1 /*- 2 * Copyright (c) 2007 Doug Rabson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 /* 31 * Stand-alone ZFS file reader. 32 */ 33 34 #include <stdbool.h> 35 #include <sys/endian.h> 36 #include <sys/stat.h> 37 #include <sys/stdint.h> 38 #include <sys/list.h> 39 #include <sys/zfs_bootenv.h> 40 #include <machine/_inttypes.h> 41 42 #include "zfsimpl.h" 43 #include "zfssubr.c" 44 45 #ifdef HAS_ZSTD_ZFS 46 extern int zstd_init(void); 47 #endif 48 49 struct zfsmount { 50 char *path; 51 const spa_t *spa; 52 objset_phys_t objset; 53 uint64_t rootobj; 54 STAILQ_ENTRY(zfsmount) next; 55 }; 56 57 typedef STAILQ_HEAD(zfs_mnt_list, zfsmount) zfs_mnt_list_t; 58 static zfs_mnt_list_t zfsmount = STAILQ_HEAD_INITIALIZER(zfsmount); 59 60 /* 61 * The indirect_child_t represents the vdev that we will read from, when we 62 * need to read all copies of the data (e.g. for scrub or reconstruction). 63 * For plain (non-mirror) top-level vdevs (i.e. is_vdev is not a mirror), 64 * ic_vdev is the same as is_vdev. However, for mirror top-level vdevs, 65 * ic_vdev is a child of the mirror. 66 */ 67 typedef struct indirect_child { 68 void *ic_data; 69 vdev_t *ic_vdev; 70 } indirect_child_t; 71 72 /* 73 * The indirect_split_t represents one mapped segment of an i/o to the 74 * indirect vdev. For non-split (contiguously-mapped) blocks, there will be 75 * only one indirect_split_t, with is_split_offset==0 and is_size==io_size. 76 * For split blocks, there will be several of these. 77 */ 78 typedef struct indirect_split { 79 list_node_t is_node; /* link on iv_splits */ 80 81 /* 82 * is_split_offset is the offset into the i/o. 83 * This is the sum of the previous splits' is_size's. 84 */ 85 uint64_t is_split_offset; 86 87 vdev_t *is_vdev; /* top-level vdev */ 88 uint64_t is_target_offset; /* offset on is_vdev */ 89 uint64_t is_size; 90 int is_children; /* number of entries in is_child[] */ 91 92 /* 93 * is_good_child is the child that we are currently using to 94 * attempt reconstruction. 95 */ 96 int is_good_child; 97 98 indirect_child_t is_child[1]; /* variable-length */ 99 } indirect_split_t; 100 101 /* 102 * The indirect_vsd_t is associated with each i/o to the indirect vdev. 103 * It is the "Vdev-Specific Data" in the zio_t's io_vsd. 104 */ 105 typedef struct indirect_vsd { 106 boolean_t iv_split_block; 107 boolean_t iv_reconstruct; 108 109 list_t iv_splits; /* list of indirect_split_t's */ 110 } indirect_vsd_t; 111 112 /* 113 * List of all vdevs, chained through v_alllink. 114 */ 115 static vdev_list_t zfs_vdevs; 116 117 /* 118 * List of ZFS features supported for read 119 */ 120 static const char *features_for_read[] = { 121 "com.datto:bookmark_v2", 122 "com.datto:encryption", 123 "com.datto:resilver_defer", 124 "com.delphix:bookmark_written", 125 "com.delphix:device_removal", 126 "com.delphix:embedded_data", 127 "com.delphix:extensible_dataset", 128 "com.delphix:head_errlog", 129 "com.delphix:hole_birth", 130 "com.delphix:obsolete_counts", 131 "com.delphix:spacemap_histogram", 132 "com.delphix:spacemap_v2", 133 "com.delphix:zpool_checkpoint", 134 "com.intel:allocation_classes", 135 "com.joyent:multi_vdev_crash_dump", 136 "org.freebsd:zstd_compress", 137 "org.illumos:lz4_compress", 138 "org.illumos:sha512", 139 "org.illumos:skein", 140 "org.open-zfs:large_blocks", 141 "org.openzfs:blake3", 142 "org.zfsonlinux:allocation_classes", 143 "org.zfsonlinux:large_dnode", 144 NULL 145 }; 146 147 /* 148 * List of all pools, chained through spa_link. 149 */ 150 static spa_list_t zfs_pools; 151 152 static const dnode_phys_t *dnode_cache_obj; 153 static uint64_t dnode_cache_bn; 154 static char *dnode_cache_buf; 155 156 static int zio_read(const spa_t *spa, const blkptr_t *bp, void *buf); 157 static int zfs_get_root(const spa_t *spa, uint64_t *objid); 158 static int zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result); 159 static int zap_lookup(const spa_t *spa, const dnode_phys_t *dnode, 160 const char *name, uint64_t integer_size, uint64_t num_integers, 161 void *value); 162 static int objset_get_dnode(const spa_t *, const objset_phys_t *, uint64_t, 163 dnode_phys_t *); 164 static int dnode_read(const spa_t *, const dnode_phys_t *, off_t, void *, 165 size_t); 166 static int vdev_indirect_read(vdev_t *, const blkptr_t *, void *, off_t, 167 size_t); 168 static int vdev_mirror_read(vdev_t *, const blkptr_t *, void *, off_t, size_t); 169 vdev_indirect_mapping_t *vdev_indirect_mapping_open(spa_t *, objset_phys_t *, 170 uint64_t); 171 vdev_indirect_mapping_entry_phys_t * 172 vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *, uint64_t, 173 uint64_t, uint64_t *); 174 175 static void 176 zfs_init(void) 177 { 178 STAILQ_INIT(&zfs_vdevs); 179 STAILQ_INIT(&zfs_pools); 180 181 dnode_cache_buf = malloc(SPA_MAXBLOCKSIZE); 182 183 zfs_init_crc(); 184 #ifdef HAS_ZSTD_ZFS 185 zstd_init(); 186 #endif 187 } 188 189 static int 190 nvlist_check_features_for_read(nvlist_t *nvl) 191 { 192 nvlist_t *features = NULL; 193 nvs_data_t *data; 194 nvp_header_t *nvp; 195 nv_string_t *nvp_name; 196 int rc; 197 198 rc = nvlist_find(nvl, ZPOOL_CONFIG_FEATURES_FOR_READ, 199 DATA_TYPE_NVLIST, NULL, &features, NULL); 200 switch (rc) { 201 case 0: 202 break; /* Continue with checks */ 203 204 case ENOENT: 205 return (0); /* All features are disabled */ 206 207 default: 208 return (rc); /* Error while reading nvlist */ 209 } 210 211 data = (nvs_data_t *)features->nv_data; 212 nvp = &data->nvl_pair; /* first pair in nvlist */ 213 214 while (nvp->encoded_size != 0 && nvp->decoded_size != 0) { 215 int i, found; 216 217 nvp_name = (nv_string_t *)((uintptr_t)nvp + sizeof(*nvp)); 218 found = 0; 219 220 for (i = 0; features_for_read[i] != NULL; i++) { 221 if (memcmp(nvp_name->nv_data, features_for_read[i], 222 nvp_name->nv_size) == 0) { 223 found = 1; 224 break; 225 } 226 } 227 228 if (!found) { 229 printf("ZFS: unsupported feature: %.*s\n", 230 nvp_name->nv_size, nvp_name->nv_data); 231 rc = EIO; 232 } 233 nvp = (nvp_header_t *)((uint8_t *)nvp + nvp->encoded_size); 234 } 235 nvlist_destroy(features); 236 237 return (rc); 238 } 239 240 static int 241 vdev_read_phys(vdev_t *vdev, const blkptr_t *bp, void *buf, 242 off_t offset, size_t size) 243 { 244 size_t psize; 245 int rc; 246 247 if (vdev->v_phys_read == NULL) 248 return (ENOTSUP); 249 250 if (bp) { 251 psize = BP_GET_PSIZE(bp); 252 } else { 253 psize = size; 254 } 255 256 rc = vdev->v_phys_read(vdev, vdev->v_priv, offset, buf, psize); 257 if (rc == 0) { 258 if (bp != NULL) 259 rc = zio_checksum_verify(vdev->v_spa, bp, buf); 260 } 261 262 return (rc); 263 } 264 265 static int 266 vdev_write_phys(vdev_t *vdev, void *buf, off_t offset, size_t size) 267 { 268 if (vdev->v_phys_write == NULL) 269 return (ENOTSUP); 270 271 return (vdev->v_phys_write(vdev, offset, buf, size)); 272 } 273 274 typedef struct remap_segment { 275 vdev_t *rs_vd; 276 uint64_t rs_offset; 277 uint64_t rs_asize; 278 uint64_t rs_split_offset; 279 list_node_t rs_node; 280 } remap_segment_t; 281 282 static remap_segment_t * 283 rs_alloc(vdev_t *vd, uint64_t offset, uint64_t asize, uint64_t split_offset) 284 { 285 remap_segment_t *rs = malloc(sizeof (remap_segment_t)); 286 287 if (rs != NULL) { 288 rs->rs_vd = vd; 289 rs->rs_offset = offset; 290 rs->rs_asize = asize; 291 rs->rs_split_offset = split_offset; 292 } 293 294 return (rs); 295 } 296 297 vdev_indirect_mapping_t * 298 vdev_indirect_mapping_open(spa_t *spa, objset_phys_t *os, 299 uint64_t mapping_object) 300 { 301 vdev_indirect_mapping_t *vim; 302 vdev_indirect_mapping_phys_t *vim_phys; 303 int rc; 304 305 vim = calloc(1, sizeof (*vim)); 306 if (vim == NULL) 307 return (NULL); 308 309 vim->vim_dn = calloc(1, sizeof (*vim->vim_dn)); 310 if (vim->vim_dn == NULL) { 311 free(vim); 312 return (NULL); 313 } 314 315 rc = objset_get_dnode(spa, os, mapping_object, vim->vim_dn); 316 if (rc != 0) { 317 free(vim->vim_dn); 318 free(vim); 319 return (NULL); 320 } 321 322 vim->vim_spa = spa; 323 vim->vim_phys = malloc(sizeof (*vim->vim_phys)); 324 if (vim->vim_phys == NULL) { 325 free(vim->vim_dn); 326 free(vim); 327 return (NULL); 328 } 329 330 vim_phys = (vdev_indirect_mapping_phys_t *)DN_BONUS(vim->vim_dn); 331 *vim->vim_phys = *vim_phys; 332 333 vim->vim_objset = os; 334 vim->vim_object = mapping_object; 335 vim->vim_entries = NULL; 336 337 vim->vim_havecounts = 338 (vim->vim_dn->dn_bonuslen > VDEV_INDIRECT_MAPPING_SIZE_V0); 339 340 return (vim); 341 } 342 343 /* 344 * Compare an offset with an indirect mapping entry; there are three 345 * possible scenarios: 346 * 347 * 1. The offset is "less than" the mapping entry; meaning the 348 * offset is less than the source offset of the mapping entry. In 349 * this case, there is no overlap between the offset and the 350 * mapping entry and -1 will be returned. 351 * 352 * 2. The offset is "greater than" the mapping entry; meaning the 353 * offset is greater than the mapping entry's source offset plus 354 * the entry's size. In this case, there is no overlap between 355 * the offset and the mapping entry and 1 will be returned. 356 * 357 * NOTE: If the offset is actually equal to the entry's offset 358 * plus size, this is considered to be "greater" than the entry, 359 * and this case applies (i.e. 1 will be returned). Thus, the 360 * entry's "range" can be considered to be inclusive at its 361 * start, but exclusive at its end: e.g. [src, src + size). 362 * 363 * 3. The last case to consider is if the offset actually falls 364 * within the mapping entry's range. If this is the case, the 365 * offset is considered to be "equal to" the mapping entry and 366 * 0 will be returned. 367 * 368 * NOTE: If the offset is equal to the entry's source offset, 369 * this case applies and 0 will be returned. If the offset is 370 * equal to the entry's source plus its size, this case does 371 * *not* apply (see "NOTE" above for scenario 2), and 1 will be 372 * returned. 373 */ 374 static int 375 dva_mapping_overlap_compare(const void *v_key, const void *v_array_elem) 376 { 377 const uint64_t *key = v_key; 378 const vdev_indirect_mapping_entry_phys_t *array_elem = 379 v_array_elem; 380 uint64_t src_offset = DVA_MAPPING_GET_SRC_OFFSET(array_elem); 381 382 if (*key < src_offset) { 383 return (-1); 384 } else if (*key < src_offset + DVA_GET_ASIZE(&array_elem->vimep_dst)) { 385 return (0); 386 } else { 387 return (1); 388 } 389 } 390 391 /* 392 * Return array entry. 393 */ 394 static vdev_indirect_mapping_entry_phys_t * 395 vdev_indirect_mapping_entry(vdev_indirect_mapping_t *vim, uint64_t index) 396 { 397 uint64_t size; 398 off_t offset = 0; 399 int rc; 400 401 if (vim->vim_phys->vimp_num_entries == 0) 402 return (NULL); 403 404 if (vim->vim_entries == NULL) { 405 uint64_t bsize; 406 407 bsize = vim->vim_dn->dn_datablkszsec << SPA_MINBLOCKSHIFT; 408 size = vim->vim_phys->vimp_num_entries * 409 sizeof (*vim->vim_entries); 410 if (size > bsize) { 411 size = bsize / sizeof (*vim->vim_entries); 412 size *= sizeof (*vim->vim_entries); 413 } 414 vim->vim_entries = malloc(size); 415 if (vim->vim_entries == NULL) 416 return (NULL); 417 vim->vim_num_entries = size / sizeof (*vim->vim_entries); 418 offset = index * sizeof (*vim->vim_entries); 419 } 420 421 /* We have data in vim_entries */ 422 if (offset == 0) { 423 if (index >= vim->vim_entry_offset && 424 index <= vim->vim_entry_offset + vim->vim_num_entries) { 425 index -= vim->vim_entry_offset; 426 return (&vim->vim_entries[index]); 427 } 428 offset = index * sizeof (*vim->vim_entries); 429 } 430 431 vim->vim_entry_offset = index; 432 size = vim->vim_num_entries * sizeof (*vim->vim_entries); 433 rc = dnode_read(vim->vim_spa, vim->vim_dn, offset, vim->vim_entries, 434 size); 435 if (rc != 0) { 436 /* Read error, invalidate vim_entries. */ 437 free(vim->vim_entries); 438 vim->vim_entries = NULL; 439 return (NULL); 440 } 441 index -= vim->vim_entry_offset; 442 return (&vim->vim_entries[index]); 443 } 444 445 /* 446 * Returns the mapping entry for the given offset. 447 * 448 * It's possible that the given offset will not be in the mapping table 449 * (i.e. no mapping entries contain this offset), in which case, the 450 * return value value depends on the "next_if_missing" parameter. 451 * 452 * If the offset is not found in the table and "next_if_missing" is 453 * B_FALSE, then NULL will always be returned. The behavior is intended 454 * to allow consumers to get the entry corresponding to the offset 455 * parameter, iff the offset overlaps with an entry in the table. 