1 /*- 2 * Copyright (c) 2007 Doug Rabson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 /* 31 * Stand-alone ZFS file reader. 32 */ 33 34 #include <sys/endian.h> 35 #include <sys/stat.h> 36 #include <sys/stdint.h> 37 #include <sys/list.h> 38 #include <machine/_inttypes.h> 39 40 #include "zfsimpl.h" 41 #include "zfssubr.c" 42 43 44 struct zfsmount { 45 const spa_t *spa; 46 objset_phys_t objset; 47 uint64_t rootobj; 48 }; 49 static struct zfsmount zfsmount __unused; 50 51 /* 52 * The indirect_child_t represents the vdev that we will read from, when we 53 * need to read all copies of the data (e.g. for scrub or reconstruction). 54 * For plain (non-mirror) top-level vdevs (i.e. is_vdev is not a mirror), 55 * ic_vdev is the same as is_vdev. However, for mirror top-level vdevs, 56 * ic_vdev is a child of the mirror. 57 */ 58 typedef struct indirect_child { 59 void *ic_data; 60 vdev_t *ic_vdev; 61 } indirect_child_t; 62 63 /* 64 * The indirect_split_t represents one mapped segment of an i/o to the 65 * indirect vdev. For non-split (contiguously-mapped) blocks, there will be 66 * only one indirect_split_t, with is_split_offset==0 and is_size==io_size. 67 * For split blocks, there will be several of these. 68 */ 69 typedef struct indirect_split { 70 list_node_t is_node; /* link on iv_splits */ 71 72 /* 73 * is_split_offset is the offset into the i/o. 74 * This is the sum of the previous splits' is_size's. 75 */ 76 uint64_t is_split_offset; 77 78 vdev_t *is_vdev; /* top-level vdev */ 79 uint64_t is_target_offset; /* offset on is_vdev */ 80 uint64_t is_size; 81 int is_children; /* number of entries in is_child[] */ 82 83 /* 84 * is_good_child is the child that we are currently using to 85 * attempt reconstruction. 86 */ 87 int is_good_child; 88 89 indirect_child_t is_child[1]; /* variable-length */ 90 } indirect_split_t; 91 92 /* 93 * The indirect_vsd_t is associated with each i/o to the indirect vdev. 94 * It is the "Vdev-Specific Data" in the zio_t's io_vsd. 95 */ 96 typedef struct indirect_vsd { 97 boolean_t iv_split_block; 98 boolean_t iv_reconstruct; 99 100 list_t iv_splits; /* list of indirect_split_t's */ 101 } indirect_vsd_t; 102 103 /* 104 * List of all vdevs, chained through v_alllink. 105 */ 106 static vdev_list_t zfs_vdevs; 107 108 /* 109 * List of ZFS features supported for read 110 */ 111 static const char *features_for_read[] = { 112 "org.illumos:lz4_compress", 113 "com.delphix:hole_birth", 114 "com.delphix:extensible_dataset", 115 "com.delphix:embedded_data", 116 "org.open-zfs:large_blocks", 117 "org.illumos:sha512", 118 "org.illumos:skein", 119 "org.zfsonlinux:large_dnode", 120 "com.joyent:multi_vdev_crash_dump", 121 "com.delphix:spacemap_histogram", 122 "com.delphix:zpool_checkpoint", 123 "com.delphix:spacemap_v2", 124 "com.datto:encryption", 125 "org.zfsonlinux:allocation_classes", 126 "com.datto:resilver_defer", 127 "com.delphix:device_removal", 128 "com.delphix:obsolete_counts", 129 "com.intel:allocation_classes", 130 NULL 131 }; 132 133 /* 134 * List of all pools, chained through spa_link. 135 */ 136 static spa_list_t zfs_pools; 137 138 static const dnode_phys_t *dnode_cache_obj; 139 static uint64_t dnode_cache_bn; 140 static char *dnode_cache_buf; 141 static char *zap_scratch; 142 static char *zfs_temp_buf, *zfs_temp_end, *zfs_temp_ptr; 143 144 #define TEMP_SIZE (1024 * 1024) 145 146 static int zio_read(const spa_t *spa, const blkptr_t *bp, void *buf); 147 static int zfs_get_root(const spa_t *spa, uint64_t *objid); 148 static int zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result); 149 static int zap_lookup(const spa_t *spa, const dnode_phys_t *dnode, 150 const char *name, uint64_t integer_size, uint64_t num_integers, 151 void *value); 152 static int objset_get_dnode(const spa_t *, const objset_phys_t *, uint64_t, 153 dnode_phys_t *); 154 static int dnode_read(const spa_t *, const dnode_phys_t *, off_t, void *, 155 size_t); 156 static int vdev_indirect_read(vdev_t *, const blkptr_t *, void *, off_t, 157 size_t); 158 static int vdev_mirror_read(vdev_t *, const blkptr_t *, void *, off_t, size_t); 159 vdev_indirect_mapping_t *vdev_indirect_mapping_open(spa_t *, objset_phys_t *, 160 uint64_t); 161 vdev_indirect_mapping_entry_phys_t * 162 vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *, uint64_t, 163 uint64_t, uint64_t *); 164 165 static void 166 zfs_init(void) 167 { 168 STAILQ_INIT(&zfs_vdevs); 169 STAILQ_INIT(&zfs_pools); 170 171 zfs_temp_buf = malloc(TEMP_SIZE); 172 zfs_temp_end = zfs_temp_buf + TEMP_SIZE; 173 zfs_temp_ptr = zfs_temp_buf; 174 dnode_cache_buf = malloc(SPA_MAXBLOCKSIZE); 175 zap_scratch = malloc(SPA_MAXBLOCKSIZE); 176 177 zfs_init_crc(); 178 } 179 180 static void * 181 zfs_alloc(size_t size) 182 { 183 char *ptr; 184 185 if (zfs_temp_ptr + size > zfs_temp_end) { 186 panic("ZFS: out of temporary buffer space"); 187 } 188 ptr = zfs_temp_ptr; 189 zfs_temp_ptr += size; 190 191 return (ptr); 192 } 193 194 static void 195 zfs_free(void *ptr, size_t size) 196 { 197 198 zfs_temp_ptr -= size; 199 if (zfs_temp_ptr != ptr) { 200 panic("ZFS: zfs_alloc()/zfs_free() mismatch"); 201 } 202 } 203 204 static int 205 xdr_int(const unsigned char **xdr, int *ip) 206 { 207 *ip = be32dec(*xdr); 208 (*xdr) += 4; 209 return (0); 210 } 211 212 static int 213 xdr_u_int(const unsigned char **xdr, u_int *ip) 214 { 215 *ip = be32dec(*xdr); 216 (*xdr) += 4; 217 return (0); 218 } 219 220 static int 221 xdr_uint64_t(const unsigned char **xdr, uint64_t *lp) 222 { 223 u_int hi, lo; 224 225 xdr_u_int(xdr, &hi); 226 xdr_u_int(xdr, &lo); 227 *lp = (((uint64_t)hi) << 32) | lo; 228 return (0); 229 } 230 231 static int 232 nvlist_find(const unsigned char *nvlist, const char *name, int type, 233 int *elementsp, void *valuep) 234 { 235 const unsigned char *p, *pair; 236 int junk; 237 int encoded_size, decoded_size; 238 239 p = nvlist; 240 xdr_int(&p, &junk); 241 xdr_int(&p, &junk); 242 243 pair = p; 244 xdr_int(&p, &encoded_size); 245 xdr_int(&p, &decoded_size); 246 while (encoded_size && decoded_size) { 247 int namelen, pairtype, elements; 248 const char *pairname; 249 250 xdr_int(&p, &namelen); 251 pairname = (const char *)p; 252 p += roundup(namelen, 4); 253 xdr_int(&p, &pairtype); 254 255 if (memcmp(name, pairname, namelen) == 0 && type == pairtype) { 256 xdr_int(&p, &elements); 257 if (elementsp) 258 *elementsp = elements; 259 if (type == DATA_TYPE_UINT64) { 260 xdr_uint64_t(&p, (uint64_t *)valuep); 261 return (0); 262 } else if (type == DATA_TYPE_STRING) { 263 int len; 264 xdr_int(&p, &len); 265 (*(const char **)valuep) = (const char *)p; 266 return (0); 267 } else if (type == DATA_TYPE_NVLIST || 268 type == DATA_TYPE_NVLIST_ARRAY) { 269 (*(const unsigned char **)valuep) = 270 (const unsigned char *)p; 271 return (0); 272 } else { 273 return (EIO); 274 } 275 } else { 276 /* 277 * Not the pair we are looking for, skip to the 278 * next one. 279 */ 280 p = pair + encoded_size; 281 } 282 283 pair = p; 284 xdr_int(&p, &encoded_size); 285 xdr_int(&p, &decoded_size); 286 } 287 288 return (EIO); 289 } 290 291 static int 292 nvlist_check_features_for_read(const unsigned char *nvlist) 293 { 294 const unsigned char *p, *pair; 295 int junk; 296 int encoded_size, decoded_size; 297 int rc; 298 299 rc = 0; 300 301 p = nvlist; 302 xdr_int(&p, &junk); 303 xdr_int(&p, &junk); 304 305 pair = p; 306 xdr_int(&p, &encoded_size); 307 xdr_int(&p, &decoded_size); 308 while (encoded_size && decoded_size) { 309 int namelen, pairtype; 310 const char *pairname; 311 int i, found; 312 313 found = 0; 314 315 xdr_int(&p, &namelen); 316 pairname = (const char *)p; 317 p += roundup(namelen, 4); 318 xdr_int(&p, &pairtype); 319 320 for (i = 0; features_for_read[i] != NULL; i++) { 321 if (memcmp(pairname, features_for_read[i], 322 namelen) == 0) { 323 found = 1; 324 break; 325 } 326 } 327 328 if (!found) { 329 printf("ZFS: unsupported feature: %s\n", pairname); 330 rc = EIO; 331 } 332 333 p = pair + encoded_size; 334 335 pair = p; 336 xdr_int(&p, &encoded_size); 337 xdr_int(&p, &decoded_size); 338 } 339 340 return (rc); 341 } 342 343 /* 344 * Return the next nvlist in an nvlist array. 345 */ 346 static const unsigned char * 347 nvlist_next(const unsigned char *nvlist) 348 { 349 const unsigned char *p, *pair; 350 int junk; 351 int encoded_size, decoded_size; 352 353 p = nvlist; 354 xdr_int(&p, &junk); 355 xdr_int(&p, &junk); 356 357 pair = p; 358 xdr_int(&p, &encoded_size); 359 xdr_int(&p, &decoded_size); 360 while (encoded_size && decoded_size) { 361 p = pair + encoded_size; 362 363 pair = p; 364 xdr_int(&p, &encoded_size); 365 xdr_int(&p, &decoded_size); 366 } 367 368 return (p); 369 } 370 371 #ifdef TEST 372 373 static const unsigned char * 374 nvlist_print(const unsigned char *nvlist, unsigned int indent) 375 { 376 static const char *typenames[] = { 377 "DATA_TYPE_UNKNOWN", 378 "DATA_TYPE_BOOLEAN", 379 "DATA_TYPE_BYTE", 380 "DATA_TYPE_INT16", 381 "DATA_TYPE_UINT16", 382 "DATA_TYPE_INT32", 383 "DATA_TYPE_UINT32", 384 "DATA_TYPE_INT64", 385 "DATA_TYPE_UINT64", 386 "DATA_TYPE_STRING", 387 "DATA_TYPE_BYTE_ARRAY", 388 "DATA_TYPE_INT16_ARRAY", 389 "DATA_TYPE_UINT16_ARRAY", 390 "DATA_TYPE_INT32_ARRAY", 391 "DATA_TYPE_UINT32_ARRAY", 392 "DATA_TYPE_INT64_ARRAY", 393 "DATA_TYPE_UINT64_ARRAY", 394 "DATA_TYPE_STRING_ARRAY", 395 "DATA_TYPE_HRTIME", 396 "DATA_TYPE_NVLIST", 397 "DATA_TYPE_NVLIST_ARRAY", 398 "DATA_TYPE_BOOLEAN_VALUE", 399 "DATA_TYPE_INT8", 400 "DATA_TYPE_UINT8", 401 "DATA_TYPE_BOOLEAN_ARRAY", 402 "DATA_TYPE_INT8_ARRAY", 403 "DATA_TYPE_UINT8_ARRAY" 404 }; 405 406 unsigned int i, j; 407 const unsigned char *p, *pair; 408 int junk; 409 int encoded_size, decoded_size; 410 411 p = nvlist; 412 xdr_int(&p, &junk); 413 xdr_int(&p, &junk); 414 415 pair = p; 416 xdr_int(&p, &encoded_size); 417 xdr_int(&p, &decoded_size); 418 while (encoded_size && decoded_size) { 419 int namelen, pairtype, elements; 420 const char *pairname; 421 422 xdr_int(&p, &namelen); 423 pairname = (const char *)p; 424 p += roundup(namelen, 4); 425 xdr_int(&p, &pairtype); 426 427 for (i = 0; i < indent; i++) 428 printf(" "); 429 printf("%s %s", typenames[pairtype], pairname); 430 431 xdr_int(&p, &elements); 432 switch (pairtype) { 433 case DATA_TYPE_UINT64: { 434 uint64_t val; 435 xdr_uint64_t(&p, &val); 436 printf(" = 0x%jx\n", (uintmax_t)val); 437 break; 438 } 439 440 case DATA_TYPE_STRING: { 441 int len; 442 xdr_int(&p, &len); 443 printf(" = \"%s\"\n", p); 444 break; 445 } 446 447 case DATA_TYPE_NVLIST: 448 printf("\n"); 449 nvlist_print(p, indent + 1); 450 break; 451 452 case DATA_TYPE_NVLIST_ARRAY: 453 for (j = 0; j < elements; j++) { 454 printf("[%d]\n", j); 455 p = nvlist_print(p, indent + 1); 456 if (j != elements - 1) { 457 for (i = 0; i < indent; i++) 458 printf(" "); 459 printf("%s %s", typenames[pairtype], 460 pairname); 461 } 462 } 463 break; 464 465 default: 466 printf("\n"); 467 } 468 469 p = pair + encoded_size; 470 471 pair = p; 472 xdr_int(&p, &encoded_size); 473 xdr_int(&p, &decoded_size); 474 } 475 476 return (p); 477 } 478 479 #endif 480 481 static int 482 vdev_read_phys(vdev_t *vdev, const blkptr_t *bp, void *buf, 483 off_t offset, size_t size) 484 { 485 size_t psize; 486 int rc; 487 488 if (!vdev->v_phys_read) 489 return (EIO); 490 491 if (bp) { 492 psize = BP_GET_PSIZE(bp); 493 } else { 494 psize = size; 495 } 496 497 rc = vdev->v_phys_read(vdev, vdev->v_read_priv, offset, buf, psize); 498 if (rc == 0) { 499 if (bp != NULL) 500 rc = zio_checksum_verify(vdev->v_spa, bp, buf); 501 } 502 503 return (rc); 504 } 505 506 typedef struct remap_segment { 507 vdev_t *rs_vd; 508 uint64_t rs_offset; 