1 /*- 2 * Copyright (c) 2007 Doug Rabson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 /* 31 * Stand-alone ZFS file reader. 32 */ 33 34 #include <sys/endian.h> 35 #include <sys/stat.h> 36 #include <sys/stdint.h> 37 38 #include "zfsimpl.h" 39 #include "zfssubr.c" 40 41 42 struct zfsmount { 43 const spa_t *spa; 44 objset_phys_t objset; 45 uint64_t rootobj; 46 }; 47 static struct zfsmount zfsmount __unused; 48 49 /* 50 * List of all vdevs, chained through v_alllink. 51 */ 52 static vdev_list_t zfs_vdevs; 53 54 /* 55 * List of ZFS features supported for read 56 */ 57 static const char *features_for_read[] = { 58 "org.illumos:lz4_compress", 59 "com.delphix:hole_birth", 60 "com.delphix:extensible_dataset", 61 "com.delphix:embedded_data", 62 "org.open-zfs:large_blocks", 63 "org.illumos:sha512", 64 "org.illumos:skein", 65 "org.zfsonlinux:large_dnode", 66 "com.joyent:multi_vdev_crash_dump", 67 "com.delphix:spacemap_histogram", 68 "com.delphix:zpool_checkpoint", 69 "com.delphix:spacemap_v2", 70 "com.datto:encryption", 71 "org.zfsonlinux:allocation_classes", 72 "com.datto:resilver_defer", 73 NULL 74 }; 75 76 /* 77 * List of all pools, chained through spa_link. 78 */ 79 static spa_list_t zfs_pools; 80 81 static const dnode_phys_t *dnode_cache_obj; 82 static uint64_t dnode_cache_bn; 83 static char *dnode_cache_buf; 84 static char *zap_scratch; 85 static char *zfs_temp_buf, *zfs_temp_end, *zfs_temp_ptr; 86 87 #define TEMP_SIZE (1024 * 1024) 88 89 static int zio_read(const spa_t *spa, const blkptr_t *bp, void *buf); 90 static int zfs_get_root(const spa_t *spa, uint64_t *objid); 91 static int zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result); 92 static int zap_lookup(const spa_t *spa, const dnode_phys_t *dnode, 93 const char *name, uint64_t integer_size, uint64_t num_integers, 94 void *value); 95 96 static void 97 zfs_init(void) 98 { 99 STAILQ_INIT(&zfs_vdevs); 100 STAILQ_INIT(&zfs_pools); 101 102 zfs_temp_buf = malloc(TEMP_SIZE); 103 zfs_temp_end = zfs_temp_buf + TEMP_SIZE; 104 zfs_temp_ptr = zfs_temp_buf; 105 dnode_cache_buf = malloc(SPA_MAXBLOCKSIZE); 106 zap_scratch = malloc(SPA_MAXBLOCKSIZE); 107 108 zfs_init_crc(); 109 } 110 111 static void * 112 zfs_alloc(size_t size) 113 { 114 char *ptr; 115 116 if (zfs_temp_ptr + size > zfs_temp_end) { 117 panic("ZFS: out of temporary buffer space"); 118 } 119 ptr = zfs_temp_ptr; 120 zfs_temp_ptr += size; 121 122 return (ptr); 123 } 124 125 static void 126 zfs_free(void *ptr, size_t size) 127 { 128 129 zfs_temp_ptr -= size; 130 if (zfs_temp_ptr != ptr) { 131 panic("ZFS: zfs_alloc()/zfs_free() mismatch"); 132 } 133 } 134 135 static int 136 xdr_int(const unsigned char **xdr, int *ip) 137 { 138 *ip = be32dec(*xdr); 139 (*xdr) += 4; 140 return (0); 141 } 142 143 static int 144 xdr_u_int(const unsigned char **xdr, u_int *ip) 145 { 146 *ip = be32dec(*xdr); 147 (*xdr) += 4; 148 return (0); 149 } 150 151 static int 152 xdr_uint64_t(const unsigned char **xdr, uint64_t *lp) 153 { 154 u_int hi, lo; 155 156 xdr_u_int(xdr, &hi); 157 xdr_u_int(xdr, &lo); 158 *lp = (((uint64_t) hi) << 32) | lo; 159 return (0); 160 } 161 162 static int 163 nvlist_find(const unsigned char *nvlist, const char *name, int type, 164 int* elementsp, void *valuep) 165 { 166 const unsigned char *p, *pair; 167 int junk; 168 int encoded_size, decoded_size; 169 170 p = nvlist; 171 xdr_int(&p, &junk); 172 xdr_int(&p, &junk); 173 174 pair = p; 175 xdr_int(&p, &encoded_size); 176 xdr_int(&p, &decoded_size); 177 while (encoded_size && decoded_size) { 178 int namelen, pairtype, elements; 179 const char *pairname; 180 181 xdr_int(&p, &namelen); 182 pairname = (const char*) p; 183 p += roundup(namelen, 4); 184 xdr_int(&p, &pairtype); 185 186 if (!memcmp(name, pairname, namelen) && type == pairtype) { 187 xdr_int(&p, &elements); 188 if (elementsp) 189 *elementsp = elements; 190 if (type == DATA_TYPE_UINT64) { 191 xdr_uint64_t(&p, (uint64_t *) valuep); 192 return (0); 193 } else if (type == DATA_TYPE_STRING) { 194 int len; 195 xdr_int(&p, &len); 196 (*(const char**) valuep) = (const char*) p; 197 return (0); 198 } else if (type == DATA_TYPE_NVLIST 199 || type == DATA_TYPE_NVLIST_ARRAY) { 200 (*(const unsigned char**) valuep) = 201 (const unsigned char*) p; 202 return (0); 203 } else { 204 return (EIO); 205 } 206 } else { 207 /* 208 * Not the pair we are looking for, skip to the next one. 209 */ 210 p = pair + encoded_size; 211 } 212 213 pair = p; 214 xdr_int(&p, &encoded_size); 215 xdr_int(&p, &decoded_size); 216 } 217 218 return (EIO); 219 } 220 221 static int 222 nvlist_check_features_for_read(const unsigned char *nvlist) 223 { 224 const unsigned char *p, *pair; 225 int junk; 226 int encoded_size, decoded_size; 227 int rc; 228 229 rc = 0; 230 231 p = nvlist; 232 xdr_int(&p, &junk); 233 xdr_int(&p, &junk); 234 235 pair = p; 236 xdr_int(&p, &encoded_size); 237 xdr_int(&p, &decoded_size); 238 while (encoded_size && decoded_size) { 239 int namelen, pairtype; 240 const char *pairname; 241 int i, found; 242 243 found = 0; 244 245 xdr_int(&p, &namelen); 246 pairname = (const char*) p; 247 p += roundup(namelen, 4); 248 xdr_int(&p, &pairtype); 249 250 for (i = 0; features_for_read[i] != NULL; i++) { 251 if (!memcmp(pairname, features_for_read[i], namelen)) { 252 found = 1; 253 break; 254 } 255 } 256 257 if (!found) { 258 printf("ZFS: unsupported feature: %s\n", pairname); 259 rc = EIO; 260 } 261 262 p = pair + encoded_size; 263 264 pair = p; 265 xdr_int(&p, &encoded_size); 266 xdr_int(&p, &decoded_size); 267 } 268 269 return (rc); 270 } 271 272 /* 273 * Return the next nvlist in an nvlist array. 274 */ 275 static const unsigned char * 276 nvlist_next(const unsigned char *nvlist) 277 { 278 const unsigned char *p, *pair; 279 int junk; 280 int encoded_size, decoded_size; 281 282 p = nvlist; 283 xdr_int(&p, &junk); 284 xdr_int(&p, &junk); 285 286 pair = p; 287 xdr_int(&p, &encoded_size); 288 xdr_int(&p, &decoded_size); 289 while (encoded_size && decoded_size) { 290 p = pair + encoded_size; 291 292 pair = p; 293 xdr_int(&p, &encoded_size); 294 xdr_int(&p, &decoded_size); 295 } 296 297 return p; 298 } 299 300 #ifdef TEST 301 302 static const unsigned char * 303 nvlist_print(const unsigned char *nvlist, unsigned int indent) 304 { 305 static const char* typenames[] = { 306 "DATA_TYPE_UNKNOWN", 307 "DATA_TYPE_BOOLEAN", 308 "DATA_TYPE_BYTE", 309 "DATA_TYPE_INT16", 310 "DATA_TYPE_UINT16", 311 "DATA_TYPE_INT32", 312 "DATA_TYPE_UINT32", 313 "DATA_TYPE_INT64", 314 "DATA_TYPE_UINT64", 315 "DATA_TYPE_STRING", 316 "DATA_TYPE_BYTE_ARRAY", 317 "DATA_TYPE_INT16_ARRAY", 318 "DATA_TYPE_UINT16_ARRAY", 319 "DATA_TYPE_INT32_ARRAY", 320 "DATA_TYPE_UINT32_ARRAY", 321 "DATA_TYPE_INT64_ARRAY", 322 "DATA_TYPE_UINT64_ARRAY", 323 "DATA_TYPE_STRING_ARRAY", 324 "DATA_TYPE_HRTIME", 325 "DATA_TYPE_NVLIST", 326 "DATA_TYPE_NVLIST_ARRAY", 327 "DATA_TYPE_BOOLEAN_VALUE", 328 "DATA_TYPE_INT8", 329 "DATA_TYPE_UINT8", 330 "DATA_TYPE_BOOLEAN_ARRAY", 331 "DATA_TYPE_INT8_ARRAY", 332 "DATA_TYPE_UINT8_ARRAY" 333 }; 334 335 unsigned int i, j; 336 const unsigned char *p, *pair; 337 int junk; 338 int encoded_size, decoded_size; 339 340 p = nvlist; 341 xdr_int(&p, &junk); 342 xdr_int(&p, &junk); 343 344 pair = p; 345 xdr_int(&p, &encoded_size); 346 xdr_int(&p, &decoded_size); 347 while (encoded_size && decoded_size) { 348 int namelen, pairtype, elements; 349 const char *pairname; 350 351 xdr_int(&p, &namelen); 352 pairname = (const char*) p; 353 p += roundup(namelen, 4); 354 xdr_int(&p, &pairtype); 355 356 for (i = 0; i < indent; i++) 357 printf(" "); 358 printf("%s %s", typenames[pairtype], pairname); 359 360 xdr_int(&p, &elements); 361 switch (pairtype) { 362 case DATA_TYPE_UINT64: { 363 uint64_t val; 364 xdr_uint64_t(&p, &val); 365 printf(" = 0x%jx\n", (uintmax_t)val); 366 break; 367 } 368 369 case DATA_TYPE_STRING: { 370 int len; 371 xdr_int(&p, &len); 372 printf(" = \"%s\"\n", p); 373 break; 374 } 375 376 case DATA_TYPE_NVLIST: 377 printf("\n"); 378 nvlist_print(p, indent + 1); 379 break; 380 381 case