456 * 457 * If the offset is not found in the table and "next_if_missing" is 458 * B_TRUE, then the entry nearest to the given offset will be returned, 459 * such that the entry's source offset is greater than the offset 460 * passed in (i.e. the "next" mapping entry in the table is returned, if 461 * the offset is missing from the table). If there are no entries whose 462 * source offset is greater than the passed in offset, NULL is returned. 463 */ 464 static vdev_indirect_mapping_entry_phys_t * 465 vdev_indirect_mapping_entry_for_offset(vdev_indirect_mapping_t *vim, 466 uint64_t offset) 467 { 468 ASSERT(vim->vim_phys->vimp_num_entries > 0); 469 470 vdev_indirect_mapping_entry_phys_t *entry; 471 472 uint64_t last = vim->vim_phys->vimp_num_entries - 1; 473 uint64_t base = 0; 474 475 /* 476 * We don't define these inside of the while loop because we use 477 * their value in the case that offset isn't in the mapping. 478 */ 479 uint64_t mid; 480 int result; 481 482 while (last >= base) { 483 mid = base + ((last - base) >> 1); 484 485 entry = vdev_indirect_mapping_entry(vim, mid); 486 if (entry == NULL) 487 break; 488 result = dva_mapping_overlap_compare(&offset, entry); 489 490 if (result == 0) { 491 break; 492 } else if (result < 0) { 493 last = mid - 1; 494 } else { 495 base = mid + 1; 496 } 497 } 498 return (entry); 499 } 500 501 /* 502 * Given an indirect vdev and an extent on that vdev, it duplicates the 503 * physical entries of the indirect mapping that correspond to the extent 504 * to a new array and returns a pointer to it. In addition, copied_entries 505 * is populated with the number of mapping entries that were duplicated. 506 * 507 * Finally, since we are doing an allocation, it is up to the caller to 508 * free the array allocated in this function. 509 */ 510 vdev_indirect_mapping_entry_phys_t * 511 vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *vd, uint64_t offset, 512 uint64_t asize, uint64_t *copied_entries) 513 { 514 vdev_indirect_mapping_entry_phys_t *duplicate_mappings = NULL; 515 vdev_indirect_mapping_t *vim = vd->v_mapping; 516 uint64_t entries = 0; 517 518 vdev_indirect_mapping_entry_phys_t *first_mapping = 519 vdev_indirect_mapping_entry_for_offset(vim, offset); 520 ASSERT3P(first_mapping, !=, NULL); 521 522 vdev_indirect_mapping_entry_phys_t *m = first_mapping; 523 while (asize > 0) { 524 uint64_t size = DVA_GET_ASIZE(&m->vimep_dst); 525 uint64_t inner_offset = offset - DVA_MAPPING_GET_SRC_OFFSET(m); 526 uint64_t inner_size = MIN(asize, size - inner_offset); 527 528 offset += inner_size; 529 asize -= inner_size; 530 entries++; 531 m++; 532 } 533 534 size_t copy_length = entries * sizeof (*first_mapping); 535 duplicate_mappings = malloc(copy_length); 536 if (duplicate_mappings != NULL) 537 bcopy(first_mapping, duplicate_mappings, copy_length); 538 else 539 entries = 0; 540 541 *copied_entries = entries; 542 543 return (duplicate_mappings); 544 } 545 546 static vdev_t * 547 vdev_lookup_top(spa_t *spa, uint64_t vdev) 548 { 549 vdev_t *rvd; 550 vdev_list_t *vlist; 551 552 vlist = &spa->spa_root_vdev->v_children; 553 STAILQ_FOREACH(rvd, vlist, v_childlink) 554 if (rvd->v_id == vdev) 555 break; 556 557 return (rvd); 558 } 559 560 /* 561 * This is a callback for vdev_indirect_remap() which allocates an 562 * indirect_split_t for each split segment and adds it to iv_splits. 563 */ 564 static void 565 vdev_indirect_gather_splits(uint64_t split_offset, vdev_t *vd, uint64_t offset, 566 uint64_t size, void *arg) 567 { 568 int n = 1; 569 zio_t *zio = arg; 570 indirect_vsd_t *iv = zio->io_vsd; 571 572 if (vd->v_read == vdev_indirect_read) 573 return; 574 575 if (vd->v_read == vdev_mirror_read) 576 n = vd->v_nchildren; 577 578 indirect_split_t *is = 579 malloc(offsetof(indirect_split_t, is_child[n])); 580 if (is == NULL) { 581 zio->io_error = ENOMEM; 582 return; 583 } 584 bzero(is, offsetof(indirect_split_t, is_child[n])); 585 586 is->is_children = n; 587 is->is_size = size; 588 is->is_split_offset = split_offset; 589 is->is_target_offset = offset; 590 is->is_vdev = vd; 591 592 /* 593 * Note that we only consider multiple copies of the data for 594 * *mirror* vdevs. We don't for "replacing" or "spare" vdevs, even 595 * though they use the same ops as mirror, because there's only one 596 * "good" copy under the replacing/spare. 597 */ 598 if (vd->v_read == vdev_mirror_read) { 599 int i = 0; 600 vdev_t *kid; 601 602 STAILQ_FOREACH(kid, &vd->v_children, v_childlink) { 603 is->is_child[i++].ic_vdev = kid; 604 } 605 } else { 606 is->is_child[0].ic_vdev = vd; 607 } 608 609 list_insert_tail(&iv->iv_splits, is); 610 } 611 612 static void 613 vdev_indirect_remap(vdev_t *vd, uint64_t offset, uint64_t asize, void *arg) 614 { 615 list_t stack; 616 spa_t *spa = vd->v_spa; 617 zio_t *zio = arg; 618 remap_segment_t *rs; 619 620 list_create(&stack, sizeof (remap_segment_t), 621 offsetof(remap_segment_t, rs_node)); 622 623 rs = rs_alloc(vd, offset, asize, 0); 624 if (rs == NULL) { 625 printf("vdev_indirect_remap: out of memory.\n"); 626 zio->io_error = ENOMEM; 627 } 628 for (; rs != NULL; rs = list_remove_head(&stack)) { 629 vdev_t *v = rs->rs_vd; 630 uint64_t num_entries = 0; 631 /* vdev_indirect_mapping_t *vim = v->v_mapping; */ 632 vdev_indirect_mapping_entry_phys_t *mapping = 633 vdev_indirect_mapping_duplicate_adjacent_entries(v, 634 rs->rs_offset, rs->rs_asize, &num_entries); 635 636 if (num_entries == 0) 637 zio->io_error = ENOMEM; 638 639 for (uint64_t i = 0; i < num_entries; i++) { 640 vdev_indirect_mapping_entry_phys_t *m = &mapping[i]; 641 uint64_t size = DVA_GET_ASIZE(&m->vimep_dst); 642 uint64_t dst_offset = DVA_GET_OFFSET(&m->vimep_dst); 643 uint64_t dst_vdev = DVA_GET_VDEV(&m->vimep_dst); 644 uint64_t inner_offset = rs->rs_offset - 645 DVA_MAPPING_GET_SRC_OFFSET(m); 646 uint64_t inner_size = 647 MIN(rs->rs_asize, size - inner_offset); 648 vdev_t *dst_v = vdev_lookup_top(spa, dst_vdev); 649 650 if (dst_v->v_read == vdev_indirect_read) { 651 remap_segment_t *o; 652 653 o = rs_alloc(dst_v, dst_offset + inner_offset, 654 inner_size, rs->rs_split_offset); 655 if (o == NULL) { 656 printf("vdev_indirect_remap: " 657 "out of memory.\n"); 658 zio->io_error = ENOMEM; 659 break; 660 } 661 662 list_insert_head(&stack, o); 663 } 664 vdev_indirect_gather_splits(rs->rs_split_offset, dst_v, 665 dst_offset + inner_offset, 666 inner_size, arg); 667 668 /* 669 * vdev_indirect_gather_splits can have memory 670 * allocation error, we can not recover from it. 671 */ 672 if (zio->io_error != 0) 673 break; 674 rs->rs_offset += inner_size; 675 rs->rs_asize -= inner_size; 676 rs->rs_split_offset += inner_size; 677 } 678 679 free(mapping); 680 free(rs); 681 if (zio->io_error != 0) 682 break; 683 } 684 685 list_destroy(&stack); 686 } 687 688 static void 689 vdev_indirect_map_free(zio_t *zio) 690 { 691 indirect_vsd_t *iv = zio->io_vsd; 692 indirect_split_t *is; 693 694 while ((is = list_head(&iv->iv_splits)) != NULL) { 695 for (int c = 0; c < is->is_children; c++) { 696 indirect_child_t *ic = &is->is_child[c]; 697 free(ic->ic_data); 698 } 699 list_remove(&iv->iv_splits, is); 700 free(is); 701 } 702 free(iv); 703 } 704 705 static int 706 vdev_indirect_read(vdev_t *vdev, const blkptr_t *bp, void *buf, 707 off_t offset, size_t bytes) 708 { 709 zio_t zio; 710 spa_t *spa = vdev->v_spa; 711 indirect_vsd_t *iv; 712 indirect_split_t *first; 713 int rc = EIO; 714 715 iv = calloc(1, sizeof(*iv)); 716 if (iv == NULL) 717 return (ENOMEM); 718 719 list_create(&iv->iv_splits, 720 sizeof (indirect_split_t), offsetof(indirect_split_t, is_node)); 721 722 bzero(&zio, sizeof(zio)); 723 zio.io_spa = spa; 724 zio.io_bp = (blkptr_t *)bp; 725 zio.io_data = buf; 726 zio.io_size = bytes; 727 zio.io_offset = offset; 728 zio.io_vd = vdev; 729 zio.io_vsd = iv; 730 731 if (vdev->v_mapping == NULL) { 732 vdev_indirect_config_t *vic; 733 734 vic = &vdev->vdev_indirect_config; 735 vdev->v_mapping = vdev_indirect_mapping_open(spa, 736 spa->spa_mos, vic->vic_mapping_object); 737 } 738 739 vdev_indirect_remap(vdev, offset, bytes, &zio); 740 if (zio.io_error != 0) 741 return (zio.io_error); 742 743 first = list_head(&iv->iv_splits); 744 if (first->is_size == zio.io_size) { 745 /* 746 * This is not a split block; we are pointing to the entire 747 * data, which will checksum the same as the original data. 748 * Pass the BP down so that the child i/o can verify the 749 * checksum, and try a different location if available 750 * (e.g. on a mirror). 751 * 752 * While this special case could be handled the same as the 753 * general (split block) case, doing it this way ensures 754 * that the vast majority of blocks on indirect vdevs 755 * (which are not split) are handled identically to blocks 756 * on non-indirect vdevs. This allows us to be less strict 757 * about performance in the general (but rare) case. 758 */ 759 rc = first->is_vdev->v_read(first->is_vdev, zio.io_bp, 760 zio.io_data, first->is_target_offset, bytes); 761 } else { 762 iv->iv_split_block = B_TRUE; 763 /* 764 * Read one copy of each split segment, from the 765 * top-level vdev. Since we don't know the 766 * checksum of each split individually, the child 767 * zio can't ensure that we get the right data. 768 * E.g. if it's a mirror, it will just read from a 769 * random (healthy) leaf vdev. We have to verify 770 * the checksum in vdev_indirect_io_done(). 771 */ 772 for (indirect_split_t *is = list_head(&iv->iv_splits); 773 is != NULL; is = list_next(&iv->iv_splits, is)) { 774 char *ptr = zio.io_data; 775 776 rc = is->is_vdev->v_read(is->is_vdev, zio.io_bp, 777 ptr + is->is_split_offset, is->is_target_offset, 778 is->is_size); 779 } 780 if (zio_checksum_verify(spa, zio.io_bp, zio.io_data)) 781 rc = ECKSUM; 782 else 783 rc = 0; 784 } 785 786 vdev_indirect_map_free(&zio); 787 if (rc == 0) 788 rc = zio.io_error; 789 790 return (rc); 791 } 792 793 static int 794 vdev_disk_read(vdev_t *vdev, const blkptr_t *bp, void *buf, 795 off_t offset, size_t bytes) 796 { 797 798 return (vdev_read_phys(vdev, bp, buf, 799 offset + VDEV_LABEL_START_SIZE, bytes)); 800 } 801 802 static int 803 vdev_missing_read(vdev_t *vdev __unused, const blkptr_t *bp __unused, 804 void *buf __unused, off_t offset __unused, size_t bytes __unused) 805 { 806 807 return (ENOTSUP); 808 } 809 810 static int 811 vdev_mirror_read(vdev_t *vdev, const blkptr_t *bp, void *buf, 812 off_t offset, size_t bytes) 813 { 814 vdev_t *kid; 815 int rc; 816 817 rc = EIO; 818 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) { 819 if (kid->v_state != VDEV_STATE_HEALTHY) 820 continue; 821 rc = kid->v_read(kid, bp, buf, offset, bytes); 822 if (!rc) 823 return (0); 824 } 825 826 return (rc); 827 } 828 829 static int 830 vdev_replacing_read(vdev_t *vdev, const blkptr_t *bp, void *buf, 831 off_t offset, size_t bytes) 832 { 833 vdev_t *kid; 834 835 /* 836 * Here we should have two kids: 837 * First one which is the one we are replacing and we can trust 838 * only this one to have valid data, but it might not be present. 