1 /*- 2 * Copyright (c) 2007 Doug Rabson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 /* 31 * Stand-alone ZFS file reader. 32 */ 33 34 #include <sys/endian.h> 35 #include <sys/stat.h> 36 #include <sys/stdint.h> 37 #include <sys/list.h> 38 #include <machine/_inttypes.h> 39 40 #include "zfsimpl.h" 41 #include "zfssubr.c" 42 43 44 struct zfsmount { 45 const spa_t *spa; 46 objset_phys_t objset; 47 uint64_t rootobj; 48 }; 49 static struct zfsmount zfsmount __unused; 50 51 /* 52 * The indirect_child_t represents the vdev that we will read from, when we 53 * need to read all copies of the data (e.g. for scrub or reconstruction). 54 * For plain (non-mirror) top-level vdevs (i.e. is_vdev is not a mirror), 55 * ic_vdev is the same as is_vdev. However, for mirror top-level vdevs, 56 * ic_vdev is a child of the mirror. 57 */ 58 typedef struct indirect_child { 59 void *ic_data; 60 vdev_t *ic_vdev; 61 } indirect_child_t; 62 63 /* 64 * The indirect_split_t represents one mapped segment of an i/o to the 65 * indirect vdev. For non-split (contiguously-mapped) blocks, there will be 66 * only one indirect_split_t, with is_split_offset==0 and is_size==io_size. 67 * For split blocks, there will be several of these. 68 */ 69 typedef struct indirect_split { 70 list_node_t is_node; /* link on iv_splits */ 71 72 /* 73 * is_split_offset is the offset into the i/o. 74 * This is the sum of the previous splits' is_size's. 75 */ 76 uint64_t is_split_offset; 77 78 vdev_t *is_vdev; /* top-level vdev */ 79 uint64_t is_target_offset; /* offset on is_vdev */ 80 uint64_t is_size; 81 int is_children; /* number of entries in is_child[] */ 82 83 /* 84 * is_good_child is the child that we are currently using to 85 * attempt reconstruction. 86 */ 87 int is_good_child; 88 89 indirect_child_t is_child[1]; /* variable-length */ 90 } indirect_split_t; 91 92 /* 93 * The indirect_vsd_t is associated with each i/o to the indirect vdev. 94 * It is the "Vdev-Specific Data" in the zio_t's io_vsd. 95 */ 96 typedef struct indirect_vsd { 97 boolean_t iv_split_block; 98 boolean_t iv_reconstruct; 99 100 list_t iv_splits; /* list of indirect_split_t's */ 101 } indirect_vsd_t; 102 103 /* 104 * List of all vdevs, chained through v_alllink. 105 */ 106 static vdev_list_t zfs_vdevs; 107 108 /* 109 * List of ZFS features supported for read 110 */ 111 static const char *features_for_read[] = { 112 "org.illumos:lz4_compress", 113 "com.delphix:hole_birth", 114 "com.delphix:extensible_dataset", 115 "com.delphix:embedded_data", 116 "org.open-zfs:large_blocks", 117 "org.illumos:sha512", 118 "org.illumos:skein", 119 "org.zfsonlinux:large_dnode", 120 "com.joyent:multi_vdev_crash_dump", 121 "com.delphix:spacemap_histogram", 122 "com.delphix:zpool_checkpoint", 123 "com.delphix:spacemap_v2", 124 "com.datto:encryption", 125 "org.zfsonlinux:allocation_classes", 126 "com.datto:resilver_defer", 127 "com.delphix:device_removal", 128 "com.delphix:obsolete_counts", 129 "com.intel:allocation_classes", 130 NULL 131 }; 132 133 /* 134 * List of all pools, chained through spa_link. 135 */ 136 static spa_list_t zfs_pools; 137 138 static const dnode_phys_t *dnode_cache_obj; 139 static uint64_t dnode_cache_bn; 140 static char *dnode_cache_buf; 141 142 static int zio_read(const spa_t *spa, const blkptr_t *bp, void *buf); 143 static int zfs_get_root(const spa_t *spa, uint64_t *objid); 144 static int zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result); 145 static int zap_lookup(const spa_t *spa, const dnode_phys_t *dnode, 146 const char *name, uint64_t integer_size, uint64_t num_integers, 147 void *value); 148 static int objset_get_dnode(const spa_t *, const objset_phys_t *, uint64_t, 149 dnode_phys_t *); 150 static int dnode_read(const spa_t *, const dnode_phys_t *, off_t, void *, 151 size_t); 152 static int vdev_indirect_read(vdev_t *, const blkptr_t *, void *, off_t, 153 size_t); 154 static int vdev_mirror_read(vdev_t *, const blkptr_t *, void *, off_t, size_t); 155 vdev_indirect_mapping_t *vdev_indirect_mapping_open(spa_t *, objset_phys_t *, 156 uint64_t); 157 vdev_indirect_mapping_entry_phys_t * 158 vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *, uint64_t, 159 uint64_t, uint64_t *); 160 161 static void 162 zfs_init(void) 163 { 164 STAILQ_INIT(&zfs_vdevs); 165 STAILQ_INIT(&zfs_pools); 166 167 dnode_cache_buf = malloc(SPA_MAXBLOCKSIZE); 168 169 zfs_init_crc(); 170 } 171 172 static int 173 nvlist_check_features_for_read(nvlist_t *nvl) 174 { 175 nvlist_t *features = NULL; 176 nvs_data_t *data; 177 nvp_header_t *nvp; 178 nv_string_t *nvp_name; 179 int rc; 180 181 rc = nvlist_find(nvl, ZPOOL_CONFIG_FEATURES_FOR_READ, 182 DATA_TYPE_NVLIST, NULL, &features, NULL); 183 if (rc != 0) 184 return (rc); 185 186 data = (nvs_data_t *)features->nv_data; 187 nvp = &data->nvl_pair; /* first pair in nvlist */ 188 189 while (nvp->encoded_size != 0 && nvp->decoded_size != 0) { 190 int i, found; 191 192 nvp_name = (nv_string_t *)((uintptr_t)nvp + sizeof(*nvp)); 193 found = 0; 194 195 for (i = 0; features_for_read[i] != NULL; i++) { 196 if (memcmp(nvp_name->nv_data, features_for_read[i], 197 nvp_name->nv_size) == 0) { 198 found = 1; 199 break; 200 } 201 } 202 203 if (!found) { 204 printf("ZFS: unsupported feature: %.*s\n", 205 nvp_name->nv_size, nvp_name->nv_data); 206 rc = EIO; 207 } 208 nvp = (nvp_header_t *)((uint8_t *)nvp + nvp->encoded_size); 209 } 210 nvlist_destroy(features); 211 212 return (rc); 213 } 214 215 static int 216 vdev_read_phys(vdev_t *vdev, const blkptr_t *bp, void *buf, 217 off_t offset, size_t size) 218 { 219 size_t psize; 220 int rc; 221 222 if (!vdev->v_phys_read) 223 return (EIO); 224 225 if (bp) { 226 psize = BP_GET_PSIZE(bp); 227 } else { 228 psize = size; 229 } 230 231 rc = vdev->v_phys_read(vdev, vdev->v_read_priv, offset, buf, psize); 232 if (rc == 0) { 233 if (bp != NULL) 234 rc = zio_checksum_verify(vdev->v_spa, bp, buf); 235 } 236 237 return (rc); 238 } 239 240 typedef struct remap_segment { 241 vdev_t *rs_vd; 242 uint64_t rs_offset; 243 uint64_t rs_asize; 244 uint64_t rs_split_offset; 245 list_node_t rs_node; 246 } remap_segment_t; 247 248 static remap_segment_t * 249 rs_alloc(vdev_t *vd, uint64_t offset, uint64_t asize, uint64_t split_offset) 250 { 251 remap_segment_t *rs = malloc(sizeof (remap_segment_t)); 252 253 if (rs != NULL) { 254 rs->rs_vd = vd; 255 rs->rs_offset = offset; 256 rs->rs_asize = asize; 257 rs->rs_split_offset = split_offset; 258 } 259 260 return (rs); 261 } 262 263 vdev_indirect_mapping_t * 264 vdev_indirect_mapping_open(spa_t *spa, objset_phys_t *os, 265 uint64_t mapping_object) 266 { 267 vdev_indirect_mapping_t *vim; 268 vdev_indirect_mapping_phys_t *vim_phys; 269 int rc; 270 271 vim = calloc(1, sizeof (*vim)); 272 if (vim == NULL) 273 return (NULL); 274 275 vim->vim_dn = calloc(1, sizeof (*vim->vim_dn)); 276 if (vim->vim_dn == NULL) { 277 free(vim); 278 return (NULL); 279 } 280 281 rc = objset_get_dnode(spa, os, mapping_object, vim->vim_dn); 282 if (rc != 0) { 283 free(vim->vim_dn); 284 free(vim); 285 return (NULL); 286 } 287 288 vim->vim_spa = spa; 289 vim->vim_phys = malloc(sizeof (*vim->vim_phys)); 290 if (vim->vim_phys == NULL) { 291 free(vim->vim_dn); 292 free(vim); 293 return (NULL); 294 } 295 296 vim_phys = (vdev_indirect_mapping_phys_t *)DN_BONUS(vim->vim_dn); 297 *vim->vim_phys = *vim_phys; 298 299 vim->vim_objset = os; 300 vim->vim_object = mapping_object; 301 vim->vim_entries = NULL; 302 303 vim->vim_havecounts = 304 (vim->vim_dn->dn_bonuslen > VDEV_INDIRECT_MAPPING_SIZE_V0); 305 306 return (vim); 307 } 308 309 /* 310 * Compare an offset with an indirect mapping entry; there are three 311 * possible scenarios: 312 * 313 * 1. The offset is "less than" the mapping entry; meaning the 314 * offset is less than the source offset of the mapping entry. In 315 * this case, there is no overlap between the offset and the 316 * mapping entry and -1 will be returned. 317 * 318 * 2. The offset is "greater than" the mapping entry; meaning the 319 * offset is greater than the mapping entry's source offset plus 320 * the entry's size. In this case, there is no overlap between 321 * the offset and the mapping entry and 1 will be returned. 322 * 323 * NOTE: If the offset is actually equal to the entry's offset 324 * plus size, this is considered to be "greater" than the entry, 325 * and this case applies (i.e. 1 will be returned). Thus, the 326 * entry's "range" can be considered to be inclusive at its 327 * start, but exclusive at its end: e.g. [src, src + size). 328 * 329 * 3. The last case to consider is if the offset actually falls 330 * within the mapping entry's range. If this is the case, the 331 * offset is considered to be "equal to" the mapping entry and 332 * 0 will be returned. 333 * 334 * NOTE: If the offset is equal to the entry's source offset, 335 * this case applies and 0 will be returned. If the offset is 336 * equal to the entry's source plus its size, this case does 337 * *not* apply (see "NOTE" above for scenario 2), and 1 will be 338 * returned. 339 */ 340 static int 341 dva_mapping_overlap_compare(const void *v_key, const void *v_array_elem) 342 { 343 const uint64_t *key = v_key; 344 const vdev_indirect_mapping_entry_phys_t *array_elem = 345 v_array_elem; 346 uint64_t src_offset = DVA_MAPPING_GET_SRC_OFFSET(array_elem); 347 348 if (*key < src_offset) { 349 return (-1); 350 } else if (*key < src_offset + DVA_GET_ASIZE(&array_elem->vimep_dst)) { 351 return (0); 352 } else { 353 return (1); 354 } 355 } 356 357 /* 358 * Return array entry. 359 */ 360 static vdev_indirect_mapping_entry_phys_t * 361 vdev_indirect_mapping_entry(vdev_indirect_mapping_t *vim, uint64_t index) 362 { 363 uint64_t size; 364 off_t offset = 0; 365 int rc; 366 367 if (vim->vim_phys->vimp_num_entries == 0) 368 return (NULL); 369 370 if (vim->vim_entries == NULL) { 371 uint64_t bsize; 372 373 bsize = vim->vim_dn->dn_datablkszsec << SPA_MINBLOCKSHIFT; 374 size = vim->vim_phys->vimp_num_entries * 375 sizeof (*vim->vim_entries); 376 if (size > bsize) { 377 size = bsize / sizeof (*vim->vim_entries); 378 size *= sizeof (*vim->vim_entries); 379 } 380 vim->vim_entries = malloc(size); 381 if (vim->vim_entries == NULL) 382 return (NULL); 383 vim->vim_num_entries = size / sizeof (*vim->vim_entries); 384 offset = index * sizeof (*vim->vim_entries); 385 } 386 387 /* We have data in vim_entries */ 388 if (offset == 0) { 389 if (index >= vim->vim_entry_offset && 390 index <= vim->vim_entry_offset + vim->vim_num_entries) { 391 index -= vim->vim_entry_offset; 392 return (&vim->vim_entries[index]); 393 } 394 offset = index * sizeof (*vim->vim_entries); 395 } 396 397 vim->vim_entry_offset = index; 398 size = vim->vim_num_entries * sizeof (*vim->vim_entries); 399 rc = dnode_read(vim->vim_spa, vim->vim_dn, offset, vim->vim_entries, 400 size); 401 if (rc != 0) { 402 /* Read error, invalidate vim_entries. */ 403 free(vim->vim_entries); 404 vim->vim_entries = NULL; 405 return (NULL); 406 } 407 index -= vim->vim_entry_offset; 408 return (&vim->vim_entries[index]); 409 } 410 411 /* 412 * Returns the mapping entry for the given offset. 413 * 414 * It's possible that the given offset will not be in the mapping table 415 * (i.e. no mapping entries contain this offset), in which case, the 416 * return value value depends on the "next_if_missing" parameter. 