DATA_TYPE_NVLIST_ARRAY: 382 for (j = 0; j < elements; j++) { 383 printf("[%d]\n", j); 384 p = nvlist_print(p, indent + 1); 385 if (j != elements - 1) { 386 for (i = 0; i < indent; i++) 387 printf(" "); 388 printf("%s %s", typenames[pairtype], pairname); 389 } 390 } 391 break; 392 393 default: 394 printf("\n"); 395 } 396 397 p = pair + encoded_size; 398 399 pair = p; 400 xdr_int(&p, &encoded_size); 401 xdr_int(&p, &decoded_size); 402 } 403 404 return p; 405 } 406 407 #endif 408 409 static int 410 vdev_read_phys(vdev_t *vdev, const blkptr_t *bp, void *buf, 411 off_t offset, size_t size) 412 { 413 size_t psize; 414 int rc; 415 416 if (!vdev->v_phys_read) 417 return (EIO); 418 419 if (bp) { 420 psize = BP_GET_PSIZE(bp); 421 } else { 422 psize = size; 423 } 424 425 /*printf("ZFS: reading %zu bytes at 0x%jx to %p\n", psize, (uintmax_t)offset, buf);*/ 426 rc = vdev->v_phys_read(vdev, vdev->v_read_priv, offset, buf, psize); 427 if (rc) 428 return (rc); 429 if (bp && zio_checksum_verify(vdev->spa, bp, buf)) 430 return (EIO); 431 432 return (0); 433 } 434 435 static int 436 vdev_disk_read(vdev_t *vdev, const blkptr_t *bp, void *buf, 437 off_t offset, size_t bytes) 438 { 439 440 return (vdev_read_phys(vdev, bp, buf, 441 offset + VDEV_LABEL_START_SIZE, bytes)); 442 } 443 444 445 static int 446 vdev_mirror_read(vdev_t *vdev, const blkptr_t *bp, void *buf, 447 off_t offset, size_t bytes) 448 { 449 vdev_t *kid; 450 int rc; 451 452 rc = EIO; 453 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) { 454 if (kid->v_state != VDEV_STATE_HEALTHY) 455 continue; 456 rc = kid->v_read(kid, bp, buf, offset, bytes); 457 if (!rc) 458 return (0); 459 } 460 461 return (rc); 462 } 463 464 static int 465 vdev_replacing_read(vdev_t *vdev, const blkptr_t *bp, void *buf, 466 off_t offset, size_t bytes) 467 { 468 vdev_t *kid; 469 470 /* 471 * Here we should have two kids: 472 * First one which is the one we are replacing and we can trust 473 * only this one to have valid data, but it might not be present. 474 * Second one is that one we are replacing with. It is most likely 475 * healthy, but we can't trust it has needed data, so we won't use it. 476 */ 477 kid = STAILQ_FIRST(&vdev->v_children); 478 if (kid == NULL) 479 return (EIO); 480 if (kid->v_state != VDEV_STATE_HEALTHY) 481 return (EIO); 482 return (kid->v_read(kid, bp, buf, offset, bytes)); 483 } 484 485 static vdev_t * 486 vdev_find(uint64_t guid) 487 { 488 vdev_t *vdev; 489 490 STAILQ_FOREACH(vdev, &zfs_vdevs, v_alllink) 491 if (vdev->v_guid == guid) 492 return (vdev); 493 494 return (0); 495 } 496 497 static vdev_t * 498 vdev_create(uint64_t guid, vdev_read_t *_read) 499 { 500 vdev_t *vdev; 501 502 vdev = malloc(sizeof(vdev_t)); 503 memset(vdev, 0, sizeof(vdev_t)); 504 STAILQ_INIT(&vdev->v_children); 505 vdev->v_guid = guid; 506 vdev->v_state = VDEV_STATE_OFFLINE; 507 vdev->v_read = _read; 508 vdev->v_phys_read = 0; 509 vdev->v_read_priv = 0; 510 STAILQ_INSERT_TAIL(&zfs_vdevs, vdev, v_alllink); 511 512 return (vdev); 513 } 514 515 static int 516 vdev_init_from_nvlist(const unsigned char *nvlist, vdev_t *pvdev, 517 vdev_t **vdevp, int is_newer) 518 { 519 int rc; 520 uint64_t guid, id, ashift, nparity; 521 const char *type; 522 const char *path; 523 vdev_t *vdev, *kid; 524 const unsigned char *kids; 525 int nkids, i, is_new; 526 uint64_t is_offline, is_faulted, is_degraded, is_removed, isnt_present; 527 528 if (nvlist_find(nvlist, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64, 529 NULL, &guid) 530 || nvlist_find(nvlist, ZPOOL_CONFIG_ID, DATA_TYPE_UINT64, NULL, &id) 531 || nvlist_find(nvlist, ZPOOL_CONFIG_TYPE, DATA_TYPE_STRING, 532 NULL, &type)) { 533 printf("ZFS: can't find vdev details\n"); 534 return (ENOENT); 535 } 536 537 if (strcmp(type, VDEV_TYPE_MIRROR) 538 && strcmp(type, VDEV_TYPE_DISK) 539 #ifdef ZFS_TEST 540 && strcmp(type, VDEV_TYPE_FILE) 541 #endif 542 && strcmp(type, VDEV_TYPE_RAIDZ) 543 && strcmp(type, VDEV_TYPE_REPLACING)) { 544 printf("ZFS: can only boot from disk, mirror, raidz1, raidz2 and raidz3 vdevs\n"); 545 return (EIO); 546 } 547 548 is_offline = is_removed = is_faulted = is_degraded = isnt_present = 0; 549 550 nvlist_find(nvlist, ZPOOL_CONFIG_OFFLINE, DATA_TYPE_UINT64, NULL, 551 &is_offline); 552 nvlist_find(nvlist, ZPOOL_CONFIG_REMOVED, DATA_TYPE_UINT64, NULL, 553 &is_removed); 554 nvlist_find(nvlist, ZPOOL_CONFIG_FAULTED, DATA_TYPE_UINT64, NULL, 555 &is_faulted); 556 nvlist_find(nvlist, ZPOOL_CONFIG_DEGRADED, DATA_TYPE_UINT64, NULL, 557 &is_degraded); 558 nvlist_find(nvlist, ZPOOL_CONFIG_NOT_PRESENT, DATA_TYPE_UINT64, NULL, 559 &isnt_present); 560 561 vdev = vdev_find(guid); 562 if (!vdev) { 563 is_new = 1; 564 565 if (!strcmp(type, VDEV_TYPE_MIRROR)) 566 vdev = vdev_create(guid, vdev_mirror_read); 567 else if (!strcmp(type, VDEV_TYPE_RAIDZ)) 568 vdev = vdev_create(guid, vdev_raidz_read); 569 else if (!strcmp(type, VDEV_TYPE_REPLACING)) 570 vdev = vdev_create(guid, vdev_replacing_read); 571 else 572 vdev = vdev_create(guid, vdev_disk_read); 573 574 vdev->v_id = id; 575 vdev->v_top = pvdev != NULL ? pvdev : vdev; 576 if (nvlist_find(nvlist, ZPOOL_CONFIG_ASHIFT, 577 DATA_TYPE_UINT64, NULL, &ashift) == 0) { 578 vdev->v_ashift = ashift; 579 } else { 580 vdev->v_ashift = 0; 581 } 582 if (nvlist_find(nvlist, ZPOOL_CONFIG_NPARITY, 583 DATA_TYPE_UINT64, NULL, &nparity) == 0) { 584 vdev->v_nparity = nparity; 585 } else { 586 vdev->v_nparity = 0; 587 } 588 if (nvlist_find(nvlist, ZPOOL_CONFIG_PATH, 589 DATA_TYPE_STRING, NULL, &path) == 0) { 590 if (strncmp(path, "/dev/", 5) == 0) 591 path += 5; 592 vdev->v_name = strdup(path); 593 } else { 594 if (!strcmp(type, "raidz")) { 595 if (vdev->v_nparity == 1) 596 vdev->v_name = "raidz1"; 597 else if (vdev->v_nparity == 2) 598 vdev->v_name = "raidz2"; 599 else if (vdev->v_nparity == 3) 600 vdev->v_name = "raidz3"; 601 else { 602 printf("ZFS: can only boot from disk, mirror, raidz1, raidz2 and raidz3 vdevs\n"); 603 return (EIO); 604 } 605 } else { 606 vdev->v_name = strdup(type); 607 } 608 } 609 } else { 610 is_new = 0; 611 } 612 613 if (is_new || is_newer) { 614 /* 615 * This is either new vdev or we've already seen this vdev, 616 * but from an older vdev label, so let's refresh its state 617 * from the newer label. 618 */ 619 if (is_offline) 620 vdev->v_state = VDEV_STATE_OFFLINE; 621 else if (is_removed) 622 vdev->v_state = VDEV_STATE_REMOVED; 623 else if (is_faulted) 624 vdev->v_state = VDEV_STATE_FAULTED; 625 else if (is_degraded) 626 vdev->v_state = VDEV_STATE_DEGRADED; 627 else if (isnt_present) 628 vdev->v_state = VDEV_STATE_CANT_OPEN; 629 } 630 631 rc = nvlist_find(nvlist, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY, 632 &nkids, &kids); 633 /* 634 * Its ok if we don't have any kids. 635 */ 636 if (rc == 0) { 637 vdev->v_nchildren = nkids; 638 for (i = 0; i < nkids; i++) { 639 rc = vdev_init_from_nvlist(kids, vdev, &kid, is_newer); 640 if (rc) 641 return (rc); 642 if (is_new) 643 STAILQ_INSERT_TAIL(&vdev->v_children, kid, 644 v_childlink); 645 kids = nvlist_next(kids); 646 } 647 } else { 648 vdev->v_nchildren = 0; 649 } 650 651 if (vdevp) 652 *vdevp = vdev; 653 return (0); 654 } 655 656 static void 657 vdev_set_state(vdev_t *vdev) 658 { 659 vdev_t *kid; 660 int good_kids; 661 int bad_kids; 662 663 /* 664 * A mirror or raidz is healthy if all its kids are healthy. A 665 * mirror is degraded if any of its kids is healthy; a raidz 666 * is degraded if at most nparity kids are offline. 