509 uint64_t rs_asize; 510 uint64_t rs_split_offset; 511 list_node_t rs_node; 512 } remap_segment_t; 513 514 static remap_segment_t * 515 rs_alloc(vdev_t *vd, uint64_t offset, uint64_t asize, uint64_t split_offset) 516 { 517 remap_segment_t *rs = malloc(sizeof (remap_segment_t)); 518 519 if (rs != NULL) { 520 rs->rs_vd = vd; 521 rs->rs_offset = offset; 522 rs->rs_asize = asize; 523 rs->rs_split_offset = split_offset; 524 } 525 526 return (rs); 527 } 528 529 vdev_indirect_mapping_t * 530 vdev_indirect_mapping_open(spa_t *spa, objset_phys_t *os, 531 uint64_t mapping_object) 532 { 533 vdev_indirect_mapping_t *vim; 534 vdev_indirect_mapping_phys_t *vim_phys; 535 int rc; 536 537 vim = calloc(1, sizeof (*vim)); 538 if (vim == NULL) 539 return (NULL); 540 541 vim->vim_dn = calloc(1, sizeof (*vim->vim_dn)); 542 if (vim->vim_dn == NULL) { 543 free(vim); 544 return (NULL); 545 } 546 547 rc = objset_get_dnode(spa, os, mapping_object, vim->vim_dn); 548 if (rc != 0) { 549 free(vim->vim_dn); 550 free(vim); 551 return (NULL); 552 } 553 554 vim->vim_spa = spa; 555 vim->vim_phys = malloc(sizeof (*vim->vim_phys)); 556 if (vim->vim_phys == NULL) { 557 free(vim->vim_dn); 558 free(vim); 559 return (NULL); 560 } 561 562 vim_phys = (vdev_indirect_mapping_phys_t *)DN_BONUS(vim->vim_dn); 563 *vim->vim_phys = *vim_phys; 564 565 vim->vim_objset = os; 566 vim->vim_object = mapping_object; 567 vim->vim_entries = NULL; 568 569 vim->vim_havecounts = 570 (vim->vim_dn->dn_bonuslen > VDEV_INDIRECT_MAPPING_SIZE_V0); 571 572 return (vim); 573 } 574 575 /* 576 * Compare an offset with an indirect mapping entry; there are three 577 * possible scenarios: 578 * 579 * 1. The offset is "less than" the mapping entry; meaning the 580 * offset is less than the source offset of the mapping entry. In 581 * this case, there is no overlap between the offset and the 582 * mapping entry and -1 will be returned. 583 * 584 * 2. The offset is "greater than" the mapping entry; meaning the 585 * offset is greater than the mapping entry's source offset plus 586 * the entry's size. In this case, there is no overlap between 587 * the offset and the mapping entry and 1 will be returned. 588 * 589 * NOTE: If the offset is actually equal to the entry's offset 590 * plus size, this is considered to be "greater" than the entry, 591 * and this case applies (i.e. 1 will be returned). Thus, the 592 * entry's "range" can be considered to be inclusive at its 593 * start, but exclusive at its end: e.g. [src, src + size). 594 * 595 * 3. The last case to consider is if the offset actually falls 596 * within the mapping entry's range. If this is the case, the 597 * offset is considered to be "equal to" the mapping entry and 598 * 0 will be returned. 599 * 600 * NOTE: If the offset is equal to the entry's source offset, 601 * this case applies and 0 will be returned. If the offset is 602 * equal to the entry's source plus its size, this case does 603 * *not* apply (see "NOTE" above for scenario 2), and 1 will be 604 * returned. 605 */ 606 static int 607 dva_mapping_overlap_compare(const void *v_key, const void *v_array_elem) 608 { 609 const uint64_t *key = v_key; 610 const vdev_indirect_mapping_entry_phys_t *array_elem = 611 v_array_elem; 612 uint64_t src_offset = DVA_MAPPING_GET_SRC_OFFSET(array_elem); 613 614 if (*key < src_offset) { 615 return (-1); 616 } else if (*key < src_offset + DVA_GET_ASIZE(&array_elem->vimep_dst)) { 617 return (0); 618 } else { 619 return (1); 620 } 621 } 622 623 /* 624 * Return array entry. 625 */ 626 static vdev_indirect_mapping_entry_phys_t * 627 vdev_indirect_mapping_entry(vdev_indirect_mapping_t *vim, uint64_t index) 628 { 629 uint64_t size; 630 off_t offset = 0; 631 int rc; 632 633 if (vim->vim_phys->vimp_num_entries == 0) 634 return (NULL); 635 636 if (vim->vim_entries == NULL) { 637 uint64_t bsize; 638 639 bsize = vim->vim_dn->dn_datablkszsec << SPA_MINBLOCKSHIFT; 640 size = vim->vim_phys->vimp_num_entries * 641 sizeof (*vim->vim_entries); 642 if (size > bsize) { 643 size = bsize / sizeof (*vim->vim_entries); 644 size *= sizeof (*vim->vim_entries); 645 } 646 vim->vim_entries = malloc(size); 647 if (vim->vim_entries == NULL) 648 return (NULL); 649 vim->vim_num_entries = size / sizeof (*vim->vim_entries); 650 offset = index * sizeof (*vim->vim_entries); 651 } 652 653 /* We have data in vim_entries */ 654 if (offset == 0) { 655 if (index >= vim->vim_entry_offset && 656 index <= vim->vim_entry_offset + vim->vim_num_entries) { 657 index -= vim->vim_entry_offset; 658 return (&vim->vim_entries[index]); 659 } 660 offset = index * sizeof (*vim->vim_entries); 661 } 662 663 vim->vim_entry_offset = index; 664 size = vim->vim_num_entries * sizeof (*vim->vim_entries); 665 rc = dnode_read(vim->vim_spa, vim->vim_dn, offset, vim->vim_entries, 666 size); 667 if (rc != 0) { 668 /* Read error, invalidate vim_entries. */ 669 free(vim->vim_entries); 670 vim->vim_entries = NULL; 671 return (NULL); 672 } 673 index -= vim->vim_entry_offset; 674 return (&vim->vim_entries[index]); 675 } 676 677 /* 678 * Returns the mapping entry for the given offset. 679 * 680 * It's possible that the given offset will not be in the mapping table 681 * (i.e. no mapping entries contain this offset), in which case, the 682 * return value value depends on the "next_if_missing" parameter. 683 * 684 * If the offset is not found in the table and "next_if_missing" is 685 * B_FALSE, then NULL will always be returned. The behavior is intended 686 * to allow consumers to get the entry corresponding to the offset 687 * parameter, iff the offset overlaps with an entry in the table. 688 * 689 * If the offset is not found in the table and "next_if_missing" is 690 * B_TRUE, then the entry nearest to the given offset will be returned, 691 * such that the entry's source offset is greater than the offset 692 * passed in (i.e. the "next" mapping entry in the table is returned, if 693 * the offset is missing from the table). If there are no entries whose 694 * source offset is greater than the passed in offset, NULL is returned. 695 */ 696 static vdev_indirect_mapping_entry_phys_t * 697 vdev_indirect_mapping_entry_for_offset(vdev_indirect_mapping_t *vim, 698 uint64_t offset) 699 { 700 ASSERT(vim->vim_phys->vimp_num_entries > 0); 701 702 vdev_indirect_mapping_entry_phys_t *entry; 703 704 uint64_t last = vim->vim_phys->vimp_num_entries - 1; 705 uint64_t base = 0; 706 707 /* 708 * We don't define these inside of the while loop because we use 709 * their value in the case that offset isn't in the mapping. 710 */ 711 uint64_t mid; 712 int result; 713 714 while (last >= base) { 715 mid = base + ((last - base) >> 1); 716 717 entry = vdev_indirect_mapping_entry(vim, mid); 718 if (entry == NULL) 719 break; 720 result = dva_mapping_overlap_compare(&offset, entry); 721 722 if (result == 0) { 723 break; 724 } else if (result < 0) { 725 last = mid - 1; 726 } else { 727 base = mid + 1; 728 } 729 } 730 return (entry); 731 } 732 733 /* 734 * Given an indirect vdev and an extent on that vdev, it duplicates the 735 * physical entries of the indirect mapping that correspond to the extent 736 * to a new array and returns a pointer to it. In addition, copied_entries 737 * is populated with the number of mapping entries that were duplicated. 738 * 739 * Finally, since we are doing an allocation, it is up to the caller to 740 * free the array allocated in this function. 741 */ 742 vdev_indirect_mapping_entry_phys_t * 743 vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *vd, uint64_t offset, 744 uint64_t asize, uint64_t *copied_entries) 745 { 746 vdev_indirect_mapping_entry_phys_t *duplicate_mappings = NULL; 747 vdev_indirect_mapping_t *vim = vd->v_mapping; 748 uint64_t entries = 0; 749 750 vdev_indirect_mapping_entry_phys_t *first_mapping = 751 vdev_indirect_mapping_entry_for_offset(vim, offset); 752 ASSERT3P(first_mapping, !=, NULL); 753 754 vdev_indirect_mapping_entry_phys_t *m = first_mapping; 755 while (asize > 0) { 756 uint64_t size = DVA_GET_ASIZE(&m->vimep_dst); 757 uint64_t inner_offset = offset - DVA_MAPPING_GET_SRC_OFFSET(m); 758 uint64_t inner_size = MIN(asize, size - inner_offset); 759 760 offset += inner_size; 761 asize -= inner_size; 762 entries++; 763 m++; 764 } 765 766 size_t copy_length = entries * sizeof (*first_mapping); 767 duplicate_mappings = malloc(copy_length); 768 if (duplicate_mappings != NULL) 769 bcopy(first_mapping, duplicate_mappings, copy_length); 770 else 771 entries = 0; 772 773 *copied_entries = entries; 774 775 return (duplicate_mappings); 776 } 777 778 static vdev_t * 779 vdev_lookup_top(spa_t *spa, uint64_t vdev) 780 { 781 vdev_t *rvd; 782 vdev_list_t *vlist; 783 784 vlist = &spa->spa_root_vdev->v_children; 785 STAILQ_FOREACH(rvd, vlist, v_childlink) 786 if (rvd->v_id == vdev) 787 break; 788 789 return (rvd); 790 } 791 792 /* 793 * This is a callback for vdev_indirect_remap() which allocates an 794 * indirect_split_t for each split segment and adds it to iv_splits. 795 */ 796 static void 797 vdev_indirect_gather_splits(uint64_t split_offset, vdev_t *vd, uint64_t offset, 798 uint64_t size, void *arg) 799 { 800 int n = 1; 801 zio_t *zio = arg; 802 indirect_vsd_t *iv = zio->io_vsd; 803 804 if (vd->v_read == vdev_indirect_read) 805 return; 806 807 if (vd->v_read == vdev_mirror_read) 808 n = vd->v_nchildren; 809 810 indirect_split_t *is = 811 malloc(offsetof(indirect_split_t, is_child[n])); 812 if (is == NULL) { 813 zio->io_error = ENOMEM; 814 return; 815 } 816 bzero(is, offsetof(indirect_split_t, is_child[n])); 817 818 is->is_children = n; 819 is->is_size = size; 820 is->is_split_offset = split_offset; 821 is->is_target_offset = offset; 822 is->is_vdev = vd; 823 824 /* 825 * Note that we only consider multiple copies of the data for 826 * *mirror* vdevs. We don't for "replacing" or "spare" vdevs, even 827 * though they use the same ops as mirror, because there's only one 828 * "good" copy under the replacing/spare. 829 */ 830 if (vd->v_read == vdev_mirror_read) { 831 int i = 0; 832 vdev_t *kid; 833 834 STAILQ_FOREACH(kid, &vd->v_children, v_childlink) { 835 is->is_child[i++].ic_vdev = kid; 836 } 837 } else { 838 is->is_child[0].ic_vdev = vd; 839 } 840 841 list_insert_tail(&iv->iv_splits, is); 842 } 843 844 static void 845 vdev_indirect_remap(vdev_t *vd, uint64_t offset, uint64_t asize, void *arg) 846 { 847 list_t stack; 848 spa_t *spa = vd->v_spa; 849 zio_t *zio = arg; 850 remap_segment_t *rs; 851 852 list_create(&stack, sizeof (remap_segment_t), 853 offsetof(remap_segment_t, rs_node)); 854 855 rs = rs_alloc(vd, offset, asize, 0); 856 if (rs == NULL) { 857 printf("vdev_indirect_remap: out of memory.\n"); 858 zio->io_error = ENOMEM; 859 } 860 for (; rs != NULL; rs = list_remove_head(&stack)) { 861 vdev_t *v = rs->rs_vd; 862 uint64_t num_entries = 0; 863 /* vdev_indirect_mapping_t *vim = v->v_mapping; */ 864 vdev_indirect_mapping_entry_phys_t *mapping = 865 vdev_indirect_mapping_duplicate_adjacent_entries(v, 866 rs->rs_offset, rs->rs_asize, &num_entries); 867 868 if (num_entries == 0) 869 zio->io_error = ENOMEM; 870 871 for (uint64_t i = 0; i < num_entries; i++) { 872 vdev_indirect_mapping_entry_phys_t *m = &mapping[i]; 873 uint64_t size = DVA_GET_ASIZE(&m->vimep_dst); 874 uint64_t dst_offset = DVA_GET_OFFSET(&m->vimep_dst); 875 uint64_t dst_vdev = DVA_GET_VDEV(&m->vimep_dst); 876 uint64_t inner_offset = rs->rs_offset - 877 DVA_MAPPING_GET_SRC_OFFSET(m); 878 uint64_t inner_size = 879 MIN(rs->rs_asize, size - inner_offset); 880 vdev_t *dst_v = vdev_lookup_top(spa, dst_vdev); 881 882 if (dst_v->v_read == vdev_indirect_read) { 883 remap_segment_t *o; 884 885 o = rs_alloc(dst_v, dst_offset + inner_offset, 886 inner_size, rs->rs_split_offset); 887 if (o == NULL) { 888 printf("vdev_indirect_remap: " 889 "out of memory.