1 /*- 2 * Copyright (c) 2007 Doug Rabson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 /* 31 * Stand-alone ZFS file reader. 32 */ 33 34 #include <stdbool.h> 35 #include <sys/endian.h> 36 #include <sys/stat.h> 37 #include <sys/stdint.h> 38 #include <sys/list.h> 39 #include <sys/zfs_bootenv.h> 40 #include <machine/_inttypes.h> 41 42 #include "zfsimpl.h" 43 #include "zfssubr.c" 44 45 #ifdef HAS_ZSTD_ZFS 46 extern int zstd_init(void); 47 #endif 48 49 struct zfsmount { 50 char *path; 51 const spa_t *spa; 52 objset_phys_t objset; 53 uint64_t rootobj; 54 STAILQ_ENTRY(zfsmount) next; 55 }; 56 57 typedef STAILQ_HEAD(zfs_mnt_list, zfsmount) zfs_mnt_list_t; 58 static zfs_mnt_list_t zfsmount = STAILQ_HEAD_INITIALIZER(zfsmount); 59 60 /* 61 * The indirect_child_t represents the vdev that we will read from, when we 62 * need to read all copies of the data (e.g. for scrub or reconstruction). 63 * For plain (non-mirror) top-level vdevs (i.e. is_vdev is not a mirror), 64 * ic_vdev is the same as is_vdev. However, for mirror top-level vdevs, 65 * ic_vdev is a child of the mirror. 66 */ 67 typedef struct indirect_child { 68 void *ic_data; 69 vdev_t *ic_vdev; 70 } indirect_child_t; 71 72 /* 73 * The indirect_split_t represents one mapped segment of an i/o to the 74 * indirect vdev. For non-split (contiguously-mapped) blocks, there will be 75 * only one indirect_split_t, with is_split_offset==0 and is_size==io_size. 76 * For split blocks, there will be several of these. 77 */ 78 typedef struct indirect_split { 79 list_node_t is_node; /* link on iv_splits */ 80 81 /* 82 * is_split_offset is the offset into the i/o. 83 * This is the sum of the previous splits' is_size's. 84 */ 85 uint64_t is_split_offset; 86 87 vdev_t *is_vdev; /* top-level vdev */ 88 uint64_t is_target_offset; /* offset on is_vdev */ 89 uint64_t is_size; 90 int is_children; /* number of entries in is_child[] */ 91 92 /* 93 * is_good_child is the child that we are currently using to 94 * attempt reconstruction. 95 */ 96 int is_good_child; 97 98 indirect_child_t is_child[1]; /* variable-length */ 99 } indirect_split_t; 100 101 /* 102 * The indirect_vsd_t is associated with each i/o to the indirect vdev. 103 * It is the "Vdev-Specific Data" in the zio_t's io_vsd. 104 */ 105 typedef struct indirect_vsd { 106 boolean_t iv_split_block; 107 boolean_t iv_reconstruct; 108 109 list_t iv_splits; /* list of indirect_split_t's */ 110 } indirect_vsd_t; 111 112 /* 113 * List of all vdevs, chained through v_alllink. 114 */ 115 static vdev_list_t zfs_vdevs; 116 117 /* 118 * List of ZFS features supported for read 119 */ 120 static const char *features_for_read[] = { 121 "com.datto:bookmark_v2", 122 "com.datto:encryption", 123 "com.datto:resilver_defer", 124 "com.delphix:bookmark_written", 125 "com.delphix:device_removal", 126 "com.delphix:embedded_data", 127 "com.delphix:extensible_dataset", 128 "com.delphix:head_errlog", 129 "com.delphix:hole_birth", 130 "com.delphix:obsolete_counts", 131 "com.delphix:spacemap_histogram", 132 "com.delphix:spacemap_v2", 133 "com.delphix:zpool_checkpoint", 134 "com.intel:allocation_classes", 135 "com.joyent:multi_vdev_crash_dump", 136 "org.freebsd:zstd_compress", 137 "org.illumos:lz4_compress", 138 "org.illumos:sha512", 139 "org.illumos:skein", 140 "org.open-zfs:large_blocks", 141 "org.openzfs:blake3", 142 "org.zfsonlinux:allocation_classes", 143 "org.zfsonlinux:large_dnode", 144 NULL 145 }; 146 147 /* 148 * List of all pools, chained through spa_link. 149 */ 150 static spa_list_t zfs_pools; 151 152 static const dnode_phys_t *dnode_cache_obj; 153 static uint64_t dnode_cache_bn; 154 static char *dnode_cache_buf; 155 156 static int zio_read(const spa_t *spa, const blkptr_t *bp, void *buf); 157 static int zfs_get_root(const spa_t *spa, uint64_t *objid); 158 static int zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result); 159 static int zap_lookup(const spa_t *spa, const dnode_phys_t *dnode, 160 const char *name, uint64_t integer_size, uint64_t num_integers, 161 void *value); 162 static int objset_get_dnode(const spa_t *, const objset_phys_t *, uint64_t, 163 dnode_phys_t *); 164 static int dnode_read(const spa_t *, const dnode_phys_t *, off_t, void *, 165 size_t); 166 static int vdev_indirect_read(vdev_t *, const blkptr_t *, void *, off_t, 167 size_t); 168 static int vdev_mirror_read(vdev_t *, const blkptr_t *, void *, off_t, size_t); 169 vdev_indirect_mapping_t *vdev_indirect_mapping_open(spa_t *, objset_phys_t *, 170 uint64_t); 171 vdev_indirect_mapping_entry_phys_t * 172 vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *, uint64_t, 173 uint64_t, uint64_t *); 174 175 static void 176 zfs_init(void) 177 { 178 STAILQ_INIT(&zfs_vdevs); 179 STAILQ_INIT(&zfs_pools); 180 181 dnode_cache_buf = malloc(SPA_MAXBLOCKSIZE); 182 183 zfs_init_crc(); 184 #ifdef HAS_ZSTD_ZFS 185 zstd_init(); 186 #endif 187 } 188 189 static int 190 nvlist_check_features_for_read(nvlist_t *nvl) 191 { 192 nvlist_t *features = NULL; 193 nvs_data_t *data; 194 nvp_header_t *nvp; 195 nv_string_t *nvp_name; 196 int rc; 197 198 rc = nvlist_find(nvl, ZPOOL_CONFIG_FEATURES_FOR_READ, 199 DATA_TYPE_NVLIST, NULL, &features, NULL); 200 switch (rc) { 201 case 0: 202 break; /* Continue with checks */ 203 204 case ENOENT: 205 return (0); /* All features are disabled */ 206 207 default: 208 return (rc); /* Error while reading nvlist */ 209 } 210 211 data = (nvs_data_t *)features->nv_data; 212 nvp = &data->nvl_pair; /* first pair in nvlist */ 213 214 while (nvp->encoded_size != 0 && nvp->decoded_size != 0) { 215 int i, found; 216 217 nvp_name = (nv_string_t *)((uintptr_t)nvp + sizeof(*nvp)); 218 found = 0; 219 220 for (i = 0; features_for_read[i] != NULL; i++) { 221 if (memcmp(nvp_name->nv_data, features_for_read[i], 222 nvp_name->nv_size) == 0) { 223 found = 1; 224 break; 225 } 226 } 227 228 if (!found) { 229 printf("ZFS: unsupported feature: %.*s\n", 230 nvp_name->nv_size, nvp_name->nv_data); 231 rc = EIO; 232 } 233 nvp = (nvp_header_t *)((uint8_t *)nvp + nvp->encoded_size); 234 } 235 nvlist_destroy(features); 236 237 return (rc); 238 } 239 240 static int 241 vdev_read_phys(vdev_t *vdev, const blkptr_t *bp, void *buf, 242 off_t offset, size_t size) 243 { 244 size_t psize; 245 int rc; 246 247 if (vdev->v_phys_read == NULL) 248 return (ENOTSUP); 249 250 if (bp) { 251 psize = BP_GET_PSIZE(bp); 252 } else { 253 psize = size; 254 } 255 256 rc = vdev->v_phys_read(vdev, vdev->v_priv, offset, buf, psize); 257 if (rc == 0) { 258 if (bp != NULL) 259 rc = zio_checksum_verify(vdev->v_spa, bp, buf); 260 } 261 262 return (rc); 263 } 264 265 static int 266 vdev_write_phys(vdev_t *vdev, void *buf, off_t offset, size_t size) 267 { 268 if (vdev->v_phys_write == NULL) 269 return (ENOTSUP); 270 271 return (vdev->v_phys_write(vdev, offset, buf, size)); 272 } 273 274 typedef struct remap_segment { 275 vdev_t *rs_vd; 276 uint64_t rs_offset; 277 uint64_t rs_asize; 278 uint64_t rs_split_offset; 279 list_node_t rs_node; 280 } remap_segment_t; 281 282 static remap_segment_t * 283 rs_alloc(vdev_t *vd, uint64_t offset, uint64_t asize, uint64_t split_offset) 284 { 285 remap_segment_t *rs = malloc(sizeof (remap_segment_t)); 286 287 if (rs != NULL) { 288 rs->rs_vd = vd; 289 rs->rs_offset = offset; 290 rs->rs_asize = asize; 291 rs->rs_split_offset = split_offset; 292 } 293 294 return (rs); 295 } 296 297 vdev_indirect_mapping_t * 298 vdev_indirect_mapping_open(spa_t *spa, objset_phys_t *os, 299 uint64_t mapping_object) 300 { 301 vdev_indirect_mapping_t *vim; 302 vdev_indirect_mapping_phys_t *vim_phys; 303 int rc; 304 305 vim = calloc(1, sizeof (*vim)); 306 if (vim == NULL) 307 return (NULL); 308 309 vim->vim_dn = calloc(1, sizeof (*vim->vim_dn)); 310 if (vim->vim_dn == NULL) { 311 free(vim); 312 return (NULL); 313 } 314 315 rc = objset_get_dnode(spa, os, mapping_object, vim->vim_dn); 316 if (rc != 0) { 317 free(vim->vim_dn); 318 free(vim); 319 return (NULL); 320 } 321 322 vim->vim_spa = spa; 323 vim->vim_phys = malloc(sizeof (*vim->vim_phys)); 324 if (vim->vim_phys == NULL) { 325 free(vim->vim_dn); 326 free(vim); 327 return (NULL); 328 } 329 330 vim_phys = (vdev_indirect_mapping_phys_t *)DN_BONUS(vim->vim_dn); 331 *vim->vim_phys = *vim_phys; 332 333 vim->vim_objset = os; 334 vim->vim_object = mapping_object; 335 vim->vim_entries = NULL; 336 337 vim->vim_havecounts = 338 (vim->vim_dn->dn_bonuslen > VDEV_INDIRECT_MAPPING_SIZE_V0); 339 340 return (vim); 341 } 342 343 /* 344 * Compare an offset with an indirect mapping entry; there are three 345 * possible scenarios: 346 * 347 * 1. The offset is "less than" the mapping entry; meaning the 348 * offset is less than the source offset of the mapping entry. In 349 * this case, there is no overlap between the offset and the 350 * mapping entry and -1 will be returned. 351 * 352 * 2. The offset is "greater than" the mapping entry; meaning the 353 * offset is greater than the mapping entry's source offset plus 354 * the entry's size. In this case, there is no overlap between 355 * the offset and the mapping entry and 1 will be returned. 356 * 357 * NOTE: If the offset is actually equal to the entry's offset 358 * plus size, this is considered to be "greater" than the entry, 359 * and this case applies (i.e. 1 will be returned). Thus, the 360 * entry's "range" can be considered to be inclusive at its 361 * start, but exclusive at its end: e.g. [src, src + size). 362 * 363 * 3. The last case to consider is if the offset actually falls 364 * within the mapping entry's range. If this is the case, the 365 * offset is considered to be "equal to" the mapping entry and 366 * 0 will be returned. 367 * 368 * NOTE: If the offset is equal to the entry's source offset, 369 * this case applies and 0 will be returned. If the offset is 370 * equal to the entry's source plus its size, this case does 371 * *not* apply (see "NOTE" above for scenario 2), and 1 will be 372 * returned. 373 */ 374 static int 375 dva_mapping_overlap_compare(const void *v_key, const void *v_array_elem) 376 { 377 const uint64_t *key = v_key; 378 const vdev_indirect_mapping_entry_phys_t *array_elem = 379 v_array_elem; 380 uint64_t src_offset = DVA_MAPPING_GET_SRC_OFFSET(array_elem); 381 382 if (*key < src_offset) { 383 return (-1); 384 } else if (*key < src_offset + DVA_GET_ASIZE(&array_elem->vimep_dst)) { 385 return (0); 386 } else { 387 return (1); 388 } 389 } 390 391 /* 392 * Return array entry. 393 */ 394 static vdev_indirect_mapping_entry_phys_t * 395 vdev_indirect_mapping_entry(vdev_indirect_mapping_t *vim, uint64_t index) 396 { 397 uint64_t size; 398 off_t offset = 0; 399 int rc; 400 401 if (vim->vim_phys->vimp_num_entries == 0) 402 return (NULL); 403 404 if (vim->vim_entries == NULL) { 405 uint64_t bsize; 406 407 bsize = vim->vim_dn->dn_datablkszsec << SPA_MINBLOCKSHIFT; 408 size = vim->vim_phys->vimp_num_entries * 409 sizeof (*vim->vim_entries); 410 if (size > bsize) { 411 size = bsize / sizeof (*vim->vim_entries); 412 size *= sizeof (*vim->vim_entries); 413 } 414 vim->vim_entries = malloc(size); 415 if (vim->vim_entries == NULL) 416 return (NULL); 417 vim->vim_num_entries = size / sizeof (*vim->vim_entries); 418 offset = index * sizeof (*vim->vim_entries); 419 } 420 421 /* We have data in vim_entries */ 422 if (offset == 0) { 423 if (index >= vim->vim_entry_offset && 424 index <= vim->vim_entry_offset + vim->vim_num_entries) { 425 index -= vim->vim_entry_offset; 426 return (&vim->vim_entries[index]); 427 } 428 offset = index * sizeof (*vim->vim_entries); 429 } 430 431 vim->vim_entry_offset = index; 432 size = vim->vim_num_entries * sizeof (*vim->vim_entries); 433 rc = dnode_read(vim->vim_spa, vim->vim_dn, offset, vim->vim_entries, 434 size); 435 if (rc != 0) { 436 /* Read error, invalidate vim_entries. */ 437 free(vim->vim_entries); 438 vim->vim_entries = NULL; 439 return (NULL); 440 } 441 index -= vim->vim_entry_offset; 442 return (&vim->vim_entries[index]); 443 } 444 445 /* 446 * Returns the mapping entry for the given offset. 447 * 448 * It's possible that the given offset will not be in the mapping table 449 * (i.e. no mapping entries contain this offset), in which case, the 450 * return value depends on the "next_if_missing" parameter. 451 * 452 * If the offset is not found in the table and "next_if_missing" is 453 * B_FALSE, then NULL will always be returned. The behavior is intended 454 * to allow consumers to get the entry corresponding to the offset 455 * parameter, iff the offset overlaps with an entry in the table. 456 * 457 * If the offset is not found in the table and "next_if_missing" is 458 * B_TRUE, then the entry nearest to the given offset will be returned, 459 * such that the entry's source offset is greater than the offset 460 * passed in (i.e. the "next" mapping entry in the table is returned, if 461 * the offset is missing from the table). If there are no entries whose 462 * source offset is greater than the passed in offset, NULL is returned. 