667 */ 668 if (STAILQ_FIRST(&vdev->v_children)) { 669 good_kids = 0; 670 bad_kids = 0; 671 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) { 672 if (kid->v_state == VDEV_STATE_HEALTHY) 673 good_kids++; 674 else 675 bad_kids++; 676 } 677 if (bad_kids == 0) { 678 vdev->v_state = VDEV_STATE_HEALTHY; 679 } else { 680 if (vdev->v_read == vdev_mirror_read) { 681 if (good_kids) { 682 vdev->v_state = VDEV_STATE_DEGRADED; 683 } else { 684 vdev->v_state = VDEV_STATE_OFFLINE; 685 } 686 } else if (vdev->v_read == vdev_raidz_read) { 687 if (bad_kids > vdev->v_nparity) { 688 vdev->v_state = VDEV_STATE_OFFLINE; 689 } else { 690 vdev->v_state = VDEV_STATE_DEGRADED; 691 } 692 } 693 } 694 } 695 } 696 697 static spa_t * 698 spa_find_by_guid(uint64_t guid) 699 { 700 spa_t *spa; 701 702 STAILQ_FOREACH(spa, &zfs_pools, spa_link) 703 if (spa->spa_guid == guid) 704 return (spa); 705 706 return (0); 707 } 708 709 static spa_t * 710 spa_find_by_name(const char *name) 711 { 712 spa_t *spa; 713 714 STAILQ_FOREACH(spa, &zfs_pools, spa_link) 715 if (!strcmp(spa->spa_name, name)) 716 return (spa); 717 718 return (0); 719 } 720 721 #ifdef BOOT2 722 static spa_t * 723 spa_get_primary(void) 724 { 725 726 return (STAILQ_FIRST(&zfs_pools)); 727 } 728 729 static vdev_t * 730 spa_get_primary_vdev(const spa_t *spa) 731 { 732 vdev_t *vdev; 733 vdev_t *kid; 734 735 if (spa == NULL) 736 spa = spa_get_primary(); 737 if (spa == NULL) 738 return (NULL); 739 vdev = STAILQ_FIRST(&spa->spa_vdevs); 740 if (vdev == NULL) 741 return (NULL); 742 for (kid = STAILQ_FIRST(&vdev->v_children); kid != NULL; 743 kid = STAILQ_FIRST(&vdev->v_children)) 744 vdev = kid; 745 return (vdev); 746 } 747 #endif 748 749 static spa_t * 750 spa_create(uint64_t guid, const char *name) 751 { 752 spa_t *spa; 753 754 if ((spa = calloc(1, sizeof(spa_t))) == NULL) 755 return (NULL); 756 if ((spa->spa_name = strdup(name)) == NULL) { 757 free(spa); 758 return (NULL); 759 } 760 STAILQ_INIT(&spa->spa_vdevs); 761 spa->spa_guid = guid; 762 STAILQ_INSERT_TAIL(&zfs_pools, spa, spa_link); 763 764 return (spa); 765 } 766 767 static const char * 768 state_name(vdev_state_t state) 769 { 770 static const char* names[] = { 771 "UNKNOWN", 772 "CLOSED", 773 "OFFLINE", 774 "REMOVED", 775 "CANT_OPEN", 776 "FAULTED", 777 "DEGRADED", 778 "ONLINE" 779 }; 780 return names[state]; 781 } 782 783 #ifdef BOOT2 784 785 #define pager_printf printf 786 787 #else 788 789 static int 790 pager_printf(const char *fmt, ...) 791 { 792 char line[80]; 793 va_list args; 794 795 va_start(args, fmt); 796 vsprintf(line, fmt, args); 797 va_end(args); 798 799 return (pager_output(line)); 800 } 801 802 #endif 803 804 #define STATUS_FORMAT " %s %s\n" 805 806 static int 807 print_state(int indent, const char *name, vdev_state_t state) 808 { 809 char buf[512]; 810 int i; 811 812 buf[0] = 0; 813 for (i = 0; i < indent; i++) 814 strcat(buf, " "); 815 strcat(buf, name); 816 817 return (pager_printf(STATUS_FORMAT, buf, state_name(state))); 818 } 819 820 static int 821 vdev_status(vdev_t *vdev, int indent) 822 { 823 vdev_t *kid; 824 int ret; 825 ret = print_state(indent, vdev->v_name, vdev->v_state); 826 if (ret != 0) 827 return (ret); 828 829 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) { 830 ret = vdev_status(kid, indent + 1); 831 if (ret != 0) 832 return (ret); 833 } 834 return (ret); 835 } 836 837 static int 838 spa_status(spa_t *spa) 839 { 840 static char bootfs[ZFS_MAXNAMELEN]; 841 uint64_t rootid; 842 vdev_t *vdev; 843 int good_kids, bad_kids, degraded_kids, ret; 844 vdev_state_t state; 845 846 ret = pager_printf(" pool: %s\n", spa->spa_name); 847 if (ret != 0) 848 return (ret); 849 850 if (zfs_get_root(spa, &rootid) == 0 && 851 zfs_rlookup(spa, rootid, bootfs) == 0) { 852 if (bootfs[0] == '\0') 853 ret = pager_printf("bootfs: %s\n", spa->spa_name); 854 else 855 ret = pager_printf("bootfs: %s/%s\n", spa->spa_name, 856 bootfs); 857 if (ret != 0) 858 return (ret); 859 } 860 ret = pager_printf("config:\n\n"); 861 if (ret != 0) 862 return (ret); 863 ret = pager_printf(STATUS_FORMAT, "NAME", "STATE"); 864 if (ret != 0) 865 return (ret); 866 867 good_kids = 0; 868 degraded_kids = 0; 869 bad_kids = 0; 870 STAILQ_FOREACH(vdev, &spa->spa_vdevs, v_childlink) { 871 if (vdev->v_state == VDEV_STATE_HEALTHY) 872 good_kids++; 873 else if (vdev->v_state == VDEV_STATE_DEGRADED) 874 degraded_kids++; 875 else 876 bad_kids++; 877 } 878 879 state = VDEV_STATE_CLOSED; 880 if (good_kids > 0 && (degraded_kids + bad_kids) == 0) 881 state = VDEV_STATE_HEALTHY; 882 else if ((good_kids + degraded_kids) > 0) 883 state = VDEV_STATE_DEGRADED; 884 885 ret = print_state(0, spa->spa_name, state); 886 if (ret != 0) 887 return (ret); 888 STAILQ_FOREACH(vdev, &spa->spa_vdevs, v_childlink) { 889 ret = vdev_status(vdev, 1); 890 if (ret != 0) 891 return (ret); 892 } 893 return (ret); 894 } 895 896 static int 897 spa_all_status(void) 898 { 899 spa_t *spa; 900 int first = 1, ret = 0; 901 902 STAILQ_FOREACH(spa, &zfs_pools, spa_link) { 903 if (!first) { 904 ret = pager_printf("\n"); 905 if (ret != 0) 906 return (ret); 907 } 908 first = 0; 909 ret = spa_status(spa); 910 if (ret != 0) 911 return (ret); 912 } 913 return (ret); 914 } 915 916 static uint64_t 917 vdev_label_offset(uint64_t psize, int l, uint64_t offset) 918 { 919 uint64_t label_offset; 920 921 if (l < VDEV_LABELS / 2) 922 label_offset = 0; 923 else 924 label_offset = psize - VDEV_LABELS * sizeof (vdev_label_t); 925 926 return (offset + l * sizeof (vdev_label_t) + label_offset); 927 } 928 929 static int 930 vdev_probe(vdev_phys_read_t *_read, void *read_priv, spa_t **spap) 931 { 932 vdev_t vtmp; 933 vdev_phys_t *vdev_label = (vdev_phys_t *) zap_scratch; 934 vdev_phys_t *tmp_label; 935 spa_t *spa; 936 vdev_t *vdev, *top_vdev, *pool_vdev; 937 off_t off; 938 blkptr_t bp; 939 const unsigned char *nvlist = NULL; 940 uint64_t val; 941 uint64_t guid; 942 uint64_t best_txg = 0; 943 uint64_t pool_txg, pool_guid; 944 uint64_t psize; 945 const char *pool_name; 946 const unsigned char *vdevs; 947 const unsigned char *features; 948 int i, l, rc, is_newer; 949 char *upbuf; 950 const struct uberblock *up; 951 952 /* 953 * Load the vdev label and figure out which 954 * uberblock is most current. 955 */ 956 memset(&vtmp, 0, sizeof(vtmp)); 957 vtmp.v_phys_read = _read; 958 vtmp.v_read_priv = read_priv; 959 psize = P2ALIGN(ldi_get_size(read_priv), 960 (uint64_t)sizeof (vdev_label_t)); 961 962 /* Test for minimum pool size. */ 963 if (psize < SPA_MINDEVSIZE) 964 return (EIO); 965 966 tmp_label = zfs_alloc(sizeof(vdev_phys_t)); 967 968 for (l = 0; l < VDEV_LABELS; l++) { 969 off = vdev_label_offset(psize, l, 970 offsetof(vdev_label_t, vl_vdev_phys)); 971 972 BP_ZERO(&bp); 973 BP_SET_LSIZE(&bp, sizeof(vdev_phys_t)); 974 BP_SET_PSIZE(&bp, sizeof(vdev_phys_t)); 975 BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_LABEL); 976 BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF); 977 DVA_SET_OFFSET(BP_IDENTITY(&bp), off); 978 ZIO_SET_CHECKSUM(&bp.blk_cksum, off, 0, 0, 0); 979 980 if (vdev_read_phys(&vtmp, &bp, tmp_label, off, 0)) 981 continue; 982 983 if (tmp_label->vp_nvlist[0] != NV_ENCODE_XDR) 984 continue; 985 986 nvlist = (const unsigned char *) tmp_label->vp_nvlist + 4; 987 if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_TXG, 988 DATA_TYPE_UINT64, NULL, &pool_txg) != 0) 989 continue; 990 991 if (best_txg <= pool_txg) { 992 best_txg = pool_txg; 993 memcpy(vdev_label, tmp_label, sizeof (vdev_phys_t)); 994 } 995 } 996 997 zfs_free(tmp_label, sizeof (vdev_phys_t)); 998 999 if (best_txg == 0) 1000 return (EIO); 1001 1002 if (vdev_label->vp_nvlist[0] != NV_ENCODE_XDR) 1003 return (EIO); 1004 1005 nvlist = (const unsigned char *) vdev_label->vp_nvlist + 4; 1006 1007 if (nvlist_find(nvlist, ZPOOL_CONFIG_VERSION, DATA_TYPE_UINT64, 1008 NULL, &val) != 0) { 1009 return (EIO); 1010 } 1011 1012 if (!SPA_VERSION_IS_SUPPORTED(val)) { 1013 printf("ZFS: unsupported ZFS version %u (should be %u)\n", 1014 (unsigned) val, (unsigned) SPA_VERSION); 1015 return (EIO); 1016 } 1017 1018 /* Check ZFS features for read */ 1019 if (nvlist_find(nvlist, ZPOOL_CONFIG_FEATURES_FOR_READ, 1020 DATA_TYPE_NVLIST, NULL, &features) == 0 && 1021 nvlist_check_features_for_read(features) != 0) { 1022 return (EIO); 1023 } 1024 1025 if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_STATE, DATA_TYPE_UINT64, 1026 NULL, &val) != 0) { 1027 return (EIO); 1028 } 1029 1030 if (val == POOL_STATE_DESTROYED) { 1031 /* We don't boot only from destroyed pools. */ 1032 return (EIO); 1033 } 1034 1035 if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_TXG, DATA_TYPE_UINT64, 1036 NULL, &pool_txg) != 0 || 1037 nvlist_find(nvlist, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64, 1038 NULL, &pool_guid) != 0 || 1039 nvlist_find(nvlist, ZPOOL_CONFIG_POOL_NAME, DATA_TYPE_STRING, 1040 NULL, &pool_name) != 0) { 1041 /* 1042 * Cache and spare devices end up here - just ignore 1043 * them. 1044 */ 1045 /*printf("ZFS: can't find pool details\n");*/ 1046 return (EIO); 1047 } 1048 1049 if (nvlist_find(nvlist, ZPOOL_CONFIG_IS_LOG, DATA_TYPE_UINT64, 1050 NULL, &val) == 0 && val != 0) { 1051 return (EIO); 1052 } 1053 1054 /* 1055 * Create the pool if this is the first time we've seen it. 1056 */ 1057 spa = spa_find_by_guid(pool_guid); 1058 if (spa == NULL) { 1059 spa = spa_create(pool_guid, pool_name); 1060 if (spa == NULL) 1061 return (ENOMEM); 1062 } 1063 if (pool_txg > spa->spa_txg) { 1064 spa->spa_txg = pool_txg; 1065 is_newer = 1; 1066 } else { 1067 is_newer = 0; 1068 } 1069 1070 /* 1071 * Get the vdev tree and create our in-core copy of it. 1072 * If we already have a vdev with this guid, this must 1073 * be some kind of alias (overlapping slices, dangerously dedicated 1074 * disks etc). 