417 * 418 * If the offset is not found in the table and "next_if_missing" is 419 * B_FALSE, then NULL will always be returned. The behavior is intended 420 * to allow consumers to get the entry corresponding to the offset 421 * parameter, iff the offset overlaps with an entry in the table. 422 * 423 * If the offset is not found in the table and "next_if_missing" is 424 * B_TRUE, then the entry nearest to the given offset will be returned, 425 * such that the entry's source offset is greater than the offset 426 * passed in (i.e. the "next" mapping entry in the table is returned, if 427 * the offset is missing from the table). If there are no entries whose 428 * source offset is greater than the passed in offset, NULL is returned. 429 */ 430 static vdev_indirect_mapping_entry_phys_t * 431 vdev_indirect_mapping_entry_for_offset(vdev_indirect_mapping_t *vim, 432 uint64_t offset) 433 { 434 ASSERT(vim->vim_phys->vimp_num_entries > 0); 435 436 vdev_indirect_mapping_entry_phys_t *entry; 437 438 uint64_t last = vim->vim_phys->vimp_num_entries - 1; 439 uint64_t base = 0; 440 441 /* 442 * We don't define these inside of the while loop because we use 443 * their value in the case that offset isn't in the mapping. 444 */ 445 uint64_t mid; 446 int result; 447 448 while (last >= base) { 449 mid = base + ((last - base) >> 1); 450 451 entry = vdev_indirect_mapping_entry(vim, mid); 452 if (entry == NULL) 453 break; 454 result = dva_mapping_overlap_compare(&offset, entry); 455 456 if (result == 0) { 457 break; 458 } else if (result < 0) { 459 last = mid - 1; 460 } else { 461 base = mid + 1; 462 } 463 } 464 return (entry); 465 } 466 467 /* 468 * Given an indirect vdev and an extent on that vdev, it duplicates the 469 * physical entries of the indirect mapping that correspond to the extent 470 * to a new array and returns a pointer to it. In addition, copied_entries 471 * is populated with the number of mapping entries that were duplicated. 472 * 473 * Finally, since we are doing an allocation, it is up to the caller to 474 * free the array allocated in this function. 475 */ 476 vdev_indirect_mapping_entry_phys_t * 477 vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *vd, uint64_t offset, 478 uint64_t asize, uint64_t *copied_entries) 479 { 480 vdev_indirect_mapping_entry_phys_t *duplicate_mappings = NULL; 481 vdev_indirect_mapping_t *vim = vd->v_mapping; 482 uint64_t entries = 0; 483 484 vdev_indirect_mapping_entry_phys_t *first_mapping = 485 vdev_indirect_mapping_entry_for_offset(vim, offset); 486 ASSERT3P(first_mapping, !=, NULL); 487 488 vdev_indirect_mapping_entry_phys_t *m = first_mapping; 489 while (asize > 0) { 490 uint64_t size = DVA_GET_ASIZE(&m->vimep_dst); 491 uint64_t inner_offset = offset - DVA_MAPPING_GET_SRC_OFFSET(m); 492 uint64_t inner_size = MIN(asize, size - inner_offset); 493 494 offset += inner_size; 495 asize -= inner_size; 496 entries++; 497 m++; 498 } 499 500 size_t copy_length = entries * sizeof (*first_mapping); 501 duplicate_mappings = malloc(copy_length); 502 if (duplicate_mappings != NULL) 503 bcopy(first_mapping, duplicate_mappings, copy_length); 504 else 505 entries = 0; 506 507 *copied_entries = entries; 508 509 return (duplicate_mappings); 510 } 511 512 static vdev_t * 513 vdev_lookup_top(spa_t *spa, uint64_t vdev) 514 { 515 vdev_t *rvd; 516 vdev_list_t *vlist; 517 518 vlist = &spa->spa_root_vdev->v_children; 519 STAILQ_FOREACH(rvd, vlist, v_childlink) 520 if (rvd->v_id == vdev) 521 break; 522 523 return (rvd); 524 } 525 526 /* 527 * This is a callback for vdev_indirect_remap() which allocates an 528 * indirect_split_t for each split segment and adds it to iv_splits. 529 */ 530 static void 531 vdev_indirect_gather_splits(uint64_t split_offset, vdev_t *vd, uint64_t offset, 532 uint64_t size, void *arg) 533 { 534 int n = 1; 535 zio_t *zio = arg; 536 indirect_vsd_t *iv = zio->io_vsd; 537 538 if (vd->v_read == vdev_indirect_read) 539 return; 540 541 if (vd->v_read == vdev_mirror_read) 542 n = vd->v_nchildren; 543 544 indirect_split_t *is = 545 malloc(offsetof(indirect_split_t, is_child[n])); 546 if (is == NULL) { 547 zio->io_error = ENOMEM; 548 return; 549 } 550 bzero(is, offsetof(indirect_split_t, is_child[n])); 551 552 is->is_children = n; 553 is->is_size = size; 554 is->is_split_offset = split_offset; 555 is->is_target_offset = offset; 556 is->is_vdev = vd; 557 558 /* 559 * Note that we only consider multiple copies of the data for 560 * *mirror* vdevs. We don't for "replacing" or "spare" vdevs, even 561 * though they use the same ops as mirror, because there's only one 562 * "good" copy under the replacing/spare. 563 */ 564 if (vd->v_read == vdev_mirror_read) { 565 int i = 0; 566 vdev_t *kid; 567 568 STAILQ_FOREACH(kid, &vd->v_children, v_childlink) { 569 is->is_child[i++].ic_vdev = kid; 570 } 571 } else { 572 is->is_child[0].ic_vdev = vd; 573 } 574 575 list_insert_tail(&iv->iv_splits, is); 576 } 577 578 static void 579 vdev_indirect_remap(vdev_t *vd, uint64_t offset, uint64_t asize, void *arg) 580 { 581 list_t stack; 582 spa_t *spa = vd->v_spa; 583 zio_t *zio = arg; 584 remap_segment_t *rs; 585 586 list_create(&stack, sizeof (remap_segment_t), 587 offsetof(remap_segment_t, rs_node)); 588 589 rs = rs_alloc(vd, offset, asize, 0); 590 if (rs == NULL) { 591 printf("vdev_indirect_remap: out of memory.\n"); 592 zio->io_error = ENOMEM; 593 } 594 for (; rs != NULL; rs = list_remove_head(&stack)) { 595 vdev_t *v = rs->rs_vd; 596 uint64_t num_entries = 0; 597 /* vdev_indirect_mapping_t *vim = v->v_mapping; */ 598 vdev_indirect_mapping_entry_phys_t *mapping = 599 vdev_indirect_mapping_duplicate_adjacent_entries(v, 600 rs->rs_offset, rs->rs_asize, &num_entries); 601 602 if (num_entries == 0) 603 zio->io_error = ENOMEM; 604 605 for (uint64_t i = 0; i < num_entries; i++) { 606 vdev_indirect_mapping_entry_phys_t *m = &mapping[i]; 607 uint64_t size = DVA_GET_ASIZE(&m->vimep_dst); 608 uint64_t dst_offset = DVA_GET_OFFSET(&m->vimep_dst); 609 uint64_t dst_vdev = DVA_GET_VDEV(&m->vimep_dst); 610 uint64_t inner_offset = rs->rs_offset - 611 DVA_MAPPING_GET_SRC_OFFSET(m); 612 uint64_t inner_size = 613 MIN(rs->rs_asize, size - inner_offset); 614 vdev_t *dst_v = vdev_lookup_top(spa, dst_vdev); 615 616 if (dst_v->v_read == vdev_indirect_read) { 617 remap_segment_t *o; 618 619 o = rs_alloc(dst_v, dst_offset + inner_offset, 620 inner_size, rs->rs_split_offset); 621 if (o == NULL) { 622 printf("vdev_indirect_remap: " 623 "out of memory.\n"); 624 zio->io_error = ENOMEM; 625 break; 626 } 627 628 list_insert_head(&stack, o); 629 } 630 vdev_indirect_gather_splits(rs->rs_split_offset, dst_v, 631 dst_offset + inner_offset, 632 inner_size, arg); 633 634 /* 635 * vdev_indirect_gather_splits can have memory 636 * allocation error, we can not recover from it. 637 */ 638 if (zio->io_error != 0) 639 break; 640 rs->rs_offset += inner_size; 641 rs->rs_asize -= inner_size; 642 rs->rs_split_offset += inner_size; 643 } 644 645 free(mapping); 646 free(rs); 647 if (zio->io_error != 0) 648 break; 649 } 650 651 list_destroy(&stack); 652 } 653 654 static void 655 vdev_indirect_map_free(zio_t *zio) 656 { 657 indirect_vsd_t *iv = zio->io_vsd; 658 indirect_split_t *is; 659 660 while ((is = list_head(&iv->iv_splits)) != NULL) { 661 for (int c = 0; c < is->is_children; c++) { 662 indirect_child_t *ic = &is->is_child[c]; 663 free(ic->ic_data); 664 } 665 list_remove(&iv->iv_splits, is); 666 free(is); 667 } 668 free(iv); 669 } 670 671 static int 672 vdev_indirect_read(vdev_t *vdev, const blkptr_t *bp, void *buf, 673 off_t offset, size_t bytes) 674 { 675 zio_t zio; 676 spa_t *spa = vdev->v_spa; 677 indirect_vsd_t *iv; 678 indirect_split_t *first; 679 int rc = EIO; 680 681 iv = calloc(1, sizeof(*iv)); 682 if (iv == NULL) 683 return (ENOMEM); 684 685 list_create(&iv->iv_splits, 686 sizeof (indirect_split_t), offsetof(indirect_split_t, is_node)); 687 688 bzero(&zio, sizeof(zio)); 689 zio.io_spa = spa; 690 zio.io_bp = (blkptr_t *)bp; 691 zio.io_data = buf; 692 zio.io_size = bytes; 693 zio.io_offset = offset; 694 zio.io_vd = vdev; 695 zio.io_vsd = iv; 696 697 if (vdev->v_mapping == NULL) { 698 vdev_indirect_config_t *vic; 699 700 vic = &vdev->vdev_indirect_config; 701 vdev->v_mapping = vdev_indirect_mapping_open(spa, 702 spa->spa_mos, vic->vic_mapping_object); 703 } 704 705 vdev_indirect_remap(vdev, offset, bytes, &zio); 706 if (zio.io_error != 0) 707 return (zio.io_error); 708 709 first = list_head(&iv->iv_splits); 710 if (first->is_size == zio.io_size) { 711 /* 712 * This is not a split block; we are pointing to the entire 713 * data, which will checksum the same as the original data. 714 * Pass the BP down so that the child i/o can verify the 715 * checksum, and try a different location if available 716 * (e.g. on a mirror). 717 * 718 * While this special case could be handled the same as the 719 * general (split block) case, doing it this way ensures 720 * that the vast majority of blocks on indirect vdevs 721 * (which are not split) are handled identically to blocks 722 * on non-indirect vdevs. This allows us to be less strict 723 * about performance in the general (but rare) case. 724 */ 725 rc = first->is_vdev->v_read(first->is_vdev, zio.io_bp, 726 zio.io_data, first->is_target_offset, bytes); 727 } else { 728 iv->iv_split_block = B_TRUE; 729 /* 730 * Read one copy of each split segment, from the 731 * top-level vdev. Since we don't know the 732 * checksum of each split individually, the child 733 * zio can't ensure that we get the right data. 734 * E.g. if it's a mirror, it will just read from a 735 * random (healthy) leaf vdev. We have to verify 736 * the checksum in vdev_indirect_io_done(). 737 */ 738 for (indirect_split_t *is = list_head(&iv->iv_splits); 739 is != NULL; is = list_next(&iv->iv_splits, is)) { 740 char *ptr = zio.io_data; 741 742 rc = is->is_vdev->v_read(is->is_vdev, zio.io_bp, 743 ptr + is->is_split_offset, is->is_target_offset, 744 is->is_size); 745 } 746 if (zio_checksum_verify(spa, zio.io_bp, zio.io_data)) 747 rc = ECKSUM; 748 else 749 rc = 0; 750 } 751 752 vdev_indirect_map_free(&zio); 753 if (rc == 0) 754 rc = zio.io_error; 755 756 return (rc); 757 } 758 759 static int 760 vdev_disk_read(vdev_t *vdev, const blkptr_t *bp, void *buf, 761 off_t offset, size_t bytes) 762 { 763 764 return (vdev_read_phys(vdev, bp, buf, 765 offset + VDEV_LABEL_START_SIZE, bytes)); 766 } 767 768 static int 769 vdev_missing_read(vdev_t *vdev __unused, const blkptr_t *bp __unused, 770 void *buf __unused, off_t offset __unused, size_t bytes __unused) 771 { 772 773 return (ENOTSUP); 774 } 775 776 static int 777 vdev_mirror_read(vdev_t *vdev, const blkptr_t *bp, void *buf, 778 off_t offset, size_t bytes) 779 { 780 vdev_t *kid; 781 int rc; 782 783 rc = EIO; 784 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) { 785 if (kid->v_state != VDEV_STATE_HEALTHY) 786 continue; 787 rc = kid->v_read(kid, bp, buf, offset, bytes); 788 if (!rc) 789 return (0); 790 } 791 792 return (rc); 793 } 794 795 static int 796 vdev_replacing_read(vdev_t *vdev, const blkptr_t *bp, void *buf, 797 off_t offset, size_t bytes) 798 { 799 vdev_t *kid; 800 801 /* 802 * Here we should have two kids: 803 * First one which is the one we are replacing and we can trust 804 * only this one to have valid data, but it might not be present. 