839 * Second one is that one we are replacing with. It is most likely 840 * healthy, but we can't trust it has needed data, so we won't use it. 841 */ 842 kid = STAILQ_FIRST(&vdev->v_children); 843 if (kid == NULL) 844 return (EIO); 845 if (kid->v_state != VDEV_STATE_HEALTHY) 846 return (EIO); 847 return (kid->v_read(kid, bp, buf, offset, bytes)); 848 } 849 850 static vdev_t * 851 vdev_find(uint64_t guid) 852 { 853 vdev_t *vdev; 854 855 STAILQ_FOREACH(vdev, &zfs_vdevs, v_alllink) 856 if (vdev->v_guid == guid) 857 return (vdev); 858 859 return (0); 860 } 861 862 static vdev_t * 863 vdev_create(uint64_t guid, vdev_read_t *_read) 864 { 865 vdev_t *vdev; 866 vdev_indirect_config_t *vic; 867 868 vdev = calloc(1, sizeof(vdev_t)); 869 if (vdev != NULL) { 870 STAILQ_INIT(&vdev->v_children); 871 vdev->v_guid = guid; 872 vdev->v_read = _read; 873 874 /* 875 * root vdev has no read function, we use this fact to 876 * skip setting up data we do not need for root vdev. 877 * We only point root vdev from spa. 878 */ 879 if (_read != NULL) { 880 vic = &vdev->vdev_indirect_config; 881 vic->vic_prev_indirect_vdev = UINT64_MAX; 882 STAILQ_INSERT_TAIL(&zfs_vdevs, vdev, v_alllink); 883 } 884 } 885 886 return (vdev); 887 } 888 889 static void 890 vdev_set_initial_state(vdev_t *vdev, const nvlist_t *nvlist) 891 { 892 uint64_t is_offline, is_faulted, is_degraded, is_removed, isnt_present; 893 uint64_t is_log; 894 895 is_offline = is_removed = is_faulted = is_degraded = isnt_present = 0; 896 is_log = 0; 897 (void) nvlist_find(nvlist, ZPOOL_CONFIG_OFFLINE, DATA_TYPE_UINT64, NULL, 898 &is_offline, NULL); 899 (void) nvlist_find(nvlist, ZPOOL_CONFIG_REMOVED, DATA_TYPE_UINT64, NULL, 900 &is_removed, NULL); 901 (void) nvlist_find(nvlist, ZPOOL_CONFIG_FAULTED, DATA_TYPE_UINT64, NULL, 902 &is_faulted, NULL); 903 (void) nvlist_find(nvlist, ZPOOL_CONFIG_DEGRADED, DATA_TYPE_UINT64, 904 NULL, &is_degraded, NULL); 905 (void) nvlist_find(nvlist, ZPOOL_CONFIG_NOT_PRESENT, DATA_TYPE_UINT64, 906 NULL, &isnt_present, NULL); 907 (void) nvlist_find(nvlist, ZPOOL_CONFIG_IS_LOG, DATA_TYPE_UINT64, NULL, 908 &is_log, NULL); 909 910 if (is_offline != 0) 911 vdev->v_state = VDEV_STATE_OFFLINE; 912 else if (is_removed != 0) 913 vdev->v_state = VDEV_STATE_REMOVED; 914 else if (is_faulted != 0) 915 vdev->v_state = VDEV_STATE_FAULTED; 916 else if (is_degraded != 0) 917 vdev->v_state = VDEV_STATE_DEGRADED; 918 else if (isnt_present != 0) 919 vdev->v_state = VDEV_STATE_CANT_OPEN; 920 921 vdev->v_islog = is_log != 0; 922 } 923 924 static int 925 vdev_init(uint64_t guid, const nvlist_t *nvlist, vdev_t **vdevp) 926 { 927 uint64_t id, ashift, asize, nparity; 928 const char *path; 929 const char *type; 930 int len, pathlen; 931 char *name; 932 vdev_t *vdev; 933 934 if (nvlist_find(nvlist, ZPOOL_CONFIG_ID, DATA_TYPE_UINT64, NULL, &id, 935 NULL) || 936 nvlist_find(nvlist, ZPOOL_CONFIG_TYPE, DATA_TYPE_STRING, NULL, 937 &type, &len)) { 938 return (ENOENT); 939 } 940 941 if (memcmp(type, VDEV_TYPE_MIRROR, len) != 0 && 942 memcmp(type, VDEV_TYPE_DISK, len) != 0 && 943 #ifdef ZFS_TEST 944 memcmp(type, VDEV_TYPE_FILE, len) != 0 && 945 #endif 946 memcmp(type, VDEV_TYPE_RAIDZ, len) != 0 && 947 memcmp(type, VDEV_TYPE_INDIRECT, len) != 0 && 948 memcmp(type, VDEV_TYPE_REPLACING, len) != 0 && 949 memcmp(type, VDEV_TYPE_HOLE, len) != 0) { 950 printf("ZFS: can only boot from disk, mirror, raidz1, " 951 "raidz2 and raidz3 vdevs, got: %.*s\n", len, type); 952 return (EIO); 953 } 954 955 if (memcmp(type, VDEV_TYPE_MIRROR, len) == 0) 956 vdev = vdev_create(guid, vdev_mirror_read); 957 else if (memcmp(type, VDEV_TYPE_RAIDZ, len) == 0) 958 vdev = vdev_create(guid, vdev_raidz_read); 959 else if (memcmp(type, VDEV_TYPE_REPLACING, len) == 0) 960 vdev = vdev_create(guid, vdev_replacing_read); 961 else if (memcmp(type, VDEV_TYPE_INDIRECT, len) == 0) { 962 vdev_indirect_config_t *vic; 963 964 vdev = vdev_create(guid, vdev_indirect_read); 965 if (vdev != NULL) { 966 vdev->v_state = VDEV_STATE_HEALTHY; 967 vic = &vdev->vdev_indirect_config; 968 969 nvlist_find(nvlist, 970 ZPOOL_CONFIG_INDIRECT_OBJECT, 971 DATA_TYPE_UINT64, 972 NULL, &vic->vic_mapping_object, NULL); 973 nvlist_find(nvlist, 974 ZPOOL_CONFIG_INDIRECT_BIRTHS, 975 DATA_TYPE_UINT64, 976 NULL, &vic->vic_births_object, NULL); 977 nvlist_find(nvlist, 978 ZPOOL_CONFIG_PREV_INDIRECT_VDEV, 979 DATA_TYPE_UINT64, 980 NULL, &vic->vic_prev_indirect_vdev, NULL); 981 } 982 } else if (memcmp(type, VDEV_TYPE_HOLE, len) == 0) { 983 vdev = vdev_create(guid, vdev_missing_read); 984 } else { 985 vdev = vdev_create(guid, vdev_disk_read); 986 } 987 988 if (vdev == NULL) 989 return (ENOMEM); 990 991 vdev_set_initial_state(vdev, nvlist); 992 vdev->v_id = id; 993 if (nvlist_find(nvlist, ZPOOL_CONFIG_ASHIFT, 994 DATA_TYPE_UINT64, NULL, &ashift, NULL) == 0) 995 vdev->v_ashift = ashift; 996 997 if (nvlist_find(nvlist, ZPOOL_CONFIG_ASIZE, 998 DATA_TYPE_UINT64, NULL, &asize, NULL) == 0) { 999 vdev->v_psize = asize + 1000 VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; 1001 } 1002 1003 if (nvlist_find(nvlist, ZPOOL_CONFIG_NPARITY, 1004 DATA_TYPE_UINT64, NULL, &nparity, NULL) == 0) 1005 vdev->v_nparity = nparity; 1006 1007 if (nvlist_find(nvlist, ZPOOL_CONFIG_PATH, 1008 DATA_TYPE_STRING, NULL, &path, &pathlen) == 0) { 1009 char prefix[] = "/dev/"; 1010 1011 len = strlen(prefix); 1012 if (len < pathlen && memcmp(path, prefix, len) == 0) { 1013 path += len; 1014 pathlen -= len; 1015 } 1016 name = malloc(pathlen + 1); 1017 bcopy(path, name, pathlen); 1018 name[pathlen] = '\0'; 1019 vdev->v_name = name; 1020 } else { 1021 name = NULL; 1022 if (memcmp(type, VDEV_TYPE_RAIDZ, len) == 0) { 1023 if (vdev->v_nparity < 1 || 1024 vdev->v_nparity > 3) { 1025 printf("ZFS: invalid raidz parity: %d\n", 1026 vdev->v_nparity); 1027 return (EIO); 1028 } 1029 (void) asprintf(&name, "%.*s%d-%" PRIu64, len, type, 1030 vdev->v_nparity, id); 1031 } else { 1032 (void) asprintf(&name, "%.*s-%" PRIu64, len, type, id); 1033 } 1034 vdev->v_name = name; 1035 } 1036 *vdevp = vdev; 1037 return (0); 1038 } 1039 1040 /* 1041 * Find slot for vdev. We return either NULL to signal to use 1042 * STAILQ_INSERT_HEAD, or we return link element to be used with 1043 * STAILQ_INSERT_AFTER. 1044 */ 1045 static vdev_t * 1046 vdev_find_previous(vdev_t *top_vdev, vdev_t *vdev) 1047 { 1048 vdev_t *v, *previous; 1049 1050 if (STAILQ_EMPTY(&top_vdev->v_children)) 1051 return (NULL); 1052 1053 previous = NULL; 1054 STAILQ_FOREACH(v, &top_vdev->v_children, v_childlink) { 1055 if (v->v_id > vdev->v_id) 1056 return (previous); 1057 1058 if (v->v_id == vdev->v_id) 1059 return (v); 1060 1061 if (v->v_id < vdev->v_id) 1062 previous = v; 1063 } 1064 return (previous); 1065 } 1066 1067 static size_t 1068 vdev_child_count(vdev_t *vdev) 1069 { 1070 vdev_t *v; 1071 size_t count; 1072 1073 count = 0; 1074 STAILQ_FOREACH(v, &vdev->v_children, v_childlink) { 1075 count++; 1076 } 1077 return (count); 1078 } 1079 1080 /* 1081 * Insert vdev into top_vdev children list. List is ordered by v_id. 1082 */ 1083 static void 1084 vdev_insert(vdev_t *top_vdev, vdev_t *vdev) 1085 { 1086 vdev_t *previous; 1087 size_t count; 1088 1089 /* 1090 * The top level vdev can appear in random order, depending how 1091 * the firmware is presenting the disk devices. 1092 * However, we will insert vdev to create list ordered by v_id, 1093 * so we can use either STAILQ_INSERT_HEAD or STAILQ_INSERT_AFTER 1094 * as STAILQ does not have insert before. 1095 */ 1096 previous = vdev_find_previous(top_vdev, vdev); 1097 1098 if (previous == NULL) { 1099 STAILQ_INSERT_HEAD(&top_vdev->v_children, vdev, v_childlink); 1100 } else if (previous->v_id == vdev->v_id) { 1101 /* 1102 * This vdev was configured from label config, 1103 * do not insert duplicate. 1104 */ 1105 return; 1106 } else { 1107 STAILQ_INSERT_AFTER(&top_vdev->v_children, previous, vdev, 1108 v_childlink); 1109 } 1110 1111 count = vdev_child_count(top_vdev); 1112 if (top_vdev->v_nchildren < count) 1113 top_vdev->v_nchildren = count; 1114 } 1115 1116 static int 1117 vdev_from_nvlist(spa_t *spa, uint64_t top_guid, const nvlist_t *nvlist) 1118 { 1119 vdev_t *top_vdev, *vdev; 1120 nvlist_t **kids = NULL; 1121 int rc, nkids; 1122 1123 /* Get top vdev. */ 1124 top_vdev = vdev_find(top_guid); 1125 if (top_vdev == NULL) { 1126 rc = vdev_init(top_guid, nvlist, &top_vdev); 1127 if (rc != 0) 1128 return (rc); 1129 top_vdev->v_spa = spa; 1130 top_vdev->v_top = top_vdev; 1131 vdev_insert(spa->spa_root_vdev, top_vdev); 1132 } 1133 1134 /* Add children if there are any. */ 1135 rc = nvlist_find(nvlist, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY, 1136 &nkids, &kids, NULL); 1137 if (rc == 0) { 1138 for (int i = 0; i < nkids; i++) { 1139 uint64_t guid; 1140 1141 rc = nvlist_find(kids[i], ZPOOL_CONFIG_GUID, 1142 DATA_TYPE_UINT64, NULL, &guid, NULL); 1143 if (rc != 0) 1144 goto done; 1145 1146 rc = vdev_init(guid, kids[i], &vdev); 1147 if (rc != 0) 1148 goto done; 1149 1150 vdev->v_spa = spa; 1151 vdev->v_top = top_vdev; 1152 vdev_insert(top_vdev, vdev); 1153 } 1154 } else { 1155 /* 1156 * When there are no children, nvlist_find() does return 1157 * error, reset it because leaf devices have no children. 1158 */ 1159 rc = 0; 1160 } 1161 done: 1162 if (kids != NULL) { 1163 for (int i = 0; i < nkids; i++) 1164 nvlist_destroy(kids[i]); 1165 free(kids); 1166 } 1167 1168 return (rc); 1169 } 1170 1171 static int 1172 vdev_init_from_label(spa_t *spa, const nvlist_t *nvlist) 1173 { 1174 uint64_t pool_guid, top_guid; 1175 nvlist_t *vdevs; 1176 int rc; 1177 1178 if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64, 1179 NULL, &pool_guid, NULL) || 1180 nvlist_find(nvlist, ZPOOL_CONFIG_TOP_GUID, DATA_TYPE_UINT64, 1181 NULL, &top_guid, NULL) || 1182 nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST, 1183 NULL, &vdevs, NULL)) { 1184 printf("ZFS: can't find vdev details\n"); 1185 return (ENOENT); 1186 } 1187 1188 rc = vdev_from_nvlist(spa, top_guid, vdevs); 1189 nvlist_destroy(vdevs); 1190 return (rc); 1191 } 1192 1193 static void 1194 vdev_set_state(vdev_t *vdev) 1195 { 1196 vdev_t *kid; 1197 int good_kids; 1198 int bad_kids; 1199 1200 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) { 1201 vdev_set_state(kid); 1202 } 1203 1204 /* 1205 * A mirror or raidz is healthy if all its kids are healthy. A 1206 * mirror is degraded if any of its kids is healthy; a raidz 1207 * is degraded if at most nparity kids are offline. 1208 */ 1209 if (STAILQ_FIRST(&vdev->v_children)) { 1210 good_kids = 0; 1211 bad_kids = 0; 1212 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) { 1213 if (kid->v_state == VDEV_STATE_HEALTHY) 1214 good_kids++; 1215 else 1216 bad_kids++; 1217 } 1218 if (bad_kids == 0) { 1219 vdev->v_state = VDEV_STATE_HEALTHY; 1220 } else { 1221 if (vdev->v_read == vdev_mirror_read) { 1222 if (good_kids) { 1223 vdev->v_state = VDEV_STATE_DEGRADED; 1224 } else { 1225 vdev->v_state = VDEV_STATE_OFFLINE; 1226 } 1227 } else if (vdev->v_read == vdev_raidz_read) { 1228 if (bad_kids > vdev->v_nparity) { 1229 vdev->v_state = VDEV_STATE_OFFLINE; 1230 } else { 1231 vdev->v_state = VDEV_STATE_DEGRADED; 1232 } 1233 } 1234 } 1235 } 1236 } 1237 1238 static int 1239 vdev_update_from_nvlist(uint64_t top_guid, const nvlist_t *nvlist) 1240 { 1241 vdev_t *vdev; 1242 nvlist_t **kids = NULL; 1243 int rc, nkids; 1244 1245 /* Update top vdev. */ 1246 vdev = vdev_find(top_guid); 1247 if (vdev != NULL) 1248 vdev_set_initial_state(vdev, nvlist); 1249 1250 /* Update children if there are any. */ 1251 rc = nvlist_find(nvlist, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY, 1252 &nkids, &kids, NULL); 1253 if (rc == 0) { 1254 for (int i = 0; i < nkids; i++) { 1255 uint64_t guid; 1256 1257 rc = nvlist_find(kids[i], ZPOOL_CONFIG_GUID, 1258 DATA_TYPE_UINT64, NULL, &guid, NULL); 1259 if (rc != 0) 1260 break; 1261 1262 vdev = vdev_find(guid); 1263 if (vdev != NULL) 1264 vdev_set_initial_state(vdev, kids[i]); 1265 } 1266 } else { 1267 rc = 0; 1268 } 1269 if (kids != NULL) { 1270 for (int i = 0; i < nkids; i++) 1271 nvlist_destroy(kids[i]); 1272 free(kids); 1273 } 1274 1275 return (rc); 1276 } 1277 1278 static int 1279 vdev_init_from_nvlist(spa_t *spa, const nvlist_t *nvlist) 1280 { 1281 uint64_t pool_guid, vdev_children; 1282 nvlist_t *vdevs = NULL, **kids = NULL; 1283 int rc, nkids; 1284 1285 if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64, 1286 NULL, &pool_guid, NULL) || 1287 nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_CHILDREN, DATA_TYPE_UINT64, 1288 NULL, &vdev_children, NULL) || 1289 nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST, 1290 NULL, &vdevs, NULL)) { 1291 printf("ZFS: can't find vdev details\n"); 1292 return (ENOENT); 1293 } 1294 1295 /* Wrong guid?! */ 1296 if (spa->spa_guid != pool_guid) { 1297 nvlist_destroy(vdevs); 1298 return (EINVAL); 1299 } 1300 1301 spa->spa_root_vdev->v_nchildren = vdev_children; 1302 1303 rc = nvlist_find(vdevs, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY, 1304 &nkids, &kids, NULL); 1305 nvlist_destroy(vdevs); 1306 1307 /* 1308 * MOS config has at least one child for root vdev. 1309 */ 1310 if (rc != 0) 1311 return (rc); 1312 1313 for (int i = 0; i < nkids; i++) { 1314 uint64_t guid; 1315 vdev_t *vdev; 1316 1317 rc = nvlist_find(kids[i], ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64, 1318 NULL, &guid, NULL); 1319 if (rc != 0) 1320 break; 1321 vdev = vdev_find(guid); 1322 /* 1323 * Top level vdev is missing, create it. 1324 */ 1325 if (vdev == NULL) 1326 rc = vdev_from_nvlist(spa, guid, kids[i]); 1327 else 1328 rc = vdev_update_from_nvlist(guid, kids[i]); 1329 if (rc != 0) 1330 break; 1331 } 1332 if (kids != NULL) { 1333 for (int i = 0; i < nkids; i++) 1334 nvlist_destroy(kids[i]); 1335 free(kids); 1336 } 1337 1338 /* 1339 * Re-evaluate top-level vdev state. 