463 */ 464 static vdev_indirect_mapping_entry_phys_t * 465 vdev_indirect_mapping_entry_for_offset(vdev_indirect_mapping_t *vim, 466 uint64_t offset) 467 { 468 ASSERT(vim->vim_phys->vimp_num_entries > 0); 469 470 vdev_indirect_mapping_entry_phys_t *entry; 471 472 uint64_t last = vim->vim_phys->vimp_num_entries - 1; 473 uint64_t base = 0; 474 475 /* 476 * We don't define these inside of the while loop because we use 477 * their value in the case that offset isn't in the mapping. 478 */ 479 uint64_t mid; 480 int result; 481 482 while (last >= base) { 483 mid = base + ((last - base) >> 1); 484 485 entry = vdev_indirect_mapping_entry(vim, mid); 486 if (entry == NULL) 487 break; 488 result = dva_mapping_overlap_compare(&offset, entry); 489 490 if (result == 0) { 491 break; 492 } else if (result < 0) { 493 last = mid - 1; 494 } else { 495 base = mid + 1; 496 } 497 } 498 return (entry); 499 } 500 501 /* 502 * Given an indirect vdev and an extent on that vdev, it duplicates the 503 * physical entries of the indirect mapping that correspond to the extent 504 * to a new array and returns a pointer to it. In addition, copied_entries 505 * is populated with the number of mapping entries that were duplicated. 506 * 507 * Finally, since we are doing an allocation, it is up to the caller to 508 * free the array allocated in this function. 509 */ 510 vdev_indirect_mapping_entry_phys_t * 511 vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *vd, uint64_t offset, 512 uint64_t asize, uint64_t *copied_entries) 513 { 514 vdev_indirect_mapping_entry_phys_t *duplicate_mappings = NULL; 515 vdev_indirect_mapping_t *vim = vd->v_mapping; 516 uint64_t entries = 0; 517 518 vdev_indirect_mapping_entry_phys_t *first_mapping = 519 vdev_indirect_mapping_entry_for_offset(vim, offset); 520 ASSERT3P(first_mapping, !=, NULL); 521 522 vdev_indirect_mapping_entry_phys_t *m = first_mapping; 523 while (asize > 0) { 524 uint64_t size = DVA_GET_ASIZE(&m->vimep_dst); 525 uint64_t inner_offset = offset - DVA_MAPPING_GET_SRC_OFFSET(m); 526 uint64_t inner_size = MIN(asize, size - inner_offset); 527 528 offset += inner_size; 529 asize -= inner_size; 530 entries++; 531 m++; 532 } 533 534 size_t copy_length = entries * sizeof (*first_mapping); 535 duplicate_mappings = malloc(copy_length); 536 if (duplicate_mappings != NULL) 537 bcopy(first_mapping, duplicate_mappings, copy_length); 538 else 539 entries = 0; 540 541 *copied_entries = entries; 542 543 return (duplicate_mappings); 544 } 545 546 static vdev_t * 547 vdev_lookup_top(spa_t *spa, uint64_t vdev) 548 { 549 vdev_t *rvd; 550 vdev_list_t *vlist; 551 552 vlist = &spa->spa_root_vdev->v_children; 553 STAILQ_FOREACH(rvd, vlist, v_childlink) 554 if (rvd->v_id == vdev) 555 break; 556 557 return (rvd); 558 } 559 560 /* 561 * This is a callback for vdev_indirect_remap() which allocates an 562 * indirect_split_t for each split segment and adds it to iv_splits. 563 */ 564 static void 565 vdev_indirect_gather_splits(uint64_t split_offset, vdev_t *vd, uint64_t offset, 566 uint64_t size, void *arg) 567 { 568 int n = 1; 569 zio_t *zio = arg; 570 indirect_vsd_t *iv = zio->io_vsd; 571 572 if (vd->v_read == vdev_indirect_read) 573 return; 574 575 if (vd->v_read == vdev_mirror_read) 576 n = vd->v_nchildren; 577 578 indirect_split_t *is = 579 malloc(offsetof(indirect_split_t, is_child[n])); 580 if (is == NULL) { 581 zio->io_error = ENOMEM; 582 return; 583 } 584 bzero(is, offsetof(indirect_split_t, is_child[n])); 585 586 is->is_children = n; 587 is->is_size = size; 588 is->is_split_offset = split_offset; 589 is->is_target_offset = offset; 590 is->is_vdev = vd; 591 592 /* 593 * Note that we only consider multiple copies of the data for 594 * *mirror* vdevs. We don't for "replacing" or "spare" vdevs, even 595 * though they use the same ops as mirror, because there's only one 596 * "good" copy under the replacing/spare. 597 */ 598 if (vd->v_read == vdev_mirror_read) { 599 int i = 0; 600 vdev_t *kid; 601 602 STAILQ_FOREACH(kid, &vd->v_children, v_childlink) { 603 is->is_child[i++].ic_vdev = kid; 604 } 605 } else { 606 is->is_child[0].ic_vdev = vd; 607 } 608 609 list_insert_tail(&iv->iv_splits, is); 610 } 611 612 static void 613 vdev_indirect_remap(vdev_t *vd, uint64_t offset, uint64_t asize, void *arg) 614 { 615 list_t stack; 616 spa_t *spa = vd->v_spa; 617 zio_t *zio = arg; 618 remap_segment_t *rs; 619 620 list_create(&stack, sizeof (remap_segment_t), 621 offsetof(remap_segment_t, rs_node)); 622 623 rs = rs_alloc(vd, offset, asize, 0); 624 if (rs == NULL) { 625 printf("vdev_indirect_remap: out of memory.\n"); 626 zio->io_error = ENOMEM; 627 } 628 for (; rs != NULL; rs = list_remove_head(&stack)) { 629 vdev_t *v = rs->rs_vd; 630 uint64_t num_entries = 0; 631 /* vdev_indirect_mapping_t *vim = v->v_mapping; */ 632 vdev_indirect_mapping_entry_phys_t *mapping = 633 vdev_indirect_mapping_duplicate_adjacent_entries(v, 634 rs->rs_offset, rs->rs_asize, &num_entries); 635 636 if (num_entries == 0) 637 zio->io_error = ENOMEM; 638 639 for (uint64_t i = 0; i < num_entries; i++) { 640 vdev_indirect_mapping_entry_phys_t *m = &mapping[i]; 641 uint64_t size = DVA_GET_ASIZE(&m->vimep_dst); 642 uint64_t dst_offset = DVA_GET_OFFSET(&m->vimep_dst); 643 uint64_t dst_vdev = DVA_GET_VDEV(&m->vimep_dst); 644 uint64_t inner_offset = rs->rs_offset - 645 DVA_MAPPING_GET_SRC_OFFSET(m); 646 uint64_t inner_size = 647 MIN(rs->rs_asize, size - inner_offset); 648 vdev_t *dst_v = vdev_lookup_top(spa, dst_vdev); 649 650 if (dst_v->v_read == vdev_indirect_read) { 651 remap_segment_t *o; 652 653 o = rs_alloc(dst_v, dst_offset + inner_offset, 654 inner_size, rs->rs_split_offset); 655 if (o == NULL) { 656 printf("vdev_indirect_remap: " 657 "out of memory.\n"); 658 zio->io_error = ENOMEM; 659 break; 660 } 661 662 list_insert_head(&stack, o); 663 } 664 vdev_indirect_gather_splits(rs->rs_split_offset, dst_v, 665 dst_offset + inner_offset, 666 inner_size, arg); 667 668 /* 669 * vdev_indirect_gather_splits can have memory 670 * allocation error, we can not recover from it. 671 */ 672 if (zio->io_error != 0) 673 break; 674 rs->rs_offset += inner_size; 675 rs->rs_asize -= inner_size; 676 rs->rs_split_offset += inner_size; 677 } 678 679 free(mapping); 680 free(rs); 681 if (zio->io_error != 0) 682 break; 683 } 684 685 list_destroy(&stack); 686 } 687 688 static void 689 vdev_indirect_map_free(zio_t *zio) 690 { 691 indirect_vsd_t *iv = zio->io_vsd; 692 indirect_split_t *is; 693 694 while ((is = list_head(&iv->iv_splits)) != NULL) { 695 for (int c = 0; c < is->is_children; c++) { 696 indirect_child_t *ic = &is->is_child[c]; 697 free(ic->ic_data); 698 } 699 list_remove(&iv->iv_splits, is); 700 free(is); 701 } 702 free(iv); 703 } 704 705 static int 706 vdev_indirect_read(vdev_t *vdev, const blkptr_t *bp, void *buf, 707 off_t offset, size_t bytes) 708 { 709 zio_t zio; 710 spa_t *spa = vdev->v_spa; 711 indirect_vsd_t *iv; 712 indirect_split_t *first; 713 int rc = EIO; 714 715 iv = calloc(1, sizeof(*iv)); 716 if (iv == NULL) 717 return (ENOMEM); 718 719 list_create(&iv->iv_splits, 720 sizeof (indirect_split_t), offsetof(indirect_split_t, is_node)); 721 722 bzero(&zio, sizeof(zio)); 723 zio.io_spa = spa; 724 zio.io_bp = (blkptr_t *)bp; 725 zio.io_data = buf; 726 zio.io_size = bytes; 727 zio.io_offset = offset; 728 zio.io_vd = vdev; 729 zio.io_vsd = iv; 730 731 if (vdev->v_mapping == NULL) { 732 vdev_indirect_config_t *vic; 733 734 vic = &vdev->vdev_indirect_config; 735 vdev->v_mapping = vdev_indirect_mapping_open(spa, 736 spa->spa_mos, vic->vic_mapping_object); 737 } 738 739 vdev_indirect_remap(vdev, offset, bytes, &zio); 740 if (zio.io_error != 0) 741 return (zio.io_error); 742 743 first = list_head(&iv->iv_splits); 744 if (first->is_size == zio.io_size) { 745 /* 746 * This is not a split block; we are pointing to the entire 747 * data, which will checksum the same as the original data. 748 * Pass the BP down so that the child i/o can verify the 749 * checksum, and try a different location if available 750 * (e.g. on a mirror). 751 * 752 * While this special case could be handled the same as the 753 * general (split block) case, doing it this way ensures 754 * that the vast majority of blocks on indirect vdevs 755 * (which are not split) are handled identically to blocks 756 * on non-indirect vdevs. This allows us to be less strict 757 * about performance in the general (but rare) case. 758 */ 759 rc = first->is_vdev->v_read(first->is_vdev, zio.io_bp, 760 zio.io_data, first->is_target_offset, bytes); 761 } else { 762 iv->iv_split_block = B_TRUE; 763 /* 764 * Read one copy of each split segment, from the 765 * top-level vdev. Since we don't know the 766 * checksum of each split individually, the child 767 * zio can't ensure that we get the right data. 768 * E.g. if it's a mirror, it will just read from a 769 * random (healthy) leaf vdev. We have to verify 770 * the checksum in vdev_indirect_io_done(). 771 */ 772 for (indirect_split_t *is = list_head(&iv->iv_splits); 773 is != NULL; is = list_next(&iv->iv_splits, is)) { 774 char *ptr = zio.io_data; 775 776 rc = is->is_vdev->v_read(is->is_vdev, zio.io_bp, 777 ptr + is->is_split_offset, is->is_target_offset, 778 is->is_size); 779 } 780 if (zio_checksum_verify(spa, zio.io_bp, zio.io_data)) 781 rc = ECKSUM; 782 else 783 rc = 0; 784 } 785 786 vdev_indirect_map_free(&zio); 787 if (rc == 0) 788 rc = zio.io_error; 789 790 return (rc); 791 } 792 793 static int 794 vdev_disk_read(vdev_t *vdev, const blkptr_t *bp, void *buf, 795 off_t offset, size_t bytes) 796 { 797 798 return (vdev_read_phys(vdev, bp, buf, 799 offset + VDEV_LABEL_START_SIZE, bytes)); 800 } 801 802 static int 803 vdev_missing_read(vdev_t *vdev __unused, const blkptr_t *bp __unused, 804 void *buf __unused, off_t offset __unused, size_t bytes __unused) 805 { 806 807 return (ENOTSUP); 808 } 809 810 static int 811 vdev_mirror_read(vdev_t *vdev, const blkptr_t *bp, void *buf, 812 off_t offset, size_t bytes) 813 { 814 vdev_t *kid; 815 int rc; 816 817 rc = EIO; 818 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) { 819 if (kid->v_state != VDEV_STATE_HEALTHY) 820 continue; 821 rc = kid->v_read(kid, bp, buf, offset, bytes); 822 if (!rc) 823 return (0); 824 } 825 826 return (rc); 827 } 828 829 static int 830 vdev_replacing_read(vdev_t *vdev, const blkptr_t *bp, void *buf, 831 off_t offset, size_t bytes) 832 { 833 vdev_t *kid; 834 835 /* 836 * Here we should have two kids: 837 * First one which is the one we are replacing and we can trust 838 * only this one to have valid data, but it might not be present. 839 * Second one is that one we are replacing with. It is most likely 840 * healthy, but we can't trust it has needed data, so we won't use it. 841 */ 842 kid = STAILQ_FIRST(&vdev->v_children); 843 if (kid == NULL) 844 return (EIO); 845 if (kid->v_state != VDEV_STATE_HEALTHY) 846 return (EIO); 847 return (kid->v_read(kid, bp, buf, offset, bytes)); 848 } 849 850 static vdev_t * 851 vdev_find(uint64_t guid) 852 { 853 vdev_t *vdev; 854 855 STAILQ_FOREACH(vdev, &zfs_vdevs, v_alllink) 856 if (vdev->v_guid == guid) 857 return (vdev); 858 859 return (0); 860 } 861 862 static vdev_t * 863 vdev_create(uint64_t guid, vdev_read_t *_read) 864 { 865 vdev_t *vdev; 866 vdev_indirect_config_t *vic; 867 868 vdev = calloc(1, sizeof(vdev_t)); 869 if (vdev != NULL) { 870 STAILQ_INIT(&vdev->v_children); 871 vdev->v_guid = guid; 872 vdev->v_read = _read; 873 874 /* 875 * root vdev has no read function, we use this fact to 876 * skip setting up data we do not need for root vdev. 877 * We only point root vdev from spa. 878 */ 879 if (_read != NULL) { 880 vic = &vdev->vdev_indirect_config; 881 vic->vic_prev_indirect_vdev = UINT64_MAX; 882 STAILQ_INSERT_TAIL(&zfs_vdevs, vdev, v_alllink); 883 } 884 } 885 886 return (vdev); 887 } 888 889 static void 890 vdev_set_initial_state(vdev_t *vdev, const nvlist_t *nvlist) 891 { 892 uint64_t is_offline, is_faulted, is_degraded, is_removed, isnt_present; 893 uint64_t is_log; 894 895 is_offline = is_removed = is_faulted = is_degraded = isnt_present = 0; 896 is_log = 0; 897 (void) nvlist_find(nvlist, ZPOOL_CONFIG_OFFLINE, DATA_TYPE_UINT64, NULL, 898 &is_offline, NULL); 899 (void) nvlist_find(nvlist, ZPOOL_CONFIG_REMOVED, DATA_TYPE_UINT64, NULL, 900 &is_removed, NULL); 901 (void) nvlist_find(nvlist, ZPOOL_CONFIG_FAULTED, DATA_TYPE_UINT64, NULL, 902 &is_faulted, NULL); 903 (void) nvlist_find(nvlist, ZPOOL_CONFIG_DEGRADED, DATA_TYPE_UINT64, 904 NULL, &is_degraded, NULL); 905 (void) nvlist_find(nvlist, ZPOOL_CONFIG_NOT_PRESENT, DATA_TYPE_UINT64, 906 NULL, &isnt_present, NULL); 907 (void) nvlist_find(nvlist, ZPOOL_CONFIG_IS_LOG, DATA_TYPE_UINT64, NULL, 908 &is_log, NULL); 909 910 if (is_offline != 0) 911 vdev->v_state = VDEV_STATE_OFFLINE; 912 else if (is_removed != 0) 913 vdev->v_state = VDEV_STATE_REMOVED; 914 else if (is_faulted != 0) 915 vdev->v_state = VDEV_STATE_FAULTED; 916 else if (is_degraded != 0) 917 vdev->v_state = VDEV_STATE_DEGRADED; 918 else if (isnt_present != 0) 919 vdev->v_state = VDEV_STATE_CANT_OPEN; 920 921 vdev->v_islog = is_log != 0; 922 } 923 924 static int 925 vdev_init(uint64_t guid, const nvlist_t *nvlist, vdev_t **vdevp) 926 { 927 uint64_t id, ashift, asize, nparity; 928 const char *path; 929 const char *type; 930 int len, pathlen; 931 char *name; 932 vdev_t *vdev; 933 934 if (nvlist_find(nvlist, ZPOOL_CONFIG_ID, DATA_TYPE_UINT64, NULL, &id, 935 NULL) || 936 nvlist_find(nvlist, ZPOOL_CONFIG_TYPE, DATA_TYPE_STRING, NULL, 937 &type, &len)) { 938 return (ENOENT); 939 } 940 941 if (memcmp(type, VDEV_TYPE_MIRROR, len) != 0 && 942 memcmp(type, VDEV_TYPE_DISK, len) != 0 && 943 #ifdef ZFS_TEST 944 memcmp(type, VDEV_TYPE_FILE, len) != 0 && 945 #endif 946 memcmp(type, VDEV_TYPE_RAIDZ, len) != 0 && 947 memcmp(type, VDEV_TYPE_INDIRECT, len) != 0 && 948 memcmp(type, VDEV_TYPE_REPLACING, len) != 0 && 949 memcmp(type, VDEV_TYPE_HOLE, len) != 0) { 950 printf("ZFS: can only boot from disk, mirror, raidz1, " 951 "raidz2 and raidz3 vdevs, got: %.