805 * Second one is that one we are replacing with. It is most likely 806 * healthy, but we can't trust it has needed data, so we won't use it. 807 */ 808 kid = STAILQ_FIRST(&vdev->v_children); 809 if (kid == NULL) 810 return (EIO); 811 if (kid->v_state != VDEV_STATE_HEALTHY) 812 return (EIO); 813 return (kid->v_read(kid, bp, buf, offset, bytes)); 814 } 815 816 static vdev_t * 817 vdev_find(uint64_t guid) 818 { 819 vdev_t *vdev; 820 821 STAILQ_FOREACH(vdev, &zfs_vdevs, v_alllink) 822 if (vdev->v_guid == guid) 823 return (vdev); 824 825 return (0); 826 } 827 828 static vdev_t * 829 vdev_create(uint64_t guid, vdev_read_t *_read) 830 { 831 vdev_t *vdev; 832 vdev_indirect_config_t *vic; 833 834 vdev = calloc(1, sizeof(vdev_t)); 835 if (vdev != NULL) { 836 STAILQ_INIT(&vdev->v_children); 837 vdev->v_guid = guid; 838 vdev->v_read = _read; 839 840 /* 841 * root vdev has no read function, we use this fact to 842 * skip setting up data we do not need for root vdev. 843 * We only point root vdev from spa. 844 */ 845 if (_read != NULL) { 846 vic = &vdev->vdev_indirect_config; 847 vic->vic_prev_indirect_vdev = UINT64_MAX; 848 STAILQ_INSERT_TAIL(&zfs_vdevs, vdev, v_alllink); 849 } 850 } 851 852 return (vdev); 853 } 854 855 static void 856 vdev_set_initial_state(vdev_t *vdev, const nvlist_t *nvlist) 857 { 858 uint64_t is_offline, is_faulted, is_degraded, is_removed, isnt_present; 859 uint64_t is_log; 860 861 is_offline = is_removed = is_faulted = is_degraded = isnt_present = 0; 862 is_log = 0; 863 (void) nvlist_find(nvlist, ZPOOL_CONFIG_OFFLINE, DATA_TYPE_UINT64, NULL, 864 &is_offline, NULL); 865 (void) nvlist_find(nvlist, ZPOOL_CONFIG_REMOVED, DATA_TYPE_UINT64, NULL, 866 &is_removed, NULL); 867 (void) nvlist_find(nvlist, ZPOOL_CONFIG_FAULTED, DATA_TYPE_UINT64, NULL, 868 &is_faulted, NULL); 869 (void) nvlist_find(nvlist, ZPOOL_CONFIG_DEGRADED, DATA_TYPE_UINT64, 870 NULL, &is_degraded, NULL); 871 (void) nvlist_find(nvlist, ZPOOL_CONFIG_NOT_PRESENT, DATA_TYPE_UINT64, 872 NULL, &isnt_present, NULL); 873 (void) nvlist_find(nvlist, ZPOOL_CONFIG_IS_LOG, DATA_TYPE_UINT64, NULL, 874 &is_log, NULL); 875 876 if (is_offline != 0) 877 vdev->v_state = VDEV_STATE_OFFLINE; 878 else if (is_removed != 0) 879 vdev->v_state = VDEV_STATE_REMOVED; 880 else if (is_faulted != 0) 881 vdev->v_state = VDEV_STATE_FAULTED; 882 else if (is_degraded != 0) 883 vdev->v_state = VDEV_STATE_DEGRADED; 884 else if (isnt_present != 0) 885 vdev->v_state = VDEV_STATE_CANT_OPEN; 886 887 vdev->v_islog = is_log != 0; 888 } 889 890 static int 891 vdev_init(uint64_t guid, const nvlist_t *nvlist, vdev_t **vdevp) 892 { 893 uint64_t id, ashift, asize, nparity; 894 const char *path; 895 const char *type; 896 int len, pathlen; 897 char *name; 898 vdev_t *vdev; 899 900 if (nvlist_find(nvlist, ZPOOL_CONFIG_ID, DATA_TYPE_UINT64, NULL, &id, 901 NULL) || 902 nvlist_find(nvlist, ZPOOL_CONFIG_TYPE, DATA_TYPE_STRING, NULL, 903 &type, &len)) { 904 return (ENOENT); 905 } 906 907 if (memcmp(type, VDEV_TYPE_MIRROR, len) != 0 && 908 memcmp(type, VDEV_TYPE_DISK, len) != 0 && 909 #ifdef ZFS_TEST 910 memcmp(type, VDEV_TYPE_FILE, len) != 0 && 911 #endif 912 memcmp(type, VDEV_TYPE_RAIDZ, len) != 0 && 913 memcmp(type, VDEV_TYPE_INDIRECT, len) != 0 && 914 memcmp(type, VDEV_TYPE_REPLACING, len) != 0 && 915 memcmp(type, VDEV_TYPE_HOLE, len) != 0) { 916 printf("ZFS: can only boot from disk, mirror, raidz1, " 917 "raidz2 and raidz3 vdevs, got: %.*s\n", len, type); 918 return (EIO); 919 } 920 921 if (memcmp(type, VDEV_TYPE_MIRROR, len) == 0) 922 vdev = vdev_create(guid, vdev_mirror_read); 923 else if (memcmp(type, VDEV_TYPE_RAIDZ, len) == 0) 924 vdev = vdev_create(guid, vdev_raidz_read); 925 else if (memcmp(type, VDEV_TYPE_REPLACING, len) == 0) 926 vdev = vdev_create(guid, vdev_replacing_read); 927 else if (memcmp(type, VDEV_TYPE_INDIRECT, len) == 0) { 928 vdev_indirect_config_t *vic; 929 930 vdev = vdev_create(guid, vdev_indirect_read); 931 if (vdev != NULL) { 932 vdev->v_state = VDEV_STATE_HEALTHY; 933 vic = &vdev->vdev_indirect_config; 934 935 nvlist_find(nvlist, 936 ZPOOL_CONFIG_INDIRECT_OBJECT, 937 DATA_TYPE_UINT64, 938 NULL, &vic->vic_mapping_object, NULL); 939 nvlist_find(nvlist, 940 ZPOOL_CONFIG_INDIRECT_BIRTHS, 941 DATA_TYPE_UINT64, 942 NULL, &vic->vic_births_object, NULL); 943 nvlist_find(nvlist, 944 ZPOOL_CONFIG_PREV_INDIRECT_VDEV, 945 DATA_TYPE_UINT64, 946 NULL, &vic->vic_prev_indirect_vdev, NULL); 947 } 948 } else if (memcmp(type, VDEV_TYPE_HOLE, len) == 0) { 949 vdev = vdev_create(guid, vdev_missing_read); 950 } else { 951 vdev = vdev_create(guid, vdev_disk_read); 952 } 953 954 if (vdev == NULL) 955 return (ENOMEM); 956 957 vdev_set_initial_state(vdev, nvlist); 958 vdev->v_id = id; 959 if (nvlist_find(nvlist, ZPOOL_CONFIG_ASHIFT, 960 DATA_TYPE_UINT64, NULL, &ashift, NULL) == 0) 961 vdev->v_ashift = ashift; 962 963 if (nvlist_find(nvlist, ZPOOL_CONFIG_ASIZE, 964 DATA_TYPE_UINT64, NULL, &asize, NULL) == 0) { 965 vdev->v_psize = asize + 966 VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; 967 } 968 969 if (nvlist_find(nvlist, ZPOOL_CONFIG_NPARITY, 970 DATA_TYPE_UINT64, NULL, &nparity, NULL) == 0) 971 vdev->v_nparity = nparity; 972 973 if (nvlist_find(nvlist, ZPOOL_CONFIG_PATH, 974 DATA_TYPE_STRING, NULL, &path, &pathlen) == 0) { 975 char prefix[] = "/dev/"; 976 977 len = strlen(prefix); 978 if (len < pathlen && memcmp(path, prefix, len) == 0) { 979 path += len; 980 pathlen -= len; 981 } 982 name = malloc(pathlen + 1); 983 bcopy(path, name, pathlen); 984 name[pathlen] = '\0'; 985 vdev->v_name = name; 986 } else { 987 name = NULL; 988 if (memcmp(type, VDEV_TYPE_RAIDZ, len) == 0) { 989 if (vdev->v_nparity < 1 || 990 vdev->v_nparity > 3) { 991 printf("ZFS: invalid raidz parity: %d\n", 992 vdev->v_nparity); 993 return (EIO); 994 } 995 (void) asprintf(&name, "%.*s%d-%" PRIu64, len, type, 996 vdev->v_nparity, id); 997 } else { 998 (void) asprintf(&name, "%.*s-%" PRIu64, len, type, id); 999 } 1000 vdev->v_name = name; 1001 } 1002 *vdevp = vdev; 1003 return (0); 1004 } 1005 1006 /* 1007 * Find slot for vdev. We return either NULL to signal to use 1008 * STAILQ_INSERT_HEAD, or we return link element to be used with 1009 * STAILQ_INSERT_AFTER. 1010 */ 1011 static vdev_t * 1012 vdev_find_previous(vdev_t *top_vdev, vdev_t *vdev) 1013 { 1014 vdev_t *v, *previous; 1015 1016 if (STAILQ_EMPTY(&top_vdev->v_children)) 1017 return (NULL); 1018 1019 previous = NULL; 1020 STAILQ_FOREACH(v, &top_vdev->v_children, v_childlink) { 1021 if (v->v_id > vdev->v_id) 1022 return (previous); 1023 1024 if (v->v_id == vdev->v_id) 1025 return (v); 1026 1027 if (v->v_id < vdev->v_id) 1028 previous = v; 1029 } 1030 return (previous); 1031 } 1032 1033 static size_t 1034 vdev_child_count(vdev_t *vdev) 1035 { 1036 vdev_t *v; 1037 size_t count; 1038 1039 count = 0; 1040 STAILQ_FOREACH(v, &vdev->v_children, v_childlink) { 1041 count++; 1042 } 1043 return (count); 1044 } 1045 1046 /* 1047 * Insert vdev into top_vdev children list. List is ordered by v_id. 1048 */ 1049 static void 1050 vdev_insert(vdev_t *top_vdev, vdev_t *vdev) 1051 { 1052 vdev_t *previous; 1053 size_t count; 1054 1055 /* 1056 * The top level vdev can appear in random order, depending how 1057 * the firmware is presenting the disk devices. 1058 * However, we will insert vdev to create list ordered by v_id, 1059 * so we can use either STAILQ_INSERT_HEAD or STAILQ_INSERT_AFTER 1060 * as STAILQ does not have insert before. 1061 */ 1062 previous = vdev_find_previous(top_vdev, vdev); 1063 1064 if (previous == NULL) { 1065 STAILQ_INSERT_HEAD(&top_vdev->v_children, vdev, v_childlink); 1066 } else if (previous->v_id == vdev->v_id) { 1067 /* 1068 * This vdev was configured from label config, 1069 * do not insert duplicate. 1070 */ 1071 return; 1072 } else { 1073 STAILQ_INSERT_AFTER(&top_vdev->v_children, previous, vdev, 1074 v_childlink); 1075 } 1076 1077 count = vdev_child_count(top_vdev); 1078 if (top_vdev->v_nchildren < count) 1079 top_vdev->v_nchildren = count; 1080 } 1081 1082 static int 1083 vdev_from_nvlist(spa_t *spa, uint64_t top_guid, const nvlist_t *nvlist) 1084 { 1085 vdev_t *top_vdev, *vdev; 1086 nvlist_t *kids = NULL; 1087 int rc, nkids; 1088 1089 /* Get top vdev. */ 1090 top_vdev = vdev_find(top_guid); 1091 if (top_vdev == NULL) { 1092 rc = vdev_init(top_guid, nvlist, &top_vdev); 1093 if (rc != 0) 1094 return (rc); 1095 top_vdev->v_spa = spa; 1096 top_vdev->v_top = top_vdev; 1097 vdev_insert(spa->spa_root_vdev, top_vdev); 1098 } 1099 1100 /* Add children if there are any. */ 1101 rc = nvlist_find(nvlist, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY, 1102 &nkids, &kids, NULL); 1103 if (rc == 0) { 1104 for (int i = 0; i < nkids; i++) { 1105 uint64_t guid; 1106 1107 rc = nvlist_find(kids, ZPOOL_CONFIG_GUID, 1108 DATA_TYPE_UINT64, NULL, &guid, NULL); 1109 if (rc != 0) { 1110 nvlist_destroy(kids); 1111 return (rc); 1112 } 1113 rc = vdev_init(guid, kids, &vdev); 1114 if (rc != 0) { 1115 nvlist_destroy(kids); 1116 return (rc); 1117 } 1118 1119 vdev->v_spa = spa; 1120 vdev->v_top = top_vdev; 1121 vdev_insert(top_vdev, vdev); 1122 1123 rc = nvlist_next(kids); 1124 if (rc != 0) { 1125 nvlist_destroy(kids); 1126 return (rc); 1127 } 1128 } 1129 } else { 1130 /* 1131 * When there are no children, nvlist_find() does return 1132 * error, reset it because leaf devices have no children. 1133 */ 1134 rc = 0; 1135 } 1136 nvlist_destroy(kids); 1137 1138 return (rc); 1139 } 1140 1141 static int 1142 vdev_init_from_label(spa_t *spa, const nvlist_t *nvlist) 1143 { 1144 uint64_t pool_guid, top_guid; 1145 nvlist_t *vdevs; 1146 int rc; 1147 1148 if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64, 1149 NULL, &pool_guid, NULL) || 1150 nvlist_find(nvlist, ZPOOL_CONFIG_TOP_GUID, DATA_TYPE_UINT64, 1151 NULL, &top_guid, NULL) || 1152 nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST, 1153 NULL, &vdevs, NULL)) { 1154 printf("ZFS: can't find vdev details\n"); 1155 return (ENOENT); 1156 } 1157 1158 rc = vdev_from_nvlist(spa, top_guid, vdevs); 1159 nvlist_destroy(vdevs); 1160 return (rc); 1161 } 1162 1163 static void 1164 vdev_set_state(vdev_t *vdev) 1165 { 1166 vdev_t *kid; 1167 int good_kids; 1168 int bad_kids; 1169 1170 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) { 1171 vdev_set_state(kid); 1172 } 1173 1174 /* 1175 * A mirror or raidz is healthy if all its kids are healthy. A 1176 * mirror is degraded if any of its kids is healthy; a raidz 1177 * is degraded if at most nparity kids are offline. 