1340 */ 1341 vdev_set_state(spa->spa_root_vdev); 1342 1343 return (rc); 1344 } 1345 1346 static spa_t * 1347 spa_find_by_guid(uint64_t guid) 1348 { 1349 spa_t *spa; 1350 1351 STAILQ_FOREACH(spa, &zfs_pools, spa_link) 1352 if (spa->spa_guid == guid) 1353 return (spa); 1354 1355 return (NULL); 1356 } 1357 1358 static spa_t * 1359 spa_find_by_name(const char *name) 1360 { 1361 spa_t *spa; 1362 1363 STAILQ_FOREACH(spa, &zfs_pools, spa_link) 1364 if (strcmp(spa->spa_name, name) == 0) 1365 return (spa); 1366 1367 return (NULL); 1368 } 1369 1370 static spa_t * 1371 spa_find_by_dev(struct zfs_devdesc *dev) 1372 { 1373 1374 if (dev->dd.d_dev->dv_type != DEVT_ZFS) 1375 return (NULL); 1376 1377 if (dev->pool_guid == 0) 1378 return (STAILQ_FIRST(&zfs_pools)); 1379 1380 return (spa_find_by_guid(dev->pool_guid)); 1381 } 1382 1383 static spa_t * 1384 spa_create(uint64_t guid, const char *name) 1385 { 1386 spa_t *spa; 1387 1388 if ((spa = calloc(1, sizeof(spa_t))) == NULL) 1389 return (NULL); 1390 if ((spa->spa_name = strdup(name)) == NULL) { 1391 free(spa); 1392 return (NULL); 1393 } 1394 spa->spa_uberblock = &spa->spa_uberblock_master; 1395 spa->spa_mos = &spa->spa_mos_master; 1396 spa->spa_guid = guid; 1397 spa->spa_root_vdev = vdev_create(guid, NULL); 1398 if (spa->spa_root_vdev == NULL) { 1399 free(spa->spa_name); 1400 free(spa); 1401 return (NULL); 1402 } 1403 spa->spa_root_vdev->v_name = strdup("root"); 1404 STAILQ_INSERT_TAIL(&zfs_pools, spa, spa_link); 1405 1406 return (spa); 1407 } 1408 1409 static const char * 1410 state_name(vdev_state_t state) 1411 { 1412 static const char *names[] = { 1413 "UNKNOWN", 1414 "CLOSED", 1415 "OFFLINE", 1416 "REMOVED", 1417 "CANT_OPEN", 1418 "FAULTED", 1419 "DEGRADED", 1420 "ONLINE" 1421 }; 1422 return (names[state]); 1423 } 1424 1425 #ifdef BOOT2 1426 1427 #define pager_printf printf 1428 1429 #else 1430 1431 static int 1432 pager_printf(const char *fmt, ...) 1433 { 1434 char line[80]; 1435 va_list args; 1436 1437 va_start(args, fmt); 1438 vsnprintf(line, sizeof(line), fmt, args); 1439 va_end(args); 1440 return (pager_output(line)); 1441 } 1442 1443 #endif 1444 1445 #define STATUS_FORMAT " %s %s\n" 1446 1447 static int 1448 print_state(int indent, const char *name, vdev_state_t state) 1449 { 1450 int i; 1451 char buf[512]; 1452 1453 buf[0] = 0; 1454 for (i = 0; i < indent; i++) 1455 strcat(buf, " "); 1456 strcat(buf, name); 1457 return (pager_printf(STATUS_FORMAT, buf, state_name(state))); 1458 } 1459 1460 static int 1461 vdev_status(vdev_t *vdev, int indent) 1462 { 1463 vdev_t *kid; 1464 int ret; 1465 1466 if (vdev->v_islog) { 1467 (void) pager_output(" logs\n"); 1468 indent++; 1469 } 1470 1471 ret = print_state(indent, vdev->v_name, vdev->v_state); 1472 if (ret != 0) 1473 return (ret); 1474 1475 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) { 1476 ret = vdev_status(kid, indent + 1); 1477 if (ret != 0) 1478 return (ret); 1479 } 1480 return (ret); 1481 } 1482 1483 static int 1484 spa_status(spa_t *spa) 1485 { 1486 static char bootfs[ZFS_MAXNAMELEN]; 1487 uint64_t rootid; 1488 vdev_list_t *vlist; 1489 vdev_t *vdev; 1490 int good_kids, bad_kids, degraded_kids, ret; 1491 vdev_state_t state; 1492 1493 ret = pager_printf(" pool: %s\n", spa->spa_name); 1494 if (ret != 0) 1495 return (ret); 1496 1497 if (zfs_get_root(spa, &rootid) == 0 && 1498 zfs_rlookup(spa, rootid, bootfs) == 0) { 1499 if (bootfs[0] == '\0') 1500 ret = pager_printf("bootfs: %s\n", spa->spa_name); 1501 else 1502 ret = pager_printf("bootfs: %s/%s\n", spa->spa_name, 1503 bootfs); 1504 if (ret != 0) 1505 return (ret); 1506 } 1507 ret = pager_printf("config:\n\n"); 1508 if (ret != 0) 1509 return (ret); 1510 ret = pager_printf(STATUS_FORMAT, "NAME", "STATE"); 1511 if (ret != 0) 1512 return (ret); 1513 1514 good_kids = 0; 1515 degraded_kids = 0; 1516 bad_kids = 0; 1517 vlist = &spa->spa_root_vdev->v_children; 1518 STAILQ_FOREACH(vdev, vlist, v_childlink) { 1519 if (vdev->v_state == VDEV_STATE_HEALTHY) 1520 good_kids++; 1521 else if (vdev->v_state == VDEV_STATE_DEGRADED) 1522 degraded_kids++; 1523 else 1524 bad_kids++; 1525 } 1526 1527 state = VDEV_STATE_CLOSED; 1528 if (good_kids > 0 && (degraded_kids + bad_kids) == 0) 1529 state = VDEV_STATE_HEALTHY; 1530 else if ((good_kids + degraded_kids) > 0) 1531 state = VDEV_STATE_DEGRADED; 1532 1533 ret = print_state(0, spa->spa_name, state); 1534 if (ret != 0) 1535 return (ret); 1536 1537 STAILQ_FOREACH(vdev, vlist, v_childlink) { 1538 ret = vdev_status(vdev, 1); 1539 if (ret != 0) 1540 return (ret); 1541 } 1542 return (ret); 1543 } 1544 1545 static int 1546 spa_all_status(void) 1547 { 1548 spa_t *spa; 1549 int first = 1, ret = 0; 1550 1551 STAILQ_FOREACH(spa, &zfs_pools, spa_link) { 1552 if (!first) { 1553 ret = pager_printf("\n"); 1554 if (ret != 0) 1555 return (ret); 1556 } 1557 first = 0; 1558 ret = spa_status(spa); 1559 if (ret != 0) 1560 return (ret); 1561 } 1562 return (ret); 1563 } 1564 1565 static uint64_t 1566 vdev_label_offset(uint64_t psize, int l, uint64_t offset) 1567 { 1568 uint64_t label_offset; 1569 1570 if (l < VDEV_LABELS / 2) 1571 label_offset = 0; 1572 else 1573 label_offset = psize - VDEV_LABELS * sizeof (vdev_label_t); 1574 1575 return (offset + l * sizeof (vdev_label_t) + label_offset); 1576 } 1577 1578 static int 1579 vdev_uberblock_compare(const uberblock_t *ub1, const uberblock_t *ub2) 1580 { 1581 unsigned int seq1 = 0; 1582 unsigned int seq2 = 0; 1583 int cmp = AVL_CMP(ub1->ub_txg, ub2->ub_txg); 1584 1585 if (cmp != 0) 1586 return (cmp); 1587 1588 cmp = AVL_CMP(ub1->ub_timestamp, ub2->ub_timestamp); 1589 if (cmp != 0) 1590 return (cmp); 1591 1592 if (MMP_VALID(ub1) && MMP_SEQ_VALID(ub1)) 1593 seq1 = MMP_SEQ(ub1); 1594 1595 if (MMP_VALID(ub2) && MMP_SEQ_VALID(ub2)) 1596 seq2 = MMP_SEQ(ub2); 1597 1598 return (AVL_CMP(seq1, seq2)); 1599 } 1600 1601 static int 1602 uberblock_verify(uberblock_t *ub) 1603 { 1604 if (ub->ub_magic == BSWAP_64((uint64_t)UBERBLOCK_MAGIC)) { 1605 byteswap_uint64_array(ub, sizeof (uberblock_t)); 1606 } 1607 1608 if (ub->ub_magic != UBERBLOCK_MAGIC || 1609 !SPA_VERSION_IS_SUPPORTED(ub->ub_version)) 1610 return (EINVAL); 1611 1612 return (0); 1613 } 1614 1615 static int 1616 vdev_label_read(vdev_t *vd, int l, void *buf, uint64_t offset, 1617 size_t size) 1618 { 1619 blkptr_t bp; 1620 off_t off; 1621 1622 off = vdev_label_offset(vd->v_psize, l, offset); 1623 1624 BP_ZERO(&bp); 1625 BP_SET_LSIZE(&bp, size); 1626 BP_SET_PSIZE(&bp, size); 1627 BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_LABEL); 1628 BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF); 1629 DVA_SET_OFFSET(BP_IDENTITY(&bp), off); 1630 ZIO_SET_CHECKSUM(&bp.blk_cksum, off, 0, 0, 0); 1631 1632 return (vdev_read_phys(vd, &bp, buf, off, size)); 1633 } 1634 1635 /* 1636 * We do need to be sure we write to correct location. 1637 * Our vdev label does consist of 4 fields: 1638 * pad1 (8k), reserved. 1639 * bootenv (8k), checksummed, previously reserved, may contian garbage. 1640 * vdev_phys (112k), checksummed 1641 * uberblock ring (128k), checksummed. 1642 * 1643 * Since bootenv area may contain garbage, we can not reliably read it, as 1644 * we can get checksum errors. 1645 * Next best thing is vdev_phys - it is just after bootenv. It still may 1646 * be corrupted, but in such case we will miss this one write. 1647 */ 1648 static int 1649 vdev_label_write_validate(vdev_t *vd, int l, uint64_t offset) 1650 { 1651 uint64_t off, o_phys; 1652 void *buf; 1653 size_t size = VDEV_PHYS_SIZE; 1654 int rc; 1655 1656 o_phys = offsetof(vdev_label_t, vl_vdev_phys); 1657 off = vdev_label_offset(vd->v_psize, l, o_phys); 1658 1659 /* off should be 8K from bootenv */ 1660 if (vdev_label_offset(vd->v_psize, l, offset) + VDEV_PAD_SIZE != off) 1661 return (EINVAL); 1662 1663 buf = malloc(size); 1664 if (buf == NULL) 1665 return (ENOMEM); 1666 1667 /* Read vdev_phys */ 1668 rc = vdev_label_read(vd, l, buf, o_phys, size); 1669 free(buf); 1670 return (rc); 1671 } 1672 1673 static int 1674 vdev_label_write(vdev_t *vd, int l, vdev_boot_envblock_t *be, uint64_t offset) 1675 { 1676 zio_checksum_info_t *ci; 1677 zio_cksum_t cksum; 1678 off_t off; 1679 size_t size = VDEV_PAD_SIZE; 1680 int rc; 1681 1682 if (vd->v_phys_write == NULL) 1683 return (ENOTSUP); 1684 1685 off = vdev_label_offset(vd->v_psize, l, offset); 1686 1687 rc = vdev_label_write_validate(vd, l, offset); 1688 if (rc != 0) { 1689 return (rc); 1690 } 1691 1692 ci = &zio_checksum_table[ZIO_CHECKSUM_LABEL]; 1693 be->vbe_zbt.zec_magic = ZEC_MAGIC; 1694 zio_checksum_label_verifier(&be->vbe_zbt.zec_cksum, off); 1695 ci->ci_func[0](be, size, NULL, &cksum); 1696 be->vbe_zbt.zec_cksum = cksum; 1697 1698 return (vdev_write_phys(vd, be, off, size)); 1699 } 1700 1701 static int 1702 vdev_write_bootenv_impl(vdev_t *vdev, vdev_boot_envblock_t *be) 1703 { 1704 vdev_t *kid; 1705 int rv = 0, rc; 1706 1707 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) { 1708 if (kid->v_state != VDEV_STATE_HEALTHY) 1709 continue; 1710 rc = vdev_write_bootenv_impl(kid, be); 1711 if (rv == 0) 1712 rv = rc; 1713 } 1714 1715 /* 1716 * Non-leaf vdevs do not have v_phys_write. 1717 */ 1718 if (vdev->v_phys_write == NULL) 1719 return (rv); 1720 1721 for (int l = 0; l < VDEV_LABELS; l++) { 1722 rc = vdev_label_write(vdev, l, be, 1723 offsetof(vdev_label_t, vl_be)); 1724 if (rc != 0) { 1725 printf("failed to write bootenv to %s label %d: %d\n", 1726 vdev->v_name ? vdev->v_name : "unknown", l, rc); 1727 rv = rc; 1728 } 1729 } 1730 return (rv); 1731 } 1732 1733 int 1734 vdev_write_bootenv(vdev_t *vdev, nvlist_t *nvl) 1735 { 1736 vdev_boot_envblock_t *be; 1737 nvlist_t nv, *nvp; 1738 uint64_t version; 1739 int rv; 1740 1741 if (nvl->nv_size > sizeof(be->vbe_bootenv)) 1742 return (E2BIG); 1743 1744 version = VB_RAW; 1745 nvp = vdev_read_bootenv(vdev); 1746 if (nvp != NULL) { 1747 nvlist_find(nvp, BOOTENV_VERSION, DATA_TYPE_UINT64, NULL, 1748 &version, NULL); 1749 nvlist_destroy(nvp); 1750 } 1751 1752 be = calloc(1, sizeof(*be)); 1753 if (be == NULL) 1754 return (ENOMEM); 1755 1756 be->vbe_version = version; 1757 switch (version) { 1758 case VB_RAW: 1759 /* 1760 * If there is no envmap, we will just wipe bootenv. 1761 */ 1762 nvlist_find(nvl, GRUB_ENVMAP, DATA_TYPE_STRING, NULL, 1763 be->vbe_bootenv, NULL); 1764 rv = 0; 1765 break; 1766 1767 case VB_NVLIST: 1768 nv.nv_header = nvl->nv_header; 1769 nv.nv_asize = nvl->nv_asize; 1770 nv.nv_size = nvl->nv_size; 1771 1772 bcopy(&nv.nv_header, be->vbe_bootenv, sizeof(nv.nv_header)); 1773 nv.nv_data = be->vbe_bootenv + sizeof(nvs_header_t); 1774 bcopy(nvl->nv_data, nv.nv_data, nv.nv_size); 1775 rv = nvlist_export(&nv); 1776 break; 1777 1778 default: 1779 rv = EINVAL; 1780 break; 1781 } 1782 1783 if (rv == 0) { 1784 be->vbe_version = htobe64(be->vbe_version); 1785 rv = vdev_write_bootenv_impl(vdev, be); 1786 } 1787 free(be); 1788 return (rv); 1789 } 1790 1791 /* 1792 * Read the bootenv area from pool label, return the nvlist from it. 1793 * We return from first successful read. 1794 */ 1795 nvlist_t * 1796 vdev_read_bootenv(vdev_t *vdev) 1797 { 1798 vdev_t *kid; 1799 nvlist_t *benv; 1800 vdev_boot_envblock_t *be; 1801 char *command; 1802 bool ok; 1803 int rv; 1804 1805 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) { 1806 if (kid->v_state != VDEV_STATE_HEALTHY) 1807 continue; 1808 1809 benv = vdev_read_bootenv(kid); 1810 if (benv != NULL) 1811 return (benv); 1812 } 1813 1814 be = malloc(sizeof (*be)); 1815 if (be == NULL) 1816 return (NULL); 1817 1818 rv = 0; 1819 for (int l = 0; l < VDEV_LABELS; l++) { 1820 rv = vdev_label_read(vdev, l, be, 1821 offsetof(vdev_label_t, vl_be), 1822 sizeof (*be)); 1823 if (rv == 0) 1824 break; 1825 } 1826 if (rv != 0) { 1827 free(be); 1828 return (NULL); 1829 } 1830 1831 be->vbe_version = be64toh(be->vbe_version); 1832 switch (be->vbe_version) { 1833 case VB_RAW: 1834 /* 1835 * we have textual data in vbe_bootenv, create nvlist 1836 * with key "envmap". 