*s\n", len, type); 952 return (EIO); 953 } 954 955 if (memcmp(type, VDEV_TYPE_MIRROR, len) == 0) 956 vdev = vdev_create(guid, vdev_mirror_read); 957 else if (memcmp(type, VDEV_TYPE_RAIDZ, len) == 0) 958 vdev = vdev_create(guid, vdev_raidz_read); 959 else if (memcmp(type, VDEV_TYPE_REPLACING, len) == 0) 960 vdev = vdev_create(guid, vdev_replacing_read); 961 else if (memcmp(type, VDEV_TYPE_INDIRECT, len) == 0) { 962 vdev_indirect_config_t *vic; 963 964 vdev = vdev_create(guid, vdev_indirect_read); 965 if (vdev != NULL) { 966 vdev->v_state = VDEV_STATE_HEALTHY; 967 vic = &vdev->vdev_indirect_config; 968 969 nvlist_find(nvlist, 970 ZPOOL_CONFIG_INDIRECT_OBJECT, 971 DATA_TYPE_UINT64, 972 NULL, &vic->vic_mapping_object, NULL); 973 nvlist_find(nvlist, 974 ZPOOL_CONFIG_INDIRECT_BIRTHS, 975 DATA_TYPE_UINT64, 976 NULL, &vic->vic_births_object, NULL); 977 nvlist_find(nvlist, 978 ZPOOL_CONFIG_PREV_INDIRECT_VDEV, 979 DATA_TYPE_UINT64, 980 NULL, &vic->vic_prev_indirect_vdev, NULL); 981 } 982 } else if (memcmp(type, VDEV_TYPE_HOLE, len) == 0) { 983 vdev = vdev_create(guid, vdev_missing_read); 984 } else { 985 vdev = vdev_create(guid, vdev_disk_read); 986 } 987 988 if (vdev == NULL) 989 return (ENOMEM); 990 991 vdev_set_initial_state(vdev, nvlist); 992 vdev->v_id = id; 993 if (nvlist_find(nvlist, ZPOOL_CONFIG_ASHIFT, 994 DATA_TYPE_UINT64, NULL, &ashift, NULL) == 0) 995 vdev->v_ashift = ashift; 996 997 if (nvlist_find(nvlist, ZPOOL_CONFIG_ASIZE, 998 DATA_TYPE_UINT64, NULL, &asize, NULL) == 0) { 999 vdev->v_psize = asize + 1000 VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; 1001 } 1002 1003 if (nvlist_find(nvlist, ZPOOL_CONFIG_NPARITY, 1004 DATA_TYPE_UINT64, NULL, &nparity, NULL) == 0) 1005 vdev->v_nparity = nparity; 1006 1007 if (nvlist_find(nvlist, ZPOOL_CONFIG_PATH, 1008 DATA_TYPE_STRING, NULL, &path, &pathlen) == 0) { 1009 char prefix[] = "/dev/"; 1010 1011 len = strlen(prefix); 1012 if (len < pathlen && memcmp(path, prefix, len) == 0) { 1013 path += len; 1014 pathlen -= len; 1015 } 1016 name = malloc(pathlen + 1); 1017 bcopy(path, name, pathlen); 1018 name[pathlen] = '\0'; 1019 vdev->v_name = name; 1020 } else { 1021 name = NULL; 1022 if (memcmp(type, VDEV_TYPE_RAIDZ, len) == 0) { 1023 if (vdev->v_nparity < 1 || 1024 vdev->v_nparity > 3) { 1025 printf("ZFS: invalid raidz parity: %d\n", 1026 vdev->v_nparity); 1027 return (EIO); 1028 } 1029 (void) asprintf(&name, "%.*s%d-%" PRIu64, len, type, 1030 vdev->v_nparity, id); 1031 } else { 1032 (void) asprintf(&name, "%.*s-%" PRIu64, len, type, id); 1033 } 1034 vdev->v_name = name; 1035 } 1036 *vdevp = vdev; 1037 return (0); 1038 } 1039 1040 /* 1041 * Find slot for vdev. We return either NULL to signal to use 1042 * STAILQ_INSERT_HEAD, or we return link element to be used with 1043 * STAILQ_INSERT_AFTER. 1044 */ 1045 static vdev_t * 1046 vdev_find_previous(vdev_t *top_vdev, vdev_t *vdev) 1047 { 1048 vdev_t *v, *previous; 1049 1050 if (STAILQ_EMPTY(&top_vdev->v_children)) 1051 return (NULL); 1052 1053 previous = NULL; 1054 STAILQ_FOREACH(v, &top_vdev->v_children, v_childlink) { 1055 if (v->v_id > vdev->v_id) 1056 return (previous); 1057 1058 if (v->v_id == vdev->v_id) 1059 return (v); 1060 1061 if (v->v_id < vdev->v_id) 1062 previous = v; 1063 } 1064 return (previous); 1065 } 1066 1067 static size_t 1068 vdev_child_count(vdev_t *vdev) 1069 { 1070 vdev_t *v; 1071 size_t count; 1072 1073 count = 0; 1074 STAILQ_FOREACH(v, &vdev->v_children, v_childlink) { 1075 count++; 1076 } 1077 return (count); 1078 } 1079 1080 /* 1081 * Insert vdev into top_vdev children list. List is ordered by v_id. 1082 */ 1083 static void 1084 vdev_insert(vdev_t *top_vdev, vdev_t *vdev) 1085 { 1086 vdev_t *previous; 1087 size_t count; 1088 1089 /* 1090 * The top level vdev can appear in random order, depending how 1091 * the firmware is presenting the disk devices. 1092 * However, we will insert vdev to create list ordered by v_id, 1093 * so we can use either STAILQ_INSERT_HEAD or STAILQ_INSERT_AFTER 1094 * as STAILQ does not have insert before. 1095 */ 1096 previous = vdev_find_previous(top_vdev, vdev); 1097 1098 if (previous == NULL) { 1099 STAILQ_INSERT_HEAD(&top_vdev->v_children, vdev, v_childlink); 1100 } else if (previous->v_id == vdev->v_id) { 1101 /* 1102 * This vdev was configured from label config, 1103 * do not insert duplicate. 1104 */ 1105 return; 1106 } else { 1107 STAILQ_INSERT_AFTER(&top_vdev->v_children, previous, vdev, 1108 v_childlink); 1109 } 1110 1111 count = vdev_child_count(top_vdev); 1112 if (top_vdev->v_nchildren < count) 1113 top_vdev->v_nchildren = count; 1114 } 1115 1116 static int 1117 vdev_from_nvlist(spa_t *spa, uint64_t top_guid, const nvlist_t *nvlist) 1118 { 1119 vdev_t *top_vdev, *vdev; 1120 nvlist_t **kids = NULL; 1121 int rc, nkids; 1122 1123 /* Get top vdev. */ 1124 top_vdev = vdev_find(top_guid); 1125 if (top_vdev == NULL) { 1126 rc = vdev_init(top_guid, nvlist, &top_vdev); 1127 if (rc != 0) 1128 return (rc); 1129 top_vdev->v_spa = spa; 1130 top_vdev->v_top = top_vdev; 1131 vdev_insert(spa->spa_root_vdev, top_vdev); 1132 } 1133 1134 /* Add children if there are any. */ 1135 rc = nvlist_find(nvlist, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY, 1136 &nkids, &kids, NULL); 1137 if (rc == 0) { 1138 for (int i = 0; i < nkids; i++) { 1139 uint64_t guid; 1140 1141 rc = nvlist_find(kids[i], ZPOOL_CONFIG_GUID, 1142 DATA_TYPE_UINT64, NULL, &guid, NULL); 1143 if (rc != 0) 1144 goto done; 1145 1146 rc = vdev_init(guid, kids[i], &vdev); 1147 if (rc != 0) 1148 goto done; 1149 1150 vdev->v_spa = spa; 1151 vdev->v_top = top_vdev; 1152 vdev_insert(top_vdev, vdev); 1153 } 1154 } else { 1155 /* 1156 * When there are no children, nvlist_find() does return 1157 * error, reset it because leaf devices have no children. 1158 */ 1159 rc = 0; 1160 } 1161 done: 1162 if (kids != NULL) { 1163 for (int i = 0; i < nkids; i++) 1164 nvlist_destroy(kids[i]); 1165 free(kids); 1166 } 1167 1168 return (rc); 1169 } 1170 1171 static int 1172 vdev_init_from_label(spa_t *spa, const nvlist_t *nvlist) 1173 { 1174 uint64_t pool_guid, top_guid; 1175 nvlist_t *vdevs; 1176 int rc; 1177 1178 if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64, 1179 NULL, &pool_guid, NULL) || 1180 nvlist_find(nvlist, ZPOOL_CONFIG_TOP_GUID, DATA_TYPE_UINT64, 1181 NULL, &top_guid, NULL) || 1182 nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST, 1183 NULL, &vdevs, NULL)) { 1184 printf("ZFS: can't find vdev details\n"); 1185 return (ENOENT); 1186 } 1187 1188 rc = vdev_from_nvlist(spa, top_guid, vdevs); 1189 nvlist_destroy(vdevs); 1190 return (rc); 1191 } 1192 1193 static void 1194 vdev_set_state(vdev_t *vdev) 1195 { 1196 vdev_t *kid; 1197 int good_kids; 1198 int bad_kids; 1199 1200 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) { 1201 vdev_set_state(kid); 1202 } 1203 1204 /* 1205 * A mirror or raidz is healthy if all its kids are healthy. A 1206 * mirror is degraded if any of its kids is healthy; a raidz 1207 * is degraded if at most nparity kids are offline. 1208 */ 1209 if (STAILQ_FIRST(&vdev->v_children)) { 1210 good_kids = 0; 1211 bad_kids = 0; 1212 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) { 1213 if (kid->v_state == VDEV_STATE_HEALTHY) 1214 good_kids++; 1215 else 1216 bad_kids++; 1217 } 1218 if (bad_kids == 0) { 1219 vdev->v_state = VDEV_STATE_HEALTHY; 1220 } else { 1221 if (vdev->v_read == vdev_mirror_read) { 1222 if (good_kids) { 1223 vdev->v_state = VDEV_STATE_DEGRADED; 1224 } else { 1225 vdev->v_state = VDEV_STATE_OFFLINE; 1226 } 1227 } else if (vdev->v_read == vdev_raidz_read) { 1228 if (bad_kids > vdev->v_nparity) { 1229 vdev->v_state = VDEV_STATE_OFFLINE; 1230 } else { 1231 vdev->v_state = VDEV_STATE_DEGRADED; 1232 } 1233 } 1234 } 1235 } 1236 } 1237 1238 static int 1239 vdev_update_from_nvlist(uint64_t top_guid, const nvlist_t *nvlist) 1240 { 1241 vdev_t *vdev; 1242 nvlist_t **kids = NULL; 1243 int rc, nkids; 1244 1245 /* Update top vdev. */ 1246 vdev = vdev_find(top_guid); 1247 if (vdev != NULL) 1248 vdev_set_initial_state(vdev, nvlist); 1249 1250 /* Update children if there are any. */ 1251 rc = nvlist_find(nvlist, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY, 1252 &nkids, &kids, NULL); 1253 if (rc == 0) { 1254 for (int i = 0; i < nkids; i++) { 1255 uint64_t guid; 1256 1257 rc = nvlist_find(kids[i], ZPOOL_CONFIG_GUID, 1258 DATA_TYPE_UINT64, NULL, &guid, NULL); 1259 if (rc != 0) 1260 break; 1261 1262 vdev = vdev_find(guid); 1263 if (vdev != NULL) 1264 vdev_set_initial_state(vdev, kids[i]); 1265 } 1266 } else { 1267 rc = 0; 1268 } 1269 if (kids != NULL) { 1270 for (int i = 0; i < nkids; i++) 1271 nvlist_destroy(kids[i]); 1272 free(kids); 1273 } 1274 1275 return (rc); 1276 } 1277 1278 static int 1279 vdev_init_from_nvlist(spa_t *spa, const nvlist_t *nvlist) 1280 { 1281 uint64_t pool_guid, vdev_children; 1282 nvlist_t *vdevs = NULL, **kids = NULL; 1283 int rc, nkids; 1284 1285 if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64, 1286 NULL, &pool_guid, NULL) || 1287 nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_CHILDREN, DATA_TYPE_UINT64, 1288 NULL, &vdev_children, NULL) || 1289 nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST, 1290 NULL, &vdevs, NULL)) { 1291 printf("ZFS: can't find vdev details\n"); 1292 return (ENOENT); 1293 } 1294 1295 /* Wrong guid?! */ 1296 if (spa->spa_guid != pool_guid) { 1297 nvlist_destroy(vdevs); 1298 return (EINVAL); 1299 } 1300 1301 spa->spa_root_vdev->v_nchildren = vdev_children; 1302 1303 rc = nvlist_find(vdevs, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY, 1304 &nkids, &kids, NULL); 1305 nvlist_destroy(vdevs); 1306 1307 /* 1308 * MOS config has at least one child for root vdev. 1309 */ 1310 if (rc != 0) 1311 return (rc); 1312 1313 for (int i = 0; i < nkids; i++) { 1314 uint64_t guid; 1315 vdev_t *vdev; 1316 1317 rc = nvlist_find(kids[i], ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64, 1318 NULL, &guid, NULL); 1319 if (rc != 0) 1320 break; 1321 vdev = vdev_find(guid); 1322 /* 1323 * Top level vdev is missing, create it. 1324 */ 1325 if (vdev == NULL) 1326 rc = vdev_from_nvlist(spa, guid, kids[i]); 1327 else 1328 rc = vdev_update_from_nvlist(guid, kids[i]); 1329 if (rc != 0) 1330 break; 1331 } 1332 if (kids != NULL) { 1333 for (int i = 0; i < nkids; i++) 1334 nvlist_destroy(kids[i]); 1335 free(kids); 1336 } 1337 1338 /* 1339 * Re-evaluate top-level vdev state. 1340 */ 1341 vdev_set_state(spa->spa_root_vdev); 1342 1343 return (rc); 1344 } 1345 1346 static spa_t * 1347 spa_find_by_guid(uint64_t guid) 1348 { 1349 spa_t *spa; 1350 1351 STAILQ_FOREACH(spa, &zfs_pools, spa_link) 1352 if (spa->spa_guid == guid) 1353 return (spa); 1354 1355 return (NULL); 1356 } 1357 1358 static spa_t * 1359 spa_find_by_name(const char *name) 1360 { 1361 spa_t *spa; 1362 1363 STAILQ_FOREACH(spa, &zfs_pools, spa_link) 1364 if (strcmp(spa->spa_name, name) == 0) 1365 return (spa); 1366 1367 return (NULL); 1368 } 1369 1370 static spa_t * 1371 spa_create(uint64_t guid, const char *name) 1372 { 1373 spa_t *spa; 1374 1375 if ((spa = calloc(1, sizeof(spa_t))) == NULL) 1376 return (NULL); 1377 if ((spa->spa_name = strdup(name)) == NULL) { 1378 free(spa); 1379 return (NULL); 1380 } 1381 spa->spa_uberblock = &spa->spa_uberblock_master; 1382 spa->spa_mos = &spa->spa_mos_master; 1383 spa->spa_guid = guid; 1384 spa->spa_root_vdev = vdev_create(guid, NULL); 1385 if (spa->spa_root_vdev == NULL) { 1386 free(spa->spa_name); 1387 free(spa); 1388 return (NULL); 1389 } 1390 spa->spa_root_vdev->v_name = strdup("root"); 1391 STAILQ_INSERT_TAIL(&zfs_pools, spa, spa_link); 1392 1393 return (spa); 1394 } 1395 1396 static const char * 1397 state_name(vdev_state_t state) 1398 { 1399 static const char *names[] = { 1400 "UNKNOWN", 1401 "CLOSED", 1402 "OFFLINE", 1403 "REMOVED", 1404 "CANT_OPEN", 1405 "FAULTED", 1406 "DEGRADED", 1407 "ONLINE" 1408 }; 1409 return (names[state]); 1410 } 1411 1412 #ifdef BOOT2 1413 1414 #define pager_printf printf 1415 1416 #else 1417 1418 static int 1419 pager_printf(const char *fmt, ...) 