1 /*- 2 * Copyright (c) 2007 Doug Rabson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 /* 31 * Stand-alone ZFS file reader. 32 */ 33 34 #include <stdbool.h> 35 #include <sys/endian.h> 36 #include <sys/stat.h> 37 #include <sys/stdint.h> 38 #include <sys/list.h> 39 #include <sys/zfs_bootenv.h> 40 #include <machine/_inttypes.h> 41 42 #include "zfsimpl.h" 43 #include "zfssubr.c" 44 45 #ifdef HAS_ZSTD_ZFS 46 extern int zstd_init(void); 47 #endif 48 49 struct zfsmount { 50 const spa_t *spa; 51 objset_phys_t objset; 52 uint64_t rootobj; 53 }; 54 static struct zfsmount zfsmount __unused; 55 56 /* 57 * The indirect_child_t represents the vdev that we will read from, when we 58 * need to read all copies of the data (e.g. for scrub or reconstruction). 59 * For plain (non-mirror) top-level vdevs (i.e. is_vdev is not a mirror), 60 * ic_vdev is the same as is_vdev. However, for mirror top-level vdevs, 61 * ic_vdev is a child of the mirror. 62 */ 63 typedef struct indirect_child { 64 void *ic_data; 65 vdev_t *ic_vdev; 66 } indirect_child_t; 67 68 /* 69 * The indirect_split_t represents one mapped segment of an i/o to the 70 * indirect vdev. For non-split (contiguously-mapped) blocks, there will be 71 * only one indirect_split_t, with is_split_offset==0 and is_size==io_size. 72 * For split blocks, there will be several of these. 73 */ 74 typedef struct indirect_split { 75 list_node_t is_node; /* link on iv_splits */ 76 77 /* 78 * is_split_offset is the offset into the i/o. 79 * This is the sum of the previous splits' is_size's. 80 */ 81 uint64_t is_split_offset; 82 83 vdev_t *is_vdev; /* top-level vdev */ 84 uint64_t is_target_offset; /* offset on is_vdev */ 85 uint64_t is_size; 86 int is_children; /* number of entries in is_child[] */ 87 88 /* 89 * is_good_child is the child that we are currently using to 90 * attempt reconstruction. 91 */ 92 int is_good_child; 93 94 indirect_child_t is_child[1]; /* variable-length */ 95 } indirect_split_t; 96 97 /* 98 * The indirect_vsd_t is associated with each i/o to the indirect vdev. 99 * It is the "Vdev-Specific Data" in the zio_t's io_vsd. 100 */ 101 typedef struct indirect_vsd { 102 boolean_t iv_split_block; 103 boolean_t iv_reconstruct; 104 105 list_t iv_splits; /* list of indirect_split_t's */ 106 } indirect_vsd_t; 107 108 /* 109 * List of all vdevs, chained through v_alllink. 110 */ 111 static vdev_list_t zfs_vdevs; 112 113 /* 114 * List of ZFS features supported for read 115 */ 116 static const char *features_for_read[] = { 117 "org.illumos:lz4_compress", 118 "com.delphix:hole_birth", 119 "com.delphix:extensible_dataset", 120 "com.delphix:embedded_data", 121 "org.open-zfs:large_blocks", 122 "org.illumos:sha512", 123 "org.illumos:skein", 124 "org.zfsonlinux:large_dnode", 125 "com.joyent:multi_vdev_crash_dump", 126 "com.delphix:spacemap_histogram", 127 "com.delphix:zpool_checkpoint", 128 "com.delphix:spacemap_v2", 129 "com.datto:encryption", 130 "com.datto:bookmark_v2", 131 "org.zfsonlinux:allocation_classes", 132 "com.datto:resilver_defer", 133 "com.delphix:device_removal", 134 "com.delphix:obsolete_counts", 135 "com.intel:allocation_classes", 136 "org.freebsd:zstd_compress", 137 "com.delphix:bookmark_written", 138 NULL 139 }; 140 141 /* 142 * List of all pools, chained through spa_link. 143 */ 144 static spa_list_t zfs_pools; 145 146 static const dnode_phys_t *dnode_cache_obj; 147 static uint64_t dnode_cache_bn; 148 static char *dnode_cache_buf; 149 150 static int zio_read(const spa_t *spa, const blkptr_t *bp, void *buf); 151 static int zfs_get_root(const spa_t *spa, uint64_t *objid); 152 static int zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result); 153 static int zap_lookup(const spa_t *spa, const dnode_phys_t *dnode, 154 const char *name, uint64_t integer_size, uint64_t num_integers, 155 void *value); 156 static int objset_get_dnode(const spa_t *, const objset_phys_t *, uint64_t, 157 dnode_phys_t *); 158 static int dnode_read(const spa_t *, const dnode_phys_t *, off_t, void *, 159 size_t); 160 static int vdev_indirect_read(vdev_t *, const blkptr_t *, void *, off_t, 161 size_t); 162 static int vdev_mirror_read(vdev_t *, const