1837 */ 1838 benv = nvlist_create(NV_UNIQUE_NAME); 1839 if (benv != NULL) { 1840 if (*be->vbe_bootenv == '\0') { 1841 nvlist_add_uint64(benv, BOOTENV_VERSION, 1842 VB_NVLIST); 1843 break; 1844 } 1845 nvlist_add_uint64(benv, BOOTENV_VERSION, VB_RAW); 1846 be->vbe_bootenv[sizeof (be->vbe_bootenv) - 1] = '\0'; 1847 nvlist_add_string(benv, GRUB_ENVMAP, be->vbe_bootenv); 1848 } 1849 break; 1850 1851 case VB_NVLIST: 1852 benv = nvlist_import(be->vbe_bootenv, sizeof(be->vbe_bootenv)); 1853 break; 1854 1855 default: 1856 command = (char *)be; 1857 ok = false; 1858 1859 /* Check for legacy zfsbootcfg command string */ 1860 for (int i = 0; command[i] != '\0'; i++) { 1861 if (iscntrl(command[i])) { 1862 ok = false; 1863 break; 1864 } else { 1865 ok = true; 1866 } 1867 } 1868 benv = nvlist_create(NV_UNIQUE_NAME); 1869 if (benv != NULL) { 1870 if (ok) 1871 nvlist_add_string(benv, FREEBSD_BOOTONCE, 1872 command); 1873 else 1874 nvlist_add_uint64(benv, BOOTENV_VERSION, 1875 VB_NVLIST); 1876 } 1877 break; 1878 } 1879 free(be); 1880 return (benv); 1881 } 1882 1883 static uint64_t 1884 vdev_get_label_asize(nvlist_t *nvl) 1885 { 1886 nvlist_t *vdevs; 1887 uint64_t asize; 1888 const char *type; 1889 int len; 1890 1891 asize = 0; 1892 /* Get vdev tree */ 1893 if (nvlist_find(nvl, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST, 1894 NULL, &vdevs, NULL) != 0) 1895 return (asize); 1896 1897 /* 1898 * Get vdev type. We will calculate asize for raidz, mirror and disk. 1899 * For raidz, the asize is raw size of all children. 1900 */ 1901 if (nvlist_find(vdevs, ZPOOL_CONFIG_TYPE, DATA_TYPE_STRING, 1902 NULL, &type, &len) != 0) 1903 goto done; 1904 1905 if (memcmp(type, VDEV_TYPE_MIRROR, len) != 0 && 1906 memcmp(type, VDEV_TYPE_DISK, len) != 0 && 1907 memcmp(type, VDEV_TYPE_RAIDZ, len) != 0) 1908 goto done; 1909 1910 if (nvlist_find(vdevs, ZPOOL_CONFIG_ASIZE, DATA_TYPE_UINT64, 1911 NULL, &asize, NULL) != 0) 1912 goto done; 1913 1914 if (memcmp(type, VDEV_TYPE_RAIDZ, len) == 0) { 1915 nvlist_t **kids; 1916 int nkids; 1917 1918 if (nvlist_find(vdevs, ZPOOL_CONFIG_CHILDREN, 1919 DATA_TYPE_NVLIST_ARRAY, &nkids, &kids, NULL) != 0) { 1920 asize = 0; 1921 goto done; 1922 } 1923 1924 asize /= nkids; 1925 for (int i = 0; i < nkids; i++) 1926 nvlist_destroy(kids[i]); 1927 free(kids); 1928 } 1929 1930 asize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; 1931 done: 1932 nvlist_destroy(vdevs); 1933 return (asize); 1934 } 1935 1936 static nvlist_t * 1937 vdev_label_read_config(vdev_t *vd, uint64_t txg) 1938 { 1939 vdev_phys_t *label; 1940 uint64_t best_txg = 0; 1941 uint64_t label_txg = 0; 1942 uint64_t asize; 1943 nvlist_t *nvl = NULL, *tmp; 1944 int error; 1945 1946 label = malloc(sizeof (vdev_phys_t)); 1947 if (label == NULL) 1948 return (NULL); 1949 1950 for (int l = 0; l < VDEV_LABELS; l++) { 1951 if (vdev_label_read(vd, l, label, 1952 offsetof(vdev_label_t, vl_vdev_phys), 1953 sizeof (vdev_phys_t))) 1954 continue; 1955 1956 tmp = nvlist_import(label->vp_nvlist, 1957 sizeof(label->vp_nvlist)); 1958 if (tmp == NULL) 1959 continue; 1960 1961 error = nvlist_find(tmp, ZPOOL_CONFIG_POOL_TXG, 1962 DATA_TYPE_UINT64, NULL, &label_txg, NULL); 1963 if (error != 0 || label_txg == 0) { 1964 nvlist_destroy(nvl); 1965 nvl = tmp; 1966 goto done; 1967 } 1968 1969 if (label_txg <= txg && label_txg > best_txg) { 1970 best_txg = label_txg; 1971 nvlist_destroy(nvl); 1972 nvl = tmp; 1973 tmp = NULL; 1974 1975 /* 1976 * Use asize from pool config. We need this 1977 * because we can get bad value from BIOS. 1978 */ 1979 asize = vdev_get_label_asize(nvl); 1980 if (asize != 0) { 1981 vd->v_psize = asize; 1982 } 1983 } 1984 nvlist_destroy(tmp); 1985 } 1986 1987 if (best_txg == 0) { 1988 nvlist_destroy(nvl); 1989 nvl = NULL; 1990 } 1991 done: 1992 free(label); 1993 return (nvl); 1994 } 1995 1996 static void 1997 vdev_uberblock_load(vdev_t *vd, uberblock_t *ub) 1998 { 1999 uberblock_t *buf; 2000 2001 buf = malloc(VDEV_UBERBLOCK_SIZE(vd)); 2002 if (buf == NULL) 2003 return; 2004 2005 for (int l = 0; l < VDEV_LABELS; l++) { 2006 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) { 2007 if (vdev_label_read(vd, l, buf, 2008 VDEV_UBERBLOCK_OFFSET(vd, n), 2009 VDEV_UBERBLOCK_SIZE(vd))) 2010 continue; 2011 if (uberblock_verify(buf) != 0) 2012 continue; 2013 2014 if (vdev_uberblock_compare(buf, ub) > 0) 2015 *ub = *buf; 2016 } 2017 } 2018 free(buf); 2019 } 2020 2021 static int 2022 vdev_probe(vdev_phys_read_t *_read, vdev_phys_write_t *_write, void *priv, 2023 spa_t **spap) 2024 { 2025 vdev_t vtmp; 2026 spa_t *spa; 2027 vdev_t *vdev; 2028 nvlist_t *nvl; 2029 uint64_t val; 2030 uint64_t guid, vdev_children; 2031 uint64_t pool_txg, pool_guid; 2032 const char *pool_name; 2033 int rc, namelen; 2034 2035 /* 2036 * Load the vdev label and figure out which 2037 * uberblock is most current. 2038 */ 2039 memset(&vtmp, 0, sizeof(vtmp)); 2040 vtmp.v_phys_read = _read; 2041 vtmp.v_phys_write = _write; 2042 vtmp.v_priv = priv; 2043 vtmp.v_psize = P2ALIGN(ldi_get_size(priv), 2044 (uint64_t)sizeof (vdev_label_t)); 2045 2046 /* Test for minimum device size. */ 2047 if (vtmp.v_psize < SPA_MINDEVSIZE) 2048 return (EIO); 2049 2050 nvl = vdev_label_read_config(&vtmp, UINT64_MAX); 2051 if (nvl == NULL) 2052 return (EIO); 2053 2054 if (nvlist_find(nvl, ZPOOL_CONFIG_VERSION, DATA_TYPE_UINT64, 2055 NULL, &val, NULL) != 0) { 2056 nvlist_destroy(nvl); 2057 return (EIO); 2058 } 2059 2060 if (!SPA_VERSION_IS_SUPPORTED(val)) { 2061 printf("ZFS: unsupported ZFS version %u (should be %u)\n", 2062 (unsigned)val, (unsigned)SPA_VERSION); 2063 nvlist_destroy(nvl); 2064 return (EIO); 2065 } 2066 2067 /* Check ZFS features for read */ 2068 rc = nvlist_check_features_for_read(nvl); 2069 if (rc != 0) { 2070 nvlist_destroy(nvl); 2071 return (EIO); 2072 } 2073 2074 if (nvlist_find(nvl, ZPOOL_CONFIG_POOL_STATE, DATA_TYPE_UINT64, 2075 NULL, &val, NULL) != 0) { 2076 nvlist_destroy(nvl); 2077 return (EIO); 2078 } 2079 2080 if (val == POOL_STATE_DESTROYED) { 2081 /* We don't boot only from destroyed pools. */ 2082 nvlist_destroy(nvl); 2083 return (EIO); 2084 } 2085 2086 if (nvlist_find(nvl, ZPOOL_CONFIG_POOL_TXG, DATA_TYPE_UINT64, 2087 NULL, &pool_txg, NULL) != 0 || 2088 nvlist_find(nvl, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64, 2089 NULL, &pool_guid, NULL) != 0 || 2090 nvlist_find(nvl, ZPOOL_CONFIG_POOL_NAME, DATA_TYPE_STRING, 2091 NULL, &pool_name, &namelen) != 0) { 2092 /* 2093 * Cache and spare devices end up here - just ignore 2094 * them. 2095 */ 2096 nvlist_destroy(nvl); 2097 return (EIO); 2098 } 2099 2100 /* 2101 * Create the pool if this is the first time we've seen it. 2102 */ 2103 spa = spa_find_by_guid(pool_guid); 2104 if (spa == NULL) { 2105 char *name; 2106 2107 nvlist_find(nvl, ZPOOL_CONFIG_VDEV_CHILDREN, 2108 DATA_TYPE_UINT64, NULL, &vdev_children, NULL); 2109 name = malloc(namelen + 1); 2110 if (name == NULL) { 2111 nvlist_destroy(nvl); 2112 return (ENOMEM); 2113 } 2114 bcopy(pool_name, name, namelen); 2115 name[namelen] = '\0'; 2116 spa = spa_create(pool_guid, name); 2117 free(name); 2118 if (spa == NULL) { 2119 nvlist_destroy(nvl); 2120 return (ENOMEM); 2121 } 2122 spa->spa_root_vdev->v_nchildren = vdev_children; 2123 } 2124 if (pool_txg > spa->spa_txg) 2125 spa->spa_txg = pool_txg; 2126 2127 /* 2128 * Get the vdev tree and create our in-core copy of it. 2129 * If we already have a vdev with this guid, this must 2130 * be some kind of alias (overlapping slices, dangerously dedicated 2131 * disks etc). 2132 */ 2133 if (nvlist_find(nvl, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64, 2134 NULL, &guid, NULL) != 0) { 2135 nvlist_destroy(nvl); 2136 return (EIO); 2137 } 2138 vdev = vdev_find(guid); 2139 /* Has this vdev already been inited? */ 2140 if (vdev && vdev->v_phys_read) { 2141 nvlist_destroy(nvl); 2142 return (EIO); 2143 } 2144 2145 rc = vdev_init_from_label(spa, nvl); 2146 nvlist_destroy(nvl); 2147 if (rc != 0) 2148 return (rc); 2149 2150 /* 2151 * We should already have created an incomplete vdev for this 2152 * vdev. Find it and initialise it with our read proc. 2153 */ 2154 vdev = vdev_find(guid); 2155 if (vdev != NULL) { 2156 vdev->v_phys_read = _read; 2157 vdev->v_phys_write = _write; 2158 vdev->v_priv = priv; 2159 vdev->v_psize = vtmp.v_psize; 2160 /* 2161 * If no other state is set, mark vdev healthy. 2162 */ 2163 if (vdev->v_state == VDEV_STATE_UNKNOWN) 2164 vdev->v_state = VDEV_STATE_HEALTHY; 2165 } else { 2166 printf("ZFS: inconsistent nvlist contents\n"); 2167 return (EIO); 2168 } 2169 2170 if (vdev->v_islog) 2171 spa->spa_with_log = vdev->v_islog; 2172 2173 /* 2174 * Re-evaluate top-level vdev state. 2175 */ 2176 vdev_set_state(vdev->v_top); 2177 2178 /* 2179 * Ok, we are happy with the pool so far. Lets find 2180 * the best uberblock and then we can actually access 2181 * the contents of the pool. 2182 */ 2183 vdev_uberblock_load(vdev, spa->spa_uberblock); 2184 2185 if (spap != NULL) 2186 *spap = spa; 2187 return (0); 2188 } 2189 2190 static int 2191 ilog2(int n) 2192 { 2193 int v; 2194 2195 for (v = 0; v < 32; v++) 2196 if (n == (1 << v)) 2197 return (v); 2198 return (-1); 2199 } 2200 2201 static int 2202 zio_read_gang(const spa_t *spa, const blkptr_t *bp, void *buf) 2203 { 2204 blkptr_t gbh_bp; 2205 zio_gbh_phys_t zio_gb; 2206 char *pbuf; 2207 int i; 2208 2209 /* Artificial BP for gang block header. */ 2210 gbh_bp = *bp; 2211 BP_SET_PSIZE(&gbh_bp, SPA_GANGBLOCKSIZE); 2212 BP_SET_LSIZE(&gbh_bp, SPA_GANGBLOCKSIZE); 2213 BP_SET_CHECKSUM(&gbh_bp, ZIO_CHECKSUM_GANG_HEADER); 2214 BP_SET_COMPRESS(&gbh_bp, ZIO_COMPRESS_OFF); 2215 for (i = 0; i < SPA_DVAS_PER_BP; i++) 2216 DVA_SET_GANG(&gbh_bp.blk_dva[i], 0); 2217 2218 /* Read gang header block using the artificial BP. */ 2219 if (zio_read(spa, &gbh_bp, &zio_gb)) 2220 return (EIO); 2221 2222 pbuf = buf; 2223 for (i = 0; i < SPA_GBH_NBLKPTRS; i++) { 2224 blkptr_t *gbp = &zio_gb.zg_blkptr[i]; 2225 2226 if (BP_IS_HOLE(gbp)) 2227 continue; 2228 if (zio_read(spa, gbp, pbuf)) 2229 return (EIO); 2230 pbuf += BP_GET_PSIZE(gbp); 2231 } 2232 2233 if (zio_checksum_verify(spa, bp, buf)) 2234 return (EIO); 2235 return (0); 2236 } 2237 2238 static int 2239 zio_read(const spa_t *spa, const blkptr_t *bp, void *buf) 2240 { 2241 int cpfunc = BP_GET_COMPRESS(bp); 2242 uint64_t align, size; 2243 void *pbuf; 2244 int i, error; 2245 2246 /* 2247 * Process data embedded in block pointer 2248 */ 2249 if (BP_IS_EMBEDDED(bp)) { 2250 ASSERT(BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA); 2251 2252 size = BPE_GET_PSIZE(bp); 2253 ASSERT(size <= BPE_PAYLOAD_SIZE); 2254 2255 if (cpfunc != ZIO_COMPRESS_OFF) 2256 pbuf = malloc(size); 2257 else 2258 pbuf = buf; 2259 2260 if (pbuf == NULL) 2261 return (ENOMEM); 2262 2263 decode_embedded_bp_compressed(bp, pbuf); 2264 error = 0; 2265 2266 if (cpfunc != ZIO_COMPRESS_OFF) { 2267 error = zio_decompress_data(cpfunc, pbuf, 2268 size, buf, BP_GET_LSIZE(bp)); 2269 free(pbuf); 2270 } 2271 if (error != 0) 2272 printf("ZFS: i/o error - unable to decompress " 2273 "block pointer data, error %d\n", error); 2274 return (error); 2275 } 2276 2277 error = EIO; 2278 2279 for (i = 0; i < SPA_DVAS_PER_BP; i++) { 2280 const dva_t *dva = &bp->blk_dva[i]; 2281 vdev_t *vdev; 2282 vdev_list_t *vlist; 2283 uint64_t vdevid; 2284 off_t offset; 2285 2286 if (!dva->dva_word[0] && !dva->dva_word[1]) 2287 continue; 2288 2289 vdevid = DVA_GET_VDEV(dva); 2290 offset = DVA_GET_OFFSET(dva); 2291 vlist = &spa->spa_root_vdev->v_children; 2292 STAILQ_FOREACH(vdev, vlist, v_childlink) { 2293 if (vdev->v_id == vdevid) 2294 break; 2295 } 2296 if (!vdev || !vdev->v_read) 2297 continue; 2298 2299 size = BP_GET_PSIZE(bp); 2300 if (vdev->v_read == vdev_raidz_read) { 2301 align = 1ULL << vdev->v_ashift; 2302 if (P2PHASE(size, align) != 0) 2303 size = P2ROUNDUP(size, align); 2304 } 2305 if (size != BP_GET_PSIZE(bp) || cpfunc != ZIO_COMPRESS_OFF) 2306 pbuf = malloc(size); 2307 else 2308 pbuf = buf; 2309 2310 if (pbuf == NULL) { 2311 error = ENOMEM; 2312 break; 2313 } 2314 2315 if (DVA_GET_GANG(dva)) 2316 error = zio_read_gang(spa, bp, pbuf); 2317 else 2318 error = vdev->v_read(vdev, bp, pbuf, offset, size); 2319 if (error == 0) { 2320 if (cpfunc != ZIO_COMPRESS_OFF) 2321 error = zio_decompress_data(cpfunc, pbuf, 2322 BP_GET_PSIZE(bp), buf, BP_GET_LSIZE(bp)); 2323 else if (size != BP_GET_PSIZE(bp)) 2324 bcopy(pbuf, buf, BP_GET_PSIZE(bp)); 2325 } else { 2326 printf("zio_read error: %d\n", error); 2327 } 2328 if (buf != pbuf) 2329 free(pbuf); 2330 if (error == 0) 2331 break; 2332 } 2333 if (error != 0) 2334 printf("ZFS: i/o error - all block copies unavailable\n"); 2335 2336 return (error); 2337 } 2338 2339 static int 2340 dnode_read(const spa_t *spa, const dnode_phys_t *dnode, off_t offset, 2341 void *buf, size_t buflen) 2342 { 2343 int ibshift = dnode->dn_indblkshift - SPA_BLKPTRSHIFT; 2344 int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2345 int nlevels = dnode->dn_nlevels; 2346 int i, rc; 2347 2348 if (bsize > SPA_MAXBLOCKSIZE) { 2349 printf("ZFS: I/O error - blocks larger than %llu are not " 2350 "supported\n", SPA_MAXBLOCKSIZE); 2351 return (EIO); 2352 } 2353 2354 /* 2355 * Handle odd block sizes, mirrors dmu_read_impl(). Data can't exist 2356 * past the first block, so we'll clip the read to the portion of the 2357 * buffer within bsize and zero out the remainder. 