1178 */ 1179 if (STAILQ_FIRST(&vdev->v_children)) { 1180 good_kids = 0; 1181 bad_kids = 0; 1182 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) { 1183 if (kid->v_state == VDEV_STATE_HEALTHY) 1184 good_kids++; 1185 else 1186 bad_kids++; 1187 } 1188 if (bad_kids == 0) { 1189 vdev->v_state = VDEV_STATE_HEALTHY; 1190 } else { 1191 if (vdev->v_read == vdev_mirror_read) { 1192 if (good_kids) { 1193 vdev->v_state = VDEV_STATE_DEGRADED; 1194 } else { 1195 vdev->v_state = VDEV_STATE_OFFLINE; 1196 } 1197 } else if (vdev->v_read == vdev_raidz_read) { 1198 if (bad_kids > vdev->v_nparity) { 1199 vdev->v_state = VDEV_STATE_OFFLINE; 1200 } else { 1201 vdev->v_state = VDEV_STATE_DEGRADED; 1202 } 1203 } 1204 } 1205 } 1206 } 1207 1208 static int 1209 vdev_update_from_nvlist(uint64_t top_guid, const nvlist_t *nvlist) 1210 { 1211 vdev_t *vdev; 1212 nvlist_t *kids = NULL; 1213 int rc, nkids; 1214 1215 /* Update top vdev. */ 1216 vdev = vdev_find(top_guid); 1217 if (vdev != NULL) 1218 vdev_set_initial_state(vdev, nvlist); 1219 1220 /* Update children if there are any. */ 1221 rc = nvlist_find(nvlist, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY, 1222 &nkids, &kids, NULL); 1223 if (rc == 0) { 1224 for (int i = 0; i < nkids; i++) { 1225 uint64_t guid; 1226 1227 rc = nvlist_find(kids, ZPOOL_CONFIG_GUID, 1228 DATA_TYPE_UINT64, NULL, &guid, NULL); 1229 if (rc != 0) 1230 break; 1231 1232 vdev = vdev_find(guid); 1233 if (vdev != NULL) 1234 vdev_set_initial_state(vdev, kids); 1235 1236 rc = nvlist_next(kids); 1237 if (rc != 0) 1238 break; 1239 } 1240 } else { 1241 rc = 0; 1242 } 1243 nvlist_destroy(kids); 1244 1245 return (rc); 1246 } 1247 1248 static int 1249 vdev_init_from_nvlist(spa_t *spa, const nvlist_t *nvlist) 1250 { 1251 uint64_t pool_guid, vdev_children; 1252 nvlist_t *vdevs = NULL, *kids = NULL; 1253 int rc, nkids; 1254 1255 if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64, 1256 NULL, &pool_guid, NULL) || 1257 nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_CHILDREN, DATA_TYPE_UINT64, 1258 NULL, &vdev_children, NULL) || 1259 nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST, 1260 NULL, &vdevs, NULL)) { 1261 printf("ZFS: can't find vdev details\n"); 1262 return (ENOENT); 1263 } 1264 1265 /* Wrong guid?! */ 1266 if (spa->spa_guid != pool_guid) { 1267 nvlist_destroy(vdevs); 1268 return (EINVAL); 1269 } 1270 1271 spa->spa_root_vdev->v_nchildren = vdev_children; 1272 1273 rc = nvlist_find(vdevs, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY, 1274 &nkids, &kids, NULL); 1275 nvlist_destroy(vdevs); 1276 1277 /* 1278 * MOS config has at least one child for root vdev. 1279 */ 1280 if (rc != 0) 1281 return (rc); 1282 1283 for (int i = 0; i < nkids; i++) { 1284 uint64_t guid; 1285 vdev_t *vdev; 1286 1287 rc = nvlist_find(kids, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64, 1288 NULL, &guid, NULL); 1289 if (rc != 0) 1290 break; 1291 vdev = vdev_find(guid); 1292 /* 1293 * Top level vdev is missing, create it. 1294 */ 1295 if (vdev == NULL) 1296 rc = vdev_from_nvlist(spa, guid, kids); 1297 else 1298 rc = vdev_update_from_nvlist(guid, kids); 1299 if (rc != 0) 1300 break; 1301 rc = nvlist_next(kids); 1302 if (rc != 0) 1303 break; 1304 } 1305 nvlist_destroy(kids); 1306 1307 /* 1308 * Re-evaluate top-level vdev state. 1309 */ 1310 vdev_set_state(spa->spa_root_vdev); 1311 1312 return (rc); 1313 } 1314 1315 static spa_t * 1316 spa_find_by_guid(uint64_t guid) 1317 { 1318 spa_t *spa; 1319 1320 STAILQ_FOREACH(spa, &zfs_pools, spa_link) 1321 if (spa->spa_guid == guid) 1322 return (spa); 1323 1324 return (NULL); 1325 } 1326 1327 static spa_t * 1328 spa_find_by_name(const char *name) 1329 { 1330 spa_t *spa; 1331 1332 STAILQ_FOREACH(spa, &zfs_pools, spa_link) 1333 if (strcmp(spa->spa_name, name) == 0) 1334 return (spa); 1335 1336 return (NULL); 1337 } 1338 1339 static spa_t * 1340 spa_create(uint64_t guid, const char *name) 1341 { 1342 spa_t *spa; 1343 1344 if ((spa = calloc(1, sizeof(spa_t))) == NULL) 1345 return (NULL); 1346 if ((spa->spa_name = strdup(name)) == NULL) { 1347 free(spa); 1348 return (NULL); 1349 } 1350 spa->spa_uberblock = &spa->spa_uberblock_master; 1351 spa->spa_mos = &spa->spa_mos_master; 1352 spa->spa_guid = guid; 1353 spa->spa_root_vdev = vdev_create(guid, NULL); 1354 if (spa->spa_root_vdev == NULL) { 1355 free(spa->spa_name); 1356 free(spa); 1357 return (NULL); 1358 } 1359 spa->spa_root_vdev->v_name = strdup("root"); 1360 STAILQ_INSERT_TAIL(&zfs_pools, spa, spa_link); 1361 1362 return (spa); 1363 } 1364 1365 static const char * 1366 state_name(vdev_state_t state) 1367 { 1368 static const char *names[] = { 1369 "UNKNOWN", 1370 "CLOSED", 1371 "OFFLINE", 1372 "REMOVED", 1373 "CANT_OPEN", 1374 "FAULTED", 1375 "DEGRADED", 1376 "ONLINE" 1377 }; 1378 return (names[state]); 1379 } 1380 1381 #ifdef BOOT2 1382 1383 #define pager_printf printf 1384 1385 #else 1386 1387 static int 1388 pager_printf(const char *fmt, ...) 1389 { 1390 char line[80]; 1391 va_list args; 1392 1393 va_start(args, fmt); 1394 vsnprintf(line, sizeof(line), fmt, args); 1395 va_end(args); 1396 return (pager_output(line)); 1397 } 1398 1399 #endif 1400 1401 #define STATUS_FORMAT " %s %s\n" 1402 1403 static int 1404 print_state(int indent, const char *name, vdev_state_t state) 1405 { 1406 int i; 1407 char buf[512]; 1408 1409 buf[0] = 0; 1410 for (i = 0; i < indent; i++) 1411 strcat(buf, " "); 1412 strcat(buf, name); 1413 return (pager_printf(STATUS_FORMAT, buf, state_name(state))); 1414 } 1415 1416 static int 1417 vdev_status(vdev_t *vdev, int indent) 1418 { 1419 vdev_t *kid; 1420 int ret; 1421 1422 if (vdev->v_islog) { 1423 (void) pager_output(" logs\n"); 1424 indent++; 1425 } 1426 1427 ret = print_state(indent, vdev->v_name, vdev->v_state); 1428 if (ret != 0) 1429 return (ret); 1430 1431 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) { 1432 ret = vdev_status(kid, indent + 1); 1433 if (ret != 0) 1434 return (ret); 1435 } 1436 return (ret); 1437 } 1438 1439 static int 1440 spa_status(spa_t *spa) 1441 { 1442 static char bootfs[ZFS_MAXNAMELEN]; 1443 uint64_t rootid; 1444 vdev_list_t *vlist; 1445 vdev_t *vdev; 1446 int good_kids, bad_kids, degraded_kids, ret; 1447 vdev_state_t state; 1448 1449 ret = pager_printf(" pool: %s\n", spa->spa_name); 1450 if (ret != 0) 1451 return (ret); 1452 1453 if (zfs_get_root(spa, &rootid) == 0 && 1454 zfs_rlookup(spa, rootid, bootfs) == 0) { 1455 if (bootfs[0] == '\0') 1456 ret = pager_printf("bootfs: %s\n", spa->spa_name); 1457 else 1458 ret = pager_printf("bootfs: %s/%s\n", spa->spa_name, 1459 bootfs); 1460 if (ret != 0) 1461 return (ret); 1462 } 1463 ret = pager_printf("config:\n\n"); 1464 if (ret != 0) 1465 return (ret); 1466 ret = pager_printf(STATUS_FORMAT, "NAME", "STATE"); 1467 if (ret != 0) 1468 return (ret); 1469 1470 good_kids = 0; 1471 degraded_kids = 0; 1472 bad_kids = 0; 1473 vlist = &spa->spa_root_vdev->v_children; 1474 STAILQ_FOREACH(vdev, vlist, v_childlink) { 1475 if (vdev->v_state == VDEV_STATE_HEALTHY) 1476 good_kids++; 1477 else if (vdev->v_state == VDEV_STATE_DEGRADED) 1478 degraded_kids++; 1479 else 1480 bad_kids++; 1481 } 1482 1483 state = VDEV_STATE_CLOSED; 1484 if (good_kids > 0 && (degraded_kids + bad_kids) == 0) 1485 state = VDEV_STATE_HEALTHY; 1486 else if ((good_kids + degraded_kids) > 0) 1487 state = VDEV_STATE_DEGRADED; 1488 1489 ret = print_state(0, spa->spa_name, state); 1490 if (ret != 0) 1491 return (ret); 1492 1493 STAILQ_FOREACH(vdev, vlist, v_childlink) { 1494 ret = vdev_status(vdev, 1); 1495 if (ret != 0) 1496 return (ret); 1497 } 1498 return (ret); 1499 } 1500 1501 static int 1502 spa_all_status(void) 1503 { 1504 spa_t *spa; 1505 int first = 1, ret = 0; 1506 1507 STAILQ_FOREACH(spa, &zfs_pools, spa_link) { 1508 if (!first) { 1509 ret = pager_printf("\n"); 1510 if (ret != 0) 1511 return (ret); 1512 } 1513 first = 0; 1514 ret = spa_status(spa); 1515 if (ret != 0) 1516 return (ret); 1517 } 1518 return (ret); 1519 } 1520 1521 static uint64_t 1522 vdev_label_offset(uint64_t psize, int l, uint64_t offset) 1523 { 1524 uint64_t label_offset; 1525 1526 if (l < VDEV_LABELS / 2) 1527 label_offset = 0; 1528 else 1529 label_offset = psize - VDEV_LABELS * sizeof (vdev_label_t); 1530 1531 return (offset + l * sizeof (vdev_label_t) + label_offset); 1532 } 1533 1534 static int 1535 vdev_uberblock_compare(const uberblock_t *ub1, const uberblock_t *ub2) 1536 { 1537 unsigned int seq1 = 0; 1538 unsigned int seq2 = 0; 1539 int cmp = AVL_CMP(ub1->ub_txg, ub2->ub_txg); 1540 1541 if (cmp != 0) 1542 return (cmp); 1543 1544 cmp = AVL_CMP(ub1->ub_timestamp, ub2->ub_timestamp); 1545 if (cmp != 0) 1546 return (cmp); 1547 1548 if (MMP_VALID(ub1) && MMP_SEQ_VALID(ub1)) 1549 seq1 = MMP_SEQ(ub1); 1550 1551 if (MMP_VALID(ub2) && MMP_SEQ_VALID(ub2)) 1552 seq2 = MMP_SEQ(ub2); 1553 1554 return (AVL_CMP(seq1, seq2)); 1555 } 1556 1557 static int 1558 uberblock_verify(uberblock_t *ub) 1559 { 1560 if (ub->ub_magic == BSWAP_64((uint64_t)UBERBLOCK_MAGIC)) { 1561 byteswap_uint64_array(ub, sizeof (uberblock_t)); 1562 } 1563 1564 if (ub->ub_magic != UBERBLOCK_MAGIC || 1565 !SPA_VERSION_IS_SUPPORTED(ub->ub_version)) 1566 return (EINVAL); 1567 1568 return (0); 1569 } 1570 1571 static int 1572 vdev_label_read(vdev_t *vd, int l, void *buf, uint64_t offset, 1573 size_t size) 1574 { 1575 blkptr_t bp; 1576 off_t off; 1577 1578 off = vdev_label_offset(vd->v_psize, l, offset); 1579 1580 BP_ZERO(&bp); 1581 BP_SET_LSIZE(&bp, size); 1582 BP_SET_PSIZE(&bp, size); 1583 BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_LABEL); 1584 BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF); 1585 DVA_SET_OFFSET(BP_IDENTITY(&bp), off); 1586 ZIO_SET_CHECKSUM(&bp.blk_cksum, off, 0, 0, 0); 1587 1588 return (vdev_read_phys(vd, &bp, buf, off, size)); 1589 } 1590 1591 static uint64_t 1592 vdev_get_label_asize(nvlist_t *nvl) 1593 { 1594 nvlist_t *vdevs; 1595 uint64_t asize; 1596 const char *type; 1597 int len; 1598 1599 asize = 0; 1600 /* Get vdev tree */ 1601 if (nvlist_find(nvl, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST, 1602 NULL, &vdevs, NULL) != 0) 1603 return (asize); 1604 1605 /* 1606 * Get vdev type. We will calculate asize for raidz, mirror and disk. 1607 * For raidz, the asize is raw size of all children. 1608 */ 1609 if (nvlist_find(vdevs, ZPOOL_CONFIG_TYPE, DATA_TYPE_STRING, 1610 NULL, &type, &len) != 0) 1611 goto done; 1612 1613 if (memcmp(type, VDEV_TYPE_MIRROR, len) != 0 && 1614 memcmp(type, VDEV_TYPE_DISK, len) != 0 && 1615 memcmp(type, VDEV_TYPE_RAIDZ, len) != 0) 1616 goto done; 1617 1618 if (nvlist_find(vdevs, ZPOOL_CONFIG_ASIZE, DATA_TYPE_UINT64, 1619 NULL, &asize, NULL) != 0) 1620 goto done; 1621 1622 if (memcmp(type, VDEV_TYPE_RAIDZ, len) == 0) { 1623 nvlist_t *kids; 1624 int nkids; 1625 1626 if (nvlist_find(vdevs, ZPOOL_CONFIG_CHILDREN, 1627 DATA_TYPE_NVLIST_ARRAY, &nkids, &kids, NULL) != 0) { 1628 asize = 0; 1629 goto done; 1630 } 1631 1632 asize /= nkids; 1633 nvlist_destroy(kids); 1634 } 1635 1636 asize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; 1637 done: 1638 nvlist_destroy(vdevs); 1639 return (asize); 1640 } 1641 1642 static nvlist_t * 1643 vdev_label_read_config(vdev_t *vd, uint64_t txg) 1644 { 1645 vdev_phys_t *label; 1646 uint64_t best_txg = 0; 1647 uint64_t label_txg = 0; 1648 uint64_t asize; 1649 nvlist_t *nvl = NULL, *tmp; 1650 int error; 1651 1652 label = malloc(sizeof (vdev_phys_t)); 1653 if (label == NULL) 1654 return (NULL); 1655 1656 for (int l = 0; l < VDEV_LABELS; l++) { 1657 const unsigned char *nvlist; 1658 1659 if (vdev_label_read(vd, l, label, 1660 offsetof(vdev_label_t, vl_vdev_phys), 1661 sizeof (vdev_phys_t))) 1662 continue; 1663 1664 nvlist = (const unsigned char *) label->vp_nvlist; 1665 tmp = nvlist_import(nvlist + 4, nvlist[0], nvlist[1]); 1666 if (tmp == NULL) 1667 continue; 1668 1669 error = nvlist_find(tmp, ZPOOL_CONFIG_POOL_TXG, 1670 DATA_TYPE_UINT64, NULL, &label_txg, NULL); 1671 if (error != 0 || label_txg == 0) { 1672 nvlist_destroy(nvl); 1673 nvl = tmp; 1674 goto done; 1675 } 1676 1677 if (label_txg <= txg && label_txg > best_txg) { 1678 best_txg = label_txg; 1679 nvlist_destroy(nvl); 1680 nvl = tmp; 1681 tmp = NULL; 1682 1683 /* 1684 * Use asize from pool config. We need this 1685 * because we can get bad value from BIOS. 1686 */ 1687 asize = vdev_get_label_asize(nvl); 1688 if (asize != 0) { 1689 vd->v_psize = asize; 1690 } 1691 } 1692 nvlist_destroy(tmp); 1693 } 1694 1695 if (best_txg == 0) { 1696 nvlist_destroy(nvl); 1697 nvl = NULL; 1698 } 1699 done: 1700 free(label); 1701 return (nvl); 1702 } 1703 1704 static void 1705 vdev_uberblock_load(vdev_t *vd, uberblock_t *ub) 1706 { 1707 uberblock_t *buf; 1708 1709 buf = malloc(VDEV_UBERBLOCK_SIZE(vd)); 1710 if (buf == NULL) 1711 return; 1712 1713 for (int l = 0; l < VDEV_LABELS; l++) { 1714 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) { 1715 if (vdev_label_read(vd, l, buf, 1716 VDEV_UBERBLOCK_OFFSET(vd, n), 1717 VDEV_UBERBLOCK_SIZE(vd))) 1718 continue; 1719 if (uberblock_verify(buf) != 0) 1720 continue; 1721 1722 if (vdev_uberblock_compare(buf, ub) > 0) 1723 *ub = *buf; 1724 } 1725 } 1726 free(buf); 1727 } 1728 1729 static int 1730 vdev_probe(vdev_phys_read_t *_read, void *read_priv, spa_t **spap) 1731 { 1732 vdev_t vtmp; 1733 spa_t *spa; 1734 vdev_t *vdev; 1735 nvlist_t *nvl; 1736 uint64_t val; 1737 uint64_t guid, vdev_children; 1738 uint64_t pool_txg, pool_guid; 1739 const char *pool_name; 1740 int rc, namelen; 1741 1742 /* 1743 * Load the vdev label and figure out which 1744 * uberblock is most current. 