1420 { 1421 char line[80]; 1422 va_list args; 1423 1424 va_start(args, fmt); 1425 vsnprintf(line, sizeof(line), fmt, args); 1426 va_end(args); 1427 return (pager_output(line)); 1428 } 1429 1430 #endif 1431 1432 #define STATUS_FORMAT " %s %s\n" 1433 1434 static int 1435 print_state(int indent, const char *name, vdev_state_t state) 1436 { 1437 int i; 1438 char buf[512]; 1439 1440 buf[0] = 0; 1441 for (i = 0; i < indent; i++) 1442 strcat(buf, " "); 1443 strcat(buf, name); 1444 return (pager_printf(STATUS_FORMAT, buf, state_name(state))); 1445 } 1446 1447 static int 1448 vdev_status(vdev_t *vdev, int indent) 1449 { 1450 vdev_t *kid; 1451 int ret; 1452 1453 if (vdev->v_islog) { 1454 (void) pager_output(" logs\n"); 1455 indent++; 1456 } 1457 1458 ret = print_state(indent, vdev->v_name, vdev->v_state); 1459 if (ret != 0) 1460 return (ret); 1461 1462 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) { 1463 ret = vdev_status(kid, indent + 1); 1464 if (ret != 0) 1465 return (ret); 1466 } 1467 return (ret); 1468 } 1469 1470 static int 1471 spa_status(spa_t *spa) 1472 { 1473 static char bootfs[ZFS_MAXNAMELEN]; 1474 uint64_t rootid; 1475 vdev_list_t *vlist; 1476 vdev_t *vdev; 1477 int good_kids, bad_kids, degraded_kids, ret; 1478 vdev_state_t state; 1479 1480 ret = pager_printf(" pool: %s\n", spa->spa_name); 1481 if (ret != 0) 1482 return (ret); 1483 1484 if (zfs_get_root(spa, &rootid) == 0 && 1485 zfs_rlookup(spa, rootid, bootfs) == 0) { 1486 if (bootfs[0] == '\0') 1487 ret = pager_printf("bootfs: %s\n", spa->spa_name); 1488 else 1489 ret = pager_printf("bootfs: %s/%s\n", spa->spa_name, 1490 bootfs); 1491 if (ret != 0) 1492 return (ret); 1493 } 1494 ret = pager_printf("config:\n\n"); 1495 if (ret != 0) 1496 return (ret); 1497 ret = pager_printf(STATUS_FORMAT, "NAME", "STATE"); 1498 if (ret != 0) 1499 return (ret); 1500 1501 good_kids = 0; 1502 degraded_kids = 0; 1503 bad_kids = 0; 1504 vlist = &spa->spa_root_vdev->v_children; 1505 STAILQ_FOREACH(vdev, vlist, v_childlink) { 1506 if (vdev->v_state == VDEV_STATE_HEALTHY) 1507 good_kids++; 1508 else if (vdev->v_state == VDEV_STATE_DEGRADED) 1509 degraded_kids++; 1510 else 1511 bad_kids++; 1512 } 1513 1514 state = VDEV_STATE_CLOSED; 1515 if (good_kids > 0 && (degraded_kids + bad_kids) == 0) 1516 state = VDEV_STATE_HEALTHY; 1517 else if ((good_kids + degraded_kids) > 0) 1518 state = VDEV_STATE_DEGRADED; 1519 1520 ret = print_state(0, spa->spa_name, state); 1521 if (ret != 0) 1522 return (ret); 1523 1524 STAILQ_FOREACH(vdev, vlist, v_childlink) { 1525 ret = vdev_status(vdev, 1); 1526 if (ret != 0) 1527 return (ret); 1528 } 1529 return (ret); 1530 } 1531 1532 static int 1533 spa_all_status(void) 1534 { 1535 spa_t *spa; 1536 int first = 1, ret = 0; 1537 1538 STAILQ_FOREACH(spa, &zfs_pools, spa_link) { 1539 if (!first) { 1540 ret = pager_printf("\n"); 1541 if (ret != 0) 1542 return (ret); 1543 } 1544 first = 0; 1545 ret = spa_status(spa); 1546 if (ret != 0) 1547 return (ret); 1548 } 1549 return (ret); 1550 } 1551 1552 static uint64_t 1553 vdev_label_offset(uint64_t psize, int l, uint64_t offset) 1554 { 1555 uint64_t label_offset; 1556 1557 if (l < VDEV_LABELS / 2) 1558 label_offset = 0; 1559 else 1560 label_offset = psize - VDEV_LABELS * sizeof (vdev_label_t); 1561 1562 return (offset + l * sizeof (vdev_label_t) + label_offset); 1563 } 1564 1565 static int 1566 vdev_uberblock_compare(const uberblock_t *ub1, const uberblock_t *ub2) 1567 { 1568 unsigned int seq1 = 0; 1569 unsigned int seq2 = 0; 1570 int cmp = AVL_CMP(ub1->ub_txg, ub2->ub_txg); 1571 1572 if (cmp != 0) 1573 return (cmp); 1574 1575 cmp = AVL_CMP(ub1->ub_timestamp, ub2->ub_timestamp); 1576 if (cmp != 0) 1577 return (cmp); 1578 1579 if (MMP_VALID(ub1) && MMP_SEQ_VALID(ub1)) 1580 seq1 = MMP_SEQ(ub1); 1581 1582 if (MMP_VALID(ub2) && MMP_SEQ_VALID(ub2)) 1583 seq2 = MMP_SEQ(ub2); 1584 1585 return (AVL_CMP(seq1, seq2)); 1586 } 1587 1588 static int 1589 uberblock_verify(uberblock_t *ub) 1590 { 1591 if (ub->ub_magic == BSWAP_64((uint64_t)UBERBLOCK_MAGIC)) { 1592 byteswap_uint64_array(ub, sizeof (uberblock_t)); 1593 } 1594 1595 if (ub->ub_magic != UBERBLOCK_MAGIC || 1596 !SPA_VERSION_IS_SUPPORTED(ub->ub_version)) 1597 return (EINVAL); 1598 1599 return (0); 1600 } 1601 1602 static int 1603 vdev_label_read(vdev_t *vd, int l, void *buf, uint64_t offset, 1604 size_t size) 1605 { 1606 blkptr_t bp; 1607 off_t off; 1608 1609 off = vdev_label_offset(vd->v_psize, l, offset); 1610 1611 BP_ZERO(&bp); 1612 BP_SET_LSIZE(&bp, size); 1613 BP_SET_PSIZE(&bp, size); 1614 BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_LABEL); 1615 BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF); 1616 DVA_SET_OFFSET(BP_IDENTITY(&bp), off); 1617 ZIO_SET_CHECKSUM(&bp.blk_cksum, off, 0, 0, 0); 1618 1619 return (vdev_read_phys(vd, &bp, buf, off, size)); 1620 } 1621 1622 /* 1623 * We do need to be sure we write to correct location. 1624 * Our vdev label does consist of 4 fields: 1625 * pad1 (8k), reserved. 1626 * bootenv (8k), checksummed, previously reserved, may contian garbage. 1627 * vdev_phys (112k), checksummed 1628 * uberblock ring (128k), checksummed. 1629 * 1630 * Since bootenv area may contain garbage, we can not reliably read it, as 1631 * we can get checksum errors. 1632 * Next best thing is vdev_phys - it is just after bootenv. It still may 1633 * be corrupted, but in such case we will miss this one write. 1634 */ 1635 static int 1636 vdev_label_write_validate(vdev_t *vd, int l, uint64_t offset) 1637 { 1638 uint64_t off, o_phys; 1639 void *buf; 1640 size_t size = VDEV_PHYS_SIZE; 1641 int rc; 1642 1643 o_phys = offsetof(vdev_label_t, vl_vdev_phys); 1644 off = vdev_label_offset(vd->v_psize, l, o_phys); 1645 1646 /* off should be 8K from bootenv */ 1647 if (vdev_label_offset(vd->v_psize, l, offset) + VDEV_PAD_SIZE != off) 1648 return (EINVAL); 1649 1650 buf = malloc(size); 1651 if (buf == NULL) 1652 return (ENOMEM); 1653 1654 /* Read vdev_phys */ 1655 rc = vdev_label_read(vd, l, buf, o_phys, size); 1656 free(buf); 1657 return (rc); 1658 } 1659 1660 static int 1661 vdev_label_write(vdev_t *vd, int l, vdev_boot_envblock_t *be, uint64_t offset) 1662 { 1663 zio_checksum_info_t *ci; 1664 zio_cksum_t cksum; 1665 off_t off; 1666 size_t size = VDEV_PAD_SIZE; 1667 int rc; 1668 1669 if (vd->v_phys_write == NULL) 1670 return (ENOTSUP); 1671 1672 off = vdev_label_offset(vd->v_psize, l, offset); 1673 1674 rc = vdev_label_write_validate(vd, l, offset); 1675 if (rc != 0) { 1676 return (rc); 1677 } 1678 1679 ci = &zio_checksum_table[ZIO_CHECKSUM_LABEL]; 1680 be->vbe_zbt.zec_magic = ZEC_MAGIC; 1681 zio_checksum_label_verifier(&be->vbe_zbt.zec_cksum, off); 1682 ci->ci_func[0](be, size, NULL, &cksum); 1683 be->vbe_zbt.zec_cksum = cksum; 1684 1685 return (vdev_write_phys(vd, be, off, size)); 1686 } 1687 1688 static int 1689 vdev_write_bootenv_impl(vdev_t *vdev, vdev_boot_envblock_t *be) 1690 { 1691 vdev_t *kid; 1692 int rv = 0, rc; 1693 1694 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) { 1695 if (kid->v_state != VDEV_STATE_HEALTHY) 1696 continue; 1697 rc = vdev_write_bootenv_impl(kid, be); 1698 if (rv == 0) 1699 rv = rc; 1700 } 1701 1702 /* 1703 * Non-leaf vdevs do not have v_phys_write. 1704 */ 1705 if (vdev->v_phys_write == NULL) 1706 return (rv); 1707 1708 for (int l = 0; l < VDEV_LABELS; l++) { 1709 rc = vdev_label_write(vdev, l, be, 1710 offsetof(vdev_label_t, vl_be)); 1711 if (rc != 0) { 1712 printf("failed to write bootenv to %s label %d: %d\n", 1713 vdev->v_name ? vdev->v_name : "unknown", l, rc); 1714 rv = rc; 1715 } 1716 } 1717 return (rv); 1718 } 1719 1720 int 1721 vdev_write_bootenv(vdev_t *vdev, nvlist_t *nvl) 1722 { 1723 vdev_boot_envblock_t *be; 1724 nvlist_t nv, *nvp; 1725 uint64_t version; 1726 int rv; 1727 1728 if (nvl->nv_size > sizeof(be->vbe_bootenv)) 1729 return (E2BIG); 1730 1731 version = VB_RAW; 1732 nvp = vdev_read_bootenv(vdev); 1733 if (nvp != NULL) { 1734 nvlist_find(nvp, BOOTENV_VERSION, DATA_TYPE_UINT64, NULL, 1735 &version, NULL); 1736 nvlist_destroy(nvp); 1737 } 1738 1739 be = calloc(1, sizeof(*be)); 1740 if (be == NULL) 1741 return (ENOMEM); 1742 1743 be->vbe_version = version; 1744 switch (version) { 1745 case VB_RAW: 1746 /* 1747 * If there is no envmap, we will just wipe bootenv. 1748 */ 1749 nvlist_find(nvl, GRUB_ENVMAP, DATA_TYPE_STRING, NULL, 1750 be->vbe_bootenv, NULL); 1751 rv = 0; 1752 break; 1753 1754 case VB_NVLIST: 1755 nv.nv_header = nvl->nv_header; 1756 nv.nv_asize = nvl->nv_asize; 1757 nv.nv_size = nvl->nv_size; 1758 1759 bcopy(&nv.nv_header, be->vbe_bootenv, sizeof(nv.nv_header)); 1760 nv.nv_data = be->vbe_bootenv + sizeof(nvs_header_t); 1761 bcopy(nvl->nv_data, nv.nv_data, nv.nv_size); 1762 rv = nvlist_export(&nv); 1763 break; 1764 1765 default: 1766 rv = EINVAL; 1767 break; 1768 } 1769 1770 if (rv == 0) { 1771 be->vbe_version = htobe64(be->vbe_version); 1772 rv = vdev_write_bootenv_impl(vdev, be); 1773 } 1774 free(be); 1775 return (rv); 1776 } 1777 1778 /* 1779 * Read the bootenv area from pool label, return the nvlist from it. 1780 * We return from first successful read. 1781 */ 1782 nvlist_t * 1783 vdev_read_bootenv(vdev_t *vdev) 1784 { 1785 vdev_t *kid; 1786 nvlist_t *benv; 1787 vdev_boot_envblock_t *be; 1788 char *command; 1789 bool ok; 1790 int rv; 1791 1792 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) { 1793 if (kid->v_state != VDEV_STATE_HEALTHY) 1794 continue; 1795 1796 benv = vdev_read_bootenv(kid); 1797 if (benv != NULL) 1798 return (benv); 1799 } 1800 1801 be = malloc(sizeof (*be)); 1802 if (be == NULL) 1803 return (NULL); 1804 1805 rv = 0; 1806 for (int l = 0; l < VDEV_LABELS; l++) { 1807 rv = vdev_label_read(vdev, l, be, 1808 offsetof(vdev_label_t, vl_be), 1809 sizeof (*be)); 1810 if (rv == 0) 1811 break; 1812 } 1813 if (rv != 0) { 1814 free(be); 1815 return (NULL); 1816 } 1817 1818 be->vbe_version = be64toh(be->vbe_version); 1819 switch (be->vbe_version) { 1820 case VB_RAW: 1821 /* 1822 * we have textual data in vbe_bootenv, create nvlist 1823 * with key "envmap". 1824 */ 1825 benv = nvlist_create(NV_UNIQUE_NAME); 1826 if (benv != NULL) { 1827 if (*be->vbe_bootenv == '\0') { 1828 nvlist_add_uint64(benv, BOOTENV_VERSION, 1829 VB_NVLIST); 1830 break; 1831 } 1832 nvlist_add_uint64(benv, BOOTENV_VERSION, VB_RAW); 1833 be->vbe_bootenv[sizeof (be->vbe_bootenv) - 1] = '\0'; 1834 nvlist_add_string(benv, GRUB_ENVMAP, be->vbe_bootenv); 1835 } 1836 break; 1837 1838 case VB_NVLIST: 1839 benv = nvlist_import(be->vbe_bootenv, sizeof(be->vbe_bootenv)); 1840 break; 1841 1842 default: 1843 command = (char *)be; 1844 ok = false; 1845 1846 /* Check for legacy zfsbootcfg command string */ 1847 for (int i = 0; command[i] != '\0'; i++) { 1848 if (iscntrl(command[i])) { 1849 ok = false; 1850 break; 1851 } else { 1852 ok = true; 1853 } 1854 } 1855 benv = nvlist_create(NV_UNIQUE_NAME); 1856 if (benv != NULL) { 1857 if (ok) 1858 nvlist_add_string(benv, FREEBSD_BOOTONCE, 1859 command); 1860 else 1861 nvlist_add_uint64(benv, BOOTENV_VERSION, 1862 VB_NVLIST); 1863 } 1864 break; 1865 } 1866 free(be); 1867 return (benv); 1868 } 1869 1870 static uint64_t 1871 vdev_get_label_asize(nvlist_t *nvl) 1872 { 1873 nvlist_t *vdevs; 1874 uint64_t asize; 1875 const char *type; 1876 int len; 1877 1878 asize = 0; 1879 /* Get vdev tree */ 1880 if (nvlist_find(nvl, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST, 1881 NULL, &vdevs, NULL) != 0) 1882 return (asize); 1883 1884 /* 1885 * Get vdev type. We will calculate asize for raidz, mirror and disk. 1886 * For raidz, the asize is raw size of all children. 