2358 */ 2359 if (dnode->dn_maxblkid == 0) { 2360 size_t newbuflen; 2361 2362 newbuflen = offset > bsize ? 0 : MIN(buflen, bsize - offset); 2363 bzero((char *)buf + newbuflen, buflen - newbuflen); 2364 buflen = newbuflen; 2365 } 2366 2367 /* 2368 * Note: bsize may not be a power of two here so we need to do an 2369 * actual divide rather than a bitshift. 2370 */ 2371 while (buflen > 0) { 2372 uint64_t bn = offset / bsize; 2373 int boff = offset % bsize; 2374 int ibn; 2375 const blkptr_t *indbp; 2376 blkptr_t bp; 2377 2378 if (bn > dnode->dn_maxblkid) 2379 return (EIO); 2380 2381 if (dnode == dnode_cache_obj && bn == dnode_cache_bn) 2382 goto cached; 2383 2384 indbp = dnode->dn_blkptr; 2385 for (i = 0; i < nlevels; i++) { 2386 /* 2387 * Copy the bp from the indirect array so that 2388 * we can re-use the scratch buffer for multi-level 2389 * objects. 2390 */ 2391 ibn = bn >> ((nlevels - i - 1) * ibshift); 2392 ibn &= ((1 << ibshift) - 1); 2393 bp = indbp[ibn]; 2394 if (BP_IS_HOLE(&bp)) { 2395 memset(dnode_cache_buf, 0, bsize); 2396 break; 2397 } 2398 rc = zio_read(spa, &bp, dnode_cache_buf); 2399 if (rc) 2400 return (rc); 2401 indbp = (const blkptr_t *) dnode_cache_buf; 2402 } 2403 dnode_cache_obj = dnode; 2404 dnode_cache_bn = bn; 2405 cached: 2406 2407 /* 2408 * The buffer contains our data block. Copy what we 2409 * need from it and loop. 2410 */ 2411 i = bsize - boff; 2412 if (i > buflen) i = buflen; 2413 memcpy(buf, &dnode_cache_buf[boff], i); 2414 buf = ((char *)buf) + i; 2415 offset += i; 2416 buflen -= i; 2417 } 2418 2419 return (0); 2420 } 2421 2422 /* 2423 * Lookup a value in a microzap directory. 2424 */ 2425 static int 2426 mzap_lookup(const mzap_phys_t *mz, size_t size, const char *name, 2427 uint64_t *value) 2428 { 2429 const mzap_ent_phys_t *mze; 2430 int chunks, i; 2431 2432 /* 2433 * Microzap objects use exactly one block. Read the whole 2434 * thing. 2435 */ 2436 chunks = size / MZAP_ENT_LEN - 1; 2437 for (i = 0; i < chunks; i++) { 2438 mze = &mz->mz_chunk[i]; 2439 if (strcmp(mze->mze_name, name) == 0) { 2440 *value = mze->mze_value; 2441 return (0); 2442 } 2443 } 2444 2445 return (ENOENT); 2446 } 2447 2448 /* 2449 * Compare a name with a zap leaf entry. Return non-zero if the name 2450 * matches. 2451 */ 2452 static int 2453 fzap_name_equal(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, 2454 const char *name) 2455 { 2456 size_t namelen; 2457 const zap_leaf_chunk_t *nc; 2458 const char *p; 2459 2460 namelen = zc->l_entry.le_name_numints; 2461 2462 nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk); 2463 p = name; 2464 while (namelen > 0) { 2465 size_t len; 2466 2467 len = namelen; 2468 if (len > ZAP_LEAF_ARRAY_BYTES) 2469 len = ZAP_LEAF_ARRAY_BYTES; 2470 if (memcmp(p, nc->l_array.la_array, len)) 2471 return (0); 2472 p += len; 2473 namelen -= len; 2474 nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next); 2475 } 2476 2477 return (1); 2478 } 2479 2480 /* 2481 * Extract a uint64_t value from a zap leaf entry. 2482 */ 2483 static uint64_t 2484 fzap_leaf_value(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc) 2485 { 2486 const zap_leaf_chunk_t *vc; 2487 int i; 2488 uint64_t value; 2489 const uint8_t *p; 2490 2491 vc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_value_chunk); 2492 for (i = 0, value = 0, p = vc->l_array.la_array; i < 8; i++) { 2493 value = (value << 8) | p[i]; 2494 } 2495 2496 return (value); 2497 } 2498 2499 static void 2500 stv(int len, void *addr, uint64_t value) 2501 { 2502 switch (len) { 2503 case 1: 2504 *(uint8_t *)addr = value; 2505 return; 2506 case 2: 2507 *(uint16_t *)addr = value; 2508 return; 2509 case 4: 2510 *(uint32_t *)addr = value; 2511 return; 2512 case 8: 2513 *(uint64_t *)addr = value; 2514 return; 2515 } 2516 } 2517 2518 /* 2519 * Extract a array from a zap leaf entry. 2520 */ 2521 static void 2522 fzap_leaf_array(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, 2523 uint64_t integer_size, uint64_t num_integers, void *buf) 2524 { 2525 uint64_t array_int_len = zc->l_entry.le_value_intlen; 2526 uint64_t value = 0; 2527 uint64_t *u64 = buf; 2528 char *p = buf; 2529 int len = MIN(zc->l_entry.le_value_numints, num_integers); 2530 int chunk = zc->l_entry.le_value_chunk; 2531 int byten = 0; 2532 2533 if (integer_size == 8 && len == 1) { 2534 *u64 = fzap_leaf_value(zl, zc); 2535 return; 2536 } 2537 2538 while (len > 0) { 2539 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(zl, chunk).l_array; 2540 int i; 2541 2542 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(zl)); 2543 for (i = 0; i < ZAP_LEAF_ARRAY_BYTES && len > 0; i++) { 2544 value = (value << 8) | la->la_array[i]; 2545 byten++; 2546 if (byten == array_int_len) { 2547 stv(integer_size, p, value); 2548 byten = 0; 2549 len--; 2550 if (len == 0) 2551 return; 2552 p += integer_size; 2553 } 2554 } 2555 chunk = la->la_next; 2556 } 2557 } 2558 2559 static int 2560 fzap_check_size(uint64_t integer_size, uint64_t num_integers) 2561 { 2562 2563 switch (integer_size) { 2564 case 1: 2565 case 2: 2566 case 4: 2567 case 8: 2568 break; 2569 default: 2570 return (EINVAL); 2571 } 2572 2573 if (integer_size * num_integers > ZAP_MAXVALUELEN) 2574 return (E2BIG); 2575 2576 return (0); 2577 } 2578 2579 static void 2580 zap_leaf_free(zap_leaf_t *leaf) 2581 { 2582 free(leaf->l_phys); 2583 free(leaf); 2584 } 2585 2586 static int 2587 zap_get_leaf_byblk(fat_zap_t *zap, uint64_t blk, zap_leaf_t **lp) 2588 { 2589 int bs = FZAP_BLOCK_SHIFT(zap); 2590 int err; 2591 2592 *lp = malloc(sizeof(**lp)); 2593 if (*lp == NULL) 2594 return (ENOMEM); 2595 2596 (*lp)->l_bs = bs; 2597 (*lp)->l_phys = malloc(1 << bs); 2598 2599 if ((*lp)->l_phys == NULL) { 2600 free(*lp); 2601 return (ENOMEM); 2602 } 2603 err = dnode_read(zap->zap_spa, zap->zap_dnode, blk << bs, (*lp)->l_phys, 2604 1 << bs); 2605 if (err != 0) { 2606 zap_leaf_free(*lp); 2607 } 2608 return (err); 2609 } 2610 2611 static int 2612 zap_table_load(fat_zap_t *zap, zap_table_phys_t *tbl, uint64_t idx, 2613 uint64_t *valp) 2614 { 2615 int bs = FZAP_BLOCK_SHIFT(zap); 2616 uint64_t blk = idx >> (bs - 3); 2617 uint64_t off = idx & ((1 << (bs - 3)) - 1); 2618 uint64_t *buf; 2619 int rc; 2620 2621 buf = malloc(1 << zap->zap_block_shift); 2622 if (buf == NULL) 2623 return (ENOMEM); 2624 rc = dnode_read(zap->zap_spa, zap->zap_dnode, (tbl->zt_blk + blk) << bs, 2625 buf, 1 << zap->zap_block_shift); 2626 if (rc == 0) 2627 *valp = buf[off]; 2628 free(buf); 2629 return (rc); 2630 } 2631 2632 static int 2633 zap_idx_to_blk(fat_zap_t *zap, uint64_t idx, uint64_t *valp) 2634 { 2635 if (zap->zap_phys->zap_ptrtbl.zt_numblks == 0) { 2636 *valp = ZAP_EMBEDDED_PTRTBL_ENT(zap, idx); 2637 return (0); 2638 } else { 2639 return (zap_table_load(zap, &zap->zap_phys->zap_ptrtbl, 2640 idx, valp)); 2641 } 2642 } 2643 2644 #define ZAP_HASH_IDX(hash, n) (((n) == 0) ? 0 : ((hash) >> (64 - (n)))) 2645 static int 2646 zap_deref_leaf(fat_zap_t *zap, uint64_t h, zap_leaf_t **lp) 2647 { 2648 uint64_t idx, blk; 2649 int err; 2650 2651 idx = ZAP_HASH_IDX(h, zap->zap_phys->zap_ptrtbl.zt_shift); 2652 err = zap_idx_to_blk(zap, idx, &blk); 2653 if (err != 0) 2654 return (err); 2655 return (zap_get_leaf_byblk(zap, blk, lp)); 2656 } 2657 2658 #define CHAIN_END 0xffff /* end of the chunk chain */ 2659 #define LEAF_HASH(l, h) \ 2660 ((ZAP_LEAF_HASH_NUMENTRIES(l)-1) & \ 2661 ((h) >> \ 2662 (64 - ZAP_LEAF_HASH_SHIFT(l) - (l)->l_phys->l_hdr.lh_prefix_len))) 2663 #define LEAF_HASH_ENTPTR(l, h) (&(l)->l_phys->l_hash[LEAF_HASH(l, h)]) 2664 2665 static int 2666 zap_leaf_lookup(zap_leaf_t *zl, uint64_t hash, const char *name, 2667 uint64_t integer_size, uint64_t num_integers, void *value) 2668 { 2669 int rc; 2670 uint16_t *chunkp; 2671 struct zap_leaf_entry *le; 2672 2673 /* 2674 * Make sure this chunk matches our hash. 2675 */ 2676 if (zl->l_phys->l_hdr.lh_prefix_len > 0 && 2677 zl->l_phys->l_hdr.lh_prefix != 2678 hash >> (64 - zl->l_phys->l_hdr.lh_prefix_len)) 2679 return (EIO); 2680 2681 rc = ENOENT; 2682 for (chunkp = LEAF_HASH_ENTPTR(zl, hash); 2683 *chunkp != CHAIN_END; chunkp = &le->le_next) { 2684 zap_leaf_chunk_t *zc; 2685 uint16_t chunk = *chunkp; 2686 2687 le = ZAP_LEAF_ENTRY(zl, chunk); 2688 if (le->le_hash != hash) 2689 continue; 2690 zc = &ZAP_LEAF_CHUNK(zl, chunk); 2691 if (fzap_name_equal(zl, zc, name)) { 2692 if (zc->l_entry.le_value_intlen > integer_size) { 2693 rc = EINVAL; 2694 } else { 2695 fzap_leaf_array(zl, zc, integer_size, 2696 num_integers, value); 2697 rc = 0; 2698 } 2699 break; 2700 } 2701 } 2702 return (rc); 2703 } 2704 2705 /* 2706 * Lookup a value in a fatzap directory. 2707 */ 2708 static int 2709 fzap_lookup(const spa_t *spa, const dnode_phys_t *dnode, zap_phys_t *zh, 2710 const char *name, uint64_t integer_size, uint64_t num_integers, 2711 void *value) 2712 { 2713 int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2714 fat_zap_t z; 2715 zap_leaf_t *zl; 2716 uint64_t hash; 2717 int rc; 2718 2719 if (zh->zap_magic != ZAP_MAGIC) 2720 return (EIO); 2721 2722 if ((rc = fzap_check_size(integer_size, num_integers)) != 0) { 2723 return (rc); 2724 } 2725 2726 z.zap_block_shift = ilog2(bsize); 2727 z.zap_phys = zh; 2728 z.zap_spa = spa; 2729 z.zap_dnode = dnode; 2730 2731 hash = zap_hash(zh->zap_salt, name); 2732 rc = zap_deref_leaf(&z, hash, &zl); 2733 if (rc != 0) 2734 return (rc); 2735 2736 rc = zap_leaf_lookup(zl, hash, name, integer_size, num_integers, value); 2737 2738 zap_leaf_free(zl); 2739 return (rc); 2740 } 2741 2742 /* 2743 * Lookup a name in a zap object and return its value as a uint64_t. 2744 */ 2745 static int 2746 zap_lookup(const spa_t *spa, const dnode_phys_t *dnode, const char *name, 2747 uint64_t integer_size, uint64_t num_integers, void *value) 2748 { 2749 int rc; 2750 zap_phys_t *zap; 2751 size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2752 2753 zap = malloc(size); 2754 if (zap == NULL) 2755 return (ENOMEM); 2756 2757 rc = dnode_read(spa, dnode, 0, zap, size); 2758 if (rc) 2759 goto done; 2760 2761 switch (zap->zap_block_type) { 2762 case ZBT_MICRO: 2763 rc = mzap_lookup((const mzap_phys_t *)zap, size, name, value); 2764 break; 2765 case ZBT_HEADER: 2766 rc = fzap_lookup(spa, dnode, zap, name, integer_size, 2767 num_integers, value); 2768 break; 2769 default: 2770 printf("ZFS: invalid zap_type=%" PRIx64 "\n", 2771 zap->zap_block_type); 2772 rc = EIO; 2773 } 2774 done: 2775 free(zap); 2776 return (rc); 2777 } 2778 2779 /* 2780 * List a microzap directory. 2781 */ 2782 static int 2783 mzap_list(const mzap_phys_t *mz, size_t size, 2784 int (*callback)(const char *, uint64_t)) 2785 { 2786 const mzap_ent_phys_t *mze; 2787 int chunks, i, rc; 2788 2789 /* 2790 * Microzap objects use exactly one block. Read the whole 2791 * thing. 2792 */ 2793 rc = 0; 2794 chunks = size / MZAP_ENT_LEN - 1; 2795 for (i = 0; i < chunks; i++) { 2796 mze = &mz->mz_chunk[i]; 2797 if (mze->mze_name[0]) { 2798 rc = callback(mze->mze_name, mze->mze_value); 2799 if (rc != 0) 2800 break; 2801 } 2802 } 2803 2804 return (rc); 2805 } 2806 2807 /* 2808 * List a fatzap directory. 2809 */ 2810 static int 2811 fzap_list(const spa_t *spa, const dnode_phys_t *dnode, zap_phys_t *zh, 2812 int (*callback)(const char *, uint64_t)) 2813 { 2814 int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2815 fat_zap_t z; 2816 uint64_t i; 2817 int j, rc; 2818 2819 if (zh->zap_magic != ZAP_MAGIC) 2820 return (EIO); 2821 2822 z.zap_block_shift = ilog2(bsize); 2823 z.zap_phys = zh; 2824 2825 /* 2826 * This assumes that the leaf blocks start at block 1. The 2827 * documentation isn't exactly clear on this. 2828 */ 2829 zap_leaf_t zl; 2830 zl.l_bs = z.zap_block_shift; 2831 zl.l_phys = malloc(bsize); 2832 if (zl.l_phys == NULL) 2833 return (ENOMEM); 2834 2835 for (i = 0; i < zh->zap_num_leafs; i++) { 2836 off_t off = ((off_t)(i + 1)) << zl.l_bs; 2837 char name[256], *p; 2838 uint64_t value; 2839 2840 if (dnode_read(spa, dnode, off, zl.l_phys, bsize)) { 2841 free(zl.l_phys); 2842 return (EIO); 2843 } 2844 2845 for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) { 2846 zap_leaf_chunk_t *zc, *nc; 2847 int namelen; 2848 2849 zc = &ZAP_LEAF_CHUNK(&zl, j); 2850 if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY) 2851 continue; 2852 namelen = zc->l_entry.le_name_numints; 2853 if (namelen > sizeof(name)) 2854 namelen = sizeof(name); 2855 2856 /* 2857 * Paste the name back together. 