1075 */ 1076 if (nvlist_find(nvlist, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64, 1077 NULL, &guid) != 0) { 1078 return (EIO); 1079 } 1080 vdev = vdev_find(guid); 1081 if (vdev && vdev->v_phys_read) /* Has this vdev already been inited? */ 1082 return (EIO); 1083 1084 if (nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST, 1085 NULL, &vdevs)) { 1086 return (EIO); 1087 } 1088 1089 rc = vdev_init_from_nvlist(vdevs, NULL, &top_vdev, is_newer); 1090 if (rc != 0) 1091 return (rc); 1092 1093 /* 1094 * Add the toplevel vdev to the pool if its not already there. 1095 */ 1096 STAILQ_FOREACH(pool_vdev, &spa->spa_vdevs, v_childlink) 1097 if (top_vdev == pool_vdev) 1098 break; 1099 if (!pool_vdev && top_vdev) { 1100 top_vdev->spa = spa; 1101 STAILQ_INSERT_TAIL(&spa->spa_vdevs, top_vdev, v_childlink); 1102 } 1103 1104 /* 1105 * We should already have created an incomplete vdev for this 1106 * vdev. Find it and initialise it with our read proc. 1107 */ 1108 vdev = vdev_find(guid); 1109 if (vdev) { 1110 vdev->v_phys_read = _read; 1111 vdev->v_read_priv = read_priv; 1112 vdev->v_state = VDEV_STATE_HEALTHY; 1113 } else { 1114 printf("ZFS: inconsistent nvlist contents\n"); 1115 return (EIO); 1116 } 1117 1118 /* 1119 * Re-evaluate top-level vdev state. 1120 */ 1121 vdev_set_state(top_vdev); 1122 1123 /* 1124 * Ok, we are happy with the pool so far. Lets find 1125 * the best uberblock and then we can actually access 1126 * the contents of the pool. 1127 */ 1128 upbuf = zfs_alloc(VDEV_UBERBLOCK_SIZE(vdev)); 1129 up = (const struct uberblock *)upbuf; 1130 for (l = 0; l < VDEV_LABELS; l++) { 1131 for (i = 0; i < VDEV_UBERBLOCK_COUNT(vdev); i++) { 1132 off = vdev_label_offset(psize, l, 1133 VDEV_UBERBLOCK_OFFSET(vdev, i)); 1134 BP_ZERO(&bp); 1135 DVA_SET_OFFSET(&bp.blk_dva[0], off); 1136 BP_SET_LSIZE(&bp, VDEV_UBERBLOCK_SIZE(vdev)); 1137 BP_SET_PSIZE(&bp, VDEV_UBERBLOCK_SIZE(vdev)); 1138 BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_LABEL); 1139 BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF); 1140 ZIO_SET_CHECKSUM(&bp.blk_cksum, off, 0, 0, 0); 1141 1142 if (vdev_read_phys(vdev, &bp, upbuf, off, 0)) 1143 continue; 1144 1145 if (up->ub_magic != UBERBLOCK_MAGIC) 1146 continue; 1147 if (up->ub_txg < spa->spa_txg) 1148 continue; 1149 if (up->ub_txg > spa->spa_uberblock.ub_txg || 1150 (up->ub_txg == spa->spa_uberblock.ub_txg && 1151 up->ub_timestamp > 1152 spa->spa_uberblock.ub_timestamp)) { 1153 spa->spa_uberblock = *up; 1154 } 1155 } 1156 } 1157 zfs_free(upbuf, VDEV_UBERBLOCK_SIZE(vdev)); 1158 1159 vdev->spa = spa; 1160 if (spap != NULL) 1161 *spap = spa; 1162 return (0); 1163 } 1164 1165 static int 1166 ilog2(int n) 1167 { 1168 int v; 1169 1170 for (v = 0; v < 32; v++) 1171 if (n == (1 << v)) 1172 return v; 1173 return -1; 1174 } 1175 1176 static int 1177 zio_read_gang(const spa_t *spa, const blkptr_t *bp, void *buf) 1178 { 1179 blkptr_t gbh_bp; 1180 zio_gbh_phys_t zio_gb; 1181 char *pbuf; 1182 int i; 1183 1184 /* Artificial BP for gang block header. */ 1185 gbh_bp = *bp; 1186 BP_SET_PSIZE(&gbh_bp, SPA_GANGBLOCKSIZE); 1187 BP_SET_LSIZE(&gbh_bp, SPA_GANGBLOCKSIZE); 1188 BP_SET_CHECKSUM(&gbh_bp, ZIO_CHECKSUM_GANG_HEADER); 1189 BP_SET_COMPRESS(&gbh_bp, ZIO_COMPRESS_OFF); 1190 for (i = 0; i < SPA_DVAS_PER_BP; i++) 1191 DVA_SET_GANG(&gbh_bp.blk_dva[i], 0); 1192 1193 /* Read gang header block using the artificial BP. */ 1194 if (zio_read(spa, &gbh_bp, &zio_gb)) 1195 return (EIO); 1196 1197 pbuf = buf; 1198 for (i = 0; i < SPA_GBH_NBLKPTRS; i++) { 1199 blkptr_t *gbp = &zio_gb.zg_blkptr[i]; 1200 1201 if (BP_IS_HOLE(gbp)) 1202 continue; 1203 if (zio_read(spa, gbp, pbuf)) 1204 return (EIO); 1205 pbuf += BP_GET_PSIZE(gbp); 1206 } 1207 1208 if (zio_checksum_verify(spa, bp, buf)) 1209 return (EIO); 1210 return (0); 1211 } 1212 1213 static int 1214 zio_read(const spa_t *spa, const blkptr_t *bp, void *buf) 1215 { 1216 int cpfunc = BP_GET_COMPRESS(bp); 1217 uint64_t align, size; 1218 void *pbuf; 1219 int i, error; 1220 1221 /* 1222 * Process data embedded in block pointer 1223 */ 1224 if (BP_IS_EMBEDDED(bp)) { 1225 ASSERT(BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA); 1226 1227 size = BPE_GET_PSIZE(bp); 1228 ASSERT(size <= BPE_PAYLOAD_SIZE); 1229 1230 if (cpfunc != ZIO_COMPRESS_OFF) 1231 pbuf = zfs_alloc(size); 1232 else 1233 pbuf = buf; 1234 1235 decode_embedded_bp_compressed(bp, pbuf); 1236 error = 0; 1237 1238 if (cpfunc != ZIO_COMPRESS_OFF) { 1239 error = zio_decompress_data(cpfunc, pbuf, 1240 size, buf, BP_GET_LSIZE(bp)); 1241 zfs_free(pbuf, size); 1242 } 1243 if (error != 0) 1244 printf("ZFS: i/o error - unable to decompress block pointer data, error %d\n", 1245 error); 1246 return (error); 1247 } 1248 1249 error = EIO; 1250 1251 for (i = 0; i < SPA_DVAS_PER_BP; i++) { 1252 const dva_t *dva = &bp->blk_dva[i]; 1253 vdev_t *vdev; 1254 int vdevid; 1255 off_t offset; 1256 1257 if (!dva->dva_word[0] && !dva->dva_word[1]) 1258 continue; 1259 1260 vdevid = DVA_GET_VDEV(dva); 1261 offset = DVA_GET_OFFSET(dva); 1262 STAILQ_FOREACH(vdev, &spa->spa_vdevs, v_childlink) { 1263 if (vdev->v_id == vdevid) 1264 break; 1265 } 1266 if (!vdev || !vdev->v_read) 1267 continue; 1268 1269 size = BP_GET_PSIZE(bp); 1270 if (vdev->v_read == vdev_raidz_read) { 1271 align = 1ULL << vdev->v_top->v_ashift; 1272 if (P2PHASE(size, align) != 0) 1273 size = P2ROUNDUP(size, align); 1274 } 1275 if (size != BP_GET_PSIZE(bp) || cpfunc != ZIO_COMPRESS_OFF) 1276 pbuf = zfs_alloc(size); 1277 else 1278 pbuf = buf; 1279 1280 if (DVA_GET_GANG(dva)) 1281 error = zio_read_gang(spa, bp, pbuf); 1282 else 1283 error = vdev->v_read(vdev, bp, pbuf, offset, size); 1284 if (error == 0) { 1285 if (cpfunc != ZIO_COMPRESS_OFF) 1286 error = zio_decompress_data(cpfunc, pbuf, 1287 BP_GET_PSIZE(bp), buf, BP_GET_LSIZE(bp)); 1288 else if (size != BP_GET_PSIZE(bp)) 1289 bcopy(pbuf, buf, BP_GET_PSIZE(bp)); 1290 } 1291 if (buf != pbuf) 1292 zfs_free(pbuf, size); 1293 if (error == 0) 1294 break; 1295 } 1296 if (error != 0) 1297 printf("ZFS: i/o error - all block copies unavailable\n"); 1298 return (error); 1299 } 1300 1301 static int 1302 dnode_read(const spa_t *spa, const dnode_phys_t *dnode, off_t offset, void *buf, size_t buflen) 1303 { 1304 int ibshift = dnode->dn_indblkshift - SPA_BLKPTRSHIFT; 1305 int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 1306 int nlevels = dnode->dn_nlevels; 1307 int i, rc; 1308 1309 if (bsize > SPA_MAXBLOCKSIZE) { 1310 printf("ZFS: I/O error - blocks larger than %llu are not " 1311 "supported\n", SPA_MAXBLOCKSIZE); 1312 return (EIO); 1313 } 1314 1315 /* 1316 * Note: bsize may not be a power of two here so we need to do an 1317 * actual divide rather than a bitshift. 