\n"); 890 zio->io_error = ENOMEM; 891 break; 892 } 893 894 list_insert_head(&stack, o); 895 } 896 vdev_indirect_gather_splits(rs->rs_split_offset, dst_v, 897 dst_offset + inner_offset, 898 inner_size, arg); 899 900 /* 901 * vdev_indirect_gather_splits can have memory 902 * allocation error, we can not recover from it. 903 */ 904 if (zio->io_error != 0) 905 break; 906 rs->rs_offset += inner_size; 907 rs->rs_asize -= inner_size; 908 rs->rs_split_offset += inner_size; 909 } 910 911 free(mapping); 912 free(rs); 913 if (zio->io_error != 0) 914 break; 915 } 916 917 list_destroy(&stack); 918 } 919 920 static void 921 vdev_indirect_map_free(zio_t *zio) 922 { 923 indirect_vsd_t *iv = zio->io_vsd; 924 indirect_split_t *is; 925 926 while ((is = list_head(&iv->iv_splits)) != NULL) { 927 for (int c = 0; c < is->is_children; c++) { 928 indirect_child_t *ic = &is->is_child[c]; 929 free(ic->ic_data); 930 } 931 list_remove(&iv->iv_splits, is); 932 free(is); 933 } 934 free(iv); 935 } 936 937 static int 938 vdev_indirect_read(vdev_t *vdev, const blkptr_t *bp, void *buf, 939 off_t offset, size_t bytes) 940 { 941 zio_t zio; 942 spa_t *spa = vdev->v_spa; 943 indirect_vsd_t *iv; 944 indirect_split_t *first; 945 int rc = EIO; 946 947 iv = calloc(1, sizeof(*iv)); 948 if (iv == NULL) 949 return (ENOMEM); 950 951 list_create(&iv->iv_splits, 952 sizeof (indirect_split_t), offsetof(indirect_split_t, is_node)); 953 954 bzero(&zio, sizeof(zio)); 955 zio.io_spa = spa; 956 zio.io_bp = (blkptr_t *)bp; 957 zio.io_data = buf; 958 zio.io_size = bytes; 959 zio.io_offset = offset; 960 zio.io_vd = vdev; 961 zio.io_vsd = iv; 962 963 if (vdev->v_mapping == NULL) { 964 vdev_indirect_config_t *vic; 965 966 vic = &vdev->vdev_indirect_config; 967 vdev->v_mapping = vdev_indirect_mapping_open(spa, 968 &spa->spa_mos, vic->vic_mapping_object); 969 } 970 971 vdev_indirect_remap(vdev, offset, bytes, &zio); 972 if (zio.io_error != 0) 973 return (zio.io_error); 974 975 first = list_head(&iv->iv_splits); 976 if (first->is_size == zio.io_size) { 977 /* 978 * This is not a split block; we are pointing to the entire 979 * data, which will checksum the same as the original data. 980 * Pass the BP down so that the child i/o can verify the 981 * checksum, and try a different location if available 982 * (e.g. on a mirror). 983 * 984 * While this special case could be handled the same as the 985 * general (split block) case, doing it this way ensures 986 * that the vast majority of blocks on indirect vdevs 987 * (which are not split) are handled identically to blocks 988 * on non-indirect vdevs. This allows us to be less strict 989 * about performance in the general (but rare) case. 990 */ 991 rc = first->is_vdev->v_read(first->is_vdev, zio.io_bp, 992 zio.io_data, first->is_target_offset, bytes); 993 } else { 994 iv->iv_split_block = B_TRUE; 995 /* 996 * Read one copy of each split segment, from the 997 * top-level vdev. Since we don't know the 998 * checksum of each split individually, the child 999 * zio can't ensure that we get the right data. 1000 * E.g. if it's a mirror, it will just read from a 1001 * random (healthy) leaf vdev. We have to verify 1002 * the checksum in vdev_indirect_io_done(). 1003 */ 1004 for (indirect_split_t *is = list_head(&iv->iv_splits); 1005 is != NULL; is = list_next(&iv->iv_splits, is)) { 1006 char *ptr = zio.io_data; 1007 1008 rc = is->is_vdev->v_read(is->is_vdev, zio.io_bp, 1009 ptr + is->is_split_offset, is->is_target_offset, 1010 is->is_size); 1011 } 1012 if (zio_checksum_verify(spa, zio.io_bp, zio.io_data)) 1013 rc = ECKSUM; 1014 else 1015 rc = 0; 1016 } 1017 1018 vdev_indirect_map_free(&zio); 1019 if (rc == 0) 1020 rc = zio.io_error; 1021 1022 return (rc); 1023 } 1024 1025 static int 1026 vdev_disk_read(vdev_t *vdev, const blkptr_t *bp, void *buf, 1027 off_t offset, size_t bytes) 1028 { 1029 1030 return (vdev_read_phys(vdev, bp, buf, 1031 offset + VDEV_LABEL_START_SIZE, bytes)); 1032 } 1033 1034 1035 static int 1036 vdev_mirror_read(vdev_t *vdev, const blkptr_t *bp, void *buf, 1037 off_t offset, size_t bytes) 1038 { 1039 vdev_t *kid; 1040 int rc; 1041 1042 rc = EIO; 1043 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) { 1044 if (kid->v_state != VDEV_STATE_HEALTHY) 1045 continue; 1046 rc = kid->v_read(kid, bp, buf, offset, bytes); 1047 if (!rc) 1048 return (0); 1049 } 1050 1051 return (rc); 1052 } 1053 1054 static int 1055 vdev_replacing_read(vdev_t *vdev, const blkptr_t *bp, void *buf, 1056 off_t offset, size_t bytes) 1057 { 1058 vdev_t *kid; 1059 1060 /* 1061 * Here we should have two kids: 1062 * First one which is the one we are replacing and we can trust 1063 * only this one to have valid data, but it might not be present. 1064 * Second one is that one we are replacing with. It is most likely 1065 * healthy, but we can't trust it has needed data, so we won't use it. 1066 */ 1067 kid = STAILQ_FIRST(&vdev->v_children); 1068 if (kid == NULL) 1069 return (EIO); 1070 if (kid->v_state != VDEV_STATE_HEALTHY) 1071 return (EIO); 1072 return (kid->v_read(kid, bp, buf, offset, bytes)); 1073 } 1074 1075 static vdev_t * 1076 vdev_find(uint64_t guid) 1077 { 1078 vdev_t *vdev; 1079 1080 STAILQ_FOREACH(vdev, &zfs_vdevs, v_alllink) 1081 if (vdev->v_guid == guid) 1082 return (vdev); 1083 1084 return (0); 1085 } 1086 1087 static vdev_t * 1088 vdev_create(uint64_t guid, vdev_read_t *_read) 1089 { 1090 vdev_t *vdev; 1091 vdev_indirect_config_t *vic; 1092 1093 vdev = calloc(1, sizeof(vdev_t)); 1094 if (vdev != NULL) { 1095 STAILQ_INIT(&vdev->v_children); 1096 vdev->v_guid = guid; 1097 vdev->v_read = _read; 1098 1099 /* 1100 * root vdev has no read function, we use this fact to 1101 * skip setting up data we do not need for root vdev. 1102 * We only point root vdev from spa. 1103 */ 1104 if (_read != NULL) { 1105 vic = &vdev->vdev_indirect_config; 1106 vic->vic_prev_indirect_vdev = UINT64_MAX; 1107 STAILQ_INSERT_TAIL(&zfs_vdevs, vdev, v_alllink); 1108 } 1109 } 1110 1111 return (vdev); 1112 } 1113 1114 static void 1115 vdev_set_initial_state(vdev_t *vdev, const unsigned char *nvlist) 1116 { 1117 uint64_t is_offline, is_faulted, is_degraded, is_removed, isnt_present; 1118 uint64_t is_log; 1119 1120 is_offline = is_removed = is_faulted = is_degraded = isnt_present = 0; 1121 is_log = 0; 1122 (void) nvlist_find(nvlist, ZPOOL_CONFIG_OFFLINE, DATA_TYPE_UINT64, NULL, 1123 &is_offline); 1124 (void) nvlist_find(nvlist, ZPOOL_CONFIG_REMOVED, DATA_TYPE_UINT64, NULL, 1125 &is_removed); 1126 (void) nvlist_find(nvlist, ZPOOL_CONFIG_FAULTED, DATA_TYPE_UINT64, NULL, 1127 &is_faulted); 1128 (void) nvlist_find(nvlist, ZPOOL_CONFIG_DEGRADED, DATA_TYPE_UINT64, 1129 NULL, &is_degraded); 1130 (void) nvlist_find(nvlist, ZPOOL_CONFIG_NOT_PRESENT, DATA_TYPE_UINT64, 1131 NULL, &isnt_present); 1132 (void) nvlist_find(nvlist, ZPOOL_CONFIG_IS_LOG, DATA_TYPE_UINT64, NULL, 1133 &is_log); 1134 1135 if (is_offline != 0) 1136 vdev->v_state = VDEV_STATE_OFFLINE; 1137 else if (is_removed != 0) 1138 vdev->v_state = VDEV_STATE_REMOVED; 1139 else if (is_faulted != 0) 1140 vdev->v_state = VDEV_STATE_FAULTED; 1141 else if (is_degraded != 0) 1142 vdev->v_state = VDEV_STATE_DEGRADED; 1143 else if (isnt_present != 0) 1144 vdev->v_state = VDEV_STATE_CANT_OPEN; 1145 1146 vdev->v_islog = is_log != 0; 1147 } 1148 1149 static int 1150 vdev_init(uint64_t guid, const unsigned char *nvlist, vdev_t **vdevp) 1151 { 1152 uint64_t id, ashift, asize, nparity; 1153 const char *path; 1154 const char *type; 1155 vdev_t *vdev; 1156 1157 if (nvlist_find(nvlist, ZPOOL_CONFIG_ID, DATA_TYPE_UINT64, NULL, &id) || 1158 nvlist_find(nvlist, ZPOOL_CONFIG_TYPE, DATA_TYPE_STRING, 1159 NULL, &type)) { 1160 return (ENOENT); 1161 } 1162 1163 if (strcmp(type, VDEV_TYPE_MIRROR) != 0 && 1164 strcmp(type, VDEV_TYPE_DISK) != 0 && 1165 #ifdef ZFS_TEST 1166 strcmp(type, VDEV_TYPE_FILE) != 0 && 1167 #endif 1168 strcmp(type, VDEV_TYPE_RAIDZ) != 0 && 1169 strcmp(type, VDEV_TYPE_INDIRECT) != 0 && 1170 strcmp(type, VDEV_TYPE_REPLACING) != 0) { 1171 printf("ZFS: can only boot from disk, mirror, raidz1, " 1172 "raidz2 and raidz3 vdevs\n"); 1173 return (EIO); 1174 } 1175 1176 if (strcmp(type, VDEV_TYPE_MIRROR) == 0) 1177 vdev = vdev_create(guid, vdev_mirror_read); 1178 else if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) 1179 vdev = vdev_create(guid, vdev_raidz_read); 1180 else if (strcmp(type, VDEV_TYPE_REPLACING) == 0) 1181 vdev = vdev_create(guid, vdev_replacing_read); 1182 else if (strcmp(type, VDEV_TYPE_INDIRECT) == 0) { 1183 vdev_indirect_config_t *vic; 1184 1185 vdev = vdev_create(guid, vdev_indirect_read); 1186 if (vdev != NULL) { 1187 vdev->v_state = VDEV_STATE_HEALTHY; 1188 vic = &vdev->vdev_indirect_config; 1189 1190 nvlist_find(nvlist, 1191 ZPOOL_CONFIG_INDIRECT_OBJECT, 1192 DATA_TYPE_UINT64, 1193 NULL, &vic->vic_mapping_object); 1194 nvlist_find(nvlist, 1195 ZPOOL_CONFIG_INDIRECT_BIRTHS, 1196 DATA_TYPE_UINT64, 1197 NULL, &vic->vic_births_object); 1198 nvlist_find(nvlist, 1199 ZPOOL_CONFIG_PREV_INDIRECT_VDEV, 1200 DATA_TYPE_UINT64, 1201 NULL, &vic->vic_prev_indirect_vdev); 1202 } 1203 } else { 1204 vdev = vdev_create(guid, vdev_disk_read); 1205 } 1206 1207 if (vdev == NULL) 1208 return (ENOMEM); 1209 1210 vdev_set_initial_state(vdev, nvlist); 1211 vdev->v_id = id; 1212 if (nvlist_find(nvlist, ZPOOL_CONFIG_ASHIFT, 1213 DATA_TYPE_UINT64, NULL, &ashift) == 0) 1214 vdev->v_ashift = ashift; 1215 1216 if (nvlist_find(nvlist, ZPOOL_CONFIG_ASIZE, 1217 DATA_TYPE_UINT64, NULL, &asize) == 0) { 1218 vdev->v_psize = asize + 1219 VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; 1220 } 1221 1222 if (nvlist_find(nvlist, ZPOOL_CONFIG_NPARITY, 1223 DATA_TYPE_UINT64, NULL, &nparity) == 0) 1224 vdev->v_nparity = nparity; 1225 1226 if (nvlist_find(nvlist, ZPOOL_CONFIG_PATH, 1227 DATA_TYPE_STRING, NULL, &path) == 0) { 1228 if (strncmp(path, "/dev/", 5) == 0) 1229 path += 5; 1230 vdev->v_name = strdup(path); 1231 } else { 1232 char *name; 1233 1234 name = NULL; 1235 if (strcmp(type, "raidz") == 0) { 1236 if (vdev->v_nparity < 1 || 1237 vdev->v_nparity > 3) { 1238 printf("ZFS: invalid raidz parity: %d\n", 1239 vdev->v_nparity); 1240 return (EIO); 1241 } 1242 (void) asprintf(&name, "%s%d-%" PRIu64, type, 1243 vdev->v_nparity, id); 1244 } else { 1245 (void) asprintf(&name, "%s-%" PRIu64, type, id); 1246 } 1247 vdev->v_name = name; 1248 } 1249 *vdevp = vdev; 1250 return (0); 1251 } 1252 1253 /* 1254 * Find slot for vdev. We return either NULL to signal to use 1255 * STAILQ_INSERT_HEAD, or we return link element to be used with 1256 * STAILQ_INSERT_AFTER. 1257 */ 1258 static vdev_t * 1259 vdev_find_previous(vdev_t *top_vdev, vdev_t *vdev) 1260 { 1261 vdev_t *v, *previous; 1262 1263 if (STAILQ_EMPTY(&top_vdev->v_children)) 1264 return (NULL); 1265 1266 previous = NULL; 1267 STAILQ_FOREACH(v, &top_vdev->v_children, v_childlink) { 1268 if (v->v_id > vdev->v_id) 1269 return (previous); 1270 1271 if (v->v_id == vdev->v_id) 1272 return (v); 1273 1274 if (v->v_id < vdev->v_id) 1275 previous = v; 1276 } 1277 return (previous); 1278 } 1279 1280 static size_t 1281 vdev_child_count(vdev_t *vdev) 1282 { 1283 vdev_t *v; 1284 size_t count; 1285 1286 count = 0; 1287 STAILQ_FOREACH(v, &vdev->v_children, v_childlink) { 1288 count++; 1289 } 1290 return (count); 1291 } 1292 1293 /* 1294 * Insert vdev into top_vdev children list. List is ordered by v_id. 1295 */ 1296 static void 1297 vdev_insert(vdev_t *top_vdev, vdev_t *vdev) 1298 { 1299 vdev_t *previous; 1300 size_t count; 1301 1302 /* 1303 * The top level vdev can appear in random order, depending how 1304 * the firmware is presenting the disk devices. 