blkptr_t *, void *, off_t, size_t); 163 vdev_indirect_mapping_t *vdev_indirect_mapping_open(spa_t *, objset_phys_t *, 164 uint64_t); 165 vdev_indirect_mapping_entry_phys_t * 166 vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *, uint64_t, 167 uint64_t, uint64_t *); 168 169 static void 170 zfs_init(void) 171 { 172 STAILQ_INIT(&zfs_vdevs); 173 STAILQ_INIT(&zfs_pools); 174 175 dnode_cache_buf = malloc(SPA_MAXBLOCKSIZE); 176 177 zfs_init_crc(); 178 #ifdef HAS_ZSTD_ZFS 179 zstd_init(); 180 #endif 181 } 182 183 static int 184 nvlist_check_features_for_read(nvlist_t *nvl) 185 { 186 nvlist_t *features = NULL; 187 nvs_data_t *data; 188 nvp_header_t *nvp; 189 nv_string_t *nvp_name; 190 int rc; 191 192 rc = nvlist_find(nvl, ZPOOL_CONFIG_FEATURES_FOR_READ, 193 DATA_TYPE_NVLIST, NULL, &features, NULL); 194 switch (rc) { 195 case 0: 196 break; /* Continue with checks */ 197 198 case ENOENT: 199 return (0); /* All features are disabled */ 200 201 default: 202 return (rc); /* Error while reading nvlist */ 203 } 204 205 data = (nvs_data_t *)features->nv_data; 206 nvp = &data->nvl_pair; /* first pair in nvlist */ 207 208 while (nvp->encoded_size != 0 && nvp->decoded_size != 0) { 209 int i, found; 210 211 nvp_name = (nv_string_t *)((uintptr_t)nvp + sizeof(*nvp)); 212 found = 0; 213 214 for (i = 0; features_for_read[i] != NULL; i++) { 215 if (memcmp(nvp_name->nv_data, features_for_read[i], 216 nvp_name->nv_size) == 0) { 217 found = 1; 218 break; 219 } 220 } 221 222 if (!found) { 223 printf("ZFS: unsupported feature: %.*s\n", 224 nvp_name->nv_size, nvp_name->nv_data); 225 rc = EIO; 226 } 227 nvp = (nvp_header_t *)((uint8_t *)nvp + nvp->encoded_size); 228 } 229 nvlist_destroy(features); 230 231 return (rc); 232 } 233 234 static int 235 vdev_read_phys(vdev_t *vdev, const blkptr_t *bp, void *buf, 236 off_t offset, size_t size) 237 { 238 size_t psize; 239 int rc; 240 241 if (vdev->v_phys_read == NULL) 242 return (ENOTSUP); 243 244 if (bp) { 245 psize = BP_GET_PSIZE(bp); 246 } else { 247 psize = size; 248 } 249 250 rc = vdev->v_phys_read(vdev, vdev->v_priv, offset, buf, psize); 251 if (rc == 0) { 252 if (bp != NULL) 253 rc = zio_checksum_verify(vdev->v_spa, bp, buf); 254 } 255 256 return (rc); 257 } 258 259 static int 260 vdev_write_phys(vdev_t *vdev, void *buf, off_t offset, size_t size) 261 { 262 if (vdev->v_phys_write == NULL) 263 return (ENOTSUP); 264 265 return (vdev->v_phys_write(vdev, offset, buf, size)); 266 } 267 268 typedef struct remap_segment { 269 vdev_t *rs_vd; 270 uint64_t rs_offset; 271 uint64_t rs_asize; 272 uint64_t rs_split_offset; 273 list_node_t rs_node; 274 } remap_segment_t; 275 276 static remap_segment_t * 277 rs_alloc(vdev_t *vd, uint64_t offset, uint64_t asize, uint64_t split_offset) 278 { 279 remap_segment_t *rs = malloc(sizeof (remap_segment_t)); 280 281 if (rs != NULL) { 282 rs->rs_vd = vd; 283 rs->rs_offset = offset; 284 rs->rs_asize = asize; 285 rs->rs_split_offset = split_offset; 286 } 287 288 return (rs); 289 } 290 291 vdev_indirect_mapping_t * 292 vdev_indirect_mapping_open(spa_t *spa, objset_phys_t *os, 293 uint64_t mapping_object) 294 { 295 vdev_indirect_mapping_t *vim; 296 vdev_indirect_mapping_phys_t *vim_phys; 297 int rc; 298 299 vim = calloc(1, sizeof (*vim)); 300 if (vim == NULL) 301 return (NULL); 302 303 vim->vim_dn = calloc(1, sizeof (*vim->vim_dn)); 304 if (vim->vim_dn == NULL) { 305 free(vim); 306 return (NULL); 307 } 308 309 rc = objset_get_dnode(spa, os, mapping_object, vim->vim_dn); 310 if (rc != 0) { 311 free(vim->vim_dn); 312 free(vim); 313 return (NULL); 314 } 315 316 vim->vim_spa = spa; 317 vim->vim_phys = malloc(sizeof (*vim->vim_phys)); 318 if (vim->vim_phys == NULL) { 319 free(vim->vim_dn); 320 free(vim); 321 return (NULL); 322 } 323 324 vim_phys = (vdev_indirect_mapping_phys_t *)DN_BONUS(vim->vim_dn); 325 *vim->vim_phys = *vim_phys; 326 327 vim->vim_objset = os; 328 vim->vim_object = mapping_object; 329 vim->vim_entries = NULL; 330 331 vim->vim_havecounts = 332 (vim->vim_dn->dn_bonuslen > VDEV_INDIRECT_MAPPING_SIZE_V0); 333 334 return (vim); 335 } 336 337 /* 338 * Compare an offset with an indirect mapping entry; there are three 339 * possible scenarios: 340 * 341 * 1. The offset is "less than" the mapping entry; meaning the 342 * offset is less than the source offset of the mapping entry. In 343 * this case, there is no overlap between the offset and the 344 * mapping entry and -1 will be returned. 