1318 */ 1319 while (buflen > 0) { 1320 uint64_t bn = offset / bsize; 1321 int boff = offset % bsize; 1322 int ibn; 1323 const blkptr_t *indbp; 1324 blkptr_t bp; 1325 1326 if (bn > dnode->dn_maxblkid) 1327 return (EIO); 1328 1329 if (dnode == dnode_cache_obj && bn == dnode_cache_bn) 1330 goto cached; 1331 1332 indbp = dnode->dn_blkptr; 1333 for (i = 0; i < nlevels; i++) { 1334 /* 1335 * Copy the bp from the indirect array so that 1336 * we can re-use the scratch buffer for multi-level 1337 * objects. 1338 */ 1339 ibn = bn >> ((nlevels - i - 1) * ibshift); 1340 ibn &= ((1 << ibshift) - 1); 1341 bp = indbp[ibn]; 1342 if (BP_IS_HOLE(&bp)) { 1343 memset(dnode_cache_buf, 0, bsize); 1344 break; 1345 } 1346 rc = zio_read(spa, &bp, dnode_cache_buf); 1347 if (rc) 1348 return (rc); 1349 indbp = (const blkptr_t *) dnode_cache_buf; 1350 } 1351 dnode_cache_obj = dnode; 1352 dnode_cache_bn = bn; 1353 cached: 1354 1355 /* 1356 * The buffer contains our data block. Copy what we 1357 * need from it and loop. 1358 */ 1359 i = bsize - boff; 1360 if (i > buflen) i = buflen; 1361 memcpy(buf, &dnode_cache_buf[boff], i); 1362 buf = ((char*) buf) + i; 1363 offset += i; 1364 buflen -= i; 1365 } 1366 1367 return (0); 1368 } 1369 1370 /* 1371 * Lookup a value in a microzap directory. Assumes that the zap 1372 * scratch buffer contains the directory contents. 1373 */ 1374 static int 1375 mzap_lookup(const dnode_phys_t *dnode, const char *name, uint64_t *value) 1376 { 1377 const mzap_phys_t *mz; 1378 const mzap_ent_phys_t *mze; 1379 size_t size; 1380 int chunks, i; 1381 1382 /* 1383 * Microzap objects use exactly one block. Read the whole 1384 * thing. 1385 */ 1386 size = dnode->dn_datablkszsec * 512; 1387 1388 mz = (const mzap_phys_t *) zap_scratch; 1389 chunks = size / MZAP_ENT_LEN - 1; 1390 1391 for (i = 0; i < chunks; i++) { 1392 mze = &mz->mz_chunk[i]; 1393 if (!strcmp(mze->mze_name, name)) { 1394 *value = mze->mze_value; 1395 return (0); 1396 } 1397 } 1398 1399 return (ENOENT); 1400 } 1401 1402 /* 1403 * Compare a name with a zap leaf entry. Return non-zero if the name 1404 * matches. 1405 */ 1406 static int 1407 fzap_name_equal(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, const char *name) 1408 { 1409 size_t namelen; 1410 const zap_leaf_chunk_t *nc; 1411 const char *p; 1412 1413 namelen = zc->l_entry.le_name_numints; 1414 1415 nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk); 1416 p = name; 1417 while (namelen > 0) { 1418 size_t len; 1419 len = namelen; 1420 if (len > ZAP_LEAF_ARRAY_BYTES) 1421 len = ZAP_LEAF_ARRAY_BYTES; 1422 if (memcmp(p, nc->l_array.la_array, len)) 1423 return (0); 1424 p += len; 1425 namelen -= len; 1426 nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next); 1427 } 1428 1429 return 1; 1430 } 1431 1432 /* 1433 * Extract a uint64_t value from a zap leaf entry. 1434 */ 1435 static uint64_t 1436 fzap_leaf_value(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc) 1437 { 1438 const zap_leaf_chunk_t *vc; 1439 int i; 1440 uint64_t value; 1441 const uint8_t *p; 1442 1443 vc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_value_chunk); 1444 for (i = 0, value = 0, p = vc->l_array.la_array; i < 8; i++) { 1445 value = (value << 8) | p[i]; 1446 } 1447 1448 return value; 1449 } 1450 1451 static void 1452 stv(int len, void *addr, uint64_t value) 1453 { 1454 switch (len) { 1455 case 1: 1456 *(uint8_t *)addr = value; 1457 return; 1458 case 2: 1459 *(uint16_t *)addr = value; 1460 return; 1461 case 4: 1462 *(uint32_t *)addr = value; 1463 return; 1464 case 8: 1465 *(uint64_t *)addr = value; 1466 return; 1467 } 1468 } 1469 1470 /* 1471 * Extract a array from a zap leaf entry. 1472 */ 1473 static void 1474 fzap_leaf_array(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, 1475 uint64_t integer_size, uint64_t num_integers, void *buf) 1476 { 1477 uint64_t array_int_len = zc->l_entry.le_value_intlen; 1478 uint64_t value = 0; 1479 uint64_t *u64 = buf; 1480 char *p = buf; 1481 int len = MIN(zc->l_entry.le_value_numints, num_integers); 1482 int chunk = zc->l_entry.le_value_chunk; 1483 int byten = 0; 1484 1485 if (integer_size == 8 && len == 1) { 1486 *u64 = fzap_leaf_value(zl, zc); 1487 return; 1488 } 1489 1490 while (len > 0) { 1491 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(zl, chunk).l_array; 1492 int i; 1493 1494 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(zl)); 1495 for (i = 0; i < ZAP_LEAF_ARRAY_BYTES && len > 0; i++) { 1496 value = (value << 8) | la->la_array[i]; 1497 byten++; 1498 if (byten == array_int_len) { 1499 stv(integer_size, p, value); 1500 byten = 0; 1501 len--; 1502 if (len == 0) 1503 return; 1504 p += integer_size; 1505 } 1506 } 1507 chunk = la->la_next; 1508 } 1509 } 1510 1511 /* 1512 * Lookup a value in a fatzap directory. Assumes that the zap scratch 1513 * buffer contains the directory header. 1514 */ 1515 static int 1516 fzap_lookup(const spa_t *spa, const dnode_phys_t *dnode, const char *name, 1517 uint64_t integer_size, uint64_t num_integers, void *value) 1518 { 1519 int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 1520 zap_phys_t zh = *(zap_phys_t *) zap_scratch; 1521 fat_zap_t z; 1522 uint64_t *ptrtbl; 1523 uint64_t hash; 1524 int rc; 1525 1526 if (zh.zap_magic != ZAP_MAGIC) 1527 return (EIO); 1528 1529 z.zap_block_shift = ilog2(bsize); 1530 z.zap_phys = (zap_phys_t *) zap_scratch; 1531 1532 /* 1533 * Figure out where the pointer table is and read it in if necessary. 1534 */ 1535 if (zh.zap_ptrtbl.zt_blk) { 1536 rc = dnode_read(spa, dnode, zh.zap_ptrtbl.zt_blk * bsize, 1537 zap_scratch, bsize); 1538 if (rc) 1539 return (rc); 1540 ptrtbl = (uint64_t *) zap_scratch; 1541 } else { 1542 ptrtbl = &ZAP_EMBEDDED_PTRTBL_ENT(&z, 0); 1543 } 1544 1545 hash = zap_hash(zh.zap_salt, name); 1546 1547 zap_leaf_t zl; 1548 zl.l_bs = z.zap_block_shift; 1549 1550 off_t off = ptrtbl[hash >> (64 - zh.zap_ptrtbl.zt_shift)] << zl.l_bs; 1551 zap_leaf_chunk_t *zc; 1552 1553 rc = dnode_read(spa, dnode, off, zap_scratch, bsize); 1554 if (rc) 1555 return (rc); 1556 1557 zl.l_phys = (zap_leaf_phys_t *) zap_scratch; 1558 1559 /* 1560 * Make sure this chunk matches our hash. 1561 */ 1562 if (zl.l_phys->l_hdr.lh_prefix_len > 0 1563 && zl.l_phys->l_hdr.lh_prefix 1564 != hash >> (64 - zl.l_phys->l_hdr.lh_prefix_len)) 1565 return (ENOENT); 1566 1567 /* 1568 * Hash within the chunk to find our entry. 1569 */ 1570 int shift = (64 - ZAP_LEAF_HASH_SHIFT(&zl) - zl.l_phys->l_hdr.lh_prefix_len); 1571 int h = (hash >> shift) & ((1 << ZAP_LEAF_HASH_SHIFT(&zl)) - 1); 1572 h = zl.l_phys->l_hash[h]; 1573 if (h == 0xffff) 1574 return (ENOENT); 1575 zc = &ZAP_LEAF_CHUNK(&zl, h); 1576 while (zc->l_entry.le_hash != hash) { 1577 if (zc->l_entry.le_next == 0xffff) { 1578 zc = NULL; 1579 break; 1580 } 1581 zc = &ZAP_LEAF_CHUNK(&zl, zc->l_entry.le_next); 1582 } 1583 if (fzap_name_equal(&zl, zc, name)) { 1584 if (zc->l_entry.le_value_intlen * zc->l_entry.le_value_numints > 1585 integer_size * num_integers) 1586 return (E2BIG); 1587 fzap_leaf_array(&zl, zc, integer_size, num_integers, value); 1588 return (0); 1589 } 1590 1591 return (ENOENT); 1592 } 1593 1594 /* 1595 * Lookup a name in a zap object and return its value as a uint64_t. 1596 */ 1597 static int 1598 zap_lookup(const spa_t *spa, const dnode_phys_t *dnode, const char *name, 1599 uint64_t integer_size, uint64_t num_integers, void *value) 1600 { 1601 int rc; 1602 uint64_t zap_type; 1603 size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 1604 1605 rc = dnode_read(spa, dnode, 0, zap_scratch, size); 1606 if (rc) 1607 return (rc); 1608 1609 zap_type = *(uint64_t *) zap_scratch; 1610 if (zap_type == ZBT_MICRO) 1611 return mzap_lookup(dnode, name, value); 1612 else if (zap_type == ZBT_HEADER) { 1613 return fzap_lookup(spa, dnode, name, integer_size, 1614 num_integers, value); 1615 } 1616 printf("ZFS: invalid zap_type=%d\n", (int)zap_type); 1617 return (EIO); 1618 } 1619 1620 /* 1621 * List a microzap directory. Assumes that the zap scratch buffer contains 1622 * the directory contents. 