1887 */ 1888 if (nvlist_find(vdevs, ZPOOL_CONFIG_TYPE, DATA_TYPE_STRING, 1889 NULL, &type, &len) != 0) 1890 goto done; 1891 1892 if (memcmp(type, VDEV_TYPE_MIRROR, len) != 0 && 1893 memcmp(type, VDEV_TYPE_DISK, len) != 0 && 1894 memcmp(type, VDEV_TYPE_RAIDZ, len) != 0) 1895 goto done; 1896 1897 if (nvlist_find(vdevs, ZPOOL_CONFIG_ASIZE, DATA_TYPE_UINT64, 1898 NULL, &asize, NULL) != 0) 1899 goto done; 1900 1901 if (memcmp(type, VDEV_TYPE_RAIDZ, len) == 0) { 1902 nvlist_t **kids; 1903 int nkids; 1904 1905 if (nvlist_find(vdevs, ZPOOL_CONFIG_CHILDREN, 1906 DATA_TYPE_NVLIST_ARRAY, &nkids, &kids, NULL) != 0) { 1907 asize = 0; 1908 goto done; 1909 } 1910 1911 asize /= nkids; 1912 for (int i = 0; i < nkids; i++) 1913 nvlist_destroy(kids[i]); 1914 free(kids); 1915 } 1916 1917 asize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; 1918 done: 1919 nvlist_destroy(vdevs); 1920 return (asize); 1921 } 1922 1923 static nvlist_t * 1924 vdev_label_read_config(vdev_t *vd, uint64_t txg) 1925 { 1926 vdev_phys_t *label; 1927 uint64_t best_txg = 0; 1928 uint64_t label_txg = 0; 1929 uint64_t asize; 1930 nvlist_t *nvl = NULL, *tmp; 1931 int error; 1932 1933 label = malloc(sizeof (vdev_phys_t)); 1934 if (label == NULL) 1935 return (NULL); 1936 1937 for (int l = 0; l < VDEV_LABELS; l++) { 1938 if (vdev_label_read(vd, l, label, 1939 offsetof(vdev_label_t, vl_vdev_phys), 1940 sizeof (vdev_phys_t))) 1941 continue; 1942 1943 tmp = nvlist_import(label->vp_nvlist, 1944 sizeof(label->vp_nvlist)); 1945 if (tmp == NULL) 1946 continue; 1947 1948 error = nvlist_find(tmp, ZPOOL_CONFIG_POOL_TXG, 1949 DATA_TYPE_UINT64, NULL, &label_txg, NULL); 1950 if (error != 0 || label_txg == 0) { 1951 nvlist_destroy(nvl); 1952 nvl = tmp; 1953 goto done; 1954 } 1955 1956 if (label_txg <= txg && label_txg > best_txg) { 1957 best_txg = label_txg; 1958 nvlist_destroy(nvl); 1959 nvl = tmp; 1960 tmp = NULL; 1961 1962 /* 1963 * Use asize from pool config. We need this 1964 * because we can get bad value from BIOS. 1965 */ 1966 asize = vdev_get_label_asize(nvl); 1967 if (asize != 0) { 1968 vd->v_psize = asize; 1969 } 1970 } 1971 nvlist_destroy(tmp); 1972 } 1973 1974 if (best_txg == 0) { 1975 nvlist_destroy(nvl); 1976 nvl = NULL; 1977 } 1978 done: 1979 free(label); 1980 return (nvl); 1981 } 1982 1983 static void 1984 vdev_uberblock_load(vdev_t *vd, uberblock_t *ub) 1985 { 1986 uberblock_t *buf; 1987 1988 buf = malloc(VDEV_UBERBLOCK_SIZE(vd)); 1989 if (buf == NULL) 1990 return; 1991 1992 for (int l = 0; l < VDEV_LABELS; l++) { 1993 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) { 1994 if (vdev_label_read(vd, l, buf, 1995 VDEV_UBERBLOCK_OFFSET(vd, n), 1996 VDEV_UBERBLOCK_SIZE(vd))) 1997 continue; 1998 if (uberblock_verify(buf) != 0) 1999 continue; 2000 2001 if (vdev_uberblock_compare(buf, ub) > 0) 2002 *ub = *buf; 2003 } 2004 } 2005 free(buf); 2006 } 2007 2008 static int 2009 vdev_probe(vdev_phys_read_t *_read, vdev_phys_write_t *_write, void *priv, 2010 spa_t **spap) 2011 { 2012 vdev_t vtmp; 2013 spa_t *spa; 2014 vdev_t *vdev; 2015 nvlist_t *nvl; 2016 uint64_t val; 2017 uint64_t guid, vdev_children; 2018 uint64_t pool_txg, pool_guid; 2019 const char *pool_name; 2020 int rc, namelen; 2021 2022 /* 2023 * Load the vdev label and figure out which 2024 * uberblock is most current. 2025 */ 2026 memset(&vtmp, 0, sizeof(vtmp)); 2027 vtmp.v_phys_read = _read; 2028 vtmp.v_phys_write = _write; 2029 vtmp.v_priv = priv; 2030 vtmp.v_psize = P2ALIGN(ldi_get_size(priv), 2031 (uint64_t)sizeof (vdev_label_t)); 2032 2033 /* Test for minimum device size. */ 2034 if (vtmp.v_psize < SPA_MINDEVSIZE) 2035 return (EIO); 2036 2037 nvl = vdev_label_read_config(&vtmp, UINT64_MAX); 2038 if (nvl == NULL) 2039 return (EIO); 2040 2041 if (nvlist_find(nvl, ZPOOL_CONFIG_VERSION, DATA_TYPE_UINT64, 2042 NULL, &val, NULL) != 0) { 2043 nvlist_destroy(nvl); 2044 return (EIO); 2045 } 2046 2047 if (!SPA_VERSION_IS_SUPPORTED(val)) { 2048 printf("ZFS: unsupported ZFS version %u (should be %u)\n", 2049 (unsigned)val, (unsigned)SPA_VERSION); 2050 nvlist_destroy(nvl); 2051 return (EIO); 2052 } 2053 2054 /* Check ZFS features for read */ 2055 rc = nvlist_check_features_for_read(nvl); 2056 if (rc != 0) { 2057 nvlist_destroy(nvl); 2058 return (EIO); 2059 } 2060 2061 if (nvlist_find(nvl, ZPOOL_CONFIG_POOL_STATE, DATA_TYPE_UINT64, 2062 NULL, &val, NULL) != 0) { 2063 nvlist_destroy(nvl); 2064 return (EIO); 2065 } 2066 2067 if (val == POOL_STATE_DESTROYED) { 2068 /* We don't boot only from destroyed pools. */ 2069 nvlist_destroy(nvl); 2070 return (EIO); 2071 } 2072 2073 if (nvlist_find(nvl, ZPOOL_CONFIG_POOL_TXG, DATA_TYPE_UINT64, 2074 NULL, &pool_txg, NULL) != 0 || 2075 nvlist_find(nvl, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64, 2076 NULL, &pool_guid, NULL) != 0 || 2077 nvlist_find(nvl, ZPOOL_CONFIG_POOL_NAME, DATA_TYPE_STRING, 2078 NULL, &pool_name, &namelen) != 0) { 2079 /* 2080 * Cache and spare devices end up here - just ignore 2081 * them. 2082 */ 2083 nvlist_destroy(nvl); 2084 return (EIO); 2085 } 2086 2087 /* 2088 * Create the pool if this is the first time we've seen it. 2089 */ 2090 spa = spa_find_by_guid(pool_guid); 2091 if (spa == NULL) { 2092 char *name; 2093 2094 nvlist_find(nvl, ZPOOL_CONFIG_VDEV_CHILDREN, 2095 DATA_TYPE_UINT64, NULL, &vdev_children, NULL); 2096 name = malloc(namelen + 1); 2097 if (name == NULL) { 2098 nvlist_destroy(nvl); 2099 return (ENOMEM); 2100 } 2101 bcopy(pool_name, name, namelen); 2102 name[namelen] = '\0'; 2103 spa = spa_create(pool_guid, name); 2104 free(name); 2105 if (spa == NULL) { 2106 nvlist_destroy(nvl); 2107 return (ENOMEM); 2108 } 2109 spa->spa_root_vdev->v_nchildren = vdev_children; 2110 } 2111 if (pool_txg > spa->spa_txg) 2112 spa->spa_txg = pool_txg; 2113 2114 /* 2115 * Get the vdev tree and create our in-core copy of it. 2116 * If we already have a vdev with this guid, this must 2117 * be some kind of alias (overlapping slices, dangerously dedicated 2118 * disks etc). 2119 */ 2120 if (nvlist_find(nvl, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64, 2121 NULL, &guid, NULL) != 0) { 2122 nvlist_destroy(nvl); 2123 return (EIO); 2124 } 2125 vdev = vdev_find(guid); 2126 /* Has this vdev already been inited? */ 2127 if (vdev && vdev->v_phys_read) { 2128 nvlist_destroy(nvl); 2129 return (EIO); 2130 } 2131 2132 rc = vdev_init_from_label(spa, nvl); 2133 nvlist_destroy(nvl); 2134 if (rc != 0) 2135 return (rc); 2136 2137 /* 2138 * We should already have created an incomplete vdev for this 2139 * vdev. Find it and initialise it with our read proc. 2140 */ 2141 vdev = vdev_find(guid); 2142 if (vdev != NULL) { 2143 vdev->v_phys_read = _read; 2144 vdev->v_phys_write = _write; 2145 vdev->v_priv = priv; 2146 vdev->v_psize = vtmp.v_psize; 2147 /* 2148 * If no other state is set, mark vdev healthy. 2149 */ 2150 if (vdev->v_state == VDEV_STATE_UNKNOWN) 2151 vdev->v_state = VDEV_STATE_HEALTHY; 2152 } else { 2153 printf("ZFS: inconsistent nvlist contents\n"); 2154 return (EIO); 2155 } 2156 2157 if (vdev->v_islog) 2158 spa->spa_with_log = vdev->v_islog; 2159 2160 /* 2161 * Re-evaluate top-level vdev state. 2162 */ 2163 vdev_set_state(vdev->v_top); 2164 2165 /* 2166 * Ok, we are happy with the pool so far. Lets find 2167 * the best uberblock and then we can actually access 2168 * the contents of the pool. 2169 */ 2170 vdev_uberblock_load(vdev, spa->spa_uberblock); 2171 2172 if (spap != NULL) 2173 *spap = spa; 2174 return (0); 2175 } 2176 2177 static int 2178 ilog2(int n) 2179 { 2180 int v; 2181 2182 for (v = 0; v < 32; v++) 2183 if (n == (1 << v)) 2184 return (v); 2185 return (-1); 2186 } 2187 2188 static int 2189 zio_read_gang(const spa_t *spa, const blkptr_t *bp, void *buf) 2190 { 2191 blkptr_t gbh_bp; 2192 zio_gbh_phys_t zio_gb; 2193 char *pbuf; 2194 int i; 2195 2196 /* Artificial BP for gang block header. */ 2197 gbh_bp = *bp; 2198 BP_SET_PSIZE(&gbh_bp, SPA_GANGBLOCKSIZE); 2199 BP_SET_LSIZE(&gbh_bp, SPA_GANGBLOCKSIZE); 2200 BP_SET_CHECKSUM(&gbh_bp, ZIO_CHECKSUM_GANG_HEADER); 2201 BP_SET_COMPRESS(&gbh_bp, ZIO_COMPRESS_OFF); 2202 for (i = 0; i < SPA_DVAS_PER_BP; i++) 2203 DVA_SET_GANG(&gbh_bp.blk_dva[i], 0); 2204 2205 /* Read gang header block using the artificial BP. */ 2206 if (zio_read(spa, &gbh_bp, &zio_gb)) 2207 return (EIO); 2208 2209 pbuf = buf; 2210 for (i = 0; i < SPA_GBH_NBLKPTRS; i++) { 2211 blkptr_t *gbp = &zio_gb.zg_blkptr[i]; 2212 2213 if (BP_IS_HOLE(gbp)) 2214 continue; 2215 if (zio_read(spa, gbp, pbuf)) 2216 return (EIO); 2217 pbuf += BP_GET_PSIZE(gbp); 2218 } 2219 2220 if (zio_checksum_verify(spa, bp, buf)) 2221 return (EIO); 2222 return (0); 2223 } 2224 2225 static int 2226 zio_read(const spa_t *spa, const blkptr_t *bp, void *buf) 2227 { 2228 int cpfunc = BP_GET_COMPRESS(bp); 2229 uint64_t align, size; 2230 void *pbuf; 2231 int i, error; 2232 2233 /* 2234 * Process data embedded in block pointer 2235 */ 2236 if (BP_IS_EMBEDDED(bp)) { 2237 ASSERT(BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA); 2238 2239 size = BPE_GET_PSIZE(bp); 2240 ASSERT(size <= BPE_PAYLOAD_SIZE); 2241 2242 if (cpfunc != ZIO_COMPRESS_OFF) 2243 pbuf = malloc(size); 2244 else 2245 pbuf = buf; 2246 2247 if (pbuf == NULL) 2248 return (ENOMEM); 2249 2250 decode_embedded_bp_compressed(bp, pbuf); 2251 error = 0; 2252 2253 if (cpfunc != ZIO_COMPRESS_OFF) { 2254 error = zio_decompress_data(cpfunc, pbuf, 2255 size, buf, BP_GET_LSIZE(bp)); 2256 free(pbuf); 2257 } 2258 if (error != 0) 2259 printf("ZFS: i/o error - unable to decompress " 2260 "block pointer data, error %d\n", error); 2261 return (error); 2262 } 2263 2264 error = EIO; 2265 2266 for (i = 0; i < SPA_DVAS_PER_BP; i++) { 2267 const dva_t *dva = &bp->blk_dva[i]; 2268 vdev_t *vdev; 2269 vdev_list_t *vlist; 2270 uint64_t vdevid; 2271 off_t offset; 2272 2273 if (!dva->dva_word[0] && !dva->dva_word[1]) 2274 continue; 2275 2276 vdevid = DVA_GET_VDEV(dva); 2277 offset = DVA_GET_OFFSET(dva); 2278 vlist = &spa->spa_root_vdev->v_children; 2279 STAILQ_FOREACH(vdev, vlist, v_childlink) { 2280 if (vdev->v_id == vdevid) 2281 break; 2282 } 2283 if (!vdev || !vdev->v_read) 2284 continue; 2285 2286 size = BP_GET_PSIZE(bp); 2287 if (vdev->v_read == vdev_raidz_read) { 2288 align = 1ULL << vdev->v_ashift; 2289 if (P2PHASE(size, align) != 0) 2290 size = P2ROUNDUP(size, align); 2291 } 2292 if (size != BP_GET_PSIZE(bp) || cpfunc != ZIO_COMPRESS_OFF) 2293 pbuf = malloc(size); 2294 else 2295 pbuf = buf; 2296 2297 if (pbuf == NULL) { 2298 error = ENOMEM; 2299 break; 2300 } 2301 2302 if (DVA_GET_GANG(dva)) 2303 error = zio_read_gang(spa, bp, pbuf); 2304 else 2305 error = vdev->v_read(vdev, bp, pbuf, offset, size); 2306 if (error == 0) { 2307 if (cpfunc != ZIO_COMPRESS_OFF) 2308 error = zio_decompress_data(cpfunc, pbuf, 2309 BP_GET_PSIZE(bp), buf, BP_GET_LSIZE(bp)); 2310 else if (size != BP_GET_PSIZE(bp)) 2311 bcopy(pbuf, buf, BP_GET_PSIZE(bp)); 2312 } else { 2313 printf("zio_read error: %d\n", error); 2314 } 2315 if (buf != pbuf) 2316 free(pbuf); 2317 if (error == 0) 2318 break; 2319 } 2320 if (error != 0) 2321 printf("ZFS: i/o error - all block copies unavailable\n"); 2322 2323 return (error); 2324 } 2325 2326 static int 2327 dnode_read(const spa_t *spa, const dnode_phys_t *dnode, off_t offset, 2328 void *buf, size_t buflen) 2329 { 2330 int ibshift = dnode->dn_indblkshift - SPA_BLKPTRSHIFT; 2331 int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2332 int nlevels = dnode->dn_nlevels; 2333 int i, rc; 2334 2335 if (bsize > SPA_MAXBLOCKSIZE) { 2336 printf("ZFS: I/O error - blocks larger than %llu are not " 2337 "supported\n", SPA_MAXBLOCKSIZE); 2338 return (EIO); 2339 } 2340 2341 /* 2342 * Handle odd block sizes, mirrors dmu_read_impl(). Data can't exist 2343 * past the first block, so we'll clip the read to the portion of the 2344 * buffer within bsize and zero out the remainder. 2345 */ 2346 if (dnode->dn_maxblkid == 0) { 2347 size_t newbuflen; 2348 2349 newbuflen = offset > bsize ? 0 : MIN(buflen, bsize - offset); 2350 bzero((char *)buf + newbuflen, buflen - newbuflen); 2351 buflen = newbuflen; 2352 } 2353 2354 /* 2355 * Note: bsize may not be a power of two here so we need to do an 2356 * actual divide rather than a bitshift. 2357 */ 2358 while (buflen > 0) { 2359 uint64_t bn = offset / bsize; 2360 int boff = offset % bsize; 2361 int ibn; 2362 const blkptr_t *indbp; 2363 blkptr_t bp; 2364 2365 if (bn > dnode->dn_maxblkid) 2366 return (EIO); 2367 2368 if (dnode == dnode_cache_obj && bn == dnode_cache_bn) 2369 goto cached; 2370 2371 indbp = dnode->dn_blkptr; 2372 for (i = 0; i < nlevels; i++) { 2373 /* 2374 * Copy the bp from the indirect array so that 2375 * we can re-use the scratch buffer for multi-level 2376 * objects. 2377 */ 2378 ibn = bn >> ((nlevels - i - 1) * ibshift); 2379 ibn &= ((1 << ibshift) - 1); 2380 bp = indbp[ibn]; 2381 if (BP_IS_HOLE(&bp)) { 2382 memset(dnode_cache_buf, 0, bsize); 2383 break; 2384 } 2385 rc = zio_read(spa, &bp, dnode_cache_buf); 2386 if (rc) 2387 return (rc); 2388 indbp = (const blkptr_t *) dnode_cache_buf; 2389 } 2390 dnode_cache_obj = dnode; 2391 dnode_cache_bn = bn; 2392 cached: 2393 2394 /* 2395 * The buffer contains our data block. Copy what we 2396 * need from it and loop. 2397 */ 2398 i = bsize - boff; 2399 if (i > buflen) i = buflen; 2400 memcpy(buf, &dnode_cache_buf[boff], i); 2401 buf = ((char *)buf) + i; 2402 offset += i; 2403 buflen -= i; 2404 } 2405 2406 return (0); 2407 } 2408 2409 /* 2410 * Lookup a value in a microzap directory. 2411 */ 2412 static int 2413 mzap_lookup(const mzap_phys_t *mz, size_t size, const char *name, 2414 uint64_t *value) 2415 { 2416 const mzap_ent_phys_t *mze; 2417 int chunks, i; 2418 2419 /* 2420 * Microzap objects use exactly one block. Read the whole 2421 * thing. 2422 */ 2423 chunks = size / MZAP_ENT_LEN - 1; 2424 for (i = 0; i < chunks; i++) { 2425 mze = &mz->mz_chunk[i]; 2426 if (strcmp(mze->mze_name, name) == 0) { 2427 *value = mze->mze_value; 2428 return (0); 2429 } 2430 } 2431 2432 return (ENOENT); 2433 } 2434 2435 /* 2436 * Compare a name with a zap leaf entry. Return non-zero if the name 2437 * matches. 