345 * 346 * 2. The offset is "greater than" the mapping entry; meaning the 347 * offset is greater than the mapping entry's source offset plus 348 * the entry's size. In this case, there is no overlap between 349 * the offset and the mapping entry and 1 will be returned. 350 * 351 * NOTE: If the offset is actually equal to the entry's offset 352 * plus size, this is considered to be "greater" than the entry, 353 * and this case applies (i.e. 1 will be returned). Thus, the 354 * entry's "range" can be considered to be inclusive at its 355 * start, but exclusive at its end: e.g. [src, src + size). 356 * 357 * 3. The last case to consider is if the offset actually falls 358 * within the mapping entry's range. If this is the case, the 359 * offset is considered to be "equal to" the mapping entry and 360 * 0 will be returned. 361 * 362 * NOTE: If the offset is equal to the entry's source offset, 363 * this case applies and 0 will be returned. If the offset is 364 * equal to the entry's source plus its size, this case does 365 * *not* apply (see "NOTE" above for scenario 2), and 1 will be 366 * returned. 367 */ 368 static int 369 dva_mapping_overlap_compare(const void *v_key, const void *v_array_elem) 370 { 371 const uint64_t *key = v_key; 372 const vdev_indirect_mapping_entry_phys_t *array_elem = 373 v_array_elem; 374 uint64_t src_offset = DVA_MAPPING_GET_SRC_OFFSET(array_elem); 375 376 if (*key < src_offset) { 377 return (-1); 378 } else if (*key < src_offset + DVA_GET_ASIZE(&array_elem->vimep_dst)) { 379 return (0); 380 } else { 381 return (1); 382 } 383 } 384 385 /* 386 * Return array entry. 387 */ 388 static vdev_indirect_mapping_entry_phys_t * 389 vdev_indirect_mapping_entry(vdev_indirect_mapping_t *vim, uint64_t index) 390 { 391 uint64_t size; 392 off_t offset = 0; 393 int rc; 394 395 if (vim->vim_phys->vimp_num_entries == 0) 396 return (NULL); 397 398 if (vim->vim_entries == NULL) { 399 uint64_t bsize; 400 401 bsize = vim->vim_dn->dn_datablkszsec << SPA_MINBLOCKSHIFT; 402 size = vim->vim_phys->vimp_num_entries * 403 sizeof (*vim->vim_entries); 404 if (size > bsize) { 405 size = bsize / sizeof (*vim->vim_entries); 406 size *= sizeof (*vim->vim_entries); 407 } 408 vim->vim_entries = malloc(size); 409 if (vim->vim_entries == NULL) 410 return (NULL); 411 vim->vim_num_entries = size / sizeof (*vim->vim_entries); 412 offset = index * sizeof (*vim->vim_entries); 413 } 414 415 /* We have data in vim_entries */ 416 if (offset == 0) { 417 if (index >= vim->vim_entry_offset && 418 index <= vim->vim_entry_offset + vim->vim_num_entries) { 419 index -= vim->vim_entry_offset; 420 return (&vim->vim_entries[index]); 421 } 422 offset = index * sizeof (*vim->vim_entries); 423 } 424 425 vim->vim_entry_offset = index; 426 size = vim->vim_num_entries * sizeof (*vim->vim_entries); 427 rc = dnode_read(vim->vim_spa, vim->vim_dn, offset, vim->vim_entries, 428 size); 429 if (rc != 0) { 430 /* Read error, invalidate vim_entries. */ 431 free(vim->vim_entries); 432 vim->vim_entries = NULL; 433 return (NULL); 434 } 435 index -= vim->vim_entry_offset; 436 return (&vim->vim_entries[index]); 437 } 438 439 /* 440 * Returns the mapping entry for the given offset. 441 * 442 * It's possible that the given offset will not be in the mapping table 443 * (i.e. no mapping entries contain this offset), in which case, the 444 * return value value depends on the "next_if_missing" parameter. 445 * 446 * If the offset is not found in the table and "next_if_missing" is 447 * B_FALSE, then NULL will always be returned. The behavior is intended 448 * to allow consumers to get the entry corresponding to the offset 449 * parameter, iff the offset overlaps with an entry in the table. 