1745 */ 1746 memset(&vtmp, 0, sizeof(vtmp)); 1747 vtmp.v_phys_read = _read; 1748 vtmp.v_read_priv = read_priv; 1749 vtmp.v_psize = P2ALIGN(ldi_get_size(read_priv), 1750 (uint64_t)sizeof (vdev_label_t)); 1751 1752 /* Test for minimum device size. */ 1753 if (vtmp.v_psize < SPA_MINDEVSIZE) 1754 return (EIO); 1755 1756 nvl = vdev_label_read_config(&vtmp, UINT64_MAX); 1757 if (nvl == NULL) 1758 return (EIO); 1759 1760 if (nvlist_find(nvl, ZPOOL_CONFIG_VERSION, DATA_TYPE_UINT64, 1761 NULL, &val, NULL) != 0) { 1762 nvlist_destroy(nvl); 1763 return (EIO); 1764 } 1765 1766 if (!SPA_VERSION_IS_SUPPORTED(val)) { 1767 printf("ZFS: unsupported ZFS version %u (should be %u)\n", 1768 (unsigned)val, (unsigned)SPA_VERSION); 1769 nvlist_destroy(nvl); 1770 return (EIO); 1771 } 1772 1773 /* Check ZFS features for read */ 1774 rc = nvlist_check_features_for_read(nvl); 1775 if (rc != 0) { 1776 nvlist_destroy(nvl); 1777 return (EIO); 1778 } 1779 1780 if (nvlist_find(nvl, ZPOOL_CONFIG_POOL_STATE, DATA_TYPE_UINT64, 1781 NULL, &val, NULL) != 0) { 1782 nvlist_destroy(nvl); 1783 return (EIO); 1784 } 1785 1786 if (val == POOL_STATE_DESTROYED) { 1787 /* We don't boot only from destroyed pools. */ 1788 nvlist_destroy(nvl); 1789 return (EIO); 1790 } 1791 1792 if (nvlist_find(nvl, ZPOOL_CONFIG_POOL_TXG, DATA_TYPE_UINT64, 1793 NULL, &pool_txg, NULL) != 0 || 1794 nvlist_find(nvl, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64, 1795 NULL, &pool_guid, NULL) != 0 || 1796 nvlist_find(nvl, ZPOOL_CONFIG_POOL_NAME, DATA_TYPE_STRING, 1797 NULL, &pool_name, &namelen) != 0) { 1798 /* 1799 * Cache and spare devices end up here - just ignore 1800 * them. 1801 */ 1802 nvlist_destroy(nvl); 1803 return (EIO); 1804 } 1805 1806 /* 1807 * Create the pool if this is the first time we've seen it. 1808 */ 1809 spa = spa_find_by_guid(pool_guid); 1810 if (spa == NULL) { 1811 char *name; 1812 1813 nvlist_find(nvl, ZPOOL_CONFIG_VDEV_CHILDREN, 1814 DATA_TYPE_UINT64, NULL, &vdev_children, NULL); 1815 name = malloc(namelen + 1); 1816 if (name == NULL) { 1817 nvlist_destroy(nvl); 1818 return (ENOMEM); 1819 } 1820 bcopy(pool_name, name, namelen); 1821 name[namelen] = '\0'; 1822 spa = spa_create(pool_guid, name); 1823 free(name); 1824 if (spa == NULL) { 1825 nvlist_destroy(nvl); 1826 return (ENOMEM); 1827 } 1828 spa->spa_root_vdev->v_nchildren = vdev_children; 1829 } 1830 if (pool_txg > spa->spa_txg) 1831 spa->spa_txg = pool_txg; 1832 1833 /* 1834 * Get the vdev tree and create our in-core copy of it. 1835 * If we already have a vdev with this guid, this must 1836 * be some kind of alias (overlapping slices, dangerously dedicated 1837 * disks etc). 1838 */ 1839 if (nvlist_find(nvl, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64, 1840 NULL, &guid, NULL) != 0) { 1841 nvlist_destroy(nvl); 1842 return (EIO); 1843 } 1844 vdev = vdev_find(guid); 1845 /* Has this vdev already been inited? */ 1846 if (vdev && vdev->v_phys_read) { 1847 nvlist_destroy(nvl); 1848 return (EIO); 1849 } 1850 1851 rc = vdev_init_from_label(spa, nvl); 1852 nvlist_destroy(nvl); 1853 if (rc != 0) 1854 return (rc); 1855 1856 /* 1857 * We should already have created an incomplete vdev for this 1858 * vdev. Find it and initialise it with our read proc. 1859 */ 1860 vdev = vdev_find(guid); 1861 if (vdev != NULL) { 1862 vdev->v_phys_read = _read; 1863 vdev->v_read_priv = read_priv; 1864 vdev->v_psize = vtmp.v_psize; 1865 /* 1866 * If no other state is set, mark vdev healthy. 1867 */ 1868 if (vdev->v_state == VDEV_STATE_UNKNOWN) 1869 vdev->v_state = VDEV_STATE_HEALTHY; 1870 } else { 1871 printf("ZFS: inconsistent nvlist contents\n"); 1872 return (EIO); 1873 } 1874 1875 if (vdev->v_islog) 1876 spa->spa_with_log = vdev->v_islog; 1877 1878 /* 1879 * Re-evaluate top-level vdev state. 1880 */ 1881 vdev_set_state(vdev->v_top); 1882 1883 /* 1884 * Ok, we are happy with the pool so far. Lets find 1885 * the best uberblock and then we can actually access 1886 * the contents of the pool. 1887 */ 1888 vdev_uberblock_load(vdev, spa->spa_uberblock); 1889 1890 if (spap != NULL) 1891 *spap = spa; 1892 return (0); 1893 } 1894 1895 static int 1896 ilog2(int n) 1897 { 1898 int v; 1899 1900 for (v = 0; v < 32; v++) 1901 if (n == (1 << v)) 1902 return (v); 1903 return (-1); 1904 } 1905 1906 static int 1907 zio_read_gang(const spa_t *spa, const blkptr_t *bp, void *buf) 1908 { 1909 blkptr_t gbh_bp; 1910 zio_gbh_phys_t zio_gb; 1911 char *pbuf; 1912 int i; 1913 1914 /* Artificial BP for gang block header. */ 1915 gbh_bp = *bp; 1916 BP_SET_PSIZE(&gbh_bp, SPA_GANGBLOCKSIZE); 1917 BP_SET_LSIZE(&gbh_bp, SPA_GANGBLOCKSIZE); 1918 BP_SET_CHECKSUM(&gbh_bp, ZIO_CHECKSUM_GANG_HEADER); 1919 BP_SET_COMPRESS(&gbh_bp, ZIO_COMPRESS_OFF); 1920 for (i = 0; i < SPA_DVAS_PER_BP; i++) 1921 DVA_SET_GANG(&gbh_bp.blk_dva[i], 0); 1922 1923 /* Read gang header block using the artificial BP. */ 1924 if (zio_read(spa, &gbh_bp, &zio_gb)) 1925 return (EIO); 1926 1927 pbuf = buf; 1928 for (i = 0; i < SPA_GBH_NBLKPTRS; i++) { 1929 blkptr_t *gbp = &zio_gb.zg_blkptr[i]; 1930 1931 if (BP_IS_HOLE(gbp)) 1932 continue; 1933 if (zio_read(spa, gbp, pbuf)) 1934 return (EIO); 1935 pbuf += BP_GET_PSIZE(gbp); 1936 } 1937 1938 if (zio_checksum_verify(spa, bp, buf)) 1939 return (EIO); 1940 return (0); 1941 } 1942 1943 static int 1944 zio_read(const spa_t *spa, const blkptr_t *bp, void *buf) 1945 { 1946 int cpfunc = BP_GET_COMPRESS(bp); 1947 uint64_t align, size; 1948 void *pbuf; 1949 int i, error; 1950 1951 /* 1952 * Process data embedded in block pointer 1953 */ 1954 if (BP_IS_EMBEDDED(bp)) { 1955 ASSERT(BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA); 1956 1957 size = BPE_GET_PSIZE(bp); 1958 ASSERT(size <= BPE_PAYLOAD_SIZE); 1959 1960 if (cpfunc != ZIO_COMPRESS_OFF) 1961 pbuf = malloc(size); 1962 else 1963 pbuf = buf; 1964 1965 if (pbuf == NULL) 1966 return (ENOMEM); 1967 1968 decode_embedded_bp_compressed(bp, pbuf); 1969 error = 0; 1970 1971 if (cpfunc != ZIO_COMPRESS_OFF) { 1972 error = zio_decompress_data(cpfunc, pbuf, 1973 size, buf, BP_GET_LSIZE(bp)); 1974 free(pbuf); 1975 } 1976 if (error != 0) 1977 printf("ZFS: i/o error - unable to decompress " 1978 "block pointer data, error %d\n", error); 1979 return (error); 1980 } 1981 1982 error = EIO; 1983 1984 for (i = 0; i < SPA_DVAS_PER_BP; i++) { 1985 const dva_t *dva = &bp->blk_dva[i]; 1986 vdev_t *vdev; 1987 vdev_list_t *vlist; 1988 uint64_t vdevid; 1989 off_t offset; 1990 1991 if (!dva->dva_word[0] && !dva->dva_word[1]) 1992 continue; 1993 1994 vdevid = DVA_GET_VDEV(dva); 1995 offset = DVA_GET_OFFSET(dva); 1996 vlist = &spa->spa_root_vdev->v_children; 1997 STAILQ_FOREACH(vdev, vlist, v_childlink) { 1998 if (vdev->v_id == vdevid) 1999 break; 2000 } 2001 if (!vdev || !vdev->v_read) 2002 continue; 2003 2004 size = BP_GET_PSIZE(bp); 2005 if (vdev->v_read == vdev_raidz_read) { 2006 align = 1ULL << vdev->v_ashift; 2007 if (P2PHASE(size, align) != 0) 2008 size = P2ROUNDUP(size, align); 2009 } 2010 if (size != BP_GET_PSIZE(bp) || cpfunc != ZIO_COMPRESS_OFF) 2011 pbuf = malloc(size); 2012 else 2013 pbuf = buf; 2014 2015 if (pbuf == NULL) { 2016 error = ENOMEM; 2017 break; 2018 } 2019 2020 if (DVA_GET_GANG(dva)) 2021 error = zio_read_gang(spa, bp, pbuf); 2022 else 2023 error = vdev->v_read(vdev, bp, pbuf, offset, size); 2024 if (error == 0) { 2025 if (cpfunc != ZIO_COMPRESS_OFF) 2026 error = zio_decompress_data(cpfunc, pbuf, 2027 BP_GET_PSIZE(bp), buf, BP_GET_LSIZE(bp)); 2028 else if (size != BP_GET_PSIZE(bp)) 2029 bcopy(pbuf, buf, BP_GET_PSIZE(bp)); 2030 } else { 2031 printf("zio_read error: %d\n", error); 2032 } 2033 if (buf != pbuf) 2034 free(pbuf); 2035 if (error == 0) 2036 break; 2037 } 2038 if (error != 0) 2039 printf("ZFS: i/o error - all block copies unavailable\n"); 2040 2041 return (error); 2042 } 2043 2044 static int 2045 dnode_read(const spa_t *spa, const dnode_phys_t *dnode, off_t offset, 2046 void *buf, size_t buflen) 2047 { 2048 int ibshift = dnode->dn_indblkshift - SPA_BLKPTRSHIFT; 2049 int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2050 int nlevels = dnode->dn_nlevels; 2051 int i, rc; 2052 2053 if (bsize > SPA_MAXBLOCKSIZE) { 2054 printf("ZFS: I/O error - blocks larger than %llu are not " 2055 "supported\n", SPA_MAXBLOCKSIZE); 2056 return (EIO); 2057 } 2058 2059 /* 2060 * Note: bsize may not be a power of two here so we need to do an 2061 * actual divide rather than a bitshift. 2062 */ 2063 while (buflen > 0) { 2064 uint64_t bn = offset / bsize; 2065 int boff = offset % bsize; 2066 int ibn; 2067 const blkptr_t *indbp; 2068 blkptr_t bp; 2069 2070 if (bn > dnode->dn_maxblkid) 2071 return (EIO); 2072 2073 if (dnode == dnode_cache_obj && bn == dnode_cache_bn) 2074 goto cached; 2075 2076 indbp = dnode->dn_blkptr; 2077 for (i = 0; i < nlevels; i++) { 2078 /* 2079 * Copy the bp from the indirect array so that 2080 * we can re-use the scratch buffer for multi-level 2081 * objects. 2082 */ 2083 ibn = bn >> ((nlevels - i - 1) * ibshift); 2084 ibn &= ((1 << ibshift) - 1); 2085 bp = indbp[ibn]; 2086 if (BP_IS_HOLE(&bp)) { 2087 memset(dnode_cache_buf, 0, bsize); 2088 break; 2089 } 2090 rc = zio_read(spa, &bp, dnode_cache_buf); 2091 if (rc) 2092 return (rc); 2093 indbp = (const blkptr_t *) dnode_cache_buf; 2094 } 2095 dnode_cache_obj = dnode; 2096 dnode_cache_bn = bn; 2097 cached: 2098 2099 /* 2100 * The buffer contains our data block. Copy what we 2101 * need from it and loop. 2102 */ 2103 i = bsize - boff; 2104 if (i > buflen) i = buflen; 2105 memcpy(buf, &dnode_cache_buf[boff], i); 2106 buf = ((char *)buf) + i; 2107 offset += i; 2108 buflen -= i; 2109 } 2110 2111 return (0); 2112 } 2113 2114 /* 2115 * Lookup a value in a microzap directory. 2116 */ 2117 static int 2118 mzap_lookup(const mzap_phys_t *mz, size_t size, const char *name, 2119 uint64_t *value) 2120 { 2121 const mzap_ent_phys_t *mze; 2122 int chunks, i; 2123 2124 /* 2125 * Microzap objects use exactly one block. Read the whole 2126 * thing. 2127 */ 2128 chunks = size / MZAP_ENT_LEN - 1; 2129 for (i = 0; i < chunks; i++) { 2130 mze = &mz->mz_chunk[i]; 2131 if (strcmp(mze->mze_name, name) == 0) { 2132 *value = mze->mze_value; 2133 return (0); 2134 } 2135 } 2136 2137 return (ENOENT); 2138 } 2139 2140 /* 2141 * Compare a name with a zap leaf entry. Return non-zero if the name 2142 * matches. 