2438 */ 2439 static int 2440 fzap_name_equal(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, 2441 const char *name) 2442 { 2443 size_t namelen; 2444 const zap_leaf_chunk_t *nc; 2445 const char *p; 2446 2447 namelen = zc->l_entry.le_name_numints; 2448 2449 nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk); 2450 p = name; 2451 while (namelen > 0) { 2452 size_t len; 2453 2454 len = namelen; 2455 if (len > ZAP_LEAF_ARRAY_BYTES) 2456 len = ZAP_LEAF_ARRAY_BYTES; 2457 if (memcmp(p, nc->l_array.la_array, len)) 2458 return (0); 2459 p += len; 2460 namelen -= len; 2461 nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next); 2462 } 2463 2464 return (1); 2465 } 2466 2467 /* 2468 * Extract a uint64_t value from a zap leaf entry. 2469 */ 2470 static uint64_t 2471 fzap_leaf_value(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc) 2472 { 2473 const zap_leaf_chunk_t *vc; 2474 int i; 2475 uint64_t value; 2476 const uint8_t *p; 2477 2478 vc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_value_chunk); 2479 for (i = 0, value = 0, p = vc->l_array.la_array; i < 8; i++) { 2480 value = (value << 8) | p[i]; 2481 } 2482 2483 return (value); 2484 } 2485 2486 static void 2487 stv(int len, void *addr, uint64_t value) 2488 { 2489 switch (len) { 2490 case 1: 2491 *(uint8_t *)addr = value; 2492 return; 2493 case 2: 2494 *(uint16_t *)addr = value; 2495 return; 2496 case 4: 2497 *(uint32_t *)addr = value; 2498 return; 2499 case 8: 2500 *(uint64_t *)addr = value; 2501 return; 2502 } 2503 } 2504 2505 /* 2506 * Extract a array from a zap leaf entry. 2507 */ 2508 static void 2509 fzap_leaf_array(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, 2510 uint64_t integer_size, uint64_t num_integers, void *buf) 2511 { 2512 uint64_t array_int_len = zc->l_entry.le_value_intlen; 2513 uint64_t value = 0; 2514 uint64_t *u64 = buf; 2515 char *p = buf; 2516 int len = MIN(zc->l_entry.le_value_numints, num_integers); 2517 int chunk = zc->l_entry.le_value_chunk; 2518 int byten = 0; 2519 2520 if (integer_size == 8 && len == 1) { 2521 *u64 = fzap_leaf_value(zl, zc); 2522 return; 2523 } 2524 2525 while (len > 0) { 2526 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(zl, chunk).l_array; 2527 int i; 2528 2529 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(zl)); 2530 for (i = 0; i < ZAP_LEAF_ARRAY_BYTES && len > 0; i++) { 2531 value = (value << 8) | la->la_array[i]; 2532 byten++; 2533 if (byten == array_int_len) { 2534 stv(integer_size, p, value); 2535 byten = 0; 2536 len--; 2537 if (len == 0) 2538 return; 2539 p += integer_size; 2540 } 2541 } 2542 chunk = la->la_next; 2543 } 2544 } 2545 2546 static int 2547 fzap_check_size(uint64_t integer_size, uint64_t num_integers) 2548 { 2549 2550 switch (integer_size) { 2551 case 1: 2552 case 2: 2553 case 4: 2554 case 8: 2555 break; 2556 default: 2557 return (EINVAL); 2558 } 2559 2560 if (integer_size * num_integers > ZAP_MAXVALUELEN) 2561 return (E2BIG); 2562 2563 return (0); 2564 } 2565 2566 static void 2567 zap_leaf_free(zap_leaf_t *leaf) 2568 { 2569 free(leaf->l_phys); 2570 free(leaf); 2571 } 2572 2573 static int 2574 zap_get_leaf_byblk(fat_zap_t *zap, uint64_t blk, zap_leaf_t **lp) 2575 { 2576 int bs = FZAP_BLOCK_SHIFT(zap); 2577 int err; 2578 2579 *lp = malloc(sizeof(**lp)); 2580 if (*lp == NULL) 2581 return (ENOMEM); 2582 2583 (*lp)->l_bs = bs; 2584 (*lp)->l_phys = malloc(1 << bs); 2585 2586 if ((*lp)->l_phys == NULL) { 2587 free(*lp); 2588 return (ENOMEM); 2589 } 2590 err = dnode_read(zap->zap_spa, zap->zap_dnode, blk << bs, (*lp)->l_phys, 2591 1 << bs); 2592 if (err != 0) { 2593 zap_leaf_free(*lp); 2594 } 2595 return (err); 2596 } 2597 2598 static int 2599 zap_table_load(fat_zap_t *zap, zap_table_phys_t *tbl, uint64_t idx, 2600 uint64_t *valp) 2601 { 2602 int bs = FZAP_BLOCK_SHIFT(zap); 2603 uint64_t blk = idx >> (bs - 3); 2604 uint64_t off = idx & ((1 << (bs - 3)) - 1); 2605 uint64_t *buf; 2606 int rc; 2607 2608 buf = malloc(1 << zap->zap_block_shift); 2609 if (buf == NULL) 2610 return (ENOMEM); 2611 rc = dnode_read(zap->zap_spa, zap->zap_dnode, (tbl->zt_blk + blk) << bs, 2612 buf, 1 << zap->zap_block_shift); 2613 if (rc == 0) 2614 *valp = buf[off]; 2615 free(buf); 2616 return (rc); 2617 } 2618 2619 static int 2620 zap_idx_to_blk(fat_zap_t *zap, uint64_t idx, uint64_t *valp) 2621 { 2622 if (zap->zap_phys->zap_ptrtbl.zt_numblks == 0) { 2623 *valp = ZAP_EMBEDDED_PTRTBL_ENT(zap, idx); 2624 return (0); 2625 } else { 2626 return (zap_table_load(zap, &zap->zap_phys->zap_ptrtbl, 2627 idx, valp)); 2628 } 2629 } 2630 2631 #define ZAP_HASH_IDX(hash, n) (((n) == 0) ? 0 : ((hash) >> (64 - (n)))) 2632 static int 2633 zap_deref_leaf(fat_zap_t *zap, uint64_t h, zap_leaf_t **lp) 2634 { 2635 uint64_t idx, blk; 2636 int err; 2637 2638 idx = ZAP_HASH_IDX(h, zap->zap_phys->zap_ptrtbl.zt_shift); 2639 err = zap_idx_to_blk(zap, idx, &blk); 2640 if (err != 0) 2641 return (err); 2642 return (zap_get_leaf_byblk(zap, blk, lp)); 2643 } 2644 2645 #define CHAIN_END 0xffff /* end of the chunk chain */ 2646 #define LEAF_HASH(l, h) \ 2647 ((ZAP_LEAF_HASH_NUMENTRIES(l)-1) & \ 2648 ((h) >> \ 2649 (64 - ZAP_LEAF_HASH_SHIFT(l) - (l)->l_phys->l_hdr.lh_prefix_len))) 2650 #define LEAF_HASH_ENTPTR(l, h) (&(l)->l_phys->l_hash[LEAF_HASH(l, h)]) 2651 2652 static int 2653 zap_leaf_lookup(zap_leaf_t *zl, uint64_t hash, const char *name, 2654 uint64_t integer_size, uint64_t num_integers, void *value) 2655 { 2656 int rc; 2657 uint16_t *chunkp; 2658 struct zap_leaf_entry *le; 2659 2660 /* 2661 * Make sure this chunk matches our hash. 2662 */ 2663 if (zl->l_phys->l_hdr.lh_prefix_len > 0 && 2664 zl->l_phys->l_hdr.lh_prefix != 2665 hash >> (64 - zl->l_phys->l_hdr.lh_prefix_len)) 2666 return (EIO); 2667 2668 rc = ENOENT; 2669 for (chunkp = LEAF_HASH_ENTPTR(zl, hash); 2670 *chunkp != CHAIN_END; chunkp = &le->le_next) { 2671 zap_leaf_chunk_t *zc; 2672 uint16_t chunk = *chunkp; 2673 2674 le = ZAP_LEAF_ENTRY(zl, chunk); 2675 if (le->le_hash != hash) 2676 continue; 2677 zc = &ZAP_LEAF_CHUNK(zl, chunk); 2678 if (fzap_name_equal(zl, zc, name)) { 2679 if (zc->l_entry.le_value_intlen > integer_size) { 2680 rc = EINVAL; 2681 } else { 2682 fzap_leaf_array(zl, zc, integer_size, 2683 num_integers, value); 2684 rc = 0; 2685 } 2686 break; 2687 } 2688 } 2689 return (rc); 2690 } 2691 2692 /* 2693 * Lookup a value in a fatzap directory. 2694 */ 2695 static int 2696 fzap_lookup(const spa_t *spa, const dnode_phys_t *dnode, zap_phys_t *zh, 2697 const char *name, uint64_t integer_size, uint64_t num_integers, 2698 void *value) 2699 { 2700 int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2701 fat_zap_t z; 2702 zap_leaf_t *zl; 2703 uint64_t hash; 2704 int rc; 2705 2706 if (zh->zap_magic != ZAP_MAGIC) 2707 return (EIO); 2708 2709 if ((rc = fzap_check_size(integer_size, num_integers)) != 0) { 2710 return (rc); 2711 } 2712 2713 z.zap_block_shift = ilog2(bsize); 2714 z.zap_phys = zh; 2715 z.zap_spa = spa; 2716 z.zap_dnode = dnode; 2717 2718 hash = zap_hash(zh->zap_salt, name); 2719 rc = zap_deref_leaf(&z, hash, &zl); 2720 if (rc != 0) 2721 return (rc); 2722 2723 rc = zap_leaf_lookup(zl, hash, name, integer_size, num_integers, value); 2724 2725 zap_leaf_free(zl); 2726 return (rc); 2727 } 2728 2729 /* 2730 * Lookup a name in a zap object and return its value as a uint64_t. 2731 */ 2732 static int 2733 zap_lookup(const spa_t *spa, const dnode_phys_t *dnode, const char *name, 2734 uint64_t integer_size, uint64_t num_integers, void *value) 2735 { 2736 int rc; 2737 zap_phys_t *zap; 2738 size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2739 2740 zap = malloc(size); 2741 if (zap == NULL) 2742 return (ENOMEM); 2743 2744 rc = dnode_read(spa, dnode, 0, zap, size); 2745 if (rc) 2746 goto done; 2747 2748 switch (zap->zap_block_type) { 2749 case ZBT_MICRO: 2750 rc = mzap_lookup((const mzap_phys_t *)zap, size, name, value); 2751 break; 2752 case ZBT_HEADER: 2753 rc = fzap_lookup(spa, dnode, zap, name, integer_size, 2754 num_integers, value); 2755 break; 2756 default: 2757 printf("ZFS: invalid zap_type=%" PRIx64 "\n", 2758 zap->zap_block_type); 2759 rc = EIO; 2760 } 2761 done: 2762 free(zap); 2763 return (rc); 2764 } 2765 2766 /* 2767 * List a microzap directory. 2768 */ 2769 static int 2770 mzap_list(const mzap_phys_t *mz, size_t size, 2771 int (*callback)(const char *, uint64_t)) 2772 { 2773 const mzap_ent_phys_t *mze; 2774 int chunks, i, rc; 2775 2776 /* 2777 * Microzap objects use exactly one block. Read the whole 2778 * thing. 2779 */ 2780 rc = 0; 2781 chunks = size / MZAP_ENT_LEN - 1; 2782 for (i = 0; i < chunks; i++) { 2783 mze = &mz->mz_chunk[i]; 2784 if (mze->mze_name[0]) { 2785 rc = callback(mze->mze_name, mze->mze_value); 2786 if (rc != 0) 2787 break; 2788 } 2789 } 2790 2791 return (rc); 2792 } 2793 2794 /* 2795 * List a fatzap directory. 2796 */ 2797 static int 2798 fzap_list(const spa_t *spa, const dnode_phys_t *dnode, zap_phys_t *zh, 2799 int (*callback)(const char *, uint64_t)) 2800 { 2801 int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2802 fat_zap_t z; 2803 uint64_t i; 2804 int j, rc; 2805 2806 if (zh->zap_magic != ZAP_MAGIC) 2807 return (EIO); 2808 2809 z.zap_block_shift = ilog2(bsize); 2810 z.zap_phys = zh; 2811 2812 /* 2813 * This assumes that the leaf blocks start at block 1. The 2814 * documentation isn't exactly clear on this. 2815 */ 2816 zap_leaf_t zl; 2817 zl.l_bs = z.zap_block_shift; 2818 zl.l_phys = malloc(bsize); 2819 if (zl.l_phys == NULL) 2820 return (ENOMEM); 2821 2822 for (i = 0; i < zh->zap_num_leafs; i++) { 2823 off_t off = ((off_t)(i + 1)) << zl.l_bs; 2824 char name[256], *p; 2825 uint64_t value; 2826 2827 if (dnode_read(spa, dnode, off, zl.l_phys, bsize)) { 2828 free(zl.l_phys); 2829 return (EIO); 2830 } 2831 2832 for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) { 2833 zap_leaf_chunk_t *zc, *nc; 2834 int namelen; 2835 2836 zc = &ZAP_LEAF_CHUNK(&zl, j); 2837 if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY) 2838 continue; 2839 namelen = zc->l_entry.le_name_numints; 2840 if (namelen > sizeof(name)) 2841 namelen = sizeof(name); 2842 2843 /* 2844 * Paste the name back together. 2845 */ 2846 nc = &ZAP_LEAF_CHUNK(&zl, zc->l_entry.le_name_chunk); 2847 p = name; 2848 while (namelen > 0) { 2849 int len; 2850 len = namelen; 2851 if (len > ZAP_LEAF_ARRAY_BYTES) 2852 len = ZAP_LEAF_ARRAY_BYTES; 2853 memcpy(p, nc->l_array.la_array, len); 2854 p += len; 2855 namelen -= len; 2856 nc = &ZAP_LEAF_CHUNK(&zl, nc->l_array.la_next); 2857 } 2858 2859 /* 2860 * Assume the first eight bytes of the value are 2861 * a uint64_t. 2862 */ 2863 value = fzap_leaf_value(&zl, zc); 2864 2865 /* printf("%s 0x%jx\n", name, (uintmax_t)value); */ 2866 rc = callback((const char *)name, value); 2867 if (rc != 0) { 2868 free(zl.l_phys); 2869 return (rc); 2870 } 2871 } 2872 } 2873 2874 free(zl.l_phys); 2875 return (0); 2876 } 2877 2878 static int zfs_printf(const char *name, uint64_t value __unused) 2879 { 2880 2881 printf("%s\n", name); 2882 2883 return (0); 2884 } 2885 2886 /* 2887 * List a zap directory. 2888 */ 2889 static int 2890 zap_list(const spa_t *spa, const dnode_phys_t *dnode) 2891 { 2892 zap_phys_t *zap; 2893 size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2894 int rc; 2895 2896 zap = malloc(size); 2897 if (zap == NULL) 2898 return (ENOMEM); 2899 2900 rc = dnode_read(spa, dnode, 0, zap, size); 2901 if (rc == 0) { 2902 if (zap->zap_block_type == ZBT_MICRO) 2903 rc = mzap_list((const mzap_phys_t *)zap, size, 2904 zfs_printf); 2905 else 2906 rc = fzap_list(spa, dnode, zap, zfs_printf); 2907 } 2908 free(zap); 2909 return (rc); 2910 } 2911 2912 static int 2913 objset_get_dnode(const spa_t *spa, const objset_phys_t *os, uint64_t objnum, 2914 dnode_phys_t *dnode) 2915 { 2916 off_t offset; 2917 2918 offset = objnum * sizeof(dnode_phys_t); 2919 return dnode_read(spa, &os->os_meta_dnode, offset, 2920 dnode, sizeof(dnode_phys_t)); 2921 } 2922 2923 /* 2924 * Lookup a name in a microzap directory. 2925 */ 2926 static int 2927 mzap_rlookup(const mzap_phys_t *mz, size_t size, char *name, uint64_t value) 2928 { 2929 const mzap_ent_phys_t *mze; 2930 int chunks, i; 2931 2932 /* 2933 * Microzap objects use exactly one block. Read the whole 2934 * thing. 