2858 */ 2859 nc = &ZAP_LEAF_CHUNK(&zl, zc->l_entry.le_name_chunk); 2860 p = name; 2861 while (namelen > 0) { 2862 int len; 2863 len = namelen; 2864 if (len > ZAP_LEAF_ARRAY_BYTES) 2865 len = ZAP_LEAF_ARRAY_BYTES; 2866 memcpy(p, nc->l_array.la_array, len); 2867 p += len; 2868 namelen -= len; 2869 nc = &ZAP_LEAF_CHUNK(&zl, nc->l_array.la_next); 2870 } 2871 2872 /* 2873 * Assume the first eight bytes of the value are 2874 * a uint64_t. 2875 */ 2876 value = fzap_leaf_value(&zl, zc); 2877 2878 /* printf("%s 0x%jx\n", name, (uintmax_t)value); */ 2879 rc = callback((const char *)name, value); 2880 if (rc != 0) { 2881 free(zl.l_phys); 2882 return (rc); 2883 } 2884 } 2885 } 2886 2887 free(zl.l_phys); 2888 return (0); 2889 } 2890 2891 static int zfs_printf(const char *name, uint64_t value __unused) 2892 { 2893 2894 printf("%s\n", name); 2895 2896 return (0); 2897 } 2898 2899 /* 2900 * List a zap directory. 2901 */ 2902 static int 2903 zap_list(const spa_t *spa, const dnode_phys_t *dnode) 2904 { 2905 zap_phys_t *zap; 2906 size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2907 int rc; 2908 2909 zap = malloc(size); 2910 if (zap == NULL) 2911 return (ENOMEM); 2912 2913 rc = dnode_read(spa, dnode, 0, zap, size); 2914 if (rc == 0) { 2915 if (zap->zap_block_type == ZBT_MICRO) 2916 rc = mzap_list((const mzap_phys_t *)zap, size, 2917 zfs_printf); 2918 else 2919 rc = fzap_list(spa, dnode, zap, zfs_printf); 2920 } 2921 free(zap); 2922 return (rc); 2923 } 2924 2925 static int 2926 objset_get_dnode(const spa_t *spa, const objset_phys_t *os, uint64_t objnum, 2927 dnode_phys_t *dnode) 2928 { 2929 off_t offset; 2930 2931 offset = objnum * sizeof(dnode_phys_t); 2932 return dnode_read(spa, &os->os_meta_dnode, offset, 2933 dnode, sizeof(dnode_phys_t)); 2934 } 2935 2936 /* 2937 * Lookup a name in a microzap directory. 2938 */ 2939 static int 2940 mzap_rlookup(const mzap_phys_t *mz, size_t size, char *name, uint64_t value) 2941 { 2942 const mzap_ent_phys_t *mze; 2943 int chunks, i; 2944 2945 /* 2946 * Microzap objects use exactly one block. Read the whole 2947 * thing. 2948 */ 2949 chunks = size / MZAP_ENT_LEN - 1; 2950 for (i = 0; i < chunks; i++) { 2951 mze = &mz->mz_chunk[i]; 2952 if (value == mze->mze_value) { 2953 strcpy(name, mze->mze_name); 2954 return (0); 2955 } 2956 } 2957 2958 return (ENOENT); 2959 } 2960 2961 static void 2962 fzap_name_copy(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, char *name) 2963 { 2964 size_t namelen; 2965 const zap_leaf_chunk_t *nc; 2966 char *p; 2967 2968 namelen = zc->l_entry.le_name_numints; 2969 2970 nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk); 2971 p = name; 2972 while (namelen > 0) { 2973 size_t len; 2974 len = namelen; 2975 if (len > ZAP_LEAF_ARRAY_BYTES) 2976 len = ZAP_LEAF_ARRAY_BYTES; 2977 memcpy(p, nc->l_array.la_array, len); 2978 p += len; 2979 namelen -= len; 2980 nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next); 2981 } 2982 2983 *p = '\0'; 2984 } 2985 2986 static int 2987 fzap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, zap_phys_t *zh, 2988 char *name, uint64_t value) 2989 { 2990 int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2991 fat_zap_t z; 2992 uint64_t i; 2993 int j, rc; 2994 2995 if (zh->zap_magic != ZAP_MAGIC) 2996 return (EIO); 2997 2998 z.zap_block_shift = ilog2(bsize); 2999 z.zap_phys = zh; 3000 3001 /* 3002 * This assumes that the leaf blocks start at block 1. The 3003 * documentation isn't exactly clear on this. 3004 */ 3005 zap_leaf_t zl; 3006 zl.l_bs = z.zap_block_shift; 3007 zl.l_phys = malloc(bsize); 3008 if (zl.l_phys == NULL) 3009 return (ENOMEM); 3010 3011 for (i = 0; i < zh->zap_num_leafs; i++) { 3012 off_t off = ((off_t)(i + 1)) << zl.l_bs; 3013 3014 rc = dnode_read(spa, dnode, off, zl.l_phys, bsize); 3015 if (rc != 0) 3016 goto done; 3017 3018 for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) { 3019 zap_leaf_chunk_t *zc; 3020 3021 zc = &ZAP_LEAF_CHUNK(&zl, j); 3022 if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY) 3023 continue; 3024 if (zc->l_entry.le_value_intlen != 8 || 3025 zc->l_entry.le_value_numints != 1) 3026 continue; 3027 3028 if (fzap_leaf_value(&zl, zc) == value) { 3029 fzap_name_copy(&zl, zc, name); 3030 goto done; 3031 } 3032 } 3033 } 3034 3035 rc = ENOENT; 3036 done: 3037 free(zl.l_phys); 3038 return (rc); 3039 } 3040 3041 static int 3042 zap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, char *name, 3043 uint64_t value) 3044 { 3045 zap_phys_t *zap; 3046 size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 3047 int rc; 3048 3049 zap = malloc(size); 3050 if (zap == NULL) 3051 return (ENOMEM); 3052 3053 rc = dnode_read(spa, dnode, 0, zap, size); 3054 if (rc == 0) { 3055 if (zap->zap_block_type == ZBT_MICRO) 3056 rc = mzap_rlookup((const mzap_phys_t *)zap, size, 3057 name, value); 3058 else 3059 rc = fzap_rlookup(spa, dnode, zap, name, value); 3060 } 3061 free(zap); 3062 return (rc); 3063 } 3064 3065 static int 3066 zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result) 3067 { 3068 char name[256]; 3069 char component[256]; 3070 uint64_t dir_obj, parent_obj, child_dir_zapobj; 3071 dnode_phys_t child_dir_zap, dataset, dir, parent; 3072 dsl_dir_phys_t *dd; 3073 dsl_dataset_phys_t *ds; 3074 char *p; 3075 int len; 3076 3077 p = &name[sizeof(name) - 1]; 3078 *p = '\0'; 3079 3080 if (objset_get_dnode(spa, spa->spa_mos, objnum, &dataset)) { 3081 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum); 3082 return (EIO); 3083 } 3084 ds = (dsl_dataset_phys_t *)&dataset.dn_bonus; 3085 dir_obj = ds->ds_dir_obj; 3086 3087 for (;;) { 3088 if (objset_get_dnode(spa, spa->spa_mos, dir_obj, &dir) != 0) 3089 return (EIO); 3090 dd = (dsl_dir_phys_t *)&dir.dn_bonus; 3091 3092 /* Actual loop condition. */ 3093 parent_obj = dd->dd_parent_obj; 3094 if (parent_obj == 0) 3095 break; 3096 3097 if (objset_get_dnode(spa, spa->spa_mos, parent_obj, 3098 &parent) != 0) 3099 return (EIO); 3100 dd = (dsl_dir_phys_t *)&parent.dn_bonus; 3101 child_dir_zapobj = dd->dd_child_dir_zapobj; 3102 if (objset_get_dnode(spa, spa->spa_mos, child_dir_zapobj, 3103 &child_dir_zap) != 0) 3104 return (EIO); 3105 if (zap_rlookup(spa, &child_dir_zap, component, dir_obj) != 0) 3106 return (EIO); 3107 3108 len = strlen(component); 3109 p -= len; 3110 memcpy(p, component, len); 3111 --p; 3112 *p = '/'; 3113 3114 /* Actual loop iteration. */ 3115 dir_obj = parent_obj; 3116 } 3117 3118 if (*p != '\0') 3119 ++p; 3120 strcpy(result, p); 3121 3122 return (0); 3123 } 3124 3125 static int 3126 zfs_lookup_dataset(const spa_t *spa, const char *name, uint64_t *objnum) 3127 { 3128 char element[256]; 3129 uint64_t dir_obj, child_dir_zapobj; 3130 dnode_phys_t child_dir_zap, dir; 3131 dsl_dir_phys_t *dd; 3132 const char *p, *q; 3133 3134 if (objset_get_dnode(spa, spa->spa_mos, 3135 DMU_POOL_DIRECTORY_OBJECT, &dir)) 3136 return (EIO); 3137 if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET, sizeof (dir_obj), 3138 1, &dir_obj)) 3139 return (EIO); 3140 3141 p = name; 3142 for (;;) { 3143 if (objset_get_dnode(spa, spa->spa_mos, dir_obj, &dir)) 3144 return (EIO); 3145 dd = (dsl_dir_phys_t *)&dir.dn_bonus; 3146 3147 while (*p == '/') 3148 p++; 3149 /* Actual loop condition #1. */ 3150 if (*p == '\0') 3151 break; 3152 3153 q = strchr(p, '/'); 3154 if (q) { 3155 memcpy(element, p, q - p); 3156 element[q - p] = '\0'; 3157 p = q + 1; 3158 } else { 3159 strcpy(element, p); 3160 p += strlen(p); 3161 } 3162 3163 child_dir_zapobj = dd->dd_child_dir_zapobj; 3164 if (objset_get_dnode(spa, spa->spa_mos, child_dir_zapobj, 3165 &child_dir_zap) != 0) 3166 return (EIO); 3167 3168 /* Actual loop condition #2. */ 3169 if (zap_lookup(spa, &child_dir_zap, element, sizeof (dir_obj), 3170 1, &dir_obj) != 0) 3171 return (ENOENT); 3172 } 3173 3174 *objnum = dd->dd_head_dataset_obj; 3175 return (0); 3176 } 3177 3178 #ifndef BOOT2 3179 static int 3180 zfs_list_dataset(const spa_t *spa, uint64_t objnum/*, int pos, char *entry*/) 3181 { 3182 uint64_t dir_obj, child_dir_zapobj; 3183 dnode_phys_t child_dir_zap, dir, dataset; 3184 dsl_dataset_phys_t *ds; 3185 dsl_dir_phys_t *dd; 3186 3187 if (objset_get_dnode(spa, spa->spa_mos, objnum, &dataset)) { 3188 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum); 3189 return (EIO); 3190 } 3191 ds = (dsl_dataset_phys_t *)&dataset.dn_bonus; 3192 dir_obj = ds->ds_dir_obj; 3193 3194 if (objset_get_dnode(spa, spa->spa_mos, dir_obj, &dir)) { 3195 printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj); 3196 return (EIO); 3197 } 3198 dd = (dsl_dir_phys_t *)&dir.dn_bonus; 3199 3200 child_dir_zapobj = dd->dd_child_dir_zapobj; 3201 if (objset_get_dnode(spa, spa->spa_mos, child_dir_zapobj, 3202 &child_dir_zap) != 0) { 3203 printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj); 3204 return (EIO); 3205 } 3206 3207 return (zap_list(spa, &child_dir_zap) != 0); 3208 } 3209 3210 int 3211 zfs_callback_dataset(const spa_t *spa, uint64_t objnum, 3212 int (*callback)(const char *, uint64_t)) 3213 { 3214 uint64_t dir_obj, child_dir_zapobj; 3215 dnode_phys_t child_dir_zap, dir, dataset; 3216 dsl_dataset_phys_t *ds; 3217 dsl_dir_phys_t *dd; 3218 zap_phys_t *zap; 3219 size_t size; 3220 int err; 3221 3222 err = objset_get_dnode(spa, spa->spa_mos, objnum, &dataset); 3223 if (err != 0) { 3224 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum); 3225 return (err); 3226 } 3227 ds = (dsl_dataset_phys_t *)&dataset.dn_bonus; 3228 dir_obj = ds->ds_dir_obj; 3229 3230 err = objset_get_dnode(spa, spa->spa_mos, dir_obj, &dir); 3231 if (err != 0) { 3232 printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj); 3233 return (err); 3234 } 3235 dd = (dsl_dir_phys_t *)&dir.dn_bonus; 3236 3237 child_dir_zapobj = dd->dd_child_dir_zapobj; 3238 err = objset_get_dnode(spa, spa->spa_mos, child_dir_zapobj, 3239 &child_dir_zap); 3240 if (err != 0) { 3241 printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj); 3242 return (err); 3243 } 3244 3245 size = child_dir_zap.dn_datablkszsec << SPA_MINBLOCKSHIFT; 3246 zap = malloc(size); 3247 if (zap != NULL) { 3248 err = dnode_read(spa, &child_dir_zap, 0, zap, size); 3249 if (err != 0) 3250 goto done; 3251 3252 if (zap->zap_block_type == ZBT_MICRO) 3253 err = mzap_list((const mzap_phys_t *)zap, size, 3254 callback); 3255 else 3256 err = fzap_list(spa, &child_dir_zap, zap, callback); 3257 } else { 3258 err = ENOMEM; 3259 } 3260 done: 3261 free(zap); 3262 return (err); 3263 } 3264 #endif 3265 3266 /* 3267 * Find the object set given the object number of its dataset object 3268 * and return its details in *objset 3269 */ 3270 static int 3271 zfs_mount_dataset(const spa_t *spa, uint64_t objnum, objset_phys_t *objset) 3272 { 3273 dnode_phys_t dataset; 3274 dsl_dataset_phys_t *ds; 3275 3276 if (objset_get_dnode(spa, spa->spa_mos, objnum, &dataset)) { 3277 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum); 3278 return (EIO); 3279 } 3280 3281 ds = (dsl_dataset_phys_t *)&dataset.dn_bonus; 3282 if (zio_read(spa, &ds->ds_bp, objset)) { 3283 printf("ZFS: can't read object set for dataset %ju\n", 3284 (uintmax_t)objnum); 3285 return (EIO); 3286 } 3287 3288 return (0); 3289 } 3290 3291 /* 3292 * Find the object set pointed to by the BOOTFS property or the root 3293 * dataset if there is none and return its details in *objset 3294 */ 3295 static int 3296 zfs_get_root(const spa_t *spa, uint64_t *objid) 3297 { 3298 dnode_phys_t dir, propdir; 3299 uint64_t props, bootfs, root; 3300 3301 *objid = 0; 3302 3303 /* 3304 * Start with the MOS directory object. 3305 */ 3306 if (objset_get_dnode(spa, spa->spa_mos, 3307 DMU_POOL_DIRECTORY_OBJECT, &dir)) { 3308 printf("ZFS: can't read MOS object directory\n"); 3309 return (EIO); 3310 } 3311 3312 /* 3313 * Lookup the pool_props and see if we can find a bootfs. 3314 */ 3315 if (zap_lookup(spa, &dir, DMU_POOL_PROPS, 3316 sizeof(props), 1, &props) == 0 && 3317 objset_get_dnode(spa, spa->spa_mos, props, &propdir) == 0 && 3318 zap_lookup(spa, &propdir, "bootfs", 3319 sizeof(bootfs), 1, &bootfs) == 0 && bootfs != 0) { 3320 *objid = bootfs; 3321 return (0); 3322 } 3323 /* 3324 * Lookup the root dataset directory 3325 */ 3326 if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET, 3327 sizeof(root), 1, &root) || 3328 objset_get_dnode(spa, spa->spa_mos, root, &dir)) { 3329 printf("ZFS: can't find root dsl_dir\n"); 3330 return (EIO); 3331 } 3332 3333 /* 3334 * Use the information from the dataset directory's bonus buffer 3335 * to find the dataset object and from that the object set itself. 