2143 */ 2144 static int 2145 fzap_name_equal(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, 2146 const char *name) 2147 { 2148 size_t namelen; 2149 const zap_leaf_chunk_t *nc; 2150 const char *p; 2151 2152 namelen = zc->l_entry.le_name_numints; 2153 2154 nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk); 2155 p = name; 2156 while (namelen > 0) { 2157 size_t len; 2158 2159 len = namelen; 2160 if (len > ZAP_LEAF_ARRAY_BYTES) 2161 len = ZAP_LEAF_ARRAY_BYTES; 2162 if (memcmp(p, nc->l_array.la_array, len)) 2163 return (0); 2164 p += len; 2165 namelen -= len; 2166 nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next); 2167 } 2168 2169 return (1); 2170 } 2171 2172 /* 2173 * Extract a uint64_t value from a zap leaf entry. 2174 */ 2175 static uint64_t 2176 fzap_leaf_value(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc) 2177 { 2178 const zap_leaf_chunk_t *vc; 2179 int i; 2180 uint64_t value; 2181 const uint8_t *p; 2182 2183 vc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_value_chunk); 2184 for (i = 0, value = 0, p = vc->l_array.la_array; i < 8; i++) { 2185 value = (value << 8) | p[i]; 2186 } 2187 2188 return (value); 2189 } 2190 2191 static void 2192 stv(int len, void *addr, uint64_t value) 2193 { 2194 switch (len) { 2195 case 1: 2196 *(uint8_t *)addr = value; 2197 return; 2198 case 2: 2199 *(uint16_t *)addr = value; 2200 return; 2201 case 4: 2202 *(uint32_t *)addr = value; 2203 return; 2204 case 8: 2205 *(uint64_t *)addr = value; 2206 return; 2207 } 2208 } 2209 2210 /* 2211 * Extract a array from a zap leaf entry. 2212 */ 2213 static void 2214 fzap_leaf_array(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, 2215 uint64_t integer_size, uint64_t num_integers, void *buf) 2216 { 2217 uint64_t array_int_len = zc->l_entry.le_value_intlen; 2218 uint64_t value = 0; 2219 uint64_t *u64 = buf; 2220 char *p = buf; 2221 int len = MIN(zc->l_entry.le_value_numints, num_integers); 2222 int chunk = zc->l_entry.le_value_chunk; 2223 int byten = 0; 2224 2225 if (integer_size == 8 && len == 1) { 2226 *u64 = fzap_leaf_value(zl, zc); 2227 return; 2228 } 2229 2230 while (len > 0) { 2231 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(zl, chunk).l_array; 2232 int i; 2233 2234 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(zl)); 2235 for (i = 0; i < ZAP_LEAF_ARRAY_BYTES && len > 0; i++) { 2236 value = (value << 8) | la->la_array[i]; 2237 byten++; 2238 if (byten == array_int_len) { 2239 stv(integer_size, p, value); 2240 byten = 0; 2241 len--; 2242 if (len == 0) 2243 return; 2244 p += integer_size; 2245 } 2246 } 2247 chunk = la->la_next; 2248 } 2249 } 2250 2251 static int 2252 fzap_check_size(uint64_t integer_size, uint64_t num_integers) 2253 { 2254 2255 switch (integer_size) { 2256 case 1: 2257 case 2: 2258 case 4: 2259 case 8: 2260 break; 2261 default: 2262 return (EINVAL); 2263 } 2264 2265 if (integer_size * num_integers > ZAP_MAXVALUELEN) 2266 return (E2BIG); 2267 2268 return (0); 2269 } 2270 2271 static void 2272 zap_leaf_free(zap_leaf_t *leaf) 2273 { 2274 free(leaf->l_phys); 2275 free(leaf); 2276 } 2277 2278 static int 2279 zap_get_leaf_byblk(fat_zap_t *zap, uint64_t blk, zap_leaf_t **lp) 2280 { 2281 int bs = FZAP_BLOCK_SHIFT(zap); 2282 int err; 2283 2284 *lp = malloc(sizeof(**lp)); 2285 if (*lp == NULL) 2286 return (ENOMEM); 2287 2288 (*lp)->l_bs = bs; 2289 (*lp)->l_phys = malloc(1 << bs); 2290 2291 if ((*lp)->l_phys == NULL) { 2292 free(*lp); 2293 return (ENOMEM); 2294 } 2295 err = dnode_read(zap->zap_spa, zap->zap_dnode, blk << bs, (*lp)->l_phys, 2296 1 << bs); 2297 if (err != 0) { 2298 zap_leaf_free(*lp); 2299 } 2300 return (err); 2301 } 2302 2303 static int 2304 zap_table_load(fat_zap_t *zap, zap_table_phys_t *tbl, uint64_t idx, 2305 uint64_t *valp) 2306 { 2307 int bs = FZAP_BLOCK_SHIFT(zap); 2308 uint64_t blk = idx >> (bs - 3); 2309 uint64_t off = idx & ((1 << (bs - 3)) - 1); 2310 uint64_t *buf; 2311 int rc; 2312 2313 buf = malloc(1 << zap->zap_block_shift); 2314 if (buf == NULL) 2315 return (ENOMEM); 2316 rc = dnode_read(zap->zap_spa, zap->zap_dnode, (tbl->zt_blk + blk) << bs, 2317 buf, 1 << zap->zap_block_shift); 2318 if (rc == 0) 2319 *valp = buf[off]; 2320 free(buf); 2321 return (rc); 2322 } 2323 2324 static int 2325 zap_idx_to_blk(fat_zap_t *zap, uint64_t idx, uint64_t *valp) 2326 { 2327 if (zap->zap_phys->zap_ptrtbl.zt_numblks == 0) { 2328 *valp = ZAP_EMBEDDED_PTRTBL_ENT(zap, idx); 2329 return (0); 2330 } else { 2331 return (zap_table_load(zap, &zap->zap_phys->zap_ptrtbl, 2332 idx, valp)); 2333 } 2334 } 2335 2336 #define ZAP_HASH_IDX(hash, n) (((n) == 0) ? 0 : ((hash) >> (64 - (n)))) 2337 static int 2338 zap_deref_leaf(fat_zap_t *zap, uint64_t h, zap_leaf_t **lp) 2339 { 2340 uint64_t idx, blk; 2341 int err; 2342 2343 idx = ZAP_HASH_IDX(h, zap->zap_phys->zap_ptrtbl.zt_shift); 2344 err = zap_idx_to_blk(zap, idx, &blk); 2345 if (err != 0) 2346 return (err); 2347 return (zap_get_leaf_byblk(zap, blk, lp)); 2348 } 2349 2350 #define CHAIN_END 0xffff /* end of the chunk chain */ 2351 #define LEAF_HASH(l, h) \ 2352 ((ZAP_LEAF_HASH_NUMENTRIES(l)-1) & \ 2353 ((h) >> \ 2354 (64 - ZAP_LEAF_HASH_SHIFT(l) - (l)->l_phys->l_hdr.lh_prefix_len))) 2355 #define LEAF_HASH_ENTPTR(l, h) (&(l)->l_phys->l_hash[LEAF_HASH(l, h)]) 2356 2357 static int 2358 zap_leaf_lookup(zap_leaf_t *zl, uint64_t hash, const char *name, 2359 uint64_t integer_size, uint64_t num_integers, void *value) 2360 { 2361 int rc; 2362 uint16_t *chunkp; 2363 struct zap_leaf_entry *le; 2364 2365 /* 2366 * Make sure this chunk matches our hash. 2367 */ 2368 if (zl->l_phys->l_hdr.lh_prefix_len > 0 && 2369 zl->l_phys->l_hdr.lh_prefix != 2370 hash >> (64 - zl->l_phys->l_hdr.lh_prefix_len)) 2371 return (EIO); 2372 2373 rc = ENOENT; 2374 for (chunkp = LEAF_HASH_ENTPTR(zl, hash); 2375 *chunkp != CHAIN_END; chunkp = &le->le_next) { 2376 zap_leaf_chunk_t *zc; 2377 uint16_t chunk = *chunkp; 2378 2379 le = ZAP_LEAF_ENTRY(zl, chunk); 2380 if (le->le_hash != hash) 2381 continue; 2382 zc = &ZAP_LEAF_CHUNK(zl, chunk); 2383 if (fzap_name_equal(zl, zc, name)) { 2384 if (zc->l_entry.le_value_intlen > integer_size) { 2385 rc = EINVAL; 2386 } else { 2387 fzap_leaf_array(zl, zc, integer_size, 2388 num_integers, value); 2389 rc = 0; 2390 } 2391 break; 2392 } 2393 } 2394 return (rc); 2395 } 2396 2397 /* 2398 * Lookup a value in a fatzap directory. 2399 */ 2400 static int 2401 fzap_lookup(const spa_t *spa, const dnode_phys_t *dnode, zap_phys_t *zh, 2402 const char *name, uint64_t integer_size, uint64_t num_integers, 2403 void *value) 2404 { 2405 int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2406 fat_zap_t z; 2407 zap_leaf_t *zl; 2408 uint64_t hash; 2409 int rc; 2410 2411 if (zh->zap_magic != ZAP_MAGIC) 2412 return (EIO); 2413 2414 if ((rc = fzap_check_size(integer_size, num_integers)) != 0) { 2415 return (rc); 2416 } 2417 2418 z.zap_block_shift = ilog2(bsize); 2419 z.zap_phys = zh; 2420 z.zap_spa = spa; 2421 z.zap_dnode = dnode; 2422 2423 hash = zap_hash(zh->zap_salt, name); 2424 rc = zap_deref_leaf(&z, hash, &zl); 2425 if (rc != 0) 2426 return (rc); 2427 2428 rc = zap_leaf_lookup(zl, hash, name, integer_size, num_integers, value); 2429 2430 zap_leaf_free(zl); 2431 return (rc); 2432 } 2433 2434 /* 2435 * Lookup a name in a zap object and return its value as a uint64_t. 2436 */ 2437 static int 2438 zap_lookup(const spa_t *spa, const dnode_phys_t *dnode, const char *name, 2439 uint64_t integer_size, uint64_t num_integers, void *value) 2440 { 2441 int rc; 2442 zap_phys_t *zap; 2443 size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2444 2445 zap = malloc(size); 2446 if (zap == NULL) 2447 return (ENOMEM); 2448 2449 rc = dnode_read(spa, dnode, 0, zap, size); 2450 if (rc) 2451 goto done; 2452 2453 switch (zap->zap_block_type) { 2454 case ZBT_MICRO: 2455 rc = mzap_lookup((const mzap_phys_t *)zap, size, name, value); 2456 break; 2457 case ZBT_HEADER: 2458 rc = fzap_lookup(spa, dnode, zap, name, integer_size, 2459 num_integers, value); 2460 break; 2461 default: 2462 printf("ZFS: invalid zap_type=%" PRIx64 "\n", 2463 zap->zap_block_type); 2464 rc = EIO; 2465 } 2466 done: 2467 free(zap); 2468 return (rc); 2469 } 2470 2471 /* 2472 * List a microzap directory. 2473 */ 2474 static int 2475 mzap_list(const mzap_phys_t *mz, size_t size, 2476 int (*callback)(const char *, uint64_t)) 2477 { 2478 const mzap_ent_phys_t *mze; 2479 int chunks, i, rc; 2480 2481 /* 2482 * Microzap objects use exactly one block. Read the whole 2483 * thing. 2484 */ 2485 rc = 0; 2486 chunks = size / MZAP_ENT_LEN - 1; 2487 for (i = 0; i < chunks; i++) { 2488 mze = &mz->mz_chunk[i]; 2489 if (mze->mze_name[0]) { 2490 rc = callback(mze->mze_name, mze->mze_value); 2491 if (rc != 0) 2492 break; 2493 } 2494 } 2495 2496 return (rc); 2497 } 2498 2499 /* 2500 * List a fatzap directory. 2501 */ 2502 static int 2503 fzap_list(const spa_t *spa, const dnode_phys_t *dnode, zap_phys_t *zh, 2504 int (*callback)(const char *, uint64_t)) 2505 { 2506 int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2507 fat_zap_t z; 2508 uint64_t i; 2509 int j, rc; 2510 2511 if (zh->zap_magic != ZAP_MAGIC) 2512 return (EIO); 2513 2514 z.zap_block_shift = ilog2(bsize); 2515 z.zap_phys = zh; 2516 2517 /* 2518 * This assumes that the leaf blocks start at block 1. The 2519 * documentation isn't exactly clear on this. 2520 */ 2521 zap_leaf_t zl; 2522 zl.l_bs = z.zap_block_shift; 2523 zl.l_phys = malloc(bsize); 2524 if (zl.l_phys == NULL) 2525 return (ENOMEM); 2526 2527 for (i = 0; i < zh->zap_num_leafs; i++) { 2528 off_t off = ((off_t)(i + 1)) << zl.l_bs; 2529 char name[256], *p; 2530 uint64_t value; 2531 2532 if (dnode_read(spa, dnode, off, zl.l_phys, bsize)) { 2533 free(zl.l_phys); 2534 return (EIO); 2535 } 2536 2537 for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) { 2538 zap_leaf_chunk_t *zc, *nc; 2539 int namelen; 2540 2541 zc = &ZAP_LEAF_CHUNK(&zl, j); 2542 if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY) 2543 continue; 2544 namelen = zc->l_entry.le_name_numints; 2545 if (namelen > sizeof(name)) 2546 namelen = sizeof(name); 2547 2548 /* 2549 * Paste the name back together. 2550 */ 2551 nc = &ZAP_LEAF_CHUNK(&zl, zc->l_entry.le_name_chunk); 2552 p = name; 2553 while (namelen > 0) { 2554 int len; 2555 len = namelen; 2556 if (len > ZAP_LEAF_ARRAY_BYTES) 2557 len = ZAP_LEAF_ARRAY_BYTES; 2558 memcpy(p, nc->l_array.la_array, len); 2559 p += len; 2560 namelen -= len; 2561 nc = &ZAP_LEAF_CHUNK(&zl, nc->l_array.la_next); 2562 } 2563 2564 /* 2565 * Assume the first eight bytes of the value are 2566 * a uint64_t. 2567 */ 2568 value = fzap_leaf_value(&zl, zc); 2569 2570 /* printf("%s 0x%jx\n", name, (uintmax_t)value); */ 2571 rc = callback((const char *)name, value); 2572 if (rc != 0) { 2573 free(zl.l_phys); 2574 return (rc); 2575 } 2576 } 2577 } 2578 2579 free(zl.l_phys); 2580 return (0); 2581 } 2582 2583 static int zfs_printf(const char *name, uint64_t value __unused) 2584 { 2585 2586 printf("%s\n", name); 2587 2588 return (0); 2589 } 2590 2591 /* 2592 * List a zap directory. 2593 */ 2594 static int 2595 zap_list(const spa_t *spa, const dnode_phys_t *dnode) 2596 { 2597 zap_phys_t *zap; 2598 size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2599 int rc; 2600 2601 zap = malloc(size); 2602 if (zap == NULL) 2603 return (ENOMEM); 2604 2605 rc = dnode_read(spa, dnode, 0, zap, size); 2606 if (rc == 0) { 2607 if (zap->zap_block_type == ZBT_MICRO) 2608 rc = mzap_list((const mzap_phys_t *)zap, size, 2609 zfs_printf); 2610 else 2611 rc = fzap_list(spa, dnode, zap, zfs_printf); 2612 } 2613 free(zap); 2614 return (rc); 2615 } 2616 2617 static int 2618 objset_get_dnode(const spa_t *spa, const objset_phys_t *os, uint64_t objnum, 2619 dnode_phys_t *dnode) 2620 { 2621 off_t offset; 2622 2623 offset = objnum * sizeof(dnode_phys_t); 2624 return dnode_read(spa, &os->os_meta_dnode, offset, 2625 dnode, sizeof(dnode_phys_t)); 2626 } 2627 2628 /* 2629 * Lookup a name in a microzap directory. 