2935 */ 2936 chunks = size / MZAP_ENT_LEN - 1; 2937 for (i = 0; i < chunks; i++) { 2938 mze = &mz->mz_chunk[i]; 2939 if (value == mze->mze_value) { 2940 strcpy(name, mze->mze_name); 2941 return (0); 2942 } 2943 } 2944 2945 return (ENOENT); 2946 } 2947 2948 static void 2949 fzap_name_copy(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, char *name) 2950 { 2951 size_t namelen; 2952 const zap_leaf_chunk_t *nc; 2953 char *p; 2954 2955 namelen = zc->l_entry.le_name_numints; 2956 2957 nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk); 2958 p = name; 2959 while (namelen > 0) { 2960 size_t len; 2961 len = namelen; 2962 if (len > ZAP_LEAF_ARRAY_BYTES) 2963 len = ZAP_LEAF_ARRAY_BYTES; 2964 memcpy(p, nc->l_array.la_array, len); 2965 p += len; 2966 namelen -= len; 2967 nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next); 2968 } 2969 2970 *p = '\0'; 2971 } 2972 2973 static int 2974 fzap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, zap_phys_t *zh, 2975 char *name, uint64_t value) 2976 { 2977 int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2978 fat_zap_t z; 2979 uint64_t i; 2980 int j, rc; 2981 2982 if (zh->zap_magic != ZAP_MAGIC) 2983 return (EIO); 2984 2985 z.zap_block_shift = ilog2(bsize); 2986 z.zap_phys = zh; 2987 2988 /* 2989 * This assumes that the leaf blocks start at block 1. The 2990 * documentation isn't exactly clear on this. 2991 */ 2992 zap_leaf_t zl; 2993 zl.l_bs = z.zap_block_shift; 2994 zl.l_phys = malloc(bsize); 2995 if (zl.l_phys == NULL) 2996 return (ENOMEM); 2997 2998 for (i = 0; i < zh->zap_num_leafs; i++) { 2999 off_t off = ((off_t)(i + 1)) << zl.l_bs; 3000 3001 rc = dnode_read(spa, dnode, off, zl.l_phys, bsize); 3002 if (rc != 0) 3003 goto done; 3004 3005 for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) { 3006 zap_leaf_chunk_t *zc; 3007 3008 zc = &ZAP_LEAF_CHUNK(&zl, j); 3009 if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY) 3010 continue; 3011 if (zc->l_entry.le_value_intlen != 8 || 3012 zc->l_entry.le_value_numints != 1) 3013 continue; 3014 3015 if (fzap_leaf_value(&zl, zc) == value) { 3016 fzap_name_copy(&zl, zc, name); 3017 goto done; 3018 } 3019 } 3020 } 3021 3022 rc = ENOENT; 3023 done: 3024 free(zl.l_phys); 3025 return (rc); 3026 } 3027 3028 static int 3029 zap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, char *name, 3030 uint64_t value) 3031 { 3032 zap_phys_t *zap; 3033 size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 3034 int rc; 3035 3036 zap = malloc(size); 3037 if (zap == NULL) 3038 return (ENOMEM); 3039 3040 rc = dnode_read(spa, dnode, 0, zap, size); 3041 if (rc == 0) { 3042 if (zap->zap_block_type == ZBT_MICRO) 3043 rc = mzap_rlookup((const mzap_phys_t *)zap, size, 3044 name, value); 3045 else 3046 rc = fzap_rlookup(spa, dnode, zap, name, value); 3047 } 3048 free(zap); 3049 return (rc); 3050 } 3051 3052 static int 3053 zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result) 3054 { 3055 char name[256]; 3056 char component[256]; 3057 uint64_t dir_obj, parent_obj, child_dir_zapobj; 3058 dnode_phys_t child_dir_zap, snapnames_zap, dataset, dir, parent; 3059 dsl_dir_phys_t *dd; 3060 dsl_dataset_phys_t *ds; 3061 char *p; 3062 int len; 3063 boolean_t issnap = B_FALSE; 3064 3065 p = &name[sizeof(name) - 1]; 3066 *p = '\0'; 3067 3068 if (objset_get_dnode(spa, spa->spa_mos, objnum, &dataset)) { 3069 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum); 3070 return (EIO); 3071 } 3072 ds = (dsl_dataset_phys_t *)&dataset.dn_bonus; 3073 dir_obj = ds->ds_dir_obj; 3074 if (ds->ds_snapnames_zapobj == 0) 3075 issnap = B_TRUE; 3076 3077 for (;;) { 3078 if (objset_get_dnode(spa, spa->spa_mos, dir_obj, &dir) != 0) 3079 return (EIO); 3080 dd = (dsl_dir_phys_t *)&dir.dn_bonus; 3081 3082 /* Actual loop condition. */ 3083 parent_obj = dd->dd_parent_obj; 3084 if (parent_obj == 0) 3085 break; 3086 3087 if (objset_get_dnode(spa, spa->spa_mos, parent_obj, 3088 &parent) != 0) 3089 return (EIO); 3090 dd = (dsl_dir_phys_t *)&parent.dn_bonus; 3091 if (issnap == B_TRUE) { 3092 /* 3093 * The dataset we are looking up is a snapshot 3094 * the dir_obj is the parent already, we don't want 3095 * the grandparent just yet. Reset to the parent. 3096 */ 3097 dd = (dsl_dir_phys_t *)&dir.dn_bonus; 3098 /* Lookup the dataset to get the snapname ZAP */ 3099 if (objset_get_dnode(spa, spa->spa_mos, 3100 dd->dd_head_dataset_obj, &dataset)) 3101 return (EIO); 3102 ds = (dsl_dataset_phys_t *)&dataset.dn_bonus; 3103 if (objset_get_dnode(spa, spa->spa_mos, 3104 ds->ds_snapnames_zapobj, &snapnames_zap) != 0) 3105 return (EIO); 3106 /* Get the name of the snapshot */ 3107 if (zap_rlookup(spa, &snapnames_zap, component, 3108 objnum) != 0) 3109 return (EIO); 3110 len = strlen(component); 3111 p -= len; 3112 memcpy(p, component, len); 3113 --p; 3114 *p = '@'; 3115 issnap = B_FALSE; 3116 continue; 3117 } 3118 3119 child_dir_zapobj = dd->dd_child_dir_zapobj; 3120 if (objset_get_dnode(spa, spa->spa_mos, child_dir_zapobj, 3121 &child_dir_zap) != 0) 3122 return (EIO); 3123 if (zap_rlookup(spa, &child_dir_zap, component, dir_obj) != 0) 3124 return (EIO); 3125 3126 len = strlen(component); 3127 p -= len; 3128 memcpy(p, component, len); 3129 --p; 3130 *p = '/'; 3131 3132 /* Actual loop iteration. */ 3133 dir_obj = parent_obj; 3134 } 3135 3136 if (*p != '\0') 3137 ++p; 3138 strcpy(result, p); 3139 3140 return (0); 3141 } 3142 3143 static int 3144 zfs_lookup_dataset(const spa_t *spa, const char *name, uint64_t *objnum) 3145 { 3146 char element[256]; 3147 uint64_t dir_obj, child_dir_zapobj; 3148 dnode_phys_t child_dir_zap, snapnames_zap, dir, dataset; 3149 dsl_dir_phys_t *dd; 3150 dsl_dataset_phys_t *ds; 3151 const char *p, *q; 3152 boolean_t issnap = B_FALSE; 3153 3154 if (objset_get_dnode(spa, spa->spa_mos, 3155 DMU_POOL_DIRECTORY_OBJECT, &dir)) 3156 return (EIO); 3157 if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET, sizeof (dir_obj), 3158 1, &dir_obj)) 3159 return (EIO); 3160 3161 p = name; 3162 for (;;) { 3163 if (objset_get_dnode(spa, spa->spa_mos, dir_obj, &dir)) 3164 return (EIO); 3165 dd = (dsl_dir_phys_t *)&dir.dn_bonus; 3166 3167 while (*p == '/') 3168 p++; 3169 /* Actual loop condition #1. */ 3170 if (*p == '\0') 3171 break; 3172 3173 q = strchr(p, '/'); 3174 if (q) { 3175 memcpy(element, p, q - p); 3176 element[q - p] = '\0'; 3177 p = q + 1; 3178 } else { 3179 strcpy(element, p); 3180 p += strlen(p); 3181 } 3182 3183 if (issnap == B_TRUE) { 3184 if (objset_get_dnode(spa, spa->spa_mos, 3185 dd->dd_head_dataset_obj, &dataset)) 3186 return (EIO); 3187 ds = (dsl_dataset_phys_t *)&dataset.dn_bonus; 3188 if (objset_get_dnode(spa, spa->spa_mos, 3189 ds->ds_snapnames_zapobj, &snapnames_zap) != 0) 3190 return (EIO); 3191 /* Actual loop condition #2. */ 3192 if (zap_lookup(spa, &snapnames_zap, element, 3193 sizeof (dir_obj), 1, &dir_obj) != 0) 3194 return (ENOENT); 3195 *objnum = dir_obj; 3196 return (0); 3197 } else if ((q = strchr(element, '@')) != NULL) { 3198 issnap = B_TRUE; 3199 element[q - element] = '\0'; 3200 p = q + 1; 3201 } 3202 child_dir_zapobj = dd->dd_child_dir_zapobj; 3203 if (objset_get_dnode(spa, spa->spa_mos, child_dir_zapobj, 3204 &child_dir_zap) != 0) 3205 return (EIO); 3206 3207 /* Actual loop condition #2. */ 3208 if (zap_lookup(spa, &child_dir_zap, element, sizeof (dir_obj), 3209 1, &dir_obj) != 0) 3210 return (ENOENT); 3211 } 3212 3213 *objnum = dd->dd_head_dataset_obj; 3214 return (0); 3215 } 3216 3217 #ifndef BOOT2 3218 static int 3219 zfs_list_dataset(const spa_t *spa, uint64_t objnum/*, int pos, char *entry*/) 3220 { 3221 uint64_t dir_obj, child_dir_zapobj; 3222 dnode_phys_t child_dir_zap, dir, dataset; 3223 dsl_dataset_phys_t *ds; 3224 dsl_dir_phys_t *dd; 3225 3226 if (objset_get_dnode(spa, spa->spa_mos, objnum, &dataset)) { 3227 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum); 3228 return (EIO); 3229 } 3230 ds = (dsl_dataset_phys_t *)&dataset.dn_bonus; 3231 dir_obj = ds->ds_dir_obj; 3232 3233 if (objset_get_dnode(spa, spa->spa_mos, dir_obj, &dir)) { 3234 printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj); 3235 return (EIO); 3236 } 3237 dd = (dsl_dir_phys_t *)&dir.dn_bonus; 3238 3239 child_dir_zapobj = dd->dd_child_dir_zapobj; 3240 if (objset_get_dnode(spa, spa->spa_mos, child_dir_zapobj, 3241 &child_dir_zap) != 0) { 3242 printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj); 3243 return (EIO); 3244 } 3245 3246 return (zap_list(spa, &child_dir_zap) != 0); 3247 } 3248 3249 int 3250 zfs_callback_dataset(const spa_t *spa, uint64_t objnum, 3251 int (*callback)(const char *, uint64_t)) 3252 { 3253 uint64_t dir_obj, child_dir_zapobj; 3254 dnode_phys_t child_dir_zap, dir, dataset; 3255 dsl_dataset_phys_t *ds; 3256 dsl_dir_phys_t *dd; 3257 zap_phys_t *zap; 3258 size_t size; 3259 int err; 3260 3261 err = objset_get_dnode(spa, spa->spa_mos, objnum, &dataset); 3262 if (err != 0) { 3263 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum); 3264 return (err); 3265 } 3266 ds = (dsl_dataset_phys_t *)&dataset.dn_bonus; 3267 dir_obj = ds->ds_dir_obj; 3268 3269 err = objset_get_dnode(spa, spa->spa_mos, dir_obj, &dir); 3270 if (err != 0) { 3271 printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj); 3272 return (err); 3273 } 3274 dd = (dsl_dir_phys_t *)&dir.dn_bonus; 3275 3276 child_dir_zapobj = dd->dd_child_dir_zapobj; 3277 err = objset_get_dnode(spa, spa->spa_mos, child_dir_zapobj, 3278 &child_dir_zap); 3279 if (err != 0) { 3280 printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj); 3281 return (err); 3282 } 3283 3284 size = child_dir_zap.dn_datablkszsec << SPA_MINBLOCKSHIFT; 3285 zap = malloc(size); 3286 if (zap != NULL) { 3287 err = dnode_read(spa, &child_dir_zap, 0, zap, size); 3288 if (err != 0) 3289 goto done; 3290 3291 if (zap->zap_block_type == ZBT_MICRO) 3292 err = mzap_list((const mzap_phys_t *)zap, size, 3293 callback); 3294 else 3295 err = fzap_list(spa, &child_dir_zap, zap, callback); 3296 } else { 3297 err = ENOMEM; 3298 } 3299 done: 3300 free(zap); 3301 return (err); 3302 } 3303 #endif 3304 3305 /* 3306 * Find the object set given the object number of its dataset object 3307 * and return its details in *objset 3308 */ 3309 static int 3310 zfs_mount_dataset(const spa_t *spa, uint64_t objnum, objset_phys_t *objset) 3311 { 3312 dnode_phys_t dataset; 3313 dsl_dataset_phys_t *ds; 3314 3315 if (objset_get_dnode(spa, spa->spa_mos, objnum, &dataset)) { 3316 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum); 3317 return (EIO); 3318 } 3319 3320 ds = (dsl_dataset_phys_t *)&dataset.dn_bonus; 3321 if (zio_read(spa, &ds->ds_bp, objset)) { 3322 printf("ZFS: can't read object set for dataset %ju\n", 3323 (uintmax_t)objnum); 3324 return (EIO); 3325 } 3326 3327 return (0); 3328 } 3329 3330 /* 3331 * Find the object set pointed to by the BOOTFS property or the root 3332 * dataset if there is none and return its details in *objset 3333 */ 3334 static int 3335 zfs_get_root(const spa_t *spa, uint64_t *objid) 3336 { 3337 dnode_phys_t dir, propdir; 3338 uint64_t props, bootfs, root; 3339 3340 *objid = 0; 3341 3342 /* 3343 * Start with the MOS directory object. 3344 */ 3345 if (objset_get_dnode(spa, spa->spa_mos, 3346 DMU_POOL_DIRECTORY_OBJECT, &dir)) { 3347 printf("ZFS: can't read MOS object directory\n"); 3348 return (EIO); 3349 } 3350 3351 /* 3352 * Lookup the pool_props and see if we can find a bootfs. 3353 */ 3354 if (zap_lookup(spa, &dir, DMU_POOL_PROPS, 3355 sizeof(props), 1, &props) == 0 && 3356 objset_get_dnode(spa, spa->spa_mos, props, &propdir) == 0 && 3357 zap_lookup(spa, &propdir, "bootfs", 3358 sizeof(bootfs), 1, &bootfs) == 0 && bootfs != 0) { 3359 *objid = bootfs; 3360 return (0); 3361 } 3362 /* 3363 * Lookup the root dataset directory 3364 */ 3365 if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET, 3366 sizeof(root), 1, &root) || 3367 objset_get_dnode(spa, spa->spa_mos, root, &dir)) { 3368 printf("ZFS: can't find root dsl_dir\n"); 3369 return (EIO); 3370 } 3371 3372 /* 3373 * Use the information from the dataset directory's bonus buffer 3374 * to find the dataset object and from that the object set itself. 3375 */ 3376 dsl_dir_phys_t *dd = (dsl_dir_phys_t *)&dir.dn_bonus; 3377 *objid = dd->dd_head_dataset_obj; 3378 return (0); 3379 } 3380 3381 static int 3382 zfs_mount_impl(const spa_t *spa, uint64_t rootobj, struct zfsmount *mount) 3383 { 3384 3385 mount->spa = spa; 3386 3387 /* 3388 * Find the root object set if not explicitly provided 3389 */ 3390 if (rootobj == 0 && zfs_get_root(spa, &rootobj)) { 3391 printf("ZFS: can't find root filesystem\n"); 3392 return (EIO); 3393 } 3394 3395 if (zfs_mount_dataset(spa, rootobj, &mount->objset)) { 3396 printf("ZFS: can't open root filesystem\n"); 3397 return (EIO); 3398 } 3399 3400 mount->rootobj = rootobj; 3401 3402 return (0); 3403 } 3404 3405 /* 3406 * callback function for feature name checks. 3407 */ 3408 static int 3409 check_feature(const char *name, uint64_t value) 3410 { 3411 int i; 3412 3413 if (value == 0) 3414 return (0); 3415 if (name[0] == '\0') 3416 return (0); 3417 3418 for (i = 0; features_for_read[i] != NULL; i++) { 3419 if (strcmp(name, features_for_read[i]) == 0) 3420 return (0); 3421 } 3422 printf("ZFS: unsupported feature: %s\n", name); 3423 return (EIO); 3424 } 3425 3426 /* 3427 * Checks whether the MOS features that are active are supported. 