1305 * However, we will insert vdev to create list ordered by v_id, 1306 * so we can use either STAILQ_INSERT_HEAD or STAILQ_INSERT_AFTER 1307 * as STAILQ does not have insert before. 1308 */ 1309 previous = vdev_find_previous(top_vdev, vdev); 1310 1311 if (previous == NULL) { 1312 STAILQ_INSERT_HEAD(&top_vdev->v_children, vdev, v_childlink); 1313 } else if (previous->v_id == vdev->v_id) { 1314 /* 1315 * This vdev was configured from label config, 1316 * do not insert duplicate. 1317 */ 1318 return; 1319 } else { 1320 STAILQ_INSERT_AFTER(&top_vdev->v_children, previous, vdev, 1321 v_childlink); 1322 } 1323 1324 count = vdev_child_count(top_vdev); 1325 if (top_vdev->v_nchildren < count) 1326 top_vdev->v_nchildren = count; 1327 } 1328 1329 static int 1330 vdev_from_nvlist(spa_t *spa, uint64_t top_guid, const unsigned char *nvlist) 1331 { 1332 vdev_t *top_vdev, *vdev; 1333 const unsigned char *kids; 1334 int rc, nkids; 1335 1336 /* Get top vdev. */ 1337 top_vdev = vdev_find(top_guid); 1338 if (top_vdev == NULL) { 1339 rc = vdev_init(top_guid, nvlist, &top_vdev); 1340 if (rc != 0) 1341 return (rc); 1342 top_vdev->v_spa = spa; 1343 top_vdev->v_top = top_vdev; 1344 vdev_insert(spa->spa_root_vdev, top_vdev); 1345 } 1346 1347 /* Add children if there are any. */ 1348 rc = nvlist_find(nvlist, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY, 1349 &nkids, &kids); 1350 if (rc == 0) { 1351 for (int i = 0; i < nkids; i++) { 1352 uint64_t guid; 1353 1354 rc = nvlist_find(kids, ZPOOL_CONFIG_GUID, 1355 DATA_TYPE_UINT64, NULL, &guid); 1356 if (rc != 0) 1357 return (rc); 1358 rc = vdev_init(guid, kids, &vdev); 1359 if (rc != 0) 1360 return (rc); 1361 1362 vdev->v_spa = spa; 1363 vdev->v_top = top_vdev; 1364 vdev_insert(top_vdev, vdev); 1365 1366 kids = nvlist_next(kids); 1367 } 1368 } else { 1369 /* 1370 * When there are no children, nvlist_find() does return 1371 * error, reset it because leaf devices have no children. 1372 */ 1373 rc = 0; 1374 } 1375 1376 return (rc); 1377 } 1378 1379 static int 1380 vdev_init_from_label(spa_t *spa, const unsigned char *nvlist) 1381 { 1382 uint64_t pool_guid, top_guid; 1383 const unsigned char *vdevs; 1384 1385 if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64, 1386 NULL, &pool_guid) || 1387 nvlist_find(nvlist, ZPOOL_CONFIG_TOP_GUID, DATA_TYPE_UINT64, 1388 NULL, &top_guid) || 1389 nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST, 1390 NULL, &vdevs)) { 1391 printf("ZFS: can't find vdev details\n"); 1392 return (ENOENT); 1393 } 1394 1395 return (vdev_from_nvlist(spa, top_guid, vdevs)); 1396 } 1397 1398 static void 1399 vdev_set_state(vdev_t *vdev) 1400 { 1401 vdev_t *kid; 1402 int good_kids; 1403 int bad_kids; 1404 1405 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) { 1406 vdev_set_state(kid); 1407 } 1408 1409 /* 1410 * A mirror or raidz is healthy if all its kids are healthy. A 1411 * mirror is degraded if any of its kids is healthy; a raidz 1412 * is degraded if at most nparity kids are offline. 1413 */ 1414 if (STAILQ_FIRST(&vdev->v_children)) { 1415 good_kids = 0; 1416 bad_kids = 0; 1417 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) { 1418 if (kid->v_state == VDEV_STATE_HEALTHY) 1419 good_kids++; 1420 else 1421 bad_kids++; 1422 } 1423 if (bad_kids == 0) { 1424 vdev->v_state = VDEV_STATE_HEALTHY; 1425 } else { 1426 if (vdev->v_read == vdev_mirror_read) { 1427 if (good_kids) { 1428 vdev->v_state = VDEV_STATE_DEGRADED; 1429 } else { 1430 vdev->v_state = VDEV_STATE_OFFLINE; 1431 } 1432 } else if (vdev->v_read == vdev_raidz_read) { 1433 if (bad_kids > vdev->v_nparity) { 1434 vdev->v_state = VDEV_STATE_OFFLINE; 1435 } else { 1436 vdev->v_state = VDEV_STATE_DEGRADED; 1437 } 1438 } 1439 } 1440 } 1441 } 1442 1443 static int 1444 vdev_update_from_nvlist(uint64_t top_guid, const unsigned char *nvlist) 1445 { 1446 vdev_t *vdev; 1447 const unsigned char *kids; 1448 int rc, nkids; 1449 1450 /* Update top vdev. */ 1451 vdev = vdev_find(top_guid); 1452 if (vdev != NULL) 1453 vdev_set_initial_state(vdev, nvlist); 1454 1455 /* Update children if there are any. */ 1456 rc = nvlist_find(nvlist, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY, 1457 &nkids, &kids); 1458 if (rc == 0) { 1459 for (int i = 0; i < nkids; i++) { 1460 uint64_t guid; 1461 1462 rc = nvlist_find(kids, ZPOOL_CONFIG_GUID, 1463 DATA_TYPE_UINT64, NULL, &guid); 1464 if (rc != 0) 1465 break; 1466 1467 vdev = vdev_find(guid); 1468 if (vdev != NULL) 1469 vdev_set_initial_state(vdev, kids); 1470 1471 kids = nvlist_next(kids); 1472 } 1473 } else { 1474 rc = 0; 1475 } 1476 1477 return (rc); 1478 } 1479 1480 static int 1481 vdev_init_from_nvlist(spa_t *spa, const unsigned char *nvlist) 1482 { 1483 uint64_t pool_guid, vdev_children; 1484 const unsigned char *vdevs, *kids; 1485 int rc, nkids; 1486 1487 if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64, 1488 NULL, &pool_guid) || 1489 nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_CHILDREN, DATA_TYPE_UINT64, 1490 NULL, &vdev_children) || 1491 nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST, 1492 NULL, &vdevs)) { 1493 printf("ZFS: can't find vdev details\n"); 1494 return (ENOENT); 1495 } 1496 1497 /* Wrong guid?! */ 1498 if (spa->spa_guid != pool_guid) 1499 return (EINVAL); 1500 1501 spa->spa_root_vdev->v_nchildren = vdev_children; 1502 1503 rc = nvlist_find(vdevs, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY, 1504 &nkids, &kids); 1505 1506 /* 1507 * MOS config has at least one child for root vdev. 1508 */ 1509 if (rc != 0) 1510 return (rc); 1511 1512 for (int i = 0; i < nkids; i++) { 1513 uint64_t guid; 1514 vdev_t *vdev; 1515 1516 rc = nvlist_find(kids, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64, 1517 NULL, &guid); 1518 if (rc != 0) 1519 break; 1520 vdev = vdev_find(guid); 1521 /* 1522 * Top level vdev is missing, create it. 1523 */ 1524 if (vdev == NULL) 1525 rc = vdev_from_nvlist(spa, guid, kids); 1526 else 1527 rc = vdev_update_from_nvlist(guid, kids); 1528 if (rc != 0) 1529 break; 1530 kids = nvlist_next(kids); 1531 } 1532 1533 /* 1534 * Re-evaluate top-level vdev state. 1535 */ 1536 vdev_set_state(spa->spa_root_vdev); 1537 1538 return (rc); 1539 } 1540 1541 static spa_t * 1542 spa_find_by_guid(uint64_t guid) 1543 { 1544 spa_t *spa; 1545 1546 STAILQ_FOREACH(spa, &zfs_pools, spa_link) 1547 if (spa->spa_guid == guid) 1548 return (spa); 1549 1550 return (NULL); 1551 } 1552 1553 static spa_t * 1554 spa_find_by_name(const char *name) 1555 { 1556 spa_t *spa; 1557 1558 STAILQ_FOREACH(spa, &zfs_pools, spa_link) 1559 if (strcmp(spa->spa_name, name) == 0) 1560 return (spa); 1561 1562 return (NULL); 1563 } 1564 1565 #ifdef BOOT2 1566 static spa_t * 1567 spa_get_primary(void) 1568 { 1569 1570 return (STAILQ_FIRST(&zfs_pools)); 1571 } 1572 1573 static vdev_t * 1574 spa_get_primary_vdev(const spa_t *spa) 1575 { 1576 vdev_t *vdev; 1577 vdev_t *kid; 1578 1579 if (spa == NULL) 1580 spa = spa_get_primary(); 1581 if (spa == NULL) 1582 return (NULL); 1583 vdev = spa->spa_root_vdev; 1584 if (vdev == NULL) 1585 return (NULL); 1586 for (kid = STAILQ_FIRST(&vdev->v_children); kid != NULL; 1587 kid = STAILQ_FIRST(&vdev->v_children)) 1588 vdev = kid; 1589 return (vdev); 1590 } 1591 #endif 1592 1593 static spa_t * 1594 spa_create(uint64_t guid, const char *name) 1595 { 1596 spa_t *spa; 1597 1598 if ((spa = calloc(1, sizeof(spa_t))) == NULL) 1599 return (NULL); 1600 if ((spa->spa_name = strdup(name)) == NULL) { 1601 free(spa); 1602 return (NULL); 1603 } 1604 spa->spa_guid = guid; 1605 spa->spa_root_vdev = vdev_create(guid, NULL); 1606 if (spa->spa_root_vdev == NULL) { 1607 free(spa->spa_name); 1608 free(spa); 1609 return (NULL); 1610 } 1611 spa->spa_root_vdev->v_name = strdup("root"); 1612 STAILQ_INSERT_TAIL(&zfs_pools, spa, spa_link); 1613 1614 return (spa); 1615 } 1616 1617 static const char * 1618 state_name(vdev_state_t state) 1619 { 1620 static const char *names[] = { 1621 "UNKNOWN", 1622 "CLOSED", 1623 "OFFLINE", 1624 "REMOVED", 1625 "CANT_OPEN", 1626 "FAULTED", 1627 "DEGRADED", 1628 "ONLINE" 1629 }; 1630 return (names[state]); 1631 } 1632 1633 #ifdef BOOT2 1634 1635 #define pager_printf printf 1636 1637 #else 1638 1639 static int 1640 pager_printf(const char *fmt, ...) 1641 { 1642 char line[80]; 1643 va_list args; 1644 1645 va_start(args, fmt); 1646 vsnprintf(line, sizeof(line), fmt, args); 1647 va_end(args); 1648 return (pager_output(line)); 1649 } 1650 1651 #endif 1652 1653 #define STATUS_FORMAT " %s %s\n" 1654 1655 static int 1656 print_state(int indent, const char *name, vdev_state_t state) 1657 { 1658 int i; 1659 char buf[512]; 1660 1661 buf[0] = 0; 1662 for (i = 0; i < indent; i++) 1663 strcat(buf, " "); 1664 strcat(buf, name); 1665 return (pager_printf(STATUS_FORMAT, buf, state_name(state))); 1666 } 1667 1668 static int 1669 vdev_status(vdev_t *vdev, int indent) 1670 { 1671 vdev_t *kid; 1672 int ret; 1673 1674 if (vdev->v_islog) { 1675 (void) pager_output(" logs\n"); 1676 indent++; 1677 } 1678 1679 ret = print_state(indent, vdev->v_name, vdev->v_state); 1680 if (ret != 0) 1681 return (ret); 1682 1683 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) { 1684 ret = vdev_status(kid, indent + 1); 1685 if (ret != 0) 1686 return (ret); 1687 } 1688 return (ret); 1689 } 1690 1691 static int 1692 spa_status(spa_t *spa) 1693 { 1694 static char bootfs[ZFS_MAXNAMELEN]; 1695 uint64_t rootid; 1696 vdev_list_t *vlist; 1697 vdev_t *vdev; 1698 int good_kids, bad_kids, degraded_kids, ret; 1699 vdev_state_t state; 1700 1701 ret = pager_printf(" pool: %s\n", spa->spa_name); 1702 if (ret != 0) 1703 return (ret); 1704 1705 if (zfs_get_root(spa, &rootid) == 0 && 1706 zfs_rlookup(spa, rootid, bootfs) == 0) { 1707 if (bootfs[0] == '\0') 1708 ret = pager_printf("bootfs: %s\n", spa->spa_name); 1709 else 1710 ret = pager_printf("bootfs: %s/%s\n", spa->spa_name, 1711 bootfs); 1712 if (ret != 0) 1713 return (ret); 1714 } 1715 ret = pager_printf("config:\n\n"); 1716 if (ret != 0) 1717 return (ret); 1718 ret = pager_printf(STATUS_FORMAT, "NAME", "STATE"); 1719 if (ret != 0) 1720 return (ret); 1721 1722 good_kids = 0; 1723 degraded_kids = 0; 1724 bad_kids = 0; 1725 vlist = &spa->spa_root_vdev->v_children; 1726 STAILQ_FOREACH(vdev, vlist, v_childlink) { 1727 if (vdev->v_state == VDEV_STATE_HEALTHY) 1728 good_kids++; 1729 else if (vdev->v_state == VDEV_STATE_DEGRADED) 1730 degraded_kids++; 1731 else 1732 bad_kids++; 1733 } 1734 1735 state = VDEV_STATE_CLOSED; 1736 if (good_kids > 0 && (degraded_kids + bad_kids) == 0) 1737 state = VDEV_STATE_HEALTHY; 1738 else if ((good_kids + degraded_kids) > 0) 1739 state = VDEV_STATE_DEGRADED; 1740 1741 ret = print_state(0, spa->spa_name, state); 1742 if (ret != 0) 1743 return (ret); 1744 1745 STAILQ_FOREACH(vdev, vlist, v_childlink) { 1746 ret = vdev_status(vdev, 1); 1747 if (ret != 0) 1748 return (ret); 1749 } 1750 return (ret); 1751 } 1752 1753 static int 1754 spa_all_status(void) 1755 { 1756 spa_t *spa; 1757 int first = 1, ret = 0; 1758 1759 STAILQ_FOREACH(spa, &zfs_pools, spa_link) { 1760 if (!first) { 1761 ret = pager_printf("\n"); 1762 if (ret != 0) 1763 return (ret); 1764 } 1765 first = 0; 1766 ret = spa_status(spa); 1767 if (ret != 0) 1768 return (ret); 1769 } 1770 return (ret); 1771 } 1772 1773 static uint64_t 1774 vdev_label_offset(uint64_t psize, int l, uint64_t offset) 1775 { 1776 uint64_t label_offset; 1777 1778 if (l < VDEV_LABELS / 2) 1779 label_offset = 0; 1780 else 