1623 */ 1624 static int 1625 mzap_list(const dnode_phys_t *dnode, int (*callback)(const char *, uint64_t)) 1626 { 1627 const mzap_phys_t *mz; 1628 const mzap_ent_phys_t *mze; 1629 size_t size; 1630 int chunks, i, rc; 1631 1632 /* 1633 * Microzap objects use exactly one block. Read the whole 1634 * thing. 1635 */ 1636 size = dnode->dn_datablkszsec * 512; 1637 mz = (const mzap_phys_t *) zap_scratch; 1638 chunks = size / MZAP_ENT_LEN - 1; 1639 1640 for (i = 0; i < chunks; i++) { 1641 mze = &mz->mz_chunk[i]; 1642 if (mze->mze_name[0]) { 1643 rc = callback(mze->mze_name, mze->mze_value); 1644 if (rc != 0) 1645 return (rc); 1646 } 1647 } 1648 1649 return (0); 1650 } 1651 1652 /* 1653 * List a fatzap directory. Assumes that the zap scratch buffer contains 1654 * the directory header. 1655 */ 1656 static int 1657 fzap_list(const spa_t *spa, const dnode_phys_t *dnode, int (*callback)(const char *, uint64_t)) 1658 { 1659 int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 1660 zap_phys_t zh = *(zap_phys_t *) zap_scratch; 1661 fat_zap_t z; 1662 int i, j, rc; 1663 1664 if (zh.zap_magic != ZAP_MAGIC) 1665 return (EIO); 1666 1667 z.zap_block_shift = ilog2(bsize); 1668 z.zap_phys = (zap_phys_t *) zap_scratch; 1669 1670 /* 1671 * This assumes that the leaf blocks start at block 1. The 1672 * documentation isn't exactly clear on this. 1673 */ 1674 zap_leaf_t zl; 1675 zl.l_bs = z.zap_block_shift; 1676 for (i = 0; i < zh.zap_num_leafs; i++) { 1677 off_t off = (i + 1) << zl.l_bs; 1678 char name[256], *p; 1679 uint64_t value; 1680 1681 if (dnode_read(spa, dnode, off, zap_scratch, bsize)) 1682 return (EIO); 1683 1684 zl.l_phys = (zap_leaf_phys_t *) zap_scratch; 1685 1686 for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) { 1687 zap_leaf_chunk_t *zc, *nc; 1688 int namelen; 1689 1690 zc = &ZAP_LEAF_CHUNK(&zl, j); 1691 if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY) 1692 continue; 1693 namelen = zc->l_entry.le_name_numints; 1694 if (namelen > sizeof(name)) 1695 namelen = sizeof(name); 1696 1697 /* 1698 * Paste the name back together. 1699 */ 1700 nc = &ZAP_LEAF_CHUNK(&zl, zc->l_entry.le_name_chunk); 1701 p = name; 1702 while (namelen > 0) { 1703 int len; 1704 len = namelen; 1705 if (len > ZAP_LEAF_ARRAY_BYTES) 1706 len = ZAP_LEAF_ARRAY_BYTES; 1707 memcpy(p, nc->l_array.la_array, len); 1708 p += len; 1709 namelen -= len; 1710 nc = &ZAP_LEAF_CHUNK(&zl, nc->l_array.la_next); 1711 } 1712 1713 /* 1714 * Assume the first eight bytes of the value are 1715 * a uint64_t. 1716 */ 1717 value = fzap_leaf_value(&zl, zc); 1718 1719 //printf("%s 0x%jx\n", name, (uintmax_t)value); 1720 rc = callback((const char *)name, value); 1721 if (rc != 0) 1722 return (rc); 1723 } 1724 } 1725 1726 return (0); 1727 } 1728 1729 static int zfs_printf(const char *name, uint64_t value __unused) 1730 { 1731 1732 printf("%s\n", name); 1733 1734 return (0); 1735 } 1736 1737 /* 1738 * List a zap directory. 1739 */ 1740 static int 1741 zap_list(const spa_t *spa, const dnode_phys_t *dnode) 1742 { 1743 uint64_t zap_type; 1744 size_t size = dnode->dn_datablkszsec * 512; 1745 1746 if (dnode_read(spa, dnode, 0, zap_scratch, size)) 1747 return (EIO); 1748 1749 zap_type = *(uint64_t *) zap_scratch; 1750 if (zap_type == ZBT_MICRO) 1751 return mzap_list(dnode, zfs_printf); 1752 else 1753 return fzap_list(spa, dnode, zfs_printf); 1754 } 1755 1756 static int 1757 objset_get_dnode(const spa_t *spa, const objset_phys_t *os, uint64_t objnum, dnode_phys_t *dnode) 1758 { 1759 off_t offset; 1760 1761 offset = objnum * sizeof(dnode_phys_t); 1762 return dnode_read(spa, &os->os_meta_dnode, offset, 1763 dnode, sizeof(dnode_phys_t)); 1764 } 1765 1766 static int 1767 mzap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, char *name, uint64_t value) 1768 { 1769 const mzap_phys_t *mz; 1770 const mzap_ent_phys_t *mze; 1771 size_t size; 1772 int chunks, i; 1773 1774 /* 1775 * Microzap objects use exactly one block. Read the whole 1776 * thing. 1777 */ 1778 size = dnode->dn_datablkszsec * 512; 1779 1780 mz = (const mzap_phys_t *) zap_scratch; 1781 chunks = size / MZAP_ENT_LEN - 1; 1782 1783 for (i = 0; i < chunks; i++) { 1784 mze = &mz->mz_chunk[i]; 1785 if (value == mze->mze_value) { 1786 strcpy(name, mze->mze_name); 1787 return (0); 1788 } 1789 } 1790 1791 return (ENOENT); 1792 } 1793 1794 static void 1795 fzap_name_copy(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, char *name) 1796 { 1797 size_t namelen; 1798 const zap_leaf_chunk_t *nc; 1799 char *p; 1800 1801 namelen = zc->l_entry.le_name_numints; 1802 1803 nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk); 1804 p = name; 1805 while (namelen > 0) { 1806 size_t len; 1807 len = namelen; 1808 if (len > ZAP_LEAF_ARRAY_BYTES) 1809 len = ZAP_LEAF_ARRAY_BYTES; 1810 memcpy(p, nc->l_array.la_array, len); 1811 p += len; 1812 namelen -= len; 1813 nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next); 1814 } 1815 1816 *p = '\0'; 1817 } 1818 1819 static int 1820 fzap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, char *name, uint64_t value) 1821 { 1822 int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 1823 zap_phys_t zh = *(zap_phys_t *) zap_scratch; 1824 fat_zap_t z; 1825 int i, j; 1826 1827 if (zh.zap_magic != ZAP_MAGIC) 1828 return (EIO); 1829 1830 z.zap_block_shift = ilog2(bsize); 1831 z.zap_phys = (zap_phys_t *) zap_scratch; 1832 1833 /* 1834 * This assumes that the leaf blocks start at block 1. The 1835 * documentation isn't exactly clear on this. 1836 */ 1837 zap_leaf_t zl; 1838 zl.l_bs = z.zap_block_shift; 1839 for (i = 0; i < zh.zap_num_leafs; i++) { 1840 off_t off = (i + 1) << zl.l_bs; 1841 1842 if (dnode_read(spa, dnode, off, zap_scratch, bsize)) 1843 return (EIO); 1844 1845 zl.l_phys = (zap_leaf_phys_t *) zap_scratch; 1846 1847 for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) { 1848 zap_leaf_chunk_t *zc; 1849 1850 zc = &ZAP_LEAF_CHUNK(&zl, j); 1851 if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY) 1852 continue; 1853 if (zc->l_entry.le_value_intlen != 8 || 1854 zc->l_entry.le_value_numints != 1) 1855 continue; 1856 1857 if (fzap_leaf_value(&zl, zc) == value) { 1858 fzap_name_copy(&zl, zc, name); 1859 return (0); 1860 } 1861 } 1862 } 1863 1864 return (ENOENT); 1865 } 1866 1867 static int 1868 zap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, char *name, uint64_t value) 1869 { 1870 int rc; 1871 uint64_t zap_type; 1872 size_t size = dnode->dn_datablkszsec * 512; 1873 1874 rc = dnode_read(spa, dnode, 0, zap_scratch, size); 1875 if (rc) 1876 return (rc); 1877 1878 zap_type = *(uint64_t *) zap_scratch; 1879 if (zap_type == ZBT_MICRO) 1880 return mzap_rlookup(spa, dnode, name, value); 1881 else 1882 return fzap_rlookup(spa, dnode, name, value); 1883 } 1884 1885 static int 1886 zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result) 1887 { 1888 char name[256]; 1889 char component[256]; 1890 uint64_t dir_obj, parent_obj, child_dir_zapobj; 1891 dnode_phys_t child_dir_zap, dataset, dir, parent; 1892 dsl_dir_phys_t *dd; 1893 dsl_dataset_phys_t *ds; 1894 char *p; 1895 int len; 1896 1897 p = &name[sizeof(name) - 1]; 1898 *p = '\0'; 1899 1900 if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) { 1901 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum); 1902 return (EIO); 1903 } 1904 ds = (dsl_dataset_phys_t *)&dataset.dn_bonus; 1905 dir_obj = ds->ds_dir_obj; 1906 1907 for (;;) { 1908 if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir) != 0) 1909 return (EIO); 1910 dd = (dsl_dir_phys_t *)&dir.dn_bonus; 1911 1912 /* Actual loop condition. */ 1913 parent_obj = dd->dd_parent_obj; 1914 if (parent_obj == 0) 1915 break; 1916 1917 if (objset_get_dnode(spa, &spa->spa_mos, parent_obj, &parent) != 0) 1918 return (EIO); 1919 dd = (dsl_dir_phys_t *)&parent.dn_bonus; 1920 child_dir_zapobj = dd->dd_child_dir_zapobj; 1921 if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, &child_dir_zap) != 0) 1922 return (EIO); 1923 if (zap_rlookup(spa, &child_dir_zap, component, dir_obj) != 0) 1924 return (EIO); 1925 1926 len = strlen(component); 1927 p -= len; 1928 memcpy(p, component, len); 1929 --p; 1930 *p = '/'; 1931 1932 /* Actual loop iteration. */ 1933 