450 * 451 * If the offset is not found in the table and "next_if_missing" is 452 * B_TRUE, then the entry nearest to the given offset will be returned, 453 * such that the entry's source offset is greater than the offset 454 * passed in (i.e. the "next" mapping entry in the table is returned, if 455 * the offset is missing from the table). If there are no entries whose 456 * source offset is greater than the passed in offset, NULL is returned. 457 */ 458 static vdev_indirect_mapping_entry_phys_t * 459 vdev_indirect_mapping_entry_for_offset(vdev_indirect_mapping_t *vim, 460 uint64_t offset) 461 { 462 ASSERT(vim->vim_phys->vimp_num_entries > 0); 463 464 vdev_indirect_mapping_entry_phys_t *entry; 465 466 uint64_t last = vim->vim_phys->vimp_num_entries - 1; 467 uint64_t base = 0; 468 469 /* 470 * We don't define these inside of the while loop because we use 471 * their value in the case that offset isn't in the mapping. 472 */ 473 uint64_t mid; 474 int result; 475 476 while (last >= base) { 477 mid = base + ((last - base) >> 1); 478 479 entry = vdev_indirect_mapping_entry(vim, mid); 480 if (entry == NULL) 481 break; 482 result = dva_mapping_overlap_compare(&offset, entry); 483 484 if (result == 0) { 485 break; 486 } else if (result < 0) { 487 last = mid - 1; 488 } else { 489 base = mid + 1; 490 } 491 } 492 return (entry); 493 } 494 495 /* 496 * Given an indirect vdev and an extent on that vdev, it duplicates the 497 * physical entries of the indirect mapping that correspond to the extent 498 * to a new array and returns a pointer to it. In addition, copied_entries 499 * is populated with the number of mapping entries that were duplicated. 500 * 501 * Finally, since we are doing an allocation, it is up to the caller to 502 * free the array allocated in this function. 503 */ 504 vdev_indirect_mapping_entry_phys_t * 505 vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *vd, uint64_t offset, 506 uint64_t asize, uint64_t *copied_entries) 507 { 508 vdev_indirect_mapping_entry_phys_t *duplicate_mappings = NULL; 509 vdev_indirect_mapping_t *vim = vd->v_mapping; 510 uint64_t entries = 0; 511 512 vdev_indirect_mapping_entry_phys_t *first_mapping = 513 vdev_indirect_mapping_entry_for_offset(vim, offset); 514 ASSERT3P(first_mapping, !=, NULL); 515 516 vdev_indirect_mapping_entry_phys_t *m = first_mapping; 517 while (asize > 0) { 518 uint64_t size = DVA_GET_ASIZE(&m->vimep_dst); 519 uint64_t inner_offset = offset - DVA_MAPPING_GET_SRC_OFFSET(m); 520 uint64_t inner_size = MIN(asize, size - inner_offset); 521 522 offset += inner_size; 523 asize -= inner_size; 524 entries++; 525 m++; 526 } 527 528 size_t copy_length = entries * sizeof (*first_mapping); 529 duplicate_mappings = malloc(copy_length); 530 if (duplicate_mappings != NULL) 531 bcopy(first_mapping, duplicate_mappings, copy_length); 532 else 533 entries = 0; 534 535 *copied_entries = entries; 536 537 return (duplicate_mappings); 538 } 539 540 static vdev_t * 541 vdev_lookup_top(spa_t *spa, uint64_t vdev) 542 { 543 vdev_t *rvd; 544 vdev_list_t *vlist; 545 546 vlist = &spa->spa_root_vdev->v_children; 547 STAILQ_FOREACH(rvd, vlist, v_childlink) 548 if (rvd->v_id == vdev) 549 break; 550 551 return (rvd); 552 } 553 554 /* 555 * This is a callback for vdev_indirect_remap() which allocates an 556 * indirect_split_t for each split segment and adds it to iv_splits. 557 */ 558 static void 559 vdev_indirect_gather_splits(uint64_t split_offset, vdev_t *vd, uint64_t offset, 560 uint64_t size, void *arg) 561 { 562 int n = 1; 563 zio_t *zio = arg; 564 indirect_vsd_t *iv = zio->io_vsd; 565 566 if (vd->v_read == vdev_indirect_read) 567 return; 568 569 if (vd->v_read == vdev_mirror_read) 570 n = vd->v_nchildren; 571 572 indirect_split_t *is = 573 malloc(offsetof(indirect_split_t, is_child[n])); 574 if (is == NULL) { 575 zio->io_error = ENOMEM; 576 return; 577 } 578 bzero(is, offsetof(indirect_split_t, is_child[n])); 579 580 is->is_children = n; 581 is->is_size = size; 582 is->is_split_offset = split_offset; 583 is->is_target_offset = offset; 584 is->is_vdev = vd; 585 586 /* 587 * Note that we only consider multiple copies of the data for 588 * *mirror* vdevs. We don't for "replacing" or "spare" vdevs, even 589 * though they use the same ops as mirror, because there's only one 590 * "good" copy under the replacing/spare. 