2630 */ 2631 static int 2632 mzap_rlookup(const mzap_phys_t *mz, size_t size, char *name, uint64_t value) 2633 { 2634 const mzap_ent_phys_t *mze; 2635 int chunks, i; 2636 2637 /* 2638 * Microzap objects use exactly one block. Read the whole 2639 * thing. 2640 */ 2641 chunks = size / MZAP_ENT_LEN - 1; 2642 for (i = 0; i < chunks; i++) { 2643 mze = &mz->mz_chunk[i]; 2644 if (value == mze->mze_value) { 2645 strcpy(name, mze->mze_name); 2646 return (0); 2647 } 2648 } 2649 2650 return (ENOENT); 2651 } 2652 2653 static void 2654 fzap_name_copy(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, char *name) 2655 { 2656 size_t namelen; 2657 const zap_leaf_chunk_t *nc; 2658 char *p; 2659 2660 namelen = zc->l_entry.le_name_numints; 2661 2662 nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk); 2663 p = name; 2664 while (namelen > 0) { 2665 size_t len; 2666 len = namelen; 2667 if (len > ZAP_LEAF_ARRAY_BYTES) 2668 len = ZAP_LEAF_ARRAY_BYTES; 2669 memcpy(p, nc->l_array.la_array, len); 2670 p += len; 2671 namelen -= len; 2672 nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next); 2673 } 2674 2675 *p = '\0'; 2676 } 2677 2678 static int 2679 fzap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, zap_phys_t *zh, 2680 char *name, uint64_t value) 2681 { 2682 int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2683 fat_zap_t z; 2684 uint64_t i; 2685 int j, rc; 2686 2687 if (zh->zap_magic != ZAP_MAGIC) 2688 return (EIO); 2689 2690 z.zap_block_shift = ilog2(bsize); 2691 z.zap_phys = zh; 2692 2693 /* 2694 * This assumes that the leaf blocks start at block 1. The 2695 * documentation isn't exactly clear on this. 2696 */ 2697 zap_leaf_t zl; 2698 zl.l_bs = z.zap_block_shift; 2699 zl.l_phys = malloc(bsize); 2700 if (zl.l_phys == NULL) 2701 return (ENOMEM); 2702 2703 for (i = 0; i < zh->zap_num_leafs; i++) { 2704 off_t off = ((off_t)(i + 1)) << zl.l_bs; 2705 2706 rc = dnode_read(spa, dnode, off, zl.l_phys, bsize); 2707 if (rc != 0) 2708 goto done; 2709 2710 for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) { 2711 zap_leaf_chunk_t *zc; 2712 2713 zc = &ZAP_LEAF_CHUNK(&zl, j); 2714 if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY) 2715 continue; 2716 if (zc->l_entry.le_value_intlen != 8 || 2717 zc->l_entry.le_value_numints != 1) 2718 continue; 2719 2720 if (fzap_leaf_value(&zl, zc) == value) { 2721 fzap_name_copy(&zl, zc, name); 2722 goto done; 2723 } 2724 } 2725 } 2726 2727 rc = ENOENT; 2728 done: 2729 free(zl.l_phys); 2730 return (rc); 2731 } 2732 2733 static int 2734 zap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, char *name, 2735 uint64_t value) 2736 { 2737 zap_phys_t *zap; 2738 size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2739 int rc; 2740 2741 zap = malloc(size); 2742 if (zap == NULL) 2743 return (ENOMEM); 2744 2745 rc = dnode_read(spa, dnode, 0, zap, size); 2746 if (rc == 0) { 2747 if (zap->zap_block_type == ZBT_MICRO) 2748 rc = mzap_rlookup((const mzap_phys_t *)zap, size, 2749 name, value); 2750 else 2751 rc = fzap_rlookup(spa, dnode, zap, name, value); 2752 } 2753 free(zap); 2754 return (rc); 2755 } 2756 2757 static int 2758 zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result) 2759 { 2760 char name[256]; 2761 char component[256]; 2762 uint64_t dir_obj, parent_obj, child_dir_zapobj; 2763 dnode_phys_t child_dir_zap, dataset, dir, parent; 2764 dsl_dir_phys_t *dd; 2765 dsl_dataset_phys_t *ds; 2766 char *p; 2767 int len; 2768 2769 p = &name[sizeof(name) - 1]; 2770 *p = '\0'; 2771 2772 if (objset_get_dnode(spa, spa->spa_mos, objnum, &dataset)) { 2773 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum); 2774 return (EIO); 2775 } 2776 ds = (dsl_dataset_phys_t *)&dataset.dn_bonus; 2777 dir_obj = ds->ds_dir_obj; 2778 2779 for (;;) { 2780 if (objset_get_dnode(spa, spa->spa_mos, dir_obj, &dir) != 0) 2781 return (EIO); 2782 dd = (dsl_dir_phys_t *)&dir.dn_bonus; 2783 2784 /* Actual loop condition. */ 2785 parent_obj = dd->dd_parent_obj; 2786 if (parent_obj == 0) 2787 break; 2788 2789 if (objset_get_dnode(spa, spa->spa_mos, parent_obj, 2790 &parent) != 0) 2791 return (EIO); 2792 dd = (dsl_dir_phys_t *)&parent.dn_bonus; 2793 child_dir_zapobj = dd->dd_child_dir_zapobj; 2794 if (objset_get_dnode(spa, spa->spa_mos, child_dir_zapobj, 2795 &child_dir_zap) != 0) 2796 return (EIO); 2797 if (zap_rlookup(spa, &child_dir_zap, component, dir_obj) != 0) 2798 return (EIO); 2799 2800 len = strlen(component); 2801 p -= len; 2802 memcpy(p, component, len); 2803 --p; 2804 *p = '/'; 2805 2806 /* Actual loop iteration. */ 2807 dir_obj = parent_obj; 2808 } 2809 2810 if (*p != '\0') 2811 ++p; 2812 strcpy(result, p); 2813 2814 return (0); 2815 } 2816 2817 static int 2818 zfs_lookup_dataset(const spa_t *spa, const char *name, uint64_t *objnum) 2819 { 2820 char element[256]; 2821 uint64_t dir_obj, child_dir_zapobj; 2822 dnode_phys_t child_dir_zap, dir; 2823 dsl_dir_phys_t *dd; 2824 const char *p, *q; 2825 2826 if (objset_get_dnode(spa, spa->spa_mos, 2827 DMU_POOL_DIRECTORY_OBJECT, &dir)) 2828 return (EIO); 2829 if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET, sizeof (dir_obj), 2830 1, &dir_obj)) 2831 return (EIO); 2832 2833 p = name; 2834 for (;;) { 2835 if (objset_get_dnode(spa, spa->spa_mos, dir_obj, &dir)) 2836 return (EIO); 2837 dd = (dsl_dir_phys_t *)&dir.dn_bonus; 2838 2839 while (*p == '/') 2840 p++; 2841 /* Actual loop condition #1. */ 2842 if (*p == '\0') 2843 break; 2844 2845 q = strchr(p, '/'); 2846 if (q) { 2847 memcpy(element, p, q - p); 2848 element[q - p] = '\0'; 2849 p = q + 1; 2850 } else { 2851 strcpy(element, p); 2852 p += strlen(p); 2853 } 2854 2855 child_dir_zapobj = dd->dd_child_dir_zapobj; 2856 if (objset_get_dnode(spa, spa->spa_mos, child_dir_zapobj, 2857 &child_dir_zap) != 0) 2858 return (EIO); 2859 2860 /* Actual loop condition #2. */ 2861 if (zap_lookup(spa, &child_dir_zap, element, sizeof (dir_obj), 2862 1, &dir_obj) != 0) 2863 return (ENOENT); 2864 } 2865 2866 *objnum = dd->dd_head_dataset_obj; 2867 return (0); 2868 } 2869 2870 #ifndef BOOT2 2871 static int 2872 zfs_list_dataset(const spa_t *spa, uint64_t objnum/*, int pos, char *entry*/) 2873 { 2874 uint64_t dir_obj, child_dir_zapobj; 2875 dnode_phys_t child_dir_zap, dir, dataset; 2876 dsl_dataset_phys_t *ds; 2877 dsl_dir_phys_t *dd; 2878 2879 if (objset_get_dnode(spa, spa->spa_mos, objnum, &dataset)) { 2880 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum); 2881 return (EIO); 2882 } 2883 ds = (dsl_dataset_phys_t *)&dataset.dn_bonus; 2884 dir_obj = ds->ds_dir_obj; 2885 2886 if (objset_get_dnode(spa, spa->spa_mos, dir_obj, &dir)) { 2887 printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj); 2888 return (EIO); 2889 } 2890 dd = (dsl_dir_phys_t *)&dir.dn_bonus; 2891 2892 child_dir_zapobj = dd->dd_child_dir_zapobj; 2893 if (objset_get_dnode(spa, spa->spa_mos, child_dir_zapobj, 2894 &child_dir_zap) != 0) { 2895 printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj); 2896 return (EIO); 2897 } 2898 2899 return (zap_list(spa, &child_dir_zap) != 0); 2900 } 2901 2902 int 2903 zfs_callback_dataset(const spa_t *spa, uint64_t objnum, 2904 int (*callback)(const char *, uint64_t)) 2905 { 2906 uint64_t dir_obj, child_dir_zapobj; 2907 dnode_phys_t child_dir_zap, dir, dataset; 2908 dsl_dataset_phys_t *ds; 2909 dsl_dir_phys_t *dd; 2910 zap_phys_t *zap; 2911 size_t size; 2912 int err; 2913 2914 err = objset_get_dnode(spa, spa->spa_mos, objnum, &dataset); 2915 if (err != 0) { 2916 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum); 2917 return (err); 2918 } 2919 ds = (dsl_dataset_phys_t *)&dataset.dn_bonus; 2920 dir_obj = ds->ds_dir_obj; 2921 2922 err = objset_get_dnode(spa, spa->spa_mos, dir_obj, &dir); 2923 if (err != 0) { 2924 printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj); 2925 return (err); 2926 } 2927 dd = (dsl_dir_phys_t *)&dir.dn_bonus; 2928 2929 child_dir_zapobj = dd->dd_child_dir_zapobj; 2930 err = objset_get_dnode(spa, spa->spa_mos, child_dir_zapobj, 2931 &child_dir_zap); 2932 if (err != 0) { 2933 printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj); 2934 return (err); 2935 } 2936 2937 size = child_dir_zap.dn_datablkszsec << SPA_MINBLOCKSHIFT; 2938 zap = malloc(size); 2939 if (zap != NULL) { 2940 err = dnode_read(spa, &child_dir_zap, 0, zap, size); 2941 if (err != 0) 2942 goto done; 2943 2944 if (zap->zap_block_type == ZBT_MICRO) 2945 err = mzap_list((const mzap_phys_t *)zap, size, 2946 callback); 2947 else 2948 err = fzap_list(spa, &child_dir_zap, zap, callback); 2949 } else { 2950 err = ENOMEM; 2951 } 2952 done: 2953 free(zap); 2954 return (err); 2955 } 2956 #endif 2957 2958 /* 2959 * Find the object set given the object number of its dataset object 2960 * and return its details in *objset 2961 */ 2962 static int 2963 zfs_mount_dataset(const spa_t *spa, uint64_t objnum, objset_phys_t *objset) 2964 { 2965 dnode_phys_t dataset; 2966 dsl_dataset_phys_t *ds; 2967 2968 if (objset_get_dnode(spa, spa->spa_mos, objnum, &dataset)) { 2969 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum); 2970 return (EIO); 2971 } 2972 2973 ds = (dsl_dataset_phys_t *)&dataset.dn_bonus; 2974 if (zio_read(spa, &ds->ds_bp, objset)) { 2975 printf("ZFS: can't read object set for dataset %ju\n", 2976 (uintmax_t)objnum); 2977 return (EIO); 2978 } 2979 2980 return (0); 2981 } 2982 2983 /* 2984 * Find the object set pointed to by the BOOTFS property or the root 2985 * dataset if there is none and return its details in *objset 2986 */ 2987 static int 2988 zfs_get_root(const spa_t *spa, uint64_t *objid) 2989 { 2990 dnode_phys_t dir, propdir; 2991 uint64_t props, bootfs, root; 2992 2993 *objid = 0; 2994 2995 /* 2996 * Start with the MOS directory object. 2997 */ 2998 if (objset_get_dnode(spa, spa->spa_mos, 2999 DMU_POOL_DIRECTORY_OBJECT, &dir)) { 3000 printf("ZFS: can't read MOS object directory\n"); 3001 return (EIO); 3002 } 3003 3004 /* 3005 * Lookup the pool_props and see if we can find a bootfs. 3006 */ 3007 if (zap_lookup(spa, &dir, DMU_POOL_PROPS, 3008 sizeof(props), 1, &props) == 0 && 3009 objset_get_dnode(spa, spa->spa_mos, props, &propdir) == 0 && 3010 zap_lookup(spa, &propdir, "bootfs", 3011 sizeof(bootfs), 1, &bootfs) == 0 && bootfs != 0) { 3012 *objid = bootfs; 3013 return (0); 3014 } 3015 /* 3016 * Lookup the root dataset directory 3017 */ 3018 if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET, 3019 sizeof(root), 1, &root) || 3020 objset_get_dnode(spa, spa->spa_mos, root, &dir)) { 3021 printf("ZFS: can't find root dsl_dir\n"); 3022 return (EIO); 3023 } 3024 3025 /* 3026 * Use the information from the dataset directory's bonus buffer 3027 * to find the dataset object and from that the object set itself. 3028 */ 3029 dsl_dir_phys_t *dd = (dsl_dir_phys_t *)&dir.dn_bonus; 3030 *objid = dd->dd_head_dataset_obj; 3031 return (0); 3032 } 3033 3034 static int 3035 zfs_mount(const spa_t *spa, uint64_t rootobj, struct zfsmount *mount) 3036 { 3037 3038 mount->spa = spa; 3039 3040 /* 3041 * Find the root object set if not explicitly provided 3042 */ 3043 if (rootobj == 0 && zfs_get_root(spa, &rootobj)) { 3044 printf("ZFS: can't find root filesystem\n"); 3045 return (EIO); 3046 } 3047 3048 if (zfs_mount_dataset(spa, rootobj, &mount->objset)) { 3049 printf("ZFS: can't open root filesystem\n"); 3050 return (EIO); 3051 } 3052 3053 mount->rootobj = rootobj; 3054 3055 return (0); 3056 } 3057 3058 /* 3059 * callback function for feature name checks. 