dir_obj = parent_obj; 1934 } 1935 1936 if (*p != '\0') 1937 ++p; 1938 strcpy(result, p); 1939 1940 return (0); 1941 } 1942 1943 static int 1944 zfs_lookup_dataset(const spa_t *spa, const char *name, uint64_t *objnum) 1945 { 1946 char element[256]; 1947 uint64_t dir_obj, child_dir_zapobj; 1948 dnode_phys_t child_dir_zap, dir; 1949 dsl_dir_phys_t *dd; 1950 const char *p, *q; 1951 1952 if (objset_get_dnode(spa, &spa->spa_mos, DMU_POOL_DIRECTORY_OBJECT, &dir)) 1953 return (EIO); 1954 if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET, sizeof (dir_obj), 1955 1, &dir_obj)) 1956 return (EIO); 1957 1958 p = name; 1959 for (;;) { 1960 if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir)) 1961 return (EIO); 1962 dd = (dsl_dir_phys_t *)&dir.dn_bonus; 1963 1964 while (*p == '/') 1965 p++; 1966 /* Actual loop condition #1. */ 1967 if (*p == '\0') 1968 break; 1969 1970 q = strchr(p, '/'); 1971 if (q) { 1972 memcpy(element, p, q - p); 1973 element[q - p] = '\0'; 1974 p = q + 1; 1975 } else { 1976 strcpy(element, p); 1977 p += strlen(p); 1978 } 1979 1980 child_dir_zapobj = dd->dd_child_dir_zapobj; 1981 if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, &child_dir_zap) != 0) 1982 return (EIO); 1983 1984 /* Actual loop condition #2. */ 1985 if (zap_lookup(spa, &child_dir_zap, element, sizeof (dir_obj), 1986 1, &dir_obj) != 0) 1987 return (ENOENT); 1988 } 1989 1990 *objnum = dd->dd_head_dataset_obj; 1991 return (0); 1992 } 1993 1994 #ifndef BOOT2 1995 static int 1996 zfs_list_dataset(const spa_t *spa, uint64_t objnum/*, int pos, char *entry*/) 1997 { 1998 uint64_t dir_obj, child_dir_zapobj; 1999 dnode_phys_t child_dir_zap, dir, dataset; 2000 dsl_dataset_phys_t *ds; 2001 dsl_dir_phys_t *dd; 2002 2003 if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) { 2004 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum); 2005 return (EIO); 2006 } 2007 ds = (dsl_dataset_phys_t *) &dataset.dn_bonus; 2008 dir_obj = ds->ds_dir_obj; 2009 2010 if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir)) { 2011 printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj); 2012 return (EIO); 2013 } 2014 dd = (dsl_dir_phys_t *)&dir.dn_bonus; 2015 2016 child_dir_zapobj = dd->dd_child_dir_zapobj; 2017 if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, &child_dir_zap) != 0) { 2018 printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj); 2019 return (EIO); 2020 } 2021 2022 return (zap_list(spa, &child_dir_zap) != 0); 2023 } 2024 2025 int 2026 zfs_callback_dataset(const spa_t *spa, uint64_t objnum, int (*callback)(const char *, uint64_t)) 2027 { 2028 uint64_t dir_obj, child_dir_zapobj, zap_type; 2029 dnode_phys_t child_dir_zap, dir, dataset; 2030 dsl_dataset_phys_t *ds; 2031 dsl_dir_phys_t *dd; 2032 int err; 2033 2034 err = objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset); 2035 if (err != 0) { 2036 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum); 2037 return (err); 2038 } 2039 ds = (dsl_dataset_phys_t *) &dataset.dn_bonus; 2040 dir_obj = ds->ds_dir_obj; 2041 2042 err = objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir); 2043 if (err != 0) { 2044 printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj); 2045 return (err); 2046 } 2047 dd = (dsl_dir_phys_t *)&dir.dn_bonus; 2048 2049 child_dir_zapobj = dd->dd_child_dir_zapobj; 2050 err = objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, &child_dir_zap); 2051 if (err != 0) { 2052 printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj); 2053 return (err); 2054 } 2055 2056 err = dnode_read(spa, &child_dir_zap, 0, zap_scratch, child_dir_zap.dn_datablkszsec * 512); 2057 if (err != 0) 2058 return (err); 2059 2060 zap_type = *(uint64_t *) zap_scratch; 2061 if (zap_type == ZBT_MICRO) 2062 return mzap_list(&child_dir_zap, callback); 2063 else 2064 return fzap_list(spa, &child_dir_zap, callback); 2065 } 2066 #endif 2067 2068 /* 2069 * Find the object set given the object number of its dataset object 2070 * and return its details in *objset 2071 */ 2072 static int 2073 zfs_mount_dataset(const spa_t *spa, uint64_t objnum, objset_phys_t *objset) 2074 { 2075 dnode_phys_t dataset; 2076 dsl_dataset_phys_t *ds; 2077 2078 if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) { 2079 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum); 2080 return (EIO); 2081 } 2082 2083 ds = (dsl_dataset_phys_t *) &dataset.dn_bonus; 2084 if (zio_read(spa, &ds->ds_bp, objset)) { 2085 printf("ZFS: can't read object set for dataset %ju\n", 2086 (uintmax_t)objnum); 2087 return (EIO); 2088 } 2089 2090 return (0); 2091 } 2092 2093 /* 2094 * Find the object set pointed to by the BOOTFS property or the root 2095 * dataset if there is none and return its details in *objset 2096 */ 2097 static int 2098 zfs_get_root(const spa_t *spa, uint64_t *objid) 2099 { 2100 dnode_phys_t dir, propdir; 2101 uint64_t props, bootfs, root; 2102 2103 *objid = 0; 2104 2105 /* 2106 * Start with the MOS directory object. 2107 */ 2108 if (objset_get_dnode(spa, &spa->spa_mos, DMU_POOL_DIRECTORY_OBJECT, &dir)) { 2109 printf("ZFS: can't read MOS object directory\n"); 2110 return (EIO); 2111 } 2112 2113 /* 2114 * Lookup the pool_props and see if we can find a bootfs. 2115 */ 2116 if (zap_lookup(spa, &dir, DMU_POOL_PROPS, sizeof (props), 1, &props) == 0 2117 && objset_get_dnode(spa, &spa->spa_mos, props, &propdir) == 0 2118 && zap_lookup(spa, &propdir, "bootfs", sizeof (bootfs), 1, &bootfs) == 0 2119 && bootfs != 0) 2120 { 2121 *objid = bootfs; 2122 return (0); 2123 } 2124 /* 2125 * Lookup the root dataset directory 2126 */ 2127 if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET, sizeof (root), 1, &root) 2128 || objset_get_dnode(spa, &spa->spa_mos, root, &dir)) { 2129 printf("ZFS: can't find root dsl_dir\n"); 2130 return (EIO); 2131 } 2132 2133 /* 2134 * Use the information from the dataset directory's bonus buffer 2135 * to find the dataset object and from that the object set itself. 2136 */ 2137 dsl_dir_phys_t *dd = (dsl_dir_phys_t *) &dir.dn_bonus; 2138 *objid = dd->dd_head_dataset_obj; 2139 return (0); 2140 } 2141 2142 static int 2143 zfs_mount(const spa_t *spa, uint64_t rootobj, struct zfsmount *mount) 2144 { 2145 2146 mount->spa = spa; 2147 2148 /* 2149 * Find the root object set if not explicitly provided 2150 */ 2151 if (rootobj == 0 && zfs_get_root(spa, &rootobj)) { 2152 printf("ZFS: can't find root filesystem\n"); 2153 return (EIO); 2154 } 2155 2156 if (zfs_mount_dataset(spa, rootobj, &mount->objset)) { 2157 printf("ZFS: can't open root filesystem\n"); 2158 return (EIO); 2159 } 2160 2161 mount->rootobj = rootobj; 2162 2163 return (0); 2164 } 2165 2166 /* 2167 * callback function for feature name checks. 2168 */ 2169 static int 2170 check_feature(const char *name, uint64_t value) 2171 { 2172 int i; 2173 2174 if (value == 0) 2175 return (0); 2176 if (name[0] == '\0') 2177 return (0); 2178 2179 for (i = 0; features_for_read[i] != NULL; i++) { 2180 if (strcmp(name, features_for_read[i]) == 0) 2181 return (0); 2182 } 2183 printf("ZFS: unsupported feature: %s\n", name); 2184 return (EIO); 2185 } 2186 2187 /* 2188 * Checks whether the MOS features that are active are supported. 2189 */ 2190 static int 2191 check_mos_features(const spa_t *spa) 2192 { 2193 dnode_phys_t dir; 2194 uint64_t objnum, zap_type; 2195 size_t size; 2196 int rc; 2197 2198 if ((rc = objset_get_dnode(spa, &spa->spa_mos, DMU_OT_OBJECT_DIRECTORY, 2199 &dir)) != 0) 2200 return (rc); 2201 if ((rc = zap_lookup(spa, &dir, DMU_POOL_FEATURES_FOR_READ, 2202 sizeof (objnum), 1, &objnum)) != 0) { 2203 /* 2204 * It is older pool without features. As we have already 2205 * tested the label, just return without raising the error. 