1781 label_offset = psize - VDEV_LABELS * sizeof (vdev_label_t); 1782 1783 return (offset + l * sizeof (vdev_label_t) + label_offset); 1784 } 1785 1786 static int 1787 vdev_uberblock_compare(const uberblock_t *ub1, const uberblock_t *ub2) 1788 { 1789 unsigned int seq1 = 0; 1790 unsigned int seq2 = 0; 1791 int cmp = AVL_CMP(ub1->ub_txg, ub2->ub_txg); 1792 1793 if (cmp != 0) 1794 return (cmp); 1795 1796 cmp = AVL_CMP(ub1->ub_timestamp, ub2->ub_timestamp); 1797 if (cmp != 0) 1798 return (cmp); 1799 1800 if (MMP_VALID(ub1) && MMP_SEQ_VALID(ub1)) 1801 seq1 = MMP_SEQ(ub1); 1802 1803 if (MMP_VALID(ub2) && MMP_SEQ_VALID(ub2)) 1804 seq2 = MMP_SEQ(ub2); 1805 1806 return (AVL_CMP(seq1, seq2)); 1807 } 1808 1809 static int 1810 uberblock_verify(uberblock_t *ub) 1811 { 1812 if (ub->ub_magic == BSWAP_64((uint64_t)UBERBLOCK_MAGIC)) { 1813 byteswap_uint64_array(ub, sizeof (uberblock_t)); 1814 } 1815 1816 if (ub->ub_magic != UBERBLOCK_MAGIC || 1817 !SPA_VERSION_IS_SUPPORTED(ub->ub_version)) 1818 return (EINVAL); 1819 1820 return (0); 1821 } 1822 1823 static int 1824 vdev_label_read(vdev_t *vd, int l, void *buf, uint64_t offset, 1825 size_t size) 1826 { 1827 blkptr_t bp; 1828 off_t off; 1829 1830 off = vdev_label_offset(vd->v_psize, l, offset); 1831 1832 BP_ZERO(&bp); 1833 BP_SET_LSIZE(&bp, size); 1834 BP_SET_PSIZE(&bp, size); 1835 BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_LABEL); 1836 BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF); 1837 DVA_SET_OFFSET(BP_IDENTITY(&bp), off); 1838 ZIO_SET_CHECKSUM(&bp.blk_cksum, off, 0, 0, 0); 1839 1840 return (vdev_read_phys(vd, &bp, buf, off, size)); 1841 } 1842 1843 static unsigned char * 1844 vdev_label_read_config(vdev_t *vd, uint64_t txg) 1845 { 1846 vdev_phys_t *label; 1847 uint64_t best_txg = 0; 1848 uint64_t label_txg = 0; 1849 uint64_t asize; 1850 unsigned char *nvl; 1851 size_t nvl_size; 1852 int error; 1853 1854 label = malloc(sizeof (vdev_phys_t)); 1855 if (label == NULL) 1856 return (NULL); 1857 1858 nvl_size = VDEV_PHYS_SIZE - sizeof (zio_eck_t) - 4; 1859 nvl = malloc(nvl_size); 1860 if (nvl == NULL) 1861 goto done; 1862 1863 for (int l = 0; l < VDEV_LABELS; l++) { 1864 const unsigned char *nvlist; 1865 1866 if (vdev_label_read(vd, l, label, 1867 offsetof(vdev_label_t, vl_vdev_phys), 1868 sizeof (vdev_phys_t))) 1869 continue; 1870 1871 if (label->vp_nvlist[0] != NV_ENCODE_XDR) 1872 continue; 1873 1874 nvlist = (const unsigned char *) label->vp_nvlist + 4; 1875 error = nvlist_find(nvlist, ZPOOL_CONFIG_POOL_TXG, 1876 DATA_TYPE_UINT64, NULL, &label_txg); 1877 if (error != 0 || label_txg == 0) { 1878 memcpy(nvl, nvlist, nvl_size); 1879 goto done; 1880 } 1881 1882 if (label_txg <= txg && label_txg > best_txg) { 1883 best_txg = label_txg; 1884 memcpy(nvl, nvlist, nvl_size); 1885 1886 /* 1887 * Use asize from pool config. We need this 1888 * because we can get bad value from BIOS. 1889 */ 1890 if (nvlist_find(nvlist, ZPOOL_CONFIG_ASIZE, 1891 DATA_TYPE_UINT64, NULL, &asize) == 0) { 1892 vd->v_psize = asize + 1893 VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; 1894 } 1895 } 1896 } 1897 1898 if (best_txg == 0) { 1899 free(nvl); 1900 nvl = NULL; 1901 } 1902 done: 1903 free(label); 1904 return (nvl); 1905 } 1906 1907 static void 1908 vdev_uberblock_load(vdev_t *vd, uberblock_t *ub) 1909 { 1910 uberblock_t *buf; 1911 1912 buf = malloc(VDEV_UBERBLOCK_SIZE(vd)); 1913 if (buf == NULL) 1914 return; 1915 1916 for (int l = 0; l < VDEV_LABELS; l++) { 1917 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) { 1918 if (vdev_label_read(vd, l, buf, 1919 VDEV_UBERBLOCK_OFFSET(vd, n), 1920 VDEV_UBERBLOCK_SIZE(vd))) 1921 continue; 1922 if (uberblock_verify(buf) != 0) 1923 continue; 1924 1925 if (vdev_uberblock_compare(buf, ub) > 0) 1926 *ub = *buf; 1927 } 1928 } 1929 free(buf); 1930 } 1931 1932 static int 1933 vdev_probe(vdev_phys_read_t *_read, void *read_priv, spa_t **spap) 1934 { 1935 vdev_t vtmp; 1936 spa_t *spa; 1937 vdev_t *vdev; 1938 unsigned char *nvlist; 1939 uint64_t val; 1940 uint64_t guid, vdev_children; 1941 uint64_t pool_txg, pool_guid; 1942 const char *pool_name; 1943 const unsigned char *features; 1944 int rc; 1945 1946 /* 1947 * Load the vdev label and figure out which 1948 * uberblock is most current. 1949 */ 1950 memset(&vtmp, 0, sizeof(vtmp)); 1951 vtmp.v_phys_read = _read; 1952 vtmp.v_read_priv = read_priv; 1953 vtmp.v_psize = P2ALIGN(ldi_get_size(read_priv), 1954 (uint64_t)sizeof (vdev_label_t)); 1955 1956 /* Test for minimum device size. */ 1957 if (vtmp.v_psize < SPA_MINDEVSIZE) 1958 return (EIO); 1959 1960 nvlist = vdev_label_read_config(&vtmp, UINT64_MAX); 1961 if (nvlist == NULL) 1962 return (EIO); 1963 1964 if (nvlist_find(nvlist, ZPOOL_CONFIG_VERSION, DATA_TYPE_UINT64, 1965 NULL, &val) != 0) { 1966 free(nvlist); 1967 return (EIO); 1968 } 1969 1970 if (!SPA_VERSION_IS_SUPPORTED(val)) { 1971 printf("ZFS: unsupported ZFS version %u (should be %u)\n", 1972 (unsigned)val, (unsigned)SPA_VERSION); 1973 free(nvlist); 1974 return (EIO); 1975 } 1976 1977 /* Check ZFS features for read */ 1978 if (nvlist_find(nvlist, ZPOOL_CONFIG_FEATURES_FOR_READ, 1979 DATA_TYPE_NVLIST, NULL, &features) == 0 && 1980 nvlist_check_features_for_read(features) != 0) { 1981 free(nvlist); 1982 return (EIO); 1983 } 1984 1985 if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_STATE, DATA_TYPE_UINT64, 1986 NULL, &val) != 0) { 1987 free(nvlist); 1988 return (EIO); 1989 } 1990 1991 if (val == POOL_STATE_DESTROYED) { 1992 /* We don't boot only from destroyed pools. */ 1993 free(nvlist); 1994 return (EIO); 1995 } 1996 1997 if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_TXG, DATA_TYPE_UINT64, 1998 NULL, &pool_txg) != 0 || 1999 nvlist_find(nvlist, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64, 2000 NULL, &pool_guid) != 0 || 2001 nvlist_find(nvlist, ZPOOL_CONFIG_POOL_NAME, DATA_TYPE_STRING, 2002 NULL, &pool_name) != 0) { 2003 /* 2004 * Cache and spare devices end up here - just ignore 2005 * them. 2006 */ 2007 free(nvlist); 2008 return (EIO); 2009 } 2010 2011 /* 2012 * Create the pool if this is the first time we've seen it. 2013 */ 2014 spa = spa_find_by_guid(pool_guid); 2015 if (spa == NULL) { 2016 nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_CHILDREN, 2017 DATA_TYPE_UINT64, NULL, &vdev_children); 2018 spa = spa_create(pool_guid, pool_name); 2019 if (spa == NULL) { 2020 free(nvlist); 2021 return (ENOMEM); 2022 } 2023 spa->spa_root_vdev->v_nchildren = vdev_children; 2024 } 2025 if (pool_txg > spa->spa_txg) 2026 spa->spa_txg = pool_txg; 2027 2028 /* 2029 * Get the vdev tree and create our in-core copy of it. 2030 * If we already have a vdev with this guid, this must 2031 * be some kind of alias (overlapping slices, dangerously dedicated 2032 * disks etc). 2033 */ 2034 if (nvlist_find(nvlist, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64, 2035 NULL, &guid) != 0) { 2036 free(nvlist); 2037 return (EIO); 2038 } 2039 vdev = vdev_find(guid); 2040 /* Has this vdev already been inited? */ 2041 if (vdev && vdev->v_phys_read) { 2042 free(nvlist); 2043 return (EIO); 2044 } 2045 2046 rc = vdev_init_from_label(spa, nvlist); 2047 free(nvlist); 2048 if (rc != 0) 2049 return (rc); 2050 2051 /* 2052 * We should already have created an incomplete vdev for this 2053 * vdev. Find it and initialise it with our read proc. 2054 */ 2055 vdev = vdev_find(guid); 2056 if (vdev != NULL) { 2057 vdev->v_phys_read = _read; 2058 vdev->v_read_priv = read_priv; 2059 vdev->v_psize = vtmp.v_psize; 2060 /* 2061 * If no other state is set, mark vdev healthy. 2062 */ 2063 if (vdev->v_state == VDEV_STATE_UNKNOWN) 2064 vdev->v_state = VDEV_STATE_HEALTHY; 2065 } else { 2066 printf("ZFS: inconsistent nvlist contents\n"); 2067 return (EIO); 2068 } 2069 2070 if (vdev->v_islog) 2071 spa->spa_with_log = vdev->v_islog; 2072 2073 /* 2074 * Re-evaluate top-level vdev state. 2075 */ 2076 vdev_set_state(vdev->v_top); 2077 2078 /* 2079 * Ok, we are happy with the pool so far. Lets find 2080 * the best uberblock and then we can actually access 2081 * the contents of the pool. 2082 */ 2083 vdev_uberblock_load(vdev, &spa->spa_uberblock); 2084 2085 if (spap != NULL) 2086 *spap = spa; 2087 return (0); 2088 } 2089 2090 static int 2091 ilog2(int n) 2092 { 2093 int v; 2094 2095 for (v = 0; v < 32; v++) 2096 if (n == (1 << v)) 2097 return (v); 2098 return (-1); 2099 } 2100 2101 static int 2102 zio_read_gang(const spa_t *spa, const blkptr_t *bp, void *buf) 2103 { 2104 blkptr_t gbh_bp; 2105 zio_gbh_phys_t zio_gb; 2106 char *pbuf; 2107 int i; 2108 2109 /* Artificial BP for gang block header. */ 2110 gbh_bp = *bp; 2111 BP_SET_PSIZE(&gbh_bp, SPA_GANGBLOCKSIZE); 2112 BP_SET_LSIZE(&gbh_bp, SPA_GANGBLOCKSIZE); 2113 BP_SET_CHECKSUM(&gbh_bp, ZIO_CHECKSUM_GANG_HEADER); 2114 BP_SET_COMPRESS(&gbh_bp, ZIO_COMPRESS_OFF); 2115 for (i = 0; i < SPA_DVAS_PER_BP; i++) 2116 DVA_SET_GANG(&gbh_bp.blk_dva[i], 0); 2117 2118 /* Read gang header block using the artificial BP. */ 2119 if (zio_read(spa, &gbh_bp, &zio_gb)) 2120 return (EIO); 2121 2122 pbuf = buf; 2123 for (i = 0; i < SPA_GBH_NBLKPTRS; i++) { 2124 blkptr_t *gbp = &zio_gb.zg_blkptr[i]; 2125 2126 if (BP_IS_HOLE(gbp)) 2127 continue; 2128 if (zio_read(spa, gbp, pbuf)) 2129 return (EIO); 2130 pbuf += BP_GET_PSIZE(gbp); 2131 } 2132 2133 if (zio_checksum_verify(spa, bp, buf)) 2134 return (EIO); 2135 return (0); 2136 } 2137 2138 static int 2139 zio_read(const spa_t *spa, const blkptr_t *bp, void *buf) 2140 { 2141 int cpfunc = BP_GET_COMPRESS(bp); 2142 uint64_t align, size; 2143 void *pbuf; 2144 int i, error; 2145 2146 /* 2147 * Process data embedded in block pointer 2148 */ 2149 if (BP_IS_EMBEDDED(bp)) { 2150 ASSERT(BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA); 2151 2152 size = BPE_GET_PSIZE(bp); 2153 ASSERT(size <= BPE_PAYLOAD_SIZE); 2154 2155 if (cpfunc != ZIO_COMPRESS_OFF) 2156 pbuf = zfs_alloc(size); 2157 else 2158 pbuf = buf; 2159 2160 decode_embedded_bp_compressed(bp, pbuf); 2161 error = 0; 2162 2163 if (cpfunc != ZIO_COMPRESS_OFF) { 2164 error = zio_decompress_data(cpfunc, pbuf, 2165 size, buf, BP_GET_LSIZE(bp)); 2166 zfs_free(pbuf, size); 2167 } 2168 if (error != 0) 2169 printf("ZFS: i/o error - unable to decompress " 2170 "block pointer data, error %d\n", error); 2171 return (error); 2172 } 2173 2174 error = EIO; 2175 2176 for (i = 0; i < SPA_DVAS_PER_BP; i++) { 2177 const dva_t *dva = &bp->blk_dva[i]; 2178 vdev_t *vdev; 2179 vdev_list_t *vlist; 2180 uint64_t vdevid; 2181 off_t offset; 2182 2183 if (!dva->dva_word[0] && !dva->dva_word[1]) 2184 continue; 2185 2186 vdevid = DVA_GET_VDEV(dva); 2187 offset = DVA_GET_OFFSET(dva); 2188 vlist = &spa->spa_root_vdev->v_children; 2189 STAILQ_FOREACH(vdev, vlist, v_childlink) { 2190 if (vdev->v_id == vdevid) 2191 break; 2192 } 2193 if (!vdev || !vdev->v_read) 2194 continue; 2195 2196 size = BP_GET_PSIZE(bp); 2197 if (vdev->v_read == vdev_raidz_read) { 2198 align = 1ULL << vdev->v_ashift; 2199 if (P2PHASE(size, align) != 0) 2200 size = P2ROUNDUP(size, align); 2201 } 2202 if (size != BP_GET_PSIZE(bp) || cpfunc != ZIO_COMPRESS_OFF) 2203 pbuf = zfs_alloc(size); 2204 else 2205 pbuf = buf; 2206 2207 if (DVA_GET_GANG(dva)) 2208 error = zio_read_gang(spa, bp, pbuf); 2209 else 2210 error = vdev->v_read(vdev, bp, pbuf, offset, size); 2211 if (error == 0) { 2212 if (cpfunc != ZIO_COMPRESS_OFF) 2213 error = zio_decompress_data(cpfunc, pbuf, 2214 BP_GET_PSIZE(bp), buf, BP_GET_LSIZE(bp)); 2215 else if (size != BP_GET_PSIZE(bp)) 2216 bcopy(pbuf, buf, BP_GET_PSIZE(bp)); 2217 } 2218 if (buf != pbuf) 2219 zfs_free(pbuf, size); 2220 if (error == 0) 2221 break; 2222 } 2223 if (error != 0) 2224 printf("ZFS: i/o error - all block copies unavailable\n"); 2225 return (error); 2226 } 2227 2228 static int 2229 dnode_read(const spa_t *spa, const dnode_phys_t *dnode, off_t offset, 2230 void *buf, size_t buflen) 2231 { 2232 int ibshift = dnode->dn_indblkshift - SPA_BLKPTRSHIFT; 2233 int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2234 int nlevels = dnode->dn_nlevels; 2235 int i, rc; 2236 2237 if (bsize > SPA_MAXBLOCKSIZE) { 2238 printf("ZFS: I/O error - blocks larger than %llu are not " 2239 "supported\n", SPA_MAXBLOCKSIZE); 2240 return (EIO); 2241 } 2242 2243 /* 2244 * Note: bsize may not be a power of two here so we need to do an 2245 * actual divide rather than a bitshift. 