3060 */ 3061 static int 3062 check_feature(const char *name, uint64_t value) 3063 { 3064 int i; 3065 3066 if (value == 0) 3067 return (0); 3068 if (name[0] == '\0') 3069 return (0); 3070 3071 for (i = 0; features_for_read[i] != NULL; i++) { 3072 if (strcmp(name, features_for_read[i]) == 0) 3073 return (0); 3074 } 3075 printf("ZFS: unsupported feature: %s\n", name); 3076 return (EIO); 3077 } 3078 3079 /* 3080 * Checks whether the MOS features that are active are supported. 3081 */ 3082 static int 3083 check_mos_features(const spa_t *spa) 3084 { 3085 dnode_phys_t dir; 3086 zap_phys_t *zap; 3087 uint64_t objnum; 3088 size_t size; 3089 int rc; 3090 3091 if ((rc = objset_get_dnode(spa, spa->spa_mos, DMU_OT_OBJECT_DIRECTORY, 3092 &dir)) != 0) 3093 return (rc); 3094 if ((rc = zap_lookup(spa, &dir, DMU_POOL_FEATURES_FOR_READ, 3095 sizeof (objnum), 1, &objnum)) != 0) { 3096 /* 3097 * It is older pool without features. As we have already 3098 * tested the label, just return without raising the error. 3099 */ 3100 return (0); 3101 } 3102 3103 if ((rc = objset_get_dnode(spa, spa->spa_mos, objnum, &dir)) != 0) 3104 return (rc); 3105 3106 if (dir.dn_type != DMU_OTN_ZAP_METADATA) 3107 return (EIO); 3108 3109 size = dir.dn_datablkszsec << SPA_MINBLOCKSHIFT; 3110 zap = malloc(size); 3111 if (zap == NULL) 3112 return (ENOMEM); 3113 3114 if (dnode_read(spa, &dir, 0, zap, size)) { 3115 free(zap); 3116 return (EIO); 3117 } 3118 3119 if (zap->zap_block_type == ZBT_MICRO) 3120 rc = mzap_list((const mzap_phys_t *)zap, size, check_feature); 3121 else 3122 rc = fzap_list(spa, &dir, zap, check_feature); 3123 3124 free(zap); 3125 return (rc); 3126 } 3127 3128 static int 3129 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 3130 { 3131 dnode_phys_t dir; 3132 size_t size; 3133 int rc; 3134 unsigned char *nv; 3135 3136 *value = NULL; 3137 if ((rc = objset_get_dnode(spa, spa->spa_mos, obj, &dir)) != 0) 3138 return (rc); 3139 if (dir.dn_type != DMU_OT_PACKED_NVLIST && 3140 dir.dn_bonustype != DMU_OT_PACKED_NVLIST_SIZE) { 3141 return (EIO); 3142 } 3143 3144 if (dir.dn_bonuslen != sizeof (uint64_t)) 3145 return (EIO); 3146 3147 size = *(uint64_t *)DN_BONUS(&dir); 3148 nv = malloc(size); 3149 if (nv == NULL) 3150 return (ENOMEM); 3151 3152 rc = dnode_read(spa, &dir, 0, nv, size); 3153 if (rc != 0) { 3154 free(nv); 3155 nv = NULL; 3156 return (rc); 3157 } 3158 *value = nvlist_import(nv + 4, nv[0], nv[1]); 3159 free(nv); 3160 return (rc); 3161 } 3162 3163 static int 3164 zfs_spa_init(spa_t *spa) 3165 { 3166 struct uberblock checkpoint; 3167 dnode_phys_t dir; 3168 uint64_t config_object; 3169 nvlist_t *nvlist; 3170 int rc; 3171 3172 if (zio_read(spa, &spa->spa_uberblock->ub_rootbp, spa->spa_mos)) { 3173 printf("ZFS: can't read MOS of pool %s\n", spa->spa_name); 3174 return (EIO); 3175 } 3176 if (spa->spa_mos->os_type != DMU_OST_META) { 3177 printf("ZFS: corrupted MOS of pool %s\n", spa->spa_name); 3178 return (EIO); 3179 } 3180 3181 if (objset_get_dnode(spa, &spa->spa_mos_master, 3182 DMU_POOL_DIRECTORY_OBJECT, &dir)) { 3183 printf("ZFS: failed to read pool %s directory object\n", 3184 spa->spa_name); 3185 return (EIO); 3186 } 3187 /* this is allowed to fail, older pools do not have salt */ 3188 rc = zap_lookup(spa, &dir, DMU_POOL_CHECKSUM_SALT, 1, 3189 sizeof (spa->spa_cksum_salt.zcs_bytes), 3190 spa->spa_cksum_salt.zcs_bytes); 3191 3192 rc = check_mos_features(spa); 3193 if (rc != 0) { 3194 printf("ZFS: pool %s is not supported\n", spa->spa_name); 3195 return (rc); 3196 } 3197 3198 rc = zap_lookup(spa, &dir, DMU_POOL_CONFIG, 3199 sizeof (config_object), 1, &config_object); 3200 if (rc != 0) { 3201 printf("ZFS: can not read MOS %s\n", DMU_POOL_CONFIG); 3202 return (EIO); 3203 } 3204 rc = load_nvlist(spa, config_object, &nvlist); 3205 if (rc != 0) 3206 return (rc); 3207 3208 rc = zap_lookup(spa, &dir, DMU_POOL_ZPOOL_CHECKPOINT, 3209 sizeof(uint64_t), sizeof(checkpoint) / sizeof(uint64_t), 3210 &checkpoint); 3211 if (rc == 0 && checkpoint.ub_checkpoint_txg != 0) { 3212 memcpy(&spa->spa_uberblock_checkpoint, &checkpoint, 3213 sizeof(checkpoint)); 3214 if (zio_read(spa, &spa->spa_uberblock_checkpoint.ub_rootbp, 3215 &spa->spa_mos_checkpoint)) { 3216 printf("ZFS: can not read checkpoint data.\n"); 3217 return (EIO); 3218 } 3219 } 3220 3221 /* 3222 * Update vdevs from MOS config. Note, we do skip encoding bytes 3223 * here. See also vdev_label_read_config(). 3224 */ 3225 rc = vdev_init_from_nvlist(spa, nvlist); 3226 nvlist_destroy(nvlist); 3227 return (rc); 3228 } 3229 3230 static int 3231 zfs_dnode_stat(const spa_t *spa, dnode_phys_t *dn, struct stat *sb) 3232 { 3233 3234 if (dn->dn_bonustype != DMU_OT_SA) { 3235 znode_phys_t *zp = (znode_phys_t *)dn->dn_bonus; 3236 3237 sb->st_mode = zp->zp_mode; 3238 sb->st_uid = zp->zp_uid; 3239 sb->st_gid = zp->zp_gid; 3240 sb->st_size = zp->zp_size; 3241 } else { 3242 sa_hdr_phys_t *sahdrp; 3243 int hdrsize; 3244 size_t size = 0; 3245 void *buf = NULL; 3246 3247 if (dn->dn_bonuslen != 0) 3248 sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn); 3249 else { 3250 if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0) { 3251 blkptr_t *bp = DN_SPILL_BLKPTR(dn); 3252 int error; 3253 3254 size = BP_GET_LSIZE(bp); 3255 buf = malloc(size); 3256 if (buf == NULL) 3257 error = ENOMEM; 3258 else 3259 error = zio_read(spa, bp, buf); 3260 3261 if (error != 0) { 3262 free(buf); 3263 return (error); 3264 } 3265 sahdrp = buf; 3266 } else { 3267 return (EIO); 3268 } 3269 } 3270 hdrsize = SA_HDR_SIZE(sahdrp); 3271 sb->st_mode = *(uint64_t *)((char *)sahdrp + hdrsize + 3272 SA_MODE_OFFSET); 3273 sb->st_uid = *(uint64_t *)((char *)sahdrp + hdrsize + 3274 SA_UID_OFFSET); 3275 sb->st_gid = *(uint64_t *)((char *)sahdrp + hdrsize + 3276 SA_GID_OFFSET); 3277 sb->st_size = *(uint64_t *)((char *)sahdrp + hdrsize + 3278 SA_SIZE_OFFSET); 3279 free(buf); 3280 } 3281 3282 return (0); 3283 } 3284 3285 static int 3286 zfs_dnode_readlink(const spa_t *spa, dnode_phys_t *dn, char *path, size_t psize) 3287 { 3288 int rc = 0; 3289 3290 if (dn->dn_bonustype == DMU_OT_SA) { 3291 sa_hdr_phys_t *sahdrp = NULL; 3292 size_t size = 0; 3293 void *buf = NULL; 3294 int hdrsize; 3295 char *p; 3296 3297 if (dn->dn_bonuslen != 0) { 3298 sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn); 3299 } else { 3300 blkptr_t *bp; 3301 3302 if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) == 0) 3303 return (EIO); 3304 bp = DN_SPILL_BLKPTR(dn); 3305 3306 size = BP_GET_LSIZE(bp); 3307 buf = malloc(size); 3308 if (buf == NULL) 3309 rc = ENOMEM; 3310 else 3311 rc = zio_read(spa, bp, buf); 3312 if (rc != 0) { 3313 free(buf); 3314 return (rc); 3315 } 3316 sahdrp = buf; 3317 } 3318 hdrsize = SA_HDR_SIZE(sahdrp); 3319 p = (char *)((uintptr_t)sahdrp + hdrsize + SA_SYMLINK_OFFSET); 3320 memcpy(path, p, psize); 3321 free(buf); 3322 return (0); 3323 } 3324 /* 3325 * Second test is purely to silence bogus compiler 3326 * warning about accessing past the end of dn_bonus. 3327 */ 3328 if (psize + sizeof(znode_phys_t) <= dn->dn_bonuslen && 3329 sizeof(znode_phys_t) <= sizeof(dn->dn_bonus)) { 3330 memcpy(path, &dn->dn_bonus[sizeof(znode_phys_t)], psize); 3331 } else { 3332 rc = dnode_read(spa, dn, 0, path, psize); 3333 } 3334 return (rc); 3335 } 3336 3337 struct obj_list { 3338 uint64_t objnum; 3339 STAILQ_ENTRY(obj_list) entry; 3340 }; 3341 3342 /* 3343 * Lookup a file and return its dnode. 3344 */ 3345 static int 3346 zfs_lookup(const struct zfsmount *mount, const char *upath, dnode_phys_t *dnode) 3347 { 3348 int rc; 3349 uint64_t objnum; 3350 const spa_t *spa; 3351 dnode_phys_t dn; 3352 const char *p, *q; 3353 char element[256]; 3354 char path[1024]; 3355 int symlinks_followed = 0; 3356 struct stat sb; 3357 struct obj_list *entry, *tentry; 3358 STAILQ_HEAD(, obj_list) on_cache = STAILQ_HEAD_INITIALIZER(on_cache); 3359 3360 spa = mount->spa; 3361 if (mount->objset.os_type != DMU_OST_ZFS) { 3362 printf("ZFS: unexpected object set type %ju\n", 3363 (uintmax_t)mount->objset.os_type); 3364 return (EIO); 3365 } 3366 3367 if ((entry = malloc(sizeof(struct obj_list))) == NULL) 3368 return (ENOMEM); 3369 3370 /* 3371 * Get the root directory dnode. 3372 */ 3373 rc = objset_get_dnode(spa, &mount->objset, MASTER_NODE_OBJ, &dn); 3374 if (rc) { 3375 free(entry); 3376 return (rc); 3377 } 3378 3379 rc = zap_lookup(spa, &dn, ZFS_ROOT_OBJ, sizeof(objnum), 1, &objnum); 3380 if (rc) { 3381 free(entry); 3382 return (rc); 3383 } 3384 entry->objnum = objnum; 3385 STAILQ_INSERT_HEAD(&on_cache, entry, entry); 3386 3387 rc = objset_get_dnode(spa, &mount->objset, objnum, &dn); 3388 if (rc != 0) 3389 goto done; 3390 3391 p = upath; 3392 while (p && *p) { 3393 rc = objset_get_dnode(spa, &mount->objset, objnum, &dn); 3394 if (rc != 0) 3395 goto done; 3396 3397 while (*p == '/') 3398 p++; 3399 if (*p == '\0') 3400 break; 3401 q = p; 3402 while (*q != '\0' && *q != '/') 3403 q++; 3404 3405 /* skip dot */ 3406 if (p + 1 == q && p[0] == '.') { 3407 p++; 3408 continue; 3409 } 3410 /* double dot */ 3411 if (p + 2 == q && p[0] == '.' && p[1] == '.') { 3412 p += 2; 3413 if (STAILQ_FIRST(&on_cache) == 3414 STAILQ_LAST(&on_cache, obj_list, entry)) { 3415 rc = ENOENT; 3416 goto done; 3417 } 3418 entry = STAILQ_FIRST(&on_cache); 3419 STAILQ_REMOVE_HEAD(&on_cache, entry); 3420 free(entry); 3421 objnum = (STAILQ_FIRST(&on_cache))->objnum; 3422 continue; 3423 } 3424 if (q - p + 1 > sizeof(element)) { 3425 rc = ENAMETOOLONG; 3426 goto done; 3427 } 3428 memcpy(element, p, q - p); 3429 element[q - p] = 0; 3430 p = q; 3431 3432 if ((rc = zfs_dnode_stat(spa, &dn, &sb)) != 0) 3433 goto done; 3434 if (!S_ISDIR(sb.st_mode)) { 3435 rc = ENOTDIR; 3436 goto done; 3437 } 3438 3439 rc = zap_lookup(spa, &dn, element, sizeof (objnum), 1, &objnum); 3440 if (rc) 3441 goto done; 3442 objnum = ZFS_DIRENT_OBJ(objnum); 3443 3444 if ((entry = malloc(sizeof(struct obj_list))) == NULL) { 3445 rc = ENOMEM; 3446 goto done; 3447 } 3448 entry->objnum = objnum; 3449 STAILQ_INSERT_HEAD(&on_cache, entry, entry); 3450 rc = objset_get_dnode(spa, &mount->objset, objnum, &dn); 3451 if (rc) 3452 goto done; 3453 3454 /* 3455 * Check for symlink. 3456 */ 3457 rc = zfs_dnode_stat(spa, &dn, &sb); 3458 if (rc) 3459 goto done; 3460 if (S_ISLNK(sb.st_mode)) { 3461 if (symlinks_followed > 10) { 3462 rc = EMLINK; 3463 goto done; 3464 } 3465 symlinks_followed++; 3466 3467 /* 3468 * Read the link value and copy the tail of our 3469 * current path onto the end. 3470 */ 3471 if (sb.st_size + strlen(p) + 1 > sizeof(path)) { 3472 rc = ENAMETOOLONG; 3473 goto done; 3474 } 3475 strcpy(&path[sb.st_size], p); 3476 3477 rc = zfs_dnode_readlink(spa, &dn, path, sb.st_size); 3478 if (rc != 0) 3479 goto done; 3480 3481 /* 3482 * Restart with the new path, starting either at 3483 * the root or at the parent depending whether or 3484 * not the link is relative. 3485 */ 3486 p = path; 3487 if (*p == '/') { 3488 while (STAILQ_FIRST(&on_cache) != 3489 STAILQ_LAST(&on_cache, obj_list, entry)) { 3490 entry = STAILQ_FIRST(&on_cache); 3491 STAILQ_REMOVE_HEAD(&on_cache, entry); 3492 free(entry); 3493 } 3494 } else { 3495 entry = STAILQ_FIRST(&on_cache); 3496 STAILQ_REMOVE_HEAD(&on_cache, entry); 3497 free(entry); 3498 } 3499 objnum = (STAILQ_FIRST(&on_cache))->objnum; 3500 } 3501 } 3502 3503 *dnode = dn; 3504 done: 3505 STAILQ_FOREACH_SAFE(entry, &on_cache, entry, tentry) 3506 free(entry); 3507 return (rc); 3508 } 3509