2206 */ 2207 return (0); 2208 } 2209 2210 if ((rc = objset_get_dnode(spa, &spa->spa_mos, objnum, &dir)) != 0) 2211 return (rc); 2212 2213 if (dir.dn_type != DMU_OTN_ZAP_METADATA) 2214 return (EIO); 2215 2216 size = dir.dn_datablkszsec * 512; 2217 if (dnode_read(spa, &dir, 0, zap_scratch, size)) 2218 return (EIO); 2219 2220 zap_type = *(uint64_t *) zap_scratch; 2221 if (zap_type == ZBT_MICRO) 2222 rc = mzap_list(&dir, check_feature); 2223 else 2224 rc = fzap_list(spa, &dir, check_feature); 2225 2226 return (rc); 2227 } 2228 2229 static int 2230 zfs_spa_init(spa_t *spa) 2231 { 2232 dnode_phys_t dir; 2233 int rc; 2234 2235 if (zio_read(spa, &spa->spa_uberblock.ub_rootbp, &spa->spa_mos)) { 2236 printf("ZFS: can't read MOS of pool %s\n", spa->spa_name); 2237 return (EIO); 2238 } 2239 if (spa->spa_mos.os_type != DMU_OST_META) { 2240 printf("ZFS: corrupted MOS of pool %s\n", spa->spa_name); 2241 return (EIO); 2242 } 2243 2244 if (objset_get_dnode(spa, &spa->spa_mos, DMU_POOL_DIRECTORY_OBJECT, 2245 &dir)) { 2246 printf("ZFS: failed to read pool %s directory object\n", 2247 spa->spa_name); 2248 return (EIO); 2249 } 2250 /* this is allowed to fail, older pools do not have salt */ 2251 rc = zap_lookup(spa, &dir, DMU_POOL_CHECKSUM_SALT, 1, 2252 sizeof (spa->spa_cksum_salt.zcs_bytes), 2253 spa->spa_cksum_salt.zcs_bytes); 2254 2255 rc = check_mos_features(spa); 2256 if (rc != 0) { 2257 printf("ZFS: pool %s is not supported\n", spa->spa_name); 2258 } 2259 2260 return (rc); 2261 } 2262 2263 static int 2264 zfs_dnode_stat(const spa_t *spa, dnode_phys_t *dn, struct stat *sb) 2265 { 2266 2267 if (dn->dn_bonustype != DMU_OT_SA) { 2268 znode_phys_t *zp = (znode_phys_t *)dn->dn_bonus; 2269 2270 sb->st_mode = zp->zp_mode; 2271 sb->st_uid = zp->zp_uid; 2272 sb->st_gid = zp->zp_gid; 2273 sb->st_size = zp->zp_size; 2274 } else { 2275 sa_hdr_phys_t *sahdrp; 2276 int hdrsize; 2277 size_t size = 0; 2278 void *buf = NULL; 2279 2280 if (dn->dn_bonuslen != 0) 2281 sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn); 2282 else { 2283 if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0) { 2284 blkptr_t *bp = DN_SPILL_BLKPTR(dn); 2285 int error; 2286 2287 size = BP_GET_LSIZE(bp); 2288 buf = zfs_alloc(size); 2289 error = zio_read(spa, bp, buf); 2290 if (error != 0) { 2291 zfs_free(buf, size); 2292 return (error); 2293 } 2294 sahdrp = buf; 2295 } else { 2296 return (EIO); 2297 } 2298 } 2299 hdrsize = SA_HDR_SIZE(sahdrp); 2300 sb->st_mode = *(uint64_t *)((char *)sahdrp + hdrsize + 2301 SA_MODE_OFFSET); 2302 sb->st_uid = *(uint64_t *)((char *)sahdrp + hdrsize + 2303 SA_UID_OFFSET); 2304 sb->st_gid = *(uint64_t *)((char *)sahdrp + hdrsize + 2305 SA_GID_OFFSET); 2306 sb->st_size = *(uint64_t *)((char *)sahdrp + hdrsize + 2307 SA_SIZE_OFFSET); 2308 if (buf != NULL) 2309 zfs_free(buf, size); 2310 } 2311 2312 return (0); 2313 } 2314 2315 static int 2316 zfs_dnode_readlink(const spa_t *spa, dnode_phys_t *dn, char *path, size_t psize) 2317 { 2318 int rc = 0; 2319 2320 if (dn->dn_bonustype == DMU_OT_SA) { 2321 sa_hdr_phys_t *sahdrp = NULL; 2322 size_t size = 0; 2323 void *buf = NULL; 2324 int hdrsize; 2325 char *p; 2326 2327 if (dn->dn_bonuslen != 0) 2328 sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn); 2329 else { 2330 blkptr_t *bp; 2331 2332 if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) == 0) 2333 return (EIO); 2334 bp = DN_SPILL_BLKPTR(dn); 2335 2336 size = BP_GET_LSIZE(bp); 2337 buf = zfs_alloc(size); 2338 rc = zio_read(spa, bp, buf); 2339 if (rc != 0) { 2340 zfs_free(buf, size); 2341 return (rc); 2342 } 2343 sahdrp = buf; 2344 } 2345 hdrsize = SA_HDR_SIZE(sahdrp); 2346 p = (char *)((uintptr_t)sahdrp + hdrsize + SA_SYMLINK_OFFSET); 2347 memcpy(path, p, psize); 2348 if (buf != NULL) 2349 zfs_free(buf, size); 2350 return (0); 2351 } 2352 /* 2353 * Second test is purely to silence bogus compiler 2354 * warning about accessing past the end of dn_bonus. 2355 */ 2356 if (psize + sizeof(znode_phys_t) <= dn->dn_bonuslen && 2357 sizeof(znode_phys_t) <= sizeof(dn->dn_bonus)) { 2358 memcpy(path, &dn->dn_bonus[sizeof(znode_phys_t)], psize); 2359 } else { 2360 rc = dnode_read(spa, dn, 0, path, psize); 2361 } 2362 return (rc); 2363 } 2364 2365 struct obj_list { 2366 uint64_t objnum; 2367 STAILQ_ENTRY(obj_list) entry; 2368 }; 2369 2370 /* 2371 * Lookup a file and return its dnode. 2372 */ 2373 static int 2374 zfs_lookup(const struct zfsmount *mount, const char *upath, dnode_phys_t *dnode) 2375 { 2376 int rc; 2377 uint64_t objnum; 2378 const spa_t *spa; 2379 dnode_phys_t dn; 2380 const char *p, *q; 2381 char element[256]; 2382 char path[1024]; 2383 int symlinks_followed = 0; 2384 struct stat sb; 2385 struct obj_list *entry, *tentry; 2386 STAILQ_HEAD(, obj_list) on_cache = STAILQ_HEAD_INITIALIZER(on_cache); 2387 2388 spa = mount->spa; 2389 if (mount->objset.os_type != DMU_OST_ZFS) { 2390 printf("ZFS: unexpected object set type %ju\n", 2391 (uintmax_t)mount->objset.os_type); 2392 return (EIO); 2393 } 2394 2395 if ((entry = malloc(sizeof(struct obj_list))) == NULL) 2396 return (ENOMEM); 2397 2398 /* 2399 * Get the root directory dnode. 2400 */ 2401 rc = objset_get_dnode(spa, &mount->objset, MASTER_NODE_OBJ, &dn); 2402 if (rc) { 2403 free(entry); 2404 return (rc); 2405 } 2406 2407 rc = zap_lookup(spa, &dn, ZFS_ROOT_OBJ, sizeof (objnum), 1, &objnum); 2408 if (rc) { 2409 free(entry); 2410 return (rc); 2411 } 2412 entry->objnum = objnum; 2413 STAILQ_INSERT_HEAD(&on_cache, entry, entry); 2414 2415 rc = objset_get_dnode(spa, &mount->objset, objnum, &dn); 2416 if (rc != 0) 2417 goto done; 2418 2419 p = upath; 2420 while (p && *p) { 2421 rc = objset_get_dnode(spa, &mount->objset, objnum, &dn); 2422 if (rc != 0) 2423 goto done; 2424 2425 while (*p == '/') 2426 p++; 2427 if (*p == '\0') 2428 break; 2429 q = p; 2430 while (*q != '\0' && *q != '/') 2431 q++; 2432 2433 /* skip dot */ 2434 if (p + 1 == q && p[0] == '.') { 2435 p++; 2436 continue; 2437 } 2438 /* double dot */ 2439 if (p + 2 == q && p[0] == '.' && p[1] == '.') { 2440 p += 2; 2441 if (STAILQ_FIRST(&on_cache) == 2442 STAILQ_LAST(&on_cache, obj_list, entry)) { 2443 rc = ENOENT; 2444 goto done; 2445 } 2446 entry = STAILQ_FIRST(&on_cache); 2447 STAILQ_REMOVE_HEAD(&on_cache, entry); 2448 free(entry); 2449 objnum = (STAILQ_FIRST(&on_cache))->objnum; 2450 continue; 2451 } 2452 if (q - p + 1 > sizeof(element)) { 2453 rc = ENAMETOOLONG; 2454 goto done; 2455 } 2456 memcpy(element, p, q - p); 2457 element[q - p] = 0; 2458 p = q; 2459 2460 if ((rc = zfs_dnode_stat(spa, &dn, &sb)) != 0) 2461 goto done; 2462 if (!S_ISDIR(sb.st_mode)) { 2463 rc = ENOTDIR; 2464 goto done; 2465 } 2466 2467 rc = zap_lookup(spa, &dn, element, sizeof (objnum), 1, &objnum); 2468 if (rc) 2469 goto done; 2470 objnum = ZFS_DIRENT_OBJ(objnum); 2471 2472 if ((entry = malloc(sizeof(struct obj_list))) == NULL) { 2473 rc = ENOMEM; 2474 goto done; 2475 } 2476 entry->objnum = objnum; 2477 STAILQ_INSERT_HEAD(&on_cache, entry, entry); 2478 rc = objset_get_dnode(spa, &mount->objset, objnum, &dn); 2479 if (rc) 2480 goto done; 2481 2482 /* 2483 * Check for symlink. 2484 */ 2485 rc = zfs_dnode_stat(spa, &dn, &sb); 2486 if (rc) 2487 goto done; 2488 if (S_ISLNK(sb.st_mode)) { 2489 if (symlinks_followed > 10) { 2490 rc = EMLINK; 2491 goto done; 2492 } 2493 symlinks_followed++; 2494 2495 /* 2496 * Read the link value and copy the tail of our 2497 * current path onto the end. 2498 */ 2499 if (sb.st_size + strlen(p) + 1 > sizeof(path)) { 2500 rc = ENAMETOOLONG; 2501 goto done; 2502 } 2503 strcpy(&path[sb.st_size], p); 2504 2505 rc = zfs_dnode_readlink(spa, &dn, path, sb.st_size); 2506 if (rc != 0) 2507 goto done; 2508 2509 /* 2510 * Restart with the new path, starting either at 2511 * the root or at the parent depending whether or 2512 * not the link is relative. 2513 */ 2514 p = path; 2515 if (*p == '/') { 2516 while (STAILQ_FIRST(&on_cache) != 2517 STAILQ_LAST(&on_cache, obj_list, entry)) { 2518 entry = STAILQ_FIRST(&on_cache); 2519 STAILQ_REMOVE_HEAD(&on_cache, entry); 2520 free(entry); 2521 } 2522 } else { 2523 entry = STAILQ_FIRST(&on_cache); 2524 STAILQ_REMOVE_HEAD(&on_cache, entry); 2525 free(entry); 2526 } 2527 objnum = (STAILQ_FIRST(&on_cache))->objnum; 2528 } 2529 } 2530 2531 *dnode = dn; 2532 done: 2533 STAILQ_FOREACH_SAFE(entry, &on_cache, entry, tentry) 2534 free(entry); 2535 return (rc); 2536 } 2537