2246 */ 2247 while (buflen > 0) { 2248 uint64_t bn = offset / bsize; 2249 int boff = offset % bsize; 2250 int ibn; 2251 const blkptr_t *indbp; 2252 blkptr_t bp; 2253 2254 if (bn > dnode->dn_maxblkid) 2255 return (EIO); 2256 2257 if (dnode == dnode_cache_obj && bn == dnode_cache_bn) 2258 goto cached; 2259 2260 indbp = dnode->dn_blkptr; 2261 for (i = 0; i < nlevels; i++) { 2262 /* 2263 * Copy the bp from the indirect array so that 2264 * we can re-use the scratch buffer for multi-level 2265 * objects. 2266 */ 2267 ibn = bn >> ((nlevels - i - 1) * ibshift); 2268 ibn &= ((1 << ibshift) - 1); 2269 bp = indbp[ibn]; 2270 if (BP_IS_HOLE(&bp)) { 2271 memset(dnode_cache_buf, 0, bsize); 2272 break; 2273 } 2274 rc = zio_read(spa, &bp, dnode_cache_buf); 2275 if (rc) 2276 return (rc); 2277 indbp = (const blkptr_t *) dnode_cache_buf; 2278 } 2279 dnode_cache_obj = dnode; 2280 dnode_cache_bn = bn; 2281 cached: 2282 2283 /* 2284 * The buffer contains our data block. Copy what we 2285 * need from it and loop. 2286 */ 2287 i = bsize - boff; 2288 if (i > buflen) i = buflen; 2289 memcpy(buf, &dnode_cache_buf[boff], i); 2290 buf = ((char *)buf) + i; 2291 offset += i; 2292 buflen -= i; 2293 } 2294 2295 return (0); 2296 } 2297 2298 /* 2299 * Lookup a value in a microzap directory. Assumes that the zap 2300 * scratch buffer contains the directory contents. 2301 */ 2302 static int 2303 mzap_lookup(const dnode_phys_t *dnode, const char *name, uint64_t *value) 2304 { 2305 const mzap_phys_t *mz; 2306 const mzap_ent_phys_t *mze; 2307 size_t size; 2308 int chunks, i; 2309 2310 /* 2311 * Microzap objects use exactly one block. Read the whole 2312 * thing. 2313 */ 2314 size = dnode->dn_datablkszsec * 512; 2315 2316 mz = (const mzap_phys_t *) zap_scratch; 2317 chunks = size / MZAP_ENT_LEN - 1; 2318 2319 for (i = 0; i < chunks; i++) { 2320 mze = &mz->mz_chunk[i]; 2321 if (strcmp(mze->mze_name, name) == 0) { 2322 *value = mze->mze_value; 2323 return (0); 2324 } 2325 } 2326 2327 return (ENOENT); 2328 } 2329 2330 /* 2331 * Compare a name with a zap leaf entry. Return non-zero if the name 2332 * matches. 2333 */ 2334 static int 2335 fzap_name_equal(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, 2336 const char *name) 2337 { 2338 size_t namelen; 2339 const zap_leaf_chunk_t *nc; 2340 const char *p; 2341 2342 namelen = zc->l_entry.le_name_numints; 2343 2344 nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk); 2345 p = name; 2346 while (namelen > 0) { 2347 size_t len; 2348 2349 len = namelen; 2350 if (len > ZAP_LEAF_ARRAY_BYTES) 2351 len = ZAP_LEAF_ARRAY_BYTES; 2352 if (memcmp(p, nc->l_array.la_array, len)) 2353 return (0); 2354 p += len; 2355 namelen -= len; 2356 nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next); 2357 } 2358 2359 return (1); 2360 } 2361 2362 /* 2363 * Extract a uint64_t value from a zap leaf entry. 2364 */ 2365 static uint64_t 2366 fzap_leaf_value(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc) 2367 { 2368 const zap_leaf_chunk_t *vc; 2369 int i; 2370 uint64_t value; 2371 const uint8_t *p; 2372 2373 vc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_value_chunk); 2374 for (i = 0, value = 0, p = vc->l_array.la_array; i < 8; i++) { 2375 value = (value << 8) | p[i]; 2376 } 2377 2378 return (value); 2379 } 2380 2381 static void 2382 stv(int len, void *addr, uint64_t value) 2383 { 2384 switch (len) { 2385 case 1: 2386 *(uint8_t *)addr = value; 2387 return; 2388 case 2: 2389 *(uint16_t *)addr = value; 2390 return; 2391 case 4: 2392 *(uint32_t *)addr = value; 2393 return; 2394 case 8: 2395 *(uint64_t *)addr = value; 2396 return; 2397 } 2398 } 2399 2400 /* 2401 * Extract a array from a zap leaf entry. 2402 */ 2403 static void 2404 fzap_leaf_array(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, 2405 uint64_t integer_size, uint64_t num_integers, void *buf) 2406 { 2407 uint64_t array_int_len = zc->l_entry.le_value_intlen; 2408 uint64_t value = 0; 2409 uint64_t *u64 = buf; 2410 char *p = buf; 2411 int len = MIN(zc->l_entry.le_value_numints, num_integers); 2412 int chunk = zc->l_entry.le_value_chunk; 2413 int byten = 0; 2414 2415 if (integer_size == 8 && len == 1) { 2416 *u64 = fzap_leaf_value(zl, zc); 2417 return; 2418 } 2419 2420 while (len > 0) { 2421 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(zl, chunk).l_array; 2422 int i; 2423 2424 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(zl)); 2425 for (i = 0; i < ZAP_LEAF_ARRAY_BYTES && len > 0; i++) { 2426 value = (value << 8) | la->la_array[i]; 2427 byten++; 2428 if (byten == array_int_len) { 2429 stv(integer_size, p, value); 2430 byten = 0; 2431 len--; 2432 if (len == 0) 2433 return; 2434 p += integer_size; 2435 } 2436 } 2437 chunk = la->la_next; 2438 } 2439 } 2440 2441 static int 2442 fzap_check_size(uint64_t integer_size, uint64_t num_integers) 2443 { 2444 2445 switch (integer_size) { 2446 case 1: 2447 case 2: 2448 case 4: 2449 case 8: 2450 break; 2451 default: 2452 return (EINVAL); 2453 } 2454 2455 if (integer_size * num_integers > ZAP_MAXVALUELEN) 2456 return (E2BIG); 2457 2458 return (0); 2459 } 2460 2461 /* 2462 * Lookup a value in a fatzap directory. Assumes that the zap scratch 2463 * buffer contains the directory header. 2464 */ 2465 static int 2466 fzap_lookup(const spa_t *spa, const dnode_phys_t *dnode, const char *name, 2467 uint64_t integer_size, uint64_t num_integers, void *value) 2468 { 2469 int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2470 zap_phys_t zh = *(zap_phys_t *)zap_scratch; 2471 fat_zap_t z; 2472 uint64_t *ptrtbl; 2473 uint64_t hash; 2474 int rc; 2475 2476 if (zh.zap_magic != ZAP_MAGIC) 2477 return (EIO); 2478 2479 if ((rc = fzap_check_size(integer_size, num_integers)) != 0) 2480 return (rc); 2481 2482 z.zap_block_shift = ilog2(bsize); 2483 z.zap_phys = (zap_phys_t *)zap_scratch; 2484 2485 /* 2486 * Figure out where the pointer table is and read it in if necessary. 2487 */ 2488 if (zh.zap_ptrtbl.zt_blk) { 2489 rc = dnode_read(spa, dnode, zh.zap_ptrtbl.zt_blk * bsize, 2490 zap_scratch, bsize); 2491 if (rc) 2492 return (rc); 2493 ptrtbl = (uint64_t *)zap_scratch; 2494 } else { 2495 ptrtbl = &ZAP_EMBEDDED_PTRTBL_ENT(&z, 0); 2496 } 2497 2498 hash = zap_hash(zh.zap_salt, name); 2499 2500 zap_leaf_t zl; 2501 zl.l_bs = z.zap_block_shift; 2502 2503 off_t off = ptrtbl[hash >> (64 - zh.zap_ptrtbl.zt_shift)] << zl.l_bs; 2504 zap_leaf_chunk_t *zc; 2505 2506 rc = dnode_read(spa, dnode, off, zap_scratch, bsize); 2507 if (rc) 2508 return (rc); 2509 2510 zl.l_phys = (zap_leaf_phys_t *)zap_scratch; 2511 2512 /* 2513 * Make sure this chunk matches our hash. 2514 */ 2515 if (zl.l_phys->l_hdr.lh_prefix_len > 0 && 2516 zl.l_phys->l_hdr.lh_prefix != 2517 hash >> (64 - zl.l_phys->l_hdr.lh_prefix_len)) 2518 return (ENOENT); 2519 2520 /* 2521 * Hash within the chunk to find our entry. 2522 */ 2523 int shift = (64 - ZAP_LEAF_HASH_SHIFT(&zl) - 2524 zl.l_phys->l_hdr.lh_prefix_len); 2525 int h = (hash >> shift) & ((1 << ZAP_LEAF_HASH_SHIFT(&zl)) - 1); 2526 h = zl.l_phys->l_hash[h]; 2527 if (h == 0xffff) 2528 return (ENOENT); 2529 zc = &ZAP_LEAF_CHUNK(&zl, h); 2530 while (zc->l_entry.le_hash != hash) { 2531 if (zc->l_entry.le_next == 0xffff) 2532 return (ENOENT); 2533 zc = &ZAP_LEAF_CHUNK(&zl, zc->l_entry.le_next); 2534 } 2535 if (fzap_name_equal(&zl, zc, name)) { 2536 if (zc->l_entry.le_value_intlen * zc->l_entry.le_value_numints > 2537 integer_size * num_integers) 2538 return (E2BIG); 2539 fzap_leaf_array(&zl, zc, integer_size, num_integers, value); 2540 return (0); 2541 } 2542 2543 return (ENOENT); 2544 } 2545 2546 /* 2547 * Lookup a name in a zap object and return its value as a uint64_t. 2548 */ 2549 static int 2550 zap_lookup(const spa_t *spa, const dnode_phys_t *dnode, const char *name, 2551 uint64_t integer_size, uint64_t num_integers, void *value) 2552 { 2553 int rc; 2554 uint64_t zap_type; 2555 size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2556 2557 rc = dnode_read(spa, dnode, 0, zap_scratch, size); 2558 if (rc) 2559 return (rc); 2560 2561 zap_type = *(uint64_t *)zap_scratch; 2562 if (zap_type == ZBT_MICRO) 2563 return (mzap_lookup(dnode, name, value)); 2564 else if (zap_type == ZBT_HEADER) { 2565 return (fzap_lookup(spa, dnode, name, integer_size, 2566 num_integers, value)); 2567 } 2568 printf("ZFS: invalid zap_type=%d\n", (int)zap_type); 2569 return (EIO); 2570 } 2571 2572 /* 2573 * List a microzap directory. Assumes that the zap scratch buffer contains 2574 * the directory contents. 2575 */ 2576 static int 2577 mzap_list(const dnode_phys_t *dnode, int (*callback)(const char *, uint64_t)) 2578 { 2579 const mzap_phys_t *mz; 2580 const mzap_ent_phys_t *mze; 2581 size_t size; 2582 int chunks, i, rc; 2583 2584 /* 2585 * Microzap objects use exactly one block. Read the whole 2586 * thing. 2587 */ 2588 size = dnode->dn_datablkszsec * 512; 2589 mz = (const mzap_phys_t *) zap_scratch; 2590 chunks = size / MZAP_ENT_LEN - 1; 2591 2592 for (i = 0; i < chunks; i++) { 2593 mze = &mz->mz_chunk[i]; 2594 if (mze->mze_name[0]) { 2595 rc = callback(mze->mze_name, mze->mze_value); 2596 if (rc != 0) 2597 return (rc); 2598 } 2599 } 2600 2601 return (0); 2602 } 2603 2604 /* 2605 * List a fatzap directory. Assumes that the zap scratch buffer contains 2606 * the directory header. 2607 */ 2608 static int 2609 fzap_list(const spa_t *spa, const dnode_phys_t *dnode, 2610 int (*callback)(const char *, uint64_t)) 2611 { 2612 int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2613 zap_phys_t zh = *(zap_phys_t *)zap_scratch; 2614 fat_zap_t z; 2615 int i, j, rc; 2616 2617 if (zh.zap_magic != ZAP_MAGIC) 2618 return (EIO); 2619 2620 z.zap_block_shift = ilog2(bsize); 2621 z.zap_phys = (zap_phys_t *)zap_scratch; 2622 2623 /* 2624 * This assumes that the leaf blocks start at block 1. The 2625 * documentation isn't exactly clear on this. 2626 */ 2627 zap_leaf_t zl; 2628 zl.l_bs = z.zap_block_shift; 2629 for (i = 0; i < zh.zap_num_leafs; i++) { 2630 off_t off = ((off_t)(i + 1)) << zl.l_bs; 2631 char name[256], *p; 2632 uint64_t value; 2633 2634 if (dnode_read(spa, dnode, off, zap_scratch, bsize)) 2635 return (EIO); 2636 2637 zl.l_phys = (zap_leaf_phys_t *)zap_scratch; 2638 2639 for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) { 2640 zap_leaf_chunk_t *zc, *nc; 2641 int namelen; 2642 2643 zc = &ZAP_LEAF_CHUNK(&zl, j); 2644 if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY) 2645 continue; 2646 namelen = zc->l_entry.le_name_numints; 2647 if (namelen > sizeof(name)) 2648 namelen = sizeof(name); 2649 2650 /* 2651 * Paste the name back together. 