128 rc = objset_get_dnode(spa, &mount->objset, objnum, &dn); 3129 if (rc != 0) 3130 goto done; 3131 3132 p = upath; 3133 while (p && *p) { 3134 rc = objset_get_dnode(spa, &mount->objset, objnum, &dn); 3135 if (rc != 0) 3136 goto done; 3137 3138 while (*p == '/') 3139 p++; 3140 if (*p == '\0') 3141 break; 3142 q = p; 3143 while (*q != '\0' && *q != '/') 3144 q++; 3145 3146 /* skip dot */ 3147 if (p + 1 == q && p[0] == '.') { 3148 p++; 3149 continue; 3150 } 3151 /* double dot */ 3152 if (p + 2 == q && p[0] == '.' && p[1] == '.') { 3153 p += 2; 3154 if (STAILQ_FIRST(&on_cache) == 3155 STAILQ_LAST(&on_cache, obj_list, entry)) { 3156 rc = ENOENT; 3157 goto done; 3158 } 3159 entry = STAILQ_FIRST(&on_cache); 3160 STAILQ_REMOVE_HEAD(&on_cache, entry); 3161 free(entry); 3162 objnum = (STAILQ_FIRST(&on_cache))->objnum; 3163 continue; 3164 } 3165 if (q - p + 1 > sizeof(element)) { 3166 rc = ENAMETOOLONG; 3167 goto done; 3168 } 3169 memcpy(element, p, q - p); 3170 element[q - p] = 0; 3171 p = q; 3172 3173 if ((rc = zfs_dnode_stat(spa, &dn, &sb)) != 0) 3174 goto done; 3175 if (!S_ISDIR(sb.st_mode)) { 3176 rc = ENOTDIR; 3177 goto done; 3178 } 3179 3180 rc = zap_lookup(spa, &dn, element, sizeof (objnum), 1, &objnum); 3181 if (rc) 3182 goto done; 3183 objnum = ZFS_DIRENT_OBJ(objnum); 3184 3185 if ((entry = malloc(sizeof(struct obj_list))) == NULL) { 3186 rc = ENOMEM; 3187 goto done; 3188 } 3189 entry->objnum = objnum; 3190 STAILQ_INSERT_HEAD(&on_cache, entry, entry); 3191 rc = objset_get_dnode(spa, &mount->objset, objnum, &dn); 3192 if (rc) 3193 goto done; 3194 3195 /* 3196 * Check for symlink. 3197 */ 3198 rc = zfs_dnode_stat(spa, &dn, &sb); 3199 if (rc) 3200 goto done; 3201 if (S_ISLNK(sb.st_mode)) { 3202 if (symlinks_followed > 10) { 3203 rc = EMLINK; 3204 goto done; 3205 } 3206 symlinks_followed++; 3207 3208 /* 3209 * Read the link value and copy the tail of our 3210 * current path onto the end. 3211 */ 3212 if (sb.st_size + strlen(p) + 1 > sizeof(path)) { 3213 rc = ENAMETOOLONG; 3214 goto done; 3215 } 3216 strcpy(&path[sb.st_size], p); 3217 3218 rc = zfs_dnode_readlink(spa, &dn, path, sb.st_size); 3219 if (rc != 0) 3220 goto done; 3221 3222 /* 3223 * Restart with the new path, starting either at 3224 * the root or at the parent depending whether or 3225 * not the link is relative. 3226 */ 3227 p = path; 3228 if (*p == '/') { 3229 while (STAILQ_FIRST(&on_cache) != 3230 STAILQ_LAST(&on_cache, obj_list, entry)) { 3231 entry = STAILQ_FIRST(&on_cache); 3232 STAILQ_REMOVE_HEAD(&on_cache, entry); 3233 free(entry); 3234 } 3235 } else { 3236 entry = STAILQ_FIRST(&on_cache); 3237 STAILQ_REMOVE_HEAD(&on_cache, entry); 3238 free(entry); 3239 } 3240 objnum = (STAILQ_FIRST(&on_cache))->objnum; 3241 } 3242 } 3243 3244 *dnode = dn; 3245 done: 3246 STAILQ_FOREACH_SAFE(entry, &on_cache, entry, tentry) 3247 free(entry); 3248 return (rc); 3249 } 3250