3428 */ 3429 static int 3430 check_mos_features(const spa_t *spa) 3431 { 3432 dnode_phys_t dir; 3433 zap_phys_t *zap; 3434 uint64_t objnum; 3435 size_t size; 3436 int rc; 3437 3438 if ((rc = objset_get_dnode(spa, spa->spa_mos, DMU_OT_OBJECT_DIRECTORY, 3439 &dir)) != 0) 3440 return (rc); 3441 if ((rc = zap_lookup(spa, &dir, DMU_POOL_FEATURES_FOR_READ, 3442 sizeof (objnum), 1, &objnum)) != 0) { 3443 /* 3444 * It is older pool without features. As we have already 3445 * tested the label, just return without raising the error. 3446 */ 3447 return (0); 3448 } 3449 3450 if ((rc = objset_get_dnode(spa, spa->spa_mos, objnum, &dir)) != 0) 3451 return (rc); 3452 3453 if (dir.dn_type != DMU_OTN_ZAP_METADATA) 3454 return (EIO); 3455 3456 size = dir.dn_datablkszsec << SPA_MINBLOCKSHIFT; 3457 zap = malloc(size); 3458 if (zap == NULL) 3459 return (ENOMEM); 3460 3461 if (dnode_read(spa, &dir, 0, zap, size)) { 3462 free(zap); 3463 return (EIO); 3464 } 3465 3466 if (zap->zap_block_type == ZBT_MICRO) 3467 rc = mzap_list((const mzap_phys_t *)zap, size, check_feature); 3468 else 3469 rc = fzap_list(spa, &dir, zap, check_feature); 3470 3471 free(zap); 3472 return (rc); 3473 } 3474 3475 static int 3476 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 3477 { 3478 dnode_phys_t dir; 3479 size_t size; 3480 int rc; 3481 char *nv; 3482 3483 *value = NULL; 3484 if ((rc = objset_get_dnode(spa, spa->spa_mos, obj, &dir)) != 0) 3485 return (rc); 3486 if (dir.dn_type != DMU_OT_PACKED_NVLIST && 3487 dir.dn_bonustype != DMU_OT_PACKED_NVLIST_SIZE) { 3488 return (EIO); 3489 } 3490 3491 if (dir.dn_bonuslen != sizeof (uint64_t)) 3492 return (EIO); 3493 3494 size = *(uint64_t *)DN_BONUS(&dir); 3495 nv = malloc(size); 3496 if (nv == NULL) 3497 return (ENOMEM); 3498 3499 rc = dnode_read(spa, &dir, 0, nv, size); 3500 if (rc != 0) { 3501 free(nv); 3502 nv = NULL; 3503 return (rc); 3504 } 3505 *value = nvlist_import(nv, size); 3506 free(nv); 3507 return (rc); 3508 } 3509 3510 static int 3511 zfs_spa_init(spa_t *spa) 3512 { 3513 struct uberblock checkpoint; 3514 dnode_phys_t dir; 3515 uint64_t config_object; 3516 nvlist_t *nvlist; 3517 int rc; 3518 3519 if (zio_read(spa, &spa->spa_uberblock->ub_rootbp, spa->spa_mos)) { 3520 printf("ZFS: can't read MOS of pool %s\n", spa->spa_name); 3521 return (EIO); 3522 } 3523 if (spa->spa_mos->os_type != DMU_OST_META) { 3524 printf("ZFS: corrupted MOS of pool %s\n", spa->spa_name); 3525 return (EIO); 3526 } 3527 3528 if (objset_get_dnode(spa, &spa->spa_mos_master, 3529 DMU_POOL_DIRECTORY_OBJECT, &dir)) { 3530 printf("ZFS: failed to read pool %s directory object\n", 3531 spa->spa_name); 3532 return (EIO); 3533 } 3534 /* this is allowed to fail, older pools do not have salt */ 3535 rc = zap_lookup(spa, &dir, DMU_POOL_CHECKSUM_SALT, 1, 3536 sizeof (spa->spa_cksum_salt.zcs_bytes), 3537 spa->spa_cksum_salt.zcs_bytes); 3538 3539 rc = check_mos_features(spa); 3540 if (rc != 0) { 3541 printf("ZFS: pool %s is not supported\n", spa->spa_name); 3542 return (rc); 3543 } 3544 3545 rc = zap_lookup(spa, &dir, DMU_POOL_CONFIG, 3546 sizeof (config_object), 1, &config_object); 3547 if (rc != 0) { 3548 printf("ZFS: can not read MOS %s\n", DMU_POOL_CONFIG); 3549 return (EIO); 3550 } 3551 rc = load_nvlist(spa, config_object, &nvlist); 3552 if (rc != 0) 3553 return (rc); 3554 3555 rc = zap_lookup(spa, &dir, DMU_POOL_ZPOOL_CHECKPOINT, 3556 sizeof(uint64_t), sizeof(checkpoint) / sizeof(uint64_t), 3557 &checkpoint); 3558 if (rc == 0 && checkpoint.ub_checkpoint_txg != 0) { 3559 memcpy(&spa->spa_uberblock_checkpoint, &checkpoint, 3560 sizeof(checkpoint)); 3561 if (zio_read(spa, &spa->spa_uberblock_checkpoint.ub_rootbp, 3562 &spa->spa_mos_checkpoint)) { 3563 printf("ZFS: can not read checkpoint data.\n"); 3564 return (EIO); 3565 } 3566 } 3567 3568 /* 3569 * Update vdevs from MOS config. Note, we do skip encoding bytes 3570 * here. See also vdev_label_read_config(). 3571 */ 3572 rc = vdev_init_from_nvlist(spa, nvlist); 3573 nvlist_destroy(nvlist); 3574 return (rc); 3575 } 3576 3577 static int 3578 zfs_dnode_stat(const spa_t *spa, dnode_phys_t *dn, struct stat *sb) 3579 { 3580 3581 if (dn->dn_bonustype != DMU_OT_SA) { 3582 znode_phys_t *zp = (znode_phys_t *)dn->dn_bonus; 3583 3584 sb->st_mode = zp->zp_mode; 3585 sb->st_uid = zp->zp_uid; 3586 sb->st_gid = zp->zp_gid; 3587 sb->st_size = zp->zp_size; 3588 } else { 3589 sa_hdr_phys_t *sahdrp; 3590 int hdrsize; 3591 size_t size = 0; 3592 void *buf = NULL; 3593 3594 if (dn->dn_bonuslen != 0) 3595 sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn); 3596 else { 3597 if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0) { 3598 blkptr_t *bp = DN_SPILL_BLKPTR(dn); 3599 int error; 3600 3601 size = BP_GET_LSIZE(bp); 3602 buf = malloc(size); 3603 if (buf == NULL) 3604 error = ENOMEM; 3605 else 3606 error = zio_read(spa, bp, buf); 3607 3608 if (error != 0) { 3609 free(buf); 3610 return (error); 3611 } 3612 sahdrp = buf; 3613 } else { 3614 return (EIO); 3615 } 3616 } 3617 hdrsize = SA_HDR_SIZE(sahdrp); 3618 sb->st_mode = *(uint64_t *)((char *)sahdrp + hdrsize + 3619 SA_MODE_OFFSET); 3620 sb->st_uid = *(uint64_t *)((char *)sahdrp + hdrsize + 3621 SA_UID_OFFSET); 3622 sb->st_gid = *(uint64_t *)((char *)sahdrp + hdrsize + 3623 SA_GID_OFFSET); 3624 sb->st_size = *(uint64_t *)((char *)sahdrp + hdrsize + 3625 SA_SIZE_OFFSET); 3626 free(buf); 3627 } 3628 3629 return (0); 3630 } 3631 3632 static int 3633 zfs_dnode_readlink(const spa_t *spa, dnode_phys_t *dn, char *path, size_t psize) 3634 { 3635 int rc = 0; 3636 3637 if (dn->dn_bonustype == DMU_OT_SA) { 3638 sa_hdr_phys_t *sahdrp = NULL; 3639 size_t size = 0; 3640 void *buf = NULL; 3641 int hdrsize; 3642 char *p; 3643 3644 if (dn->dn_bonuslen != 0) { 3645 sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn); 3646 } else { 3647 blkptr_t *bp; 3648 3649 if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) == 0) 3650 return (EIO); 3651 bp = DN_SPILL_BLKPTR(dn); 3652 3653 size = BP_GET_LSIZE(bp); 3654 buf = malloc(size); 3655 if (buf == NULL) 3656 rc = ENOMEM; 3657 else 3658 rc = zio_read(spa, bp, buf); 3659 if (rc != 0) { 3660 free(buf); 3661 return (rc); 3662 } 3663 sahdrp = buf; 3664 } 3665 hdrsize = SA_HDR_SIZE(sahdrp); 3666 p = (char *)((uintptr_t)sahdrp + hdrsize + SA_SYMLINK_OFFSET); 3667 memcpy(path, p, psize); 3668 free(buf); 3669 return (0); 3670 } 3671 /* 3672 * Second test is purely to silence bogus compiler 3673 * warning about accessing past the end of dn_bonus. 3674 */ 3675 if (psize + sizeof(znode_phys_t) <= dn->dn_bonuslen && 3676 sizeof(znode_phys_t) <= sizeof(dn->dn_bonus)) { 3677 memcpy(path, &dn->dn_bonus[sizeof(znode_phys_t)], psize); 3678 } else { 3679 rc = dnode_read(spa, dn, 0, path, psize); 3680 } 3681 return (rc); 3682 } 3683 3684 struct obj_list { 3685 uint64_t objnum; 3686 STAILQ_ENTRY(obj_list) entry; 3687 }; 3688 3689 /* 3690 * Lookup a file and return its dnode. 3691 */ 3692 static int 3693 zfs_lookup(const struct zfsmount *mount, const char *upath, dnode_phys_t *dnode) 3694 { 3695 int rc; 3696 uint64_t objnum; 3697 const spa_t *spa; 3698 dnode_phys_t dn; 3699 const char *p, *q; 3700 char element[256]; 3701 char path[1024]; 3702 int symlinks_followed = 0; 3703 struct stat sb; 3704 struct obj_list *entry, *tentry; 3705 STAILQ_HEAD(, obj_list) on_cache = STAILQ_HEAD_INITIALIZER(on_cache); 3706 3707 spa = mount->spa; 3708 if (mount->objset.os_type != DMU_OST_ZFS) { 3709 printf("ZFS: unexpected object set type %ju\n", 3710 (uintmax_t)mount->objset.os_type); 3711 return (EIO); 3712 } 3713 3714 if ((entry = malloc(sizeof(struct obj_list))) == NULL) 3715 return (ENOMEM); 3716 3717 /* 3718 * Get the root directory dnode. 3719 */ 3720 rc = objset_get_dnode(spa, &mount->objset, MASTER_NODE_OBJ, &dn); 3721 if (rc) { 3722 free(entry); 3723 return (rc); 3724 } 3725 3726 rc = zap_lookup(spa, &dn, ZFS_ROOT_OBJ, sizeof(objnum), 1, &objnum); 3727 if (rc) { 3728 free(entry); 3729 return (rc); 3730 } 3731 entry->objnum = objnum; 3732 STAILQ_INSERT_HEAD(&on_cache, entry, entry); 3733 3734 rc = objset_get_dnode(spa, &mount->objset, objnum, &dn); 3735 if (rc != 0) 3736 goto done; 3737 3738 p = upath; 3739 while (p && *p) { 3740 rc = objset_get_dnode(spa, &mount->objset, objnum, &dn); 3741 if (rc != 0) 3742 goto done; 3743 3744 while (*p == '/') 3745 p++; 3746 if (*p == '\0') 3747 break; 3748 q = p; 3749 while (*q != '\0' && *q != '/') 3750 q++; 3751 3752 /* skip dot */ 3753 if (p + 1 == q && p[0] == '.') { 3754 p++; 3755 continue; 3756 } 3757 /* double dot */ 3758 if (p + 2 == q && p[0] == '.' && p[1] == '.') { 3759 p += 2; 3760 if (STAILQ_FIRST(&on_cache) == 3761 STAILQ_LAST(&on_cache, obj_list, entry)) { 3762 rc = ENOENT; 3763 goto done; 3764 } 3765 entry = STAILQ_FIRST(&on_cache); 3766 STAILQ_REMOVE_HEAD(&on_cache, entry); 3767 free(entry); 3768 objnum = (STAILQ_FIRST(&on_cache))->objnum; 3769 continue; 3770 } 3771 if (q - p + 1 > sizeof(element)) { 3772 rc = ENAMETOOLONG; 3773 goto done; 3774 } 3775 memcpy(element, p, q - p); 3776 element[q - p] = 0; 3777 p = q; 3778 3779 if ((rc = zfs_dnode_stat(spa, &dn, &sb)) != 0) 3780 goto done; 3781 if (!S_ISDIR(sb.st_mode)) { 3782 rc = ENOTDIR; 3783 goto done; 3784 } 3785 3786 rc = zap_lookup(spa, &dn, element, sizeof (objnum), 1, &objnum); 3787 if (rc) 3788 goto done; 3789 objnum = ZFS_DIRENT_OBJ(objnum); 3790 3791 if ((entry = malloc(sizeof(struct obj_list))) == NULL) { 3792 rc = ENOMEM; 3793 goto done; 3794 } 3795 entry->objnum = objnum; 3796 STAILQ_INSERT_HEAD(&on_cache, entry, entry); 3797 rc = objset_get_dnode(spa, &mount->objset, objnum, &dn); 3798 if (rc) 3799 goto done; 3800 3801 /* 3802 * Check for symlink. 3803 */ 3804 rc = zfs_dnode_stat(spa, &dn, &sb); 3805 if (rc) 3806 goto done; 3807 if (S_ISLNK(sb.st_mode)) { 3808 if (symlinks_followed > 10) { 3809 rc = EMLINK; 3810 goto done; 3811 } 3812 symlinks_followed++; 3813 3814 /* 3815 * Read the link value and copy the tail of our 3816 * current path onto the end. 3817 */ 3818 if (sb.st_size + strlen(p) + 1 > sizeof(path)) { 3819 rc = ENAMETOOLONG; 3820 goto done; 3821 } 3822 strcpy(&path[sb.st_size], p); 3823 3824 rc = zfs_dnode_readlink(spa, &dn, path, sb.st_size); 3825 if (rc != 0) 3826 goto done; 3827 3828 /* 3829 * Restart with the new path, starting either at 3830 * the root or at the parent depending whether or 3831 * not the link is relative. 3832 */ 3833 p = path; 3834 if (*p == '/') { 3835 while (STAILQ_FIRST(&on_cache) != 3836 STAILQ_LAST(&on_cache, obj_list, entry)) { 3837 entry = STAILQ_FIRST(&on_cache); 3838 STAILQ_REMOVE_HEAD(&on_cache, entry); 3839 free(entry); 3840 } 3841 } else { 3842 entry = STAILQ_FIRST(&on_cache); 3843 STAILQ_REMOVE_HEAD(&on_cache, entry); 3844 free(entry); 3845 } 3846 objnum = (STAILQ_FIRST(&on_cache))->objnum; 3847 } 3848 } 3849 3850 *dnode = dn; 3851 done: 3852 STAILQ_FOREACH_SAFE(entry, &on_cache, entry, tentry) 3853 free(entry); 3854 return (rc); 3855 } 3856 3857 /* 3858 * Return either a cached copy of the bootenv, or read each of the vdev children 3859 * looking for the bootenv. Cache what's found and return the results. Returns 0 3860 * when benvp is filled in, and some errno when not. 3861 */ 3862 static int 3863 zfs_get_bootenv_spa(spa_t *spa, nvlist_t **benvp) 3864 { 3865 vdev_t *vd; 3866 nvlist_t *benv = NULL; 3867 3868 if (spa->spa_bootenv == NULL) { 3869 STAILQ_FOREACH(vd, &spa->spa_root_vdev->v_children, 3870 v_childlink) { 3871 benv = vdev_read_bootenv(vd); 3872 3873 if (benv != NULL) 3874 break; 3875 } 3876 spa->spa_bootenv = benv; 3877 } 3878 benv = spa->spa_bootenv; 3879 3880 if (benv == NULL) 3881 return (ENOENT); 3882 3883 *benvp = benv; 3884 return (0); 3885 } 3886 3887 /* 3888 * Store nvlist to pool label bootenv area. Also updates cached pointer in spa. 3889 */ 3890 static int 3891 zfs_set_bootenv_spa(spa_t *spa, nvlist_t *benv) 3892 { 3893 vdev_t *vd; 3894 3895 STAILQ_FOREACH(vd, &spa->spa_root_vdev->v_children, v_childlink) { 3896 vdev_write_bootenv(vd, benv); 3897 } 3898 3899 spa->spa_bootenv = benv; 3900 return (0); 3901 } 3902 3903 /* 3904 * Get bootonce value by key. The bootonce <key, value> pair is removed from the 3905 * bootenv nvlist and the remaining nvlist is committed back to disk. This process 3906 * the bootonce flag since we've reached the point in the boot that we've 'used' 3907 * the BE. For chained boot scenarios, we may reach this point multiple times (but 3908 * only remove it and return 0 the first time). 3909 */ 3910 static int 3911 zfs_get_bootonce_spa(spa_t *spa, const char *key, char *buf, size_t size) 3912 { 3913 nvlist_t *benv; 3914 char *result = NULL; 3915 int result_size, rv; 3916 3917 if ((rv = zfs_get_bootenv_spa(spa, &benv)) != 0) 3918 return (rv); 3919 3920 if ((rv = nvlist_find(benv, key, DATA_TYPE_STRING, NULL, 3921 &result, &result_size)) == 0) { 3922 if (result_size == 0) { 3923 /* ignore empty string */ 3924 rv = ENOENT; 3925 } else if (buf != NULL) { 3926 size = MIN((size_t)result_size + 1, size); 3927 strlcpy(buf, result, size); 3928 } 3929 (void)nvlist_remove(benv, key, DATA_TYPE_STRING); 3930 (void)zfs_set_bootenv_spa(spa, benv); 3931 } 3932 3933 return (rv); 3934 } 3935