2652 */ 2653 nc = &ZAP_LEAF_CHUNK(&zl, zc->l_entry.le_name_chunk); 2654 p = name; 2655 while (namelen > 0) { 2656 int len; 2657 len = namelen; 2658 if (len > ZAP_LEAF_ARRAY_BYTES) 2659 len = ZAP_LEAF_ARRAY_BYTES; 2660 memcpy(p, nc->l_array.la_array, len); 2661 p += len; 2662 namelen -= len; 2663 nc = &ZAP_LEAF_CHUNK(&zl, nc->l_array.la_next); 2664 } 2665 2666 /* 2667 * Assume the first eight bytes of the value are 2668 * a uint64_t. 2669 */ 2670 value = fzap_leaf_value(&zl, zc); 2671 2672 /* printf("%s 0x%jx\n", name, (uintmax_t)value); */ 2673 rc = callback((const char *)name, value); 2674 if (rc != 0) 2675 return (rc); 2676 } 2677 } 2678 2679 return (0); 2680 } 2681 2682 static int zfs_printf(const char *name, uint64_t value __unused) 2683 { 2684 2685 printf("%s\n", name); 2686 2687 return (0); 2688 } 2689 2690 /* 2691 * List a zap directory. 2692 */ 2693 static int 2694 zap_list(const spa_t *spa, const dnode_phys_t *dnode) 2695 { 2696 uint64_t zap_type; 2697 size_t size = dnode->dn_datablkszsec * 512; 2698 2699 if (dnode_read(spa, dnode, 0, zap_scratch, size)) 2700 return (EIO); 2701 2702 zap_type = *(uint64_t *)zap_scratch; 2703 if (zap_type == ZBT_MICRO) 2704 return (mzap_list(dnode, zfs_printf)); 2705 else 2706 return (fzap_list(spa, dnode, zfs_printf)); 2707 } 2708 2709 static int 2710 objset_get_dnode(const spa_t *spa, const objset_phys_t *os, uint64_t objnum, 2711 dnode_phys_t *dnode) 2712 { 2713 off_t offset; 2714 2715 offset = objnum * sizeof(dnode_phys_t); 2716 return dnode_read(spa, &os->os_meta_dnode, offset, 2717 dnode, sizeof(dnode_phys_t)); 2718 } 2719 2720 static int 2721 mzap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, char *name, 2722 uint64_t value) 2723 { 2724 const mzap_phys_t *mz; 2725 const mzap_ent_phys_t *mze; 2726 size_t size; 2727 int chunks, i; 2728 2729 /* 2730 * Microzap objects use exactly one block. Read the whole 2731 * thing. 2732 */ 2733 size = dnode->dn_datablkszsec * 512; 2734 2735 mz = (const mzap_phys_t *)zap_scratch; 2736 chunks = size / MZAP_ENT_LEN - 1; 2737 2738 for (i = 0; i < chunks; i++) { 2739 mze = &mz->mz_chunk[i]; 2740 if (value == mze->mze_value) { 2741 strcpy(name, mze->mze_name); 2742 return (0); 2743 } 2744 } 2745 2746 return (ENOENT); 2747 } 2748 2749 static void 2750 fzap_name_copy(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, char *name) 2751 { 2752 size_t namelen; 2753 const zap_leaf_chunk_t *nc; 2754 char *p; 2755 2756 namelen = zc->l_entry.le_name_numints; 2757 2758 nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk); 2759 p = name; 2760 while (namelen > 0) { 2761 size_t len; 2762 len = namelen; 2763 if (len > ZAP_LEAF_ARRAY_BYTES) 2764 len = ZAP_LEAF_ARRAY_BYTES; 2765 memcpy(p, nc->l_array.la_array, len); 2766 p += len; 2767 namelen -= len; 2768 nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next); 2769 } 2770 2771 *p = '\0'; 2772 } 2773 2774 static int 2775 fzap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, char *name, 2776 uint64_t value) 2777 { 2778 int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2779 zap_phys_t zh = *(zap_phys_t *)zap_scratch; 2780 fat_zap_t z; 2781 int i, j; 2782 2783 if (zh.zap_magic != ZAP_MAGIC) 2784 return (EIO); 2785 2786 z.zap_block_shift = ilog2(bsize); 2787 z.zap_phys = (zap_phys_t *)zap_scratch; 2788 2789 /* 2790 * This assumes that the leaf blocks start at block 1. The 2791 * documentation isn't exactly clear on this. 2792 */ 2793 zap_leaf_t zl; 2794 zl.l_bs = z.zap_block_shift; 2795 for (i = 0; i < zh.zap_num_leafs; i++) { 2796 off_t off = ((off_t)(i + 1)) << zl.l_bs; 2797 2798 if (dnode_read(spa, dnode, off, zap_scratch, bsize)) 2799 return (EIO); 2800 2801 zl.l_phys = (zap_leaf_phys_t *)zap_scratch; 2802 2803 for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) { 2804 zap_leaf_chunk_t *zc; 2805 2806 zc = &ZAP_LEAF_CHUNK(&zl, j); 2807 if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY) 2808 continue; 2809 if (zc->l_entry.le_value_intlen != 8 || 2810 zc->l_entry.le_value_numints != 1) 2811 continue; 2812 2813 if (fzap_leaf_value(&zl, zc) == value) { 2814 fzap_name_copy(&zl, zc, name); 2815 return (0); 2816 } 2817 } 2818 } 2819 2820 return (ENOENT); 2821 } 2822 2823 static int 2824 zap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, char *name, 2825 uint64_t value) 2826 { 2827 int rc; 2828 uint64_t zap_type; 2829 size_t size = dnode->dn_datablkszsec * 512; 2830 2831 rc = dnode_read(spa, dnode, 0, zap_scratch, size); 2832 if (rc) 2833 return (rc); 2834 2835 zap_type = *(uint64_t *)zap_scratch; 2836 if (zap_type == ZBT_MICRO) 2837 return (mzap_rlookup(spa, dnode, name, value)); 2838 else 2839 return (fzap_rlookup(spa, dnode, name, value)); 2840 } 2841 2842 static int 2843 zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result) 2844 { 2845 char name[256]; 2846 char component[256]; 2847 uint64_t dir_obj, parent_obj, child_dir_zapobj; 2848 dnode_phys_t child_dir_zap, dataset, dir, parent; 2849 dsl_dir_phys_t *dd; 2850 dsl_dataset_phys_t *ds; 2851 char *p; 2852 int len; 2853 2854 p = &name[sizeof(name) - 1]; 2855 *p = '\0'; 2856 2857 if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) { 2858 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum); 2859 return (EIO); 2860 } 2861 ds = (dsl_dataset_phys_t *)&dataset.dn_bonus; 2862 dir_obj = ds->ds_dir_obj; 2863 2864 for (;;) { 2865 if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir) != 0) 2866 return (EIO); 2867 dd = (dsl_dir_phys_t *)&dir.dn_bonus; 2868 2869 /* Actual loop condition. */ 2870 parent_obj = dd->dd_parent_obj; 2871 if (parent_obj == 0) 2872 break; 2873 2874 if (objset_get_dnode(spa, &spa->spa_mos, parent_obj, 2875 &parent) != 0) 2876 return (EIO); 2877 dd = (dsl_dir_phys_t *)&parent.dn_bonus; 2878 child_dir_zapobj = dd->dd_child_dir_zapobj; 2879 if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, 2880 &child_dir_zap) != 0) 2881 return (EIO); 2882 if (zap_rlookup(spa, &child_dir_zap, component, dir_obj) != 0) 2883 return (EIO); 2884 2885 len = strlen(component); 2886 p -= len; 2887 memcpy(p, component, len); 2888 --p; 2889 *p = '/'; 2890 2891 /* Actual loop iteration. */ 2892 dir_obj = parent_obj; 2893 } 2894 2895 if (*p != '\0') 2896 ++p; 2897 strcpy(result, p); 2898 2899 return (0); 2900 } 2901 2902 static int 2903 zfs_lookup_dataset(const spa_t *spa, const char *name, uint64_t *objnum) 2904 { 2905 char element[256]; 2906 uint64_t dir_obj, child_dir_zapobj; 2907 dnode_phys_t child_dir_zap, dir; 2908 dsl_dir_phys_t *dd; 2909 const char *p, *q; 2910 2911 if (objset_get_dnode(spa, &spa->spa_mos, 2912 DMU_POOL_DIRECTORY_OBJECT, &dir)) 2913 return (EIO); 2914 if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET, sizeof (dir_obj), 2915 1, &dir_obj)) 2916 return (EIO); 2917 2918 p = name; 2919 for (;;) { 2920 if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir)) 2921 return (EIO); 2922 dd = (dsl_dir_phys_t *)&dir.dn_bonus; 2923 2924 while (*p == '/') 2925 p++; 2926 /* Actual loop condition #1. */ 2927 if (*p == '\0') 2928 break; 2929 2930 q = strchr(p, '/'); 2931 if (q) { 2932 memcpy(element, p, q - p); 2933 element[q - p] = '\0'; 2934 p = q + 1; 2935 } else { 2936 strcpy(element, p); 2937 p += strlen(p); 2938 } 2939 2940 child_dir_zapobj = dd->dd_child_dir_zapobj; 2941 if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, 2942 &child_dir_zap) != 0) 2943 return (EIO); 2944 2945 /* Actual loop condition #2. */ 2946 if (zap_lookup(spa, &child_dir_zap, element, sizeof (dir_obj), 2947 1, &dir_obj) != 0) 2948 return (ENOENT); 2949 } 2950 2951 *objnum = dd->dd_head_dataset_obj; 2952 return (0); 2953 } 2954 2955 #ifndef BOOT2 2956 static int 2957 zfs_list_dataset(const spa_t *spa, uint64_t objnum/*, int pos, char *entry*/) 2958 { 2959 uint64_t dir_obj, child_dir_zapobj; 2960 dnode_phys_t child_dir_zap, dir, dataset; 2961 dsl_dataset_phys_t *ds; 2962 dsl_dir_phys_t *dd; 2963 2964 if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) { 2965 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum); 2966 return (EIO); 2967 } 2968 ds = (dsl_dataset_phys_t *)&dataset.dn_bonus; 2969 dir_obj = ds->ds_dir_obj; 2970 2971 if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir)) { 2972 printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj); 2973 return (EIO); 2974 } 2975 dd = (dsl_dir_phys_t *)&dir.dn_bonus; 2976 2977 child_dir_zapobj = dd->dd_child_dir_zapobj; 2978 if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, 2979 &child_dir_zap) != 0) { 2980 printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj); 2981 return (EIO); 2982 } 2983 2984 return (zap_list(spa, &child_dir_zap) != 0); 2985 } 2986 2987 int 2988 zfs_callback_dataset(const spa_t *spa, uint64_t objnum, 2989 int (*callback)(const char *, uint64_t)) 2990 { 2991 uint64_t dir_obj, child_dir_zapobj, zap_type; 2992 dnode_phys_t child_dir_zap, dir, dataset; 2993 dsl_dataset_phys_t *ds; 2994 dsl_dir_phys_t *dd; 2995 int err; 2996 2997 err = objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset); 2998 if (err != 0) { 2999 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum); 3000 return (err); 3001 } 3002 ds = (dsl_dataset_phys_t *)&dataset.dn_bonus; 3003 dir_obj = ds->ds_dir_obj; 3004 3005 err = objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir); 3006 if (err != 0) { 3007 printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj); 3008 return (err); 3009 } 3010 dd = (dsl_dir_phys_t *)&dir.dn_bonus; 3011 3012 child_dir_zapobj = dd->dd_child_dir_zapobj; 3013 err = objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, 3014 &child_dir_zap); 3015 if (err != 0) { 3016 printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj); 3017 return (err); 3018 } 3019 3020 err = dnode_read(spa, &child_dir_zap, 0, zap_scratch, 3021 child_dir_zap.dn_datablkszsec * 512); 3022 if (err != 0) 3023 return (err); 3024 3025 zap_type = *(uint64_t *)zap_scratch; 3026 if (zap_type == ZBT_MICRO) 3027 return (mzap_list(&child_dir_zap, callback)); 3028 else 3029 return (fzap_list(spa, &child_dir_zap, callback)); 3030 } 3031 #endif 3032 3033 /* 3034 * Find the object set given the object number of its dataset object 3035 * and return its details in *objset 3036 */ 3037 static int 3038 zfs_mount_dataset(const spa_t *spa, uint64_t objnum, objset_phys_t *objset) 3039 { 3040 dnode_phys_t dataset; 3041 dsl_dataset_phys_t *ds; 3042 3043 if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) { 3044 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum); 3045 return (EIO); 3046 } 3047 3048 ds = (dsl_dataset_phys_t *)&dataset.dn_bonus; 3049 if (zio_read(spa, &ds->ds_bp, objset)) { 3050 printf("ZFS: can't read object set for dataset %ju\n", 3051 (uintmax_t)objnum); 3052 return (EIO); 3053 } 3054 3055 return (0); 3056 } 3057 3058 /* 3059 * Find the object set pointed to by the BOOTFS property or the root 3060 * dataset if there is none and return its details in *objset 3061 */ 3062 static int 3063 zfs_get_root(const spa_t *spa, uint64_t *objid) 3064 { 3065 dnode_phys_t dir, propdir; 3066 uint64_t props, bootfs, root; 3067 3068 *objid = 0; 3069 3070 /* 3071 * Start with the MOS directory object. 3072 */ 3073 if (objset_get_dnode(spa, &spa->spa_mos, 3074 DMU_POOL_DIRECTORY_OBJECT, &dir)) { 3075 printf("ZFS: can't read MOS object directory\n"); 3076 return (EIO); 3077 } 3078 3079 /* 3080 * Lookup the pool_props and see if we can find a bootfs. 3081 */ 3082 if (zap_lookup(spa, &dir, DMU_POOL_PROPS, 3083 sizeof(props), 1, &props) == 0 && 3084 objset_get_dnode(spa, &spa->spa_mos, props, &propdir) == 0 && 3085 zap_lookup(spa, &propdir, "bootfs", 3086 sizeof(bootfs), 1, &bootfs) == 0 && bootfs != 0) { 3087 *objid = bootfs; 3088 return (0); 3089 } 3090 /* 3091 * Lookup the root dataset directory 3092 */ 3093 if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET, 3094 sizeof(root), 1, &root) || 3095 objset_get_dnode(spa, &spa->spa_mos, root, &dir)) { 3096 printf("ZFS: can't find root dsl_dir\n"); 3097 return (EIO); 3098 } 3099 3100 /* 3101 * Use the information from the dataset directory's bonus buffer 3102 * to find the dataset object and from that the object set itself. 