591 */ 592 if (vd->v_read == vdev_mirror_read) { 593 int i = 0; 594 vdev_t *kid; 595 596 STAILQ_FOREACH(kid, &vd->v_children, v_childlink) { 597 is->is_child[i++].ic_vdev = kid; 598 } 599 } else { 600 is->is_child[0].ic_vdev = vd; 601 } 602 603 list_insert_tail(&iv->iv_splits, is); 604 } 605 606 static void 607 vdev_indirect_remap(vdev_t *vd, uint64_t offset, uint64_t asize, void *arg) 608 { 609 list_t stack; 610 spa_t *spa = vd->v_spa; 611 zio_t *zio = arg; 612 remap_segment_t *rs; 613 614 list_create(&stack, sizeof (remap_segment_t), 615 offsetof(remap_segment_t, rs_node)); 616 617 rs = rs_alloc(vd, offset, asize, 0); 618 if (rs == NULL) { 619 printf("vdev_indirect_remap: out of memory.\n"); 620 zio->io_error = ENOMEM; 621 } 622 for (; rs != NULL; rs = list_remove_head(&stack)) { 623 vdev_t *v = rs->rs_vd; 624 uint64_t num_entries = 0; 625 /* vdev_indirect_mapping_t *vim = v->v_mapping; */ 626 vdev_indirect_mapping_entry_phys_t *mapping = 627 vdev_indirect_mapping_duplicate_adjacent_entries(v, 628 rs->rs_offset, rs->rs_asize, &num_entries); 629 630 if (num_entries == 0) 631 zio->io_error = ENOMEM; 632 633 for (uint64_t i = 0; i < num_entries; i++) { 634 vdev_indirect_mapping_entry_phys_t *m = &mapping[i]; 635 uint64_t size = DVA_GET_ASIZE(&m->vimep_dst); 636 uint64_t dst_offset = DVA_GET_OFFSET(&m->vimep_dst); 637 uint64_t dst_vdev = DVA_GET_VDEV(&m->vimep_dst); 638 uint64_t inner_offset = rs->rs_offset - 639 DVA_MAPPING_GET_SRC_OFFSET(m); 640 uint64_t inner_size = 641 MIN(rs->rs_asize, size - inner_offset); 642 vdev_t *dst_v = vdev_lookup_top(spa, dst_vdev); 643 644 if (dst_v->v_read == vdev_indirect_read) { 645 remap_segment_t *o; 646 647 o = rs_alloc(dst_v, dst_offset + inner_offset, 648 inner_size, rs->rs_split_offset); 649 if (o == NULL) { 650 printf("vdev_indirect_remap: " 651 "out of memory.\n"); 652 zio->io_error = ENOMEM; 653 break; 654 } 655 656 list_insert_head(&stack, o); 657 } 658 vdev_indirect_gather_splits(rs->rs_split_offset, dst_v, 659 dst_offset + inner_offset, 660 inner_size, arg); 661 662 /* 663 * vdev_indirect_gather_splits can have memory 664 * allocation error, we can not recover from it. 665 */ 666 if (zio->io_error != 0) 667 break; 668 rs->rs_offset += inner_size; 669 rs->rs_asize -= inner_size; 670 rs->rs_split_offset += inner_size; 671 } 672 673 free(mapping); 674 free(rs); 675 if (zio->io_error != 0) 676 break; 677 } 678 679 list_destroy(&stack); 680 } 681 682 static void 683 vdev_indirect_map_free(zio_t *zio) 684 { 685 indirect_vsd_t *iv = zio->io_vsd; 686 indirect_split_t *is; 687 688 while ((is = list_head(&iv->iv_splits)) != NULL) { 689 for (int c = 0; c < is->is_children; c++) { 690 indirect_child_t *ic = &is->is_child[c]; 691 free(ic->ic_data); 692 } 693 list_remove(&iv->iv_splits, is); 694 free(is); 695 } 696 free(iv); 697 } 698 699 static int 700 vdev_indirect_read(vdev_t *vdev, const blkptr_t *bp, void *buf, 701 off_t offset, size_t bytes) 702 { 703 zio_t zio; 704 spa_t *spa = vdev->v_spa; 705 indirect_vsd_t *iv; 706 indirect_split_t *first; 707 int rc = EIO; 708 709 iv = calloc(1, sizeof(*iv)); 710 if (iv == NULL) 711 return (ENOMEM); 712 713 list_create(&iv->iv_splits, 714 sizeof (indirect_split_t), offsetof(indirect_split_t, is_node)); 715 716 bzero(&zio, sizeof(zio)); 717 zio.io_spa = spa; 718 zio.io_bp = (blkptr_t *)bp; 719 zio.io_data = buf; 720 zio.io_size = bytes; 721 zio.io_offset = offset; 722 zio.io_vd = vdev; 723 zio.io_vsd = iv; 724 725 if (vdev->v_mapping == NULL) { 726 vdev_indirect_config_t *vic; 727 728 vic = &vdev->vdev_indirect_config; 729 vdev->v_mapping = vdev_indirect_mapping_open(spa, 730 spa->spa_mos, vic->vic_mapping_object); 731 } 732 733 vdev_indirect_remap(vdev, offset, bytes, &zio); 734 if (zio.io_error != 0) 735 return (zio.io_error); 736 737 first = list_head(&iv->iv_splits); 738 if (first->is_size == zio.io_size) { 739 /* 740 * This is not a split block; we are pointing to the entire 741 * data, which will checksum the same as the original data. 742 * Pass the BP down so that the child i/o can verify the 743 * checksum, and try a different location if available 744 * (e.g. on a mirror). 