3336 */ 3337 dsl_dir_phys_t *dd = (dsl_dir_phys_t *)&dir.dn_bonus; 3338 *objid = dd->dd_head_dataset_obj; 3339 return (0); 3340 } 3341 3342 static int 3343 zfs_mount_impl(const spa_t *spa, uint64_t rootobj, struct zfsmount *mount) 3344 { 3345 3346 mount->spa = spa; 3347 3348 /* 3349 * Find the root object set if not explicitly provided 3350 */ 3351 if (rootobj == 0 && zfs_get_root(spa, &rootobj)) { 3352 printf("ZFS: can't find root filesystem\n"); 3353 return (EIO); 3354 } 3355 3356 if (zfs_mount_dataset(spa, rootobj, &mount->objset)) { 3357 printf("ZFS: can't open root filesystem\n"); 3358 return (EIO); 3359 } 3360 3361 mount->rootobj = rootobj; 3362 3363 return (0); 3364 } 3365 3366 /* 3367 * callback function for feature name checks. 3368 */ 3369 static int 3370 check_feature(const char *name, uint64_t value) 3371 { 3372 int i; 3373 3374 if (value == 0) 3375 return (0); 3376 if (name[0] == '\0') 3377 return (0); 3378 3379 for (i = 0; features_for_read[i] != NULL; i++) { 3380 if (strcmp(name, features_for_read[i]) == 0) 3381 return (0); 3382 } 3383 printf("ZFS: unsupported feature: %s\n", name); 3384 return (EIO); 3385 } 3386 3387 /* 3388 * Checks whether the MOS features that are active are supported. 3389 */ 3390 static int 3391 check_mos_features(const spa_t *spa) 3392 { 3393 dnode_phys_t dir; 3394 zap_phys_t *zap; 3395 uint64_t objnum; 3396 size_t size; 3397 int rc; 3398 3399 if ((rc = objset_get_dnode(spa, spa->spa_mos, DMU_OT_OBJECT_DIRECTORY, 3400 &dir)) != 0) 3401 return (rc); 3402 if ((rc = zap_lookup(spa, &dir, DMU_POOL_FEATURES_FOR_READ, 3403 sizeof (objnum), 1, &objnum)) != 0) { 3404 /* 3405 * It is older pool without features. As we have already 3406 * tested the label, just return without raising the error. 3407 */ 3408 return (0); 3409 } 3410 3411 if ((rc = objset_get_dnode(spa, spa->spa_mos, objnum, &dir)) != 0) 3412 return (rc); 3413 3414 if (dir.dn_type != DMU_OTN_ZAP_METADATA) 3415 return (EIO); 3416 3417 size = dir.dn_datablkszsec << SPA_MINBLOCKSHIFT; 3418 zap = malloc(size); 3419 if (zap == NULL) 3420 return (ENOMEM); 3421 3422 if (dnode_read(spa, &dir, 0, zap, size)) { 3423 free(zap); 3424 return (EIO); 3425 } 3426 3427 if (zap->zap_block_type == ZBT_MICRO) 3428 rc = mzap_list((const mzap_phys_t *)zap, size, check_feature); 3429 else 3430 rc = fzap_list(spa, &dir, zap, check_feature); 3431 3432 free(zap); 3433 return (rc); 3434 } 3435 3436 static int 3437 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 3438 { 3439 dnode_phys_t dir; 3440 size_t size; 3441 int rc; 3442 char *nv; 3443 3444 *value = NULL; 3445 if ((rc = objset_get_dnode(spa, spa->spa_mos, obj, &dir)) != 0) 3446 return (rc); 3447 if (dir.dn_type != DMU_OT_PACKED_NVLIST && 3448 dir.dn_bonustype != DMU_OT_PACKED_NVLIST_SIZE) { 3449 return (EIO); 3450 } 3451 3452 if (dir.dn_bonuslen != sizeof (uint64_t)) 3453 return (EIO); 3454 3455 size = *(uint64_t *)DN_BONUS(&dir); 3456 nv = malloc(size); 3457 if (nv == NULL) 3458 return (ENOMEM); 3459 3460 rc = dnode_read(spa, &dir, 0, nv, size); 3461 if (rc != 0) { 3462 free(nv); 3463 nv = NULL; 3464 return (rc); 3465 } 3466 *value = nvlist_import(nv, size); 3467 free(nv); 3468 return (rc); 3469 } 3470 3471 static int 3472 zfs_spa_init(spa_t *spa) 3473 { 3474 struct uberblock checkpoint; 3475 dnode_phys_t dir; 3476 uint64_t config_object; 3477 nvlist_t *nvlist; 3478 int rc; 3479 3480 if (zio_read(spa, &spa->spa_uberblock->ub_rootbp, spa->spa_mos)) { 3481 printf("ZFS: can't read MOS of pool %s\n", spa->spa_name); 3482 return (EIO); 3483 } 3484 if (spa->spa_mos->os_type != DMU_OST_META) { 3485 printf("ZFS: corrupted MOS of pool %s\n", spa->spa_name); 3486 return (EIO); 3487 } 3488 3489 if (objset_get_dnode(spa, &spa->spa_mos_master, 3490 DMU_POOL_DIRECTORY_OBJECT, &dir)) { 3491 printf("ZFS: failed to read pool %s directory object\n", 3492 spa->spa_name); 3493 return (EIO); 3494 } 3495 /* this is allowed to fail, older pools do not have salt */ 3496 rc = zap_lookup(spa, &dir, DMU_POOL_CHECKSUM_SALT, 1, 3497 sizeof (spa->spa_cksum_salt.zcs_bytes), 3498 spa->spa_cksum_salt.zcs_bytes); 3499 3500 rc = check_mos_features(spa); 3501 if (rc != 0) { 3502 printf("ZFS: pool %s is not supported\n", spa->spa_name); 3503 return (rc); 3504 } 3505 3506 rc = zap_lookup(spa, &dir, DMU_POOL_CONFIG, 3507 sizeof (config_object), 1, &config_object); 3508 if (rc != 0) { 3509 printf("ZFS: can not read MOS %s\n", DMU_POOL_CONFIG); 3510 return (EIO); 3511 } 3512 rc = load_nvlist(spa, config_object, &nvlist); 3513 if (rc != 0) 3514 return (rc); 3515 3516 rc = zap_lookup(spa, &dir, DMU_POOL_ZPOOL_CHECKPOINT, 3517 sizeof(uint64_t), sizeof(checkpoint) / sizeof(uint64_t), 3518 &checkpoint); 3519 if (rc == 0 && checkpoint.ub_checkpoint_txg != 0) { 3520 memcpy(&spa->spa_uberblock_checkpoint, &checkpoint, 3521 sizeof(checkpoint)); 3522 if (zio_read(spa, &spa->spa_uberblock_checkpoint.ub_rootbp, 3523 &spa->spa_mos_checkpoint)) { 3524 printf("ZFS: can not read checkpoint data.\n"); 3525 return (EIO); 3526 } 3527 } 3528 3529 /* 3530 * Update vdevs from MOS config. Note, we do skip encoding bytes 3531 * here. See also vdev_label_read_config(). 3532 */ 3533 rc = vdev_init_from_nvlist(spa, nvlist); 3534 nvlist_destroy(nvlist); 3535 return (rc); 3536 } 3537 3538 static int 3539 zfs_dnode_stat(const spa_t *spa, dnode_phys_t *dn, struct stat *sb) 3540 { 3541 3542 if (dn->dn_bonustype != DMU_OT_SA) { 3543 znode_phys_t *zp = (znode_phys_t *)dn->dn_bonus; 3544 3545 sb->st_mode = zp->zp_mode; 3546 sb->st_uid = zp->zp_uid; 3547 sb->st_gid = zp->zp_gid; 3548 sb->st_size = zp->zp_size; 3549 } else { 3550 sa_hdr_phys_t *sahdrp; 3551 int hdrsize; 3552 size_t size = 0; 3553 void *buf = NULL; 3554 3555 if (dn->dn_bonuslen != 0) 3556 sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn); 3557 else { 3558 if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0) { 3559 blkptr_t *bp = DN_SPILL_BLKPTR(dn); 3560 int error; 3561 3562 size = BP_GET_LSIZE(bp); 3563 buf = malloc(size); 3564 if (buf == NULL) 3565 error = ENOMEM; 3566 else 3567 error = zio_read(spa, bp, buf); 3568 3569 if (error != 0) { 3570 free(buf); 3571 return (error); 3572 } 3573 sahdrp = buf; 3574 } else { 3575 return (EIO); 3576 } 3577 } 3578 hdrsize = SA_HDR_SIZE(sahdrp); 3579 sb->st_mode = *(uint64_t *)((char *)sahdrp + hdrsize + 3580 SA_MODE_OFFSET); 3581 sb->st_uid = *(uint64_t *)((char *)sahdrp + hdrsize + 3582 SA_UID_OFFSET); 3583 sb->st_gid = *(uint64_t *)((char *)sahdrp + hdrsize + 3584 SA_GID_OFFSET); 3585 sb->st_size = *(uint64_t *)((char *)sahdrp + hdrsize + 3586 SA_SIZE_OFFSET); 3587 free(buf); 3588 } 3589 3590 return (0); 3591 } 3592 3593 static int 3594 zfs_dnode_readlink(const spa_t *spa, dnode_phys_t *dn, char *path, size_t psize) 3595 { 3596 int rc = 0; 3597 3598 if (dn->dn_bonustype == DMU_OT_SA) { 3599 sa_hdr_phys_t *sahdrp = NULL; 3600 size_t size = 0; 3601 void *buf = NULL; 3602 int hdrsize; 3603 char *p; 3604 3605 if (dn->dn_bonuslen != 0) { 3606 sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn); 3607 } else { 3608 blkptr_t *bp; 3609 3610 if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) == 0) 3611 return (EIO); 3612 bp = DN_SPILL_BLKPTR(dn); 3613 3614 size = BP_GET_LSIZE(bp); 3615 buf = malloc(size); 3616 if (buf == NULL) 3617 rc = ENOMEM; 3618 else 3619 rc = zio_read(spa, bp, buf); 3620 if (rc != 0) { 3621 free(buf); 3622 return (rc); 3623 } 3624 sahdrp = buf; 3625 } 3626 hdrsize = SA_HDR_SIZE(sahdrp); 3627 p = (char *)((uintptr_t)sahdrp + hdrsize + SA_SYMLINK_OFFSET); 3628 memcpy(path, p, psize); 3629 free(buf); 3630 return (0); 3631 } 3632 /* 3633 * Second test is purely to silence bogus compiler 3634 * warning about accessing past the end of dn_bonus. 3635 */ 3636 if (psize + sizeof(znode_phys_t) <= dn->dn_bonuslen && 3637 sizeof(znode_phys_t) <= sizeof(dn->dn_bonus)) { 3638 memcpy(path, &dn->dn_bonus[sizeof(znode_phys_t)], psize); 3639 } else { 3640 rc = dnode_read(spa, dn, 0, path, psize); 3641 } 3642 return (rc); 3643 } 3644 3645 struct obj_list { 3646 uint64_t objnum; 3647 STAILQ_ENTRY(obj_list) entry; 3648 }; 3649 3650 /* 3651 * Lookup a file and return its dnode. 3652 */ 3653 static int 3654 zfs_lookup(const struct zfsmount *mount, const char *upath, dnode_phys_t *dnode) 3655 { 3656 int rc; 3657 uint64_t objnum; 3658 const spa_t *spa; 3659 dnode_phys_t dn; 3660 const char *p, *q; 3661 char element[256]; 3662 char path[1024]; 3663 int symlinks_followed = 0; 3664 struct stat sb; 3665 struct obj_list *entry, *tentry; 3666 STAILQ_HEAD(, obj_list) on_cache = STAILQ_HEAD_INITIALIZER(on_cache); 3667 3668 spa = mount->spa; 3669 if (mount->objset.os_type != DMU_OST_ZFS) { 3670 printf("ZFS: unexpected object set type %ju\n", 3671 (uintmax_t)mount->objset.os_type); 3672 return (EIO); 3673 } 3674 3675 if ((entry = malloc(sizeof(struct obj_list))) == NULL) 3676 return (ENOMEM); 3677 3678 /* 3679 * Get the root directory dnode. 3680 */ 3681 rc = objset_get_dnode(spa, &mount->objset, MASTER_NODE_OBJ, &dn); 3682 if (rc) { 3683 free(entry); 3684 return (rc); 3685 } 3686 3687 rc = zap_lookup(spa, &dn, ZFS_ROOT_OBJ, sizeof(objnum), 1, &objnum); 3688 if (rc) { 3689 free(entry); 3690 return (rc); 3691 } 3692 entry->objnum = objnum; 3693 STAILQ_INSERT_HEAD(&on_cache, entry, entry); 3694 3695 rc = objset_get_dnode(spa, &mount->objset, objnum, &dn); 3696 if (rc != 0) 3697 goto done; 3698 3699 p = upath; 3700 while (p && *p) { 3701 rc = objset_get_dnode(spa, &mount->objset, objnum, &dn); 3702 if (rc != 0) 3703 goto done; 3704 3705 while (*p == '/') 3706 p++; 3707 if (*p == '\0') 3708 break; 3709 q = p; 3710 while (*q != '\0' && *q != '/') 3711 q++; 3712 3713 /* skip dot */ 3714 if (p + 1 == q && p[0] == '.') { 3715 p++; 3716 continue; 3717 } 3718 /* double dot */ 3719 if (p + 2 == q && p[0] == '.' && p[1] == '.') { 3720 p += 2; 3721 if (STAILQ_FIRST(&on_cache) == 3722 STAILQ_LAST(&on_cache, obj_list, entry)) { 3723 rc = ENOENT; 3724 goto done; 3725 } 3726 entry = STAILQ_FIRST(&on_cache); 3727 STAILQ_REMOVE_HEAD(&on_cache, entry); 3728 free(entry); 3729 objnum = (STAILQ_FIRST(&on_cache))->objnum; 3730 continue; 3731 } 3732 if (q - p + 1 > sizeof(element)) { 3733 rc = ENAMETOOLONG; 3734 goto done; 3735 } 3736 memcpy(element, p, q - p); 3737 element[q - p] = 0; 3738 p = q; 3739 3740 if ((rc = zfs_dnode_stat(spa, &dn, &sb)) != 0) 3741 goto done; 3742 if (!S_ISDIR(sb.st_mode)) { 3743 rc = ENOTDIR; 3744 goto done; 3745 } 3746 3747 rc = zap_lookup(spa, &dn, element, sizeof (objnum), 1, &objnum); 3748 if (rc) 3749 goto done; 3750 objnum = ZFS_DIRENT_OBJ(objnum); 3751 3752 if ((entry = malloc(sizeof(struct obj_list))) == NULL) { 3753 rc = ENOMEM; 3754 goto done; 3755 } 3756 entry->objnum = objnum; 3757 STAILQ_INSERT_HEAD(&on_cache, entry, entry); 3758 rc = objset_get_dnode(spa, &mount->objset, objnum, &dn); 3759 if (rc) 3760 goto done; 3761 3762 /* 3763 * Check for symlink. 3764 */ 3765 rc = zfs_dnode_stat(spa, &dn, &sb); 3766 if (rc) 3767 goto done; 3768 if (S_ISLNK(sb.st_mode)) { 3769 if (symlinks_followed > 10) { 3770 rc = EMLINK; 3771 goto done; 3772 } 3773 symlinks_followed++; 3774 3775 /* 3776 * Read the link value and copy the tail of our 3777 * current path onto the end. 3778 */ 3779 if (sb.st_size + strlen(p) + 1 > sizeof(path)) { 3780 rc = ENAMETOOLONG; 3781 goto done; 3782 } 3783 strcpy(&path[sb.st_size], p); 3784 3785 rc = zfs_dnode_readlink(spa, &dn, path, sb.st_size); 3786 if (rc != 0) 3787 goto done; 3788 3789 /* 3790 * Restart with the new path, starting either at 3791 * the root or at the parent depending whether or 3792 * not the link is relative. 3793 */ 3794 p = path; 3795 if (*p == '/') { 3796 while (STAILQ_FIRST(&on_cache) != 3797 STAILQ_LAST(&on_cache, obj_list, entry)) { 3798 entry = STAILQ_FIRST(&on_cache); 3799 STAILQ_REMOVE_HEAD(&on_cache, entry); 3800 free(entry); 3801 } 3802 } else { 3803 entry = STAILQ_FIRST(&on_cache); 3804 STAILQ_REMOVE_HEAD(&on_cache, entry); 3805 free(entry); 3806 } 3807 objnum = (STAILQ_FIRST(&on_cache))->objnum; 3808 } 3809 } 3810 3811 *dnode = dn; 3812 done: 3813 STAILQ_FOREACH_SAFE(entry, &on_cache, entry, tentry) 3814 free(entry); 3815 return (rc); 3816 } 3817