3103 */ 3104 dsl_dir_phys_t *dd = (dsl_dir_phys_t *)&dir.dn_bonus; 3105 *objid = dd->dd_head_dataset_obj; 3106 return (0); 3107 } 3108 3109 static int 3110 zfs_mount(const spa_t *spa, uint64_t rootobj, struct zfsmount *mount) 3111 { 3112 3113 mount->spa = spa; 3114 3115 /* 3116 * Find the root object set if not explicitly provided 3117 */ 3118 if (rootobj == 0 && zfs_get_root(spa, &rootobj)) { 3119 printf("ZFS: can't find root filesystem\n"); 3120 return (EIO); 3121 } 3122 3123 if (zfs_mount_dataset(spa, rootobj, &mount->objset)) { 3124 printf("ZFS: can't open root filesystem\n"); 3125 return (EIO); 3126 } 3127 3128 mount->rootobj = rootobj; 3129 3130 return (0); 3131 } 3132 3133 /* 3134 * callback function for feature name checks. 3135 */ 3136 static int 3137 check_feature(const char *name, uint64_t value) 3138 { 3139 int i; 3140 3141 if (value == 0) 3142 return (0); 3143 if (name[0] == '\0') 3144 return (0); 3145 3146 for (i = 0; features_for_read[i] != NULL; i++) { 3147 if (strcmp(name, features_for_read[i]) == 0) 3148 return (0); 3149 } 3150 printf("ZFS: unsupported feature: %s\n", name); 3151 return (EIO); 3152 } 3153 3154 /* 3155 * Checks whether the MOS features that are active are supported. 3156 */ 3157 static int 3158 check_mos_features(const spa_t *spa) 3159 { 3160 dnode_phys_t dir; 3161 uint64_t objnum, zap_type; 3162 size_t size; 3163 int rc; 3164 3165 if ((rc = objset_get_dnode(spa, &spa->spa_mos, DMU_OT_OBJECT_DIRECTORY, 3166 &dir)) != 0) 3167 return (rc); 3168 if ((rc = zap_lookup(spa, &dir, DMU_POOL_FEATURES_FOR_READ, 3169 sizeof (objnum), 1, &objnum)) != 0) { 3170 /* 3171 * It is older pool without features. As we have already 3172 * tested the label, just return without raising the error. 3173 */ 3174 return (0); 3175 } 3176 3177 if ((rc = objset_get_dnode(spa, &spa->spa_mos, objnum, &dir)) != 0) 3178 return (rc); 3179 3180 if (dir.dn_type != DMU_OTN_ZAP_METADATA) 3181 return (EIO); 3182 3183 size = dir.dn_datablkszsec * 512; 3184 if (dnode_read(spa, &dir, 0, zap_scratch, size)) 3185 return (EIO); 3186 3187 zap_type = *(uint64_t *)zap_scratch; 3188 if (zap_type == ZBT_MICRO) 3189 rc = mzap_list(&dir, check_feature); 3190 else 3191 rc = fzap_list(spa, &dir, check_feature); 3192 3193 return (rc); 3194 } 3195 3196 static int 3197 load_nvlist(spa_t *spa, uint64_t obj, unsigned char **value) 3198 { 3199 dnode_phys_t dir; 3200 size_t size; 3201 int rc; 3202 unsigned char *nv; 3203 3204 *value = NULL; 3205 if ((rc = objset_get_dnode(spa, &spa->spa_mos, obj, &dir)) != 0) 3206 return (rc); 3207 if (dir.dn_type != DMU_OT_PACKED_NVLIST && 3208 dir.dn_bonustype != DMU_OT_PACKED_NVLIST_SIZE) { 3209 return (EIO); 3210 } 3211 3212 if (dir.dn_bonuslen != sizeof (uint64_t)) 3213 return (EIO); 3214 3215 size = *(uint64_t *)DN_BONUS(&dir); 3216 nv = malloc(size); 3217 if (nv == NULL) 3218 return (ENOMEM); 3219 3220 rc = dnode_read(spa, &dir, 0, nv, size); 3221 if (rc != 0) { 3222 free(nv); 3223 nv = NULL; 3224 return (rc); 3225 } 3226 *value = nv; 3227 return (rc); 3228 } 3229 3230 static int 3231 zfs_spa_init(spa_t *spa) 3232 { 3233 dnode_phys_t dir; 3234 uint64_t config_object; 3235 unsigned char *nvlist; 3236 int rc; 3237 3238 if (zio_read(spa, &spa->spa_uberblock.ub_rootbp, &spa->spa_mos)) { 3239 printf("ZFS: can't read MOS of pool %s\n", spa->spa_name); 3240 return (EIO); 3241 } 3242 if (spa->spa_mos.os_type != DMU_OST_META) { 3243 printf("ZFS: corrupted MOS of pool %s\n", spa->spa_name); 3244 return (EIO); 3245 } 3246 3247 if (objset_get_dnode(spa, &spa->spa_mos, DMU_POOL_DIRECTORY_OBJECT, 3248 &dir)) { 3249 printf("ZFS: failed to read pool %s directory object\n", 3250 spa->spa_name); 3251 return (EIO); 3252 } 3253 /* this is allowed to fail, older pools do not have salt */ 3254 rc = zap_lookup(spa, &dir, DMU_POOL_CHECKSUM_SALT, 1, 3255 sizeof (spa->spa_cksum_salt.zcs_bytes), 3256 spa->spa_cksum_salt.zcs_bytes); 3257 3258 rc = check_mos_features(spa); 3259 if (rc != 0) { 3260 printf("ZFS: pool %s is not supported\n", spa->spa_name); 3261 return (rc); 3262 } 3263 3264 rc = zap_lookup(spa, &dir, DMU_POOL_CONFIG, 3265 sizeof (config_object), 1, &config_object); 3266 if (rc != 0) { 3267 printf("ZFS: can not read MOS %s\n", DMU_POOL_CONFIG); 3268 return (EIO); 3269 } 3270 rc = load_nvlist(spa, config_object, &nvlist); 3271 if (rc != 0) 3272 return (rc); 3273 3274 /* 3275 * Update vdevs from MOS config. Note, we do skip encoding bytes 3276 * here. See also vdev_label_read_config(). 3277 */ 3278 rc = vdev_init_from_nvlist(spa, nvlist + 4); 3279 free(nvlist); 3280 return (rc); 3281 } 3282 3283 static int 3284 zfs_dnode_stat(const spa_t *spa, dnode_phys_t *dn, struct stat *sb) 3285 { 3286 3287 if (dn->dn_bonustype != DMU_OT_SA) { 3288 znode_phys_t *zp = (znode_phys_t *)dn->dn_bonus; 3289 3290 sb->st_mode = zp->zp_mode; 3291 sb->st_uid = zp->zp_uid; 3292 sb->st_gid = zp->zp_gid; 3293 sb->st_size = zp->zp_size; 3294 } else { 3295 sa_hdr_phys_t *sahdrp; 3296 int hdrsize; 3297 size_t size = 0; 3298 void *buf = NULL; 3299 3300 if (dn->dn_bonuslen != 0) 3301 sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn); 3302 else { 3303 if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0) { 3304 blkptr_t *bp = DN_SPILL_BLKPTR(dn); 3305 int error; 3306 3307 size = BP_GET_LSIZE(bp); 3308 buf = zfs_alloc(size); 3309 error = zio_read(spa, bp, buf); 3310 if (error != 0) { 3311 zfs_free(buf, size); 3312 return (error); 3313 } 3314 sahdrp = buf; 3315 } else { 3316 return (EIO); 3317 } 3318 } 3319 hdrsize = SA_HDR_SIZE(sahdrp); 3320 sb->st_mode = *(uint64_t *)((char *)sahdrp + hdrsize + 3321 SA_MODE_OFFSET); 3322 sb->st_uid = *(uint64_t *)((char *)sahdrp + hdrsize + 3323 SA_UID_OFFSET); 3324 sb->st_gid = *(uint64_t *)((char *)sahdrp + hdrsize + 3325 SA_GID_OFFSET); 3326 sb->st_size = *(uint64_t *)((char *)sahdrp + hdrsize + 3327 SA_SIZE_OFFSET); 3328 if (buf != NULL) 3329 zfs_free(buf, size); 3330 } 3331 3332 return (0); 3333 } 3334 3335 static int 3336 zfs_dnode_readlink(const spa_t *spa, dnode_phys_t *dn, char *path, size_t psize) 3337 { 3338 int rc = 0; 3339 3340 if (dn->dn_bonustype == DMU_OT_SA) { 3341 sa_hdr_phys_t *sahdrp = NULL; 3342 size_t size = 0; 3343 void *buf = NULL; 3344 int hdrsize; 3345 char *p; 3346 3347 if (dn->dn_bonuslen != 0) 3348 sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn); 3349 else { 3350 blkptr_t *bp; 3351 3352 if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) == 0) 3353 return (EIO); 3354 bp = DN_SPILL_BLKPTR(dn); 3355 3356 size = BP_GET_LSIZE(bp); 3357 buf = zfs_alloc(size); 3358 rc = zio_read(spa, bp, buf); 3359 if (rc != 0) { 3360 zfs_free(buf, size); 3361 return (rc); 3362 } 3363 sahdrp = buf; 3364 } 3365 hdrsize = SA_HDR_SIZE(sahdrp); 3366 p = (char *)((uintptr_t)sahdrp + hdrsize + SA_SYMLINK_OFFSET); 3367 memcpy(path, p, psize); 3368 if (buf != NULL) 3369 zfs_free(buf, size); 3370 return (0); 3371 } 3372 /* 3373 * Second test is purely to silence bogus compiler 3374 * warning about accessing past the end of dn_bonus. 3375 */ 3376 if (psize + sizeof(znode_phys_t) <= dn->dn_bonuslen && 3377 sizeof(znode_phys_t) <= sizeof(dn->dn_bonus)) { 3378 memcpy(path, &dn->dn_bonus[sizeof(znode_phys_t)], psize); 3379 } else { 3380 rc = dnode_read(spa, dn, 0, path, psize); 3381 } 3382 return (rc); 3383 } 3384 3385 struct obj_list { 3386 uint64_t objnum; 3387 STAILQ_ENTRY(obj_list) entry; 3388 }; 3389 3390 /* 3391 * Lookup a file and return its dnode. 3392 */ 3393 static int 3394 zfs_lookup(const struct zfsmount *mount, const char *upath, dnode_phys_t *dnode) 3395 { 3396 int rc; 3397 uint64_t objnum; 3398 const spa_t *spa; 3399 dnode_phys_t dn; 3400 const char *p, *q; 3401 char element[256]; 3402 char path[1024]; 3403 int symlinks_followed = 0; 3404 struct stat sb; 3405 struct obj_list *entry, *tentry; 3406 STAILQ_HEAD(, obj_list) on_cache = STAILQ_HEAD_INITIALIZER(on_cache); 3407 3408 spa = mount->spa; 3409 if (mount->objset.os_type != DMU_OST_ZFS) { 3410 printf("ZFS: unexpected object set type %ju\n", 3411 (uintmax_t)mount->objset.os_type); 3412 return (EIO); 3413 } 3414 3415 if ((entry = malloc(sizeof(struct obj_list))) == NULL) 3416 return (ENOMEM); 3417 3418 /* 3419 * Get the root directory dnode. 3420 */ 3421 rc = objset_get_dnode(spa, &mount->objset, MASTER_NODE_OBJ, &dn); 3422 if (rc) { 3423 free(entry); 3424 return (rc); 3425 } 3426 3427 rc = zap_lookup(spa, &dn, ZFS_ROOT_OBJ, sizeof(objnum), 1, &objnum); 3428 if (rc) { 3429 free(entry); 3430 return (rc); 3431 } 3432 entry->objnum = objnum; 3433 STAILQ_INSERT_HEAD(&on_cache, entry, entry); 3434 3435 rc = objset_get_dnode(spa, &mount->objset, objnum, &dn); 3436 if (rc != 0) 3437 goto done; 3438 3439 p = upath; 3440 while (p && *p) { 3441 rc = objset_get_dnode(spa, &mount->objset, objnum, &dn); 3442 if (rc != 0) 3443 goto done; 3444 3445 while (*p == '/') 3446 p++; 3447 if (*p == '\0') 3448 break; 3449 q = p; 3450 while (*q != '\0' && *q != '/') 3451 q++; 3452 3453 /* skip dot */ 3454 if (p + 1 == q && p[0] == '.') { 3455 p++; 3456 continue; 3457 } 3458 /* double dot */ 3459 if (p + 2 == q && p[0] == '.' && p[1] == '.') { 3460 p += 2; 3461 if (STAILQ_FIRST(&on_cache) == 3462 STAILQ_LAST(&on_cache, obj_list, entry)) { 3463 rc = ENOENT; 3464 goto done; 3465 } 3466 entry = STAILQ_FIRST(&on_cache); 3467 STAILQ_REMOVE_HEAD(&on_cache, entry); 3468 free(entry); 3469 objnum = (STAILQ_FIRST(&on_cache))->objnum; 3470 continue; 3471 } 3472 if (q - p + 1 > sizeof(element)) { 3473 rc = ENAMETOOLONG; 3474 goto done; 3475 } 3476 memcpy(element, p, q - p); 3477 element[q - p] = 0; 3478 p = q; 3479 3480 if ((rc = zfs_dnode_stat(spa, &dn, &sb)) != 0) 3481 goto done; 3482 if (!S_ISDIR(sb.st_mode)) { 3483 rc = ENOTDIR; 3484 goto done; 3485 } 3486 3487 rc = zap_lookup(spa, &dn, element, sizeof (objnum), 1, &objnum); 3488 if (rc) 3489 goto done; 3490 objnum = ZFS_DIRENT_OBJ(objnum); 3491 3492 if ((entry = malloc(sizeof(struct obj_list))) == NULL) { 3493 rc = ENOMEM; 3494 goto done; 3495 } 3496 entry->objnum = objnum; 3497 STAILQ_INSERT_HEAD(&on_cache, entry, entry); 3498 rc = objset_get_dnode(spa, &mount->objset, objnum, &dn); 3499 if (rc) 3500 goto done; 3501 3502 /* 3503 * Check for symlink. 3504 */ 3505 rc = zfs_dnode_stat(spa, &dn, &sb); 3506 if (rc) 3507 goto done; 3508 if (S_ISLNK(sb.st_mode)) { 3509 if (symlinks_followed > 10) { 3510 rc = EMLINK; 3511 goto done; 3512 } 3513 symlinks_followed++; 3514 3515 /* 3516 * Read the link value and copy the tail of our 3517 * current path onto the end. 3518 */ 3519 if (sb.st_size + strlen(p) + 1 > sizeof(path)) { 3520 rc = ENAMETOOLONG; 3521 goto done; 3522 } 3523 strcpy(&path[sb.st_size], p); 3524 3525 rc = zfs_dnode_readlink(spa, &dn, path, sb.st_size); 3526 if (rc != 0) 3527 goto done; 3528 3529 /* 3530 * Restart with the new path, starting either at 3531 * the root or at the parent depending whether or 3532 * not the link is relative. 3533 */ 3534 p = path; 3535 if (*p == '/') { 3536 while (STAILQ_FIRST(&on_cache) != 3537 STAILQ_LAST(&on_cache, obj_list, entry)) { 3538 entry = STAILQ_FIRST(&on_cache); 3539 STAILQ_REMOVE_HEAD(&on_cache, entry); 3540 free(entry); 3541 } 3542 } else { 3543 entry = STAILQ_FIRST(&on_cache); 3544 STAILQ_REMOVE_HEAD(&on_cache, entry); 3545 free(entry); 3546 } 3547 objnum = (STAILQ_FIRST(&on_cache))->objnum; 3548 } 3549 } 3550 3551 *dnode = dn; 3552 done: 3553 STAILQ_FOREACH_SAFE(entry, &on_cache, entry, tentry) 3554 free(entry); 3555 return (rc); 3556 } 3557