745 * 746 * While this special case could be handled the same as the 747 * general (split block) case, doing it this way ensures 748 * that the vast majority of blocks on indirect vdevs 749 * (which are not split) are handled identically to blocks 750 * on non-indirect vdevs. This allows us to be less strict 751 * about performance in the general (but rare) case. 752 */ 753 rc = first->is_vdev->v_read(first->is_vdev, zio.io_bp, 754 zio.io_data, first->is_target_offset, bytes); 755 } else { 756 iv->iv_split_block = B_TRUE; 757 /* 758 * Read one copy of each split segment, from the 759 * top-level vdev. Since we don't know the 760 * checksum of each split individually, the child 761 * zio can't ensure that we get the right data. 762 * E.g. if it's a mirror, it will just read from a 763 * random (healthy) leaf vdev. We have to verify 764 * the checksum in vdev_indirect_io_done(). 765 */ 766 for (indirect_split_t *is = list_head(&iv->iv_splits); 767 is != NULL; is = list_next(&iv->iv_splits, is)) { 768 char *ptr = zio.io_data; 769 770 rc = is->is_vdev->v_read(is->is_vdev, zio.io_bp, 771 ptr + is->is_split_offset, is->is_target_offset, 772 is->is_size); 773 } 774 if (zio_checksum_verify(spa, zio.io_bp, zio.io_data)) 775 rc = ECKSUM; 776 else 777 rc = 0; 778 } 779 780 vdev_indirect_map_free(&zio); 781 if (rc == 0) 782 rc = zio.io_error; 783 784 return (rc); 785 } 786 787 static int 788 vdev_disk_read(vdev_t *vdev, const blkptr_t *bp, void *buf, 789 off_t offset, size_t bytes) 790 { 791 792 return (vdev_read_phys(vdev, bp, buf, 793 offset + VDEV_LABEL_START_SIZE, bytes)); 794 } 795 796 static int 797 vdev_missing_read(vdev_t *vdev __unused, const blkptr_t *bp __unused, 798 void *buf __unused, off_t offset __unused, size_t bytes __unused) 799 { 800 801 return (ENOTSUP); 802 } 803 804 static int 805 vdev_mirror_read(vdev_t *vdev, const blkptr_t *bp, void *buf, 806 off_t offset, size_t bytes) 807 { 808 vdev_t *kid; 809 int rc; 810 811 rc = EIO; 812 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) { 813 if (kid->v_state != VDEV_STATE_HEALTHY) 814 continue; 815 rc = kid->v_read(kid, bp, buf, offset, bytes); 816 if (!rc) 817 return (0); 818 } 819 820 return (rc); 821 } 822 823 static int 824 vdev_replacing_read(vdev_t *vdev, const blkptr_t *bp, void *buf, 825 off_t offset, size_t bytes) 826 { 827 vdev_t *kid; 828 829 /* 830 * Here we should have two kids: 831 * First one which is the one we are replacing and we can trust 832 * only this one to have valid data, but it might not be present. 833 * Second one is that one we are replacing with. It is most likely 834 * healthy, but we can't trust it has needed data, so we won't use it. 835 */ 836 kid = STAILQ_FIRST(&vdev->v_children); 837 if (kid == NULL) 838 return (EIO); 839 if (kid->v_state != VDEV_STATE_HEALTHY) 840 return (EIO); 841 return (kid->v_read(kid, bp, buf, offset, bytes)); 842 } 843 844 static vdev_t * 845 vdev_find(uint64_t guid) 846 { 847 vdev_t *vdev; 848 849 STAILQ_FOREACH(vdev, &zfs_vdevs, v_alllink) 850 if (vdev->v_guid == guid) 851 return (vdev); 852 853 return (0); 854 } 855 856 static vdev_t * 857 vdev_create(uint64_t guid, vdev_read_t *_read) 858 { 859 vdev_t *vdev; 860 vdev_indirect_config_t *vic; 861 862 vdev = calloc(1, sizeof(vdev_t)); 863 if (vdev != NULL) { 864 STAILQ_INIT(&vdev->v_children); 865 vdev->v_guid = guid; 866 vdev->v_read = _read; 867 868 /* 869 * root vdev has no read function, we use this fact to 870 * skip setting up data we do not need for root vdev. 871 * We only point root vdev from spa. 872 */ 873 if (_read != NULL) { 874 vic = &vdev->vdev_indirect_config; 875 vic->vic_prev_indirect_vdev = UINT64_MAX; 876 STAILQ_INSERT_TAIL(&zfs_vdevs, vdev, v_alllink); 877 } 878 } 879 880 return (vdev); 881 } 882 883 static void 884 vdev_set_initial_state(vdev_t *vdev, const nvlist_t *nvlist) 885 { 886 uint64_t is_offline, is_faulted, is_degraded, is_removed, isnt_present; 887 uint64_t is_log; 888 889 is_offline = is_removed = is_faulted = is_degraded = isnt_present = 0; 890 is_log = 0; 891 (void) nvlist_find(nvlist, ZPOOL_CONFIG_OFFLINE, DATA_TYPE_UINT64, NULL, 892 &is_offline, NULL); 893 (void) nvlist_find(nvlist, ZPOOL_CONFIG_REMOVED, DATA_TYPE_UINT64, NULL, 894 &is_removed, NULL); 895 (void) nvlist_find(nvlist, ZPOOL_CONFIG_FAULTED, DATA_TYPE_UINT64, NULL, 896 &is_faulted, NULL); 897 (void) nvlist_find(nvlist, ZPOOL_CONFIG_DEGRADED, DATA_TYPE_UINT64, 898 NULL, &is_degraded, NULL); 899 (void) nvlist_find(nvlist, ZPOOL_CONFIG_NOT_PRESENT, DATA_TYPE_UINT64, 900 NULL, &isnt_present, NULL); 901 (void) nvlist_find(nvlist, ZPOOL_CONFIG_IS_LOG, DATA_TYPE_UINT64, NULL, 902 &is_log, NULL); 903 904 if (is_offline != 0) 905 vdev->v_state = VDEV_STATE_OFFLINE; 906 else if (is_removed != 0) 907 vdev->v_state = VDEV_STATE_REMOVED; 908 else if (is_faulted != 0) 909 vdev->v_state = VDEV_STATE_FAULTED; 910 else if (is_degraded != 0) 911 vdev->v_state = VDEV_STATE_DEGRADED; 912 else if (isnt_present != 0) 913 vdev->v_state = VDEV_STATE_CANT_OPEN; 914 915 vdev->v_islog = is_log != 0; 916 } 917 918 static int 919 vdev_init(uint64_t guid, const nvlist_t *nvlist, vdev_t **vdevp) 920 { 921 uint64_t id, ashift, asize, nparity; 922 const char *path; 923 const char *type; 924 int len, pathlen; 925 char *name; 926 vdev_t *vdev; 927 928 if (nvlist_find(nvlist, ZPOOL_CONFIG_ID, DATA_TYPE_UINT64, NULL, &id, 929 NULL) || 930 nvlist_find(nvlist, ZPOOL_CONFIG_TYPE, DATA_TYPE_STRING, NULL, 931 &type, &len)) { 932 return (ENOENT); 933 } 934 935 if (memcmp(type, VDEV_TYPE_MIRROR, len) != 0 && 936 memcmp(type, VDEV_TYPE_DISK, len) != 0 && 937 #ifdef ZFS_TEST 938 memcmp(type, VDEV_TYPE_FILE, len) != 0 && 939 #endif 940 memcmp(type, VDEV_TYPE_RAIDZ, len) != 0 && 941 memcmp(type, VDEV_TYPE_INDIRECT, len) != 0 && 942 memcmp(type, VDEV_TYPE_REPLACING, len) != 0 && 943 memcmp(type, VDEV_TYPE_HOLE, len) != 0) { 944 printf("ZFS: can only boot from disk, mirror, raidz1, " 945 "raidz2 and raidz3 vdevs, got: %.*s\n", len, type); 946 return (EIO); 947 } 948 949 if (memcmp(type, VDEV_TYPE_MIRROR, len) == 0) 950 vdev = vdev_create(guid, vdev_mirror_read); 951 else if (memcmp(type, VDEV_TYPE_RAIDZ, len) == 0) 952 vdev = vdev_create(guid, vdev_raidz_read); 953 else if (memcmp(type, VDEV_TYPE_REPLACING, len) == 0) 954 vdev = vdev_create(guid, vdev_replacing_read); 955 else if (memcmp(type, VDEV_TYPE_INDIRECT, len) == 0) { 956 vdev_indirect_config_t *vic; 957 958 vdev = vdev_create(guid, vdev_indirect_read); 959 if (vdev != NULL) { 960 vdev->v_state = VDEV_STATE_HEALTHY; 961 vic = &vdev->vdev_indirect_config; 962 963 nvlist_find(nvlist, 964 ZPOOL_CONFIG_INDIRECT_OBJECT, 965 DATA_TYPE_UINT64, 966 NULL, &vic->vic_mapping_object, NULL); 967 nvlist_find(nvlist, 968 ZPOOL_CONFIG_INDIRECT_BIRTHS, 969 DATA_TYPE_UINT64, 970 NULL, &vic->vic_births_object, NULL); 971 nvlist_find(nvlist, 972 ZPOOL_CONFIG_PREV_INDIRECT_VDEV, 973 DATA_TYPE_UINT64, 974 NULL, &vic->vic_prev_indirect_vdev, NULL); 975 } 976 } else if (memcmp(type, VDEV_TYPE_HOLE, len) == 0) { 977 vdev = vdev_create(guid, vdev_missing_read); 978 } else { 979 vdev = vdev_create(guid, vdev_disk_read); 980 } 981 982 if (vdev == NULL) 983 return (ENOMEM); 984 985 vdev_set_initial_state(vdev, nvlist); 986 vdev->v_id = id; 987 if (nvlist_find(nvlist, ZPOOL_CONFIG_ASHIFT, 988 DATA_TYPE_UINT64, NULL, &ashift, NULL) == 0) 989 vdev->v_ashift = ashift; 990 991 if (nvlist_find(nvlist, ZPOOL_CONFIG_ASIZE, 992 DATA_TYPE_UINT64, NULL, &asize, NULL) == 0) { 993 vdev->v_psize = asize + 994 VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; 995 } 996 997 if (nvlist_find(nvlist, ZPOOL_CONFIG_NPARITY, 998 DATA_TYPE_UINT64, NULL, &nparity, NULL) == 0) 999 vdev->v_nparity = nparity; 1000 1001 if (nvlist_find(nvlist, ZPOOL_CONFIG_PATH, 1002 DATA_TYPE_STRING, NULL, &path, &pathlen) == 0) { 1003 char prefix[] = "/dev/"; 1004 1005 len = strlen(prefix); 1006 if (len < pathlen && memcmp(path, prefix, len) == 0) { 1007 path += len; 1008 pathlen -= len; 1009 } 1010 name = malloc(pathlen + 1); 1011 bcopy(path, name, pathlen); 1012 name[pathlen] = '\0'; 1013 vdev->v_name = name; 1014 } else { 1015 name = NULL; 1016 if (memcmp(type, VDEV_TYPE_RAIDZ, len) == 0) { 1017 if (vdev->v_nparity < 1 || 1018 vdev->v_nparity > 3) { 1019 printf("ZFS: invalid raidz parity: %d\n", 1020 vdev->v_nparity); 1021 return (EIO); 1022 } 1023 (void) asprintf(&name, "%.*s%d-%" PRIu64, len, type, 1024 vdev->v_nparity, id); 1025 } else { 1026 (void) asprintf(&name, "%.*s-%" PRIu64, len, type, id); 1027 } 1028 vdev->v_name = name; 1029 } 1030 *vdevp = vdev; 1031 return (0); 1032 } 1033 1034 /* 1035 * Find slot for vdev. We return either NULL to signal to use 1036 * STAILQ_INSERT_HEAD, or we return link element to be used with 1037 * STAILQ_INSERT_AFTER. 1038 */ 1039 static vdev_t * 1040 vdev_find_previous(vdev_t *top_vdev, vdev_t *vdev) 1041 { 1042 vdev_t *v, *previous; 1043 1044 if (STAILQ_EMPTY(&top_vdev->v_children)) 1045 return (NULL); 1046 1047 previous = NULL; 1048 STAILQ_FOREACH(v, &top_vdev->v_children, v_childlink) { 1049 if (v->v_id > vdev->v_id) 1050 return (previous); 1051 1052 if (v->v_id == vdev->v_id) 1053 return (v); 1054 1055 if (v->v_id < vdev->v_id) 1056 previous = v; 1057 } 1058 return (previous); 1059 } 1060 1061 static size_t 1062 vdev_child_count(vdev_t *vdev) 1063 { 1064 vdev_t *v; 1065 size_t count; 1066 1067 count = 0; 1068 STAILQ_FOREACH(v, &vdev->v_children, v_childlink) { 1069 count++; 1070 } 1071 return (count); 1072 } 1073 1074 /* 1075 * Insert vdev into top_vdev children list. List is ordered by v_id. 1076 */ 1077 static void 1078 vdev_insert(vdev_t *top_vdev, vdev_t *vdev) 1079 { 1080 vdev_t *previous; 1081 size_t count; 1082 1083 /* 1084 * The top level vdev can appear in random order, depending how 1085 * the firmware is presenting the disk devices. 1086 * However, we will insert vdev to create list ordered by v_id, 1087 * so we can use either STAILQ_INSERT_HEAD or STAILQ_INSERT_AFTER 1088 * as STAILQ does not have insert before. 1089 */ 1090 previous = vdev_find_previous(top_vdev, vdev); 1091 1092 if (previous == NULL) { 1093 STAILQ_INSERT_HEAD(&top_vdev->v_children, vdev, v_childlink); 1094 } else if (previous->v_id == vdev->v_id) { 1095 /* 1096 * This vdev was configured from label config, 1097 * do not insert duplicate. 1098 */ 1099 return; 1100 } else { 1101 STAILQ_INSERT_AFTER(&top_vdev->v_children, previous, vdev, 1102 v_childlink); 1103 } 1104 1105 count = vdev_child_count(top_vdev); 1106 if (top_vdev->v_nchildren < count) 1107 top_vdev->v_nchildren = count; 1108 } 1109 1110 static int 1111 vdev_from_nvlist(spa_t *spa, uint64_t top_guid, const nvlist_t *nvlist) 1112 { 1113 vdev_t *top_vdev, *vdev; 1114 nvlist_t **kids = NULL; 1115 int rc, nkids; 1116 1117 /* Get top vdev. */ 1118 top_vdev = vdev_find(top_guid); 1119 if (top_vdev == NULL) { 1120 rc = vdev_init(top_guid, nvlist, &top_vdev); 1121 if (rc != 0) 1122 return (rc); 1123 top_vdev->v_spa = spa; 1124 top_vdev->v_top = top_vdev; 1125 vdev_insert(spa->spa_root_vdev, top_vdev); 1126 } 1127 1128 /* Add children if there are any. */ 1129 rc = nvlist_find(nvlist, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY, 1130 &nkids, &kids, NULL); 1131 if (rc == 0) { 1132 for (int i = 0; i < nkids; i++) { 1133 uint64_t guid; 1134 1135 rc = nvlist_find(kids[i], ZPOOL_CONFIG_GUID, 1136 DATA_TYPE_UINT64, NULL, &guid, NULL); 1137 if (rc != 0) 1138 goto done; 1139 1140 rc = vdev_init(guid, kids[i], &vdev); 1141 if (rc != 0) 1142 goto done; 1143 1144 vdev->v_spa = spa; 1145 vdev->v_top = top_vdev; 1146 vdev_insert(top_vdev, vdev); 1147 } 1148 } else { 1149 /* 1150 * When there are no children, nvlist_find() does return 1151 * error, reset it because leaf devices have no children. 1152 */ 1153 rc = 0; 1154 } 1155 done: 1156 if (kids != NULL) { 1157 for (int i = 0; i < nkids; i++) 1158 nvlist_destroy(kids[i]); 1159 free(kids); 1160 } 1161 1162 return (rc); 1163 } 1164 1165 static int 1166 vdev_init_from_label(spa_t *spa, const nvlist_t *nvlist) 1167 { 1168 uint64_t pool_guid, top_guid; 1169 nvlist_t *vdevs; 1170 int rc; 1171 1172 if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64, 1173 NULL, &pool_guid, NULL) || 1174 nvlist_find(nvlist, ZPOOL_CONFIG_TOP_GUID, DATA_TYPE_UINT64, 1175 NULL, &top_guid, NULL) || 1176 nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST, 1177 NULL, &vdevs, NULL)) { 1178 printf("ZFS: can't find vdev details\n"); 1179 return (ENOENT); 1180 } 1181 1182 rc = vdev_from_nvlist(spa, top_guid, vdevs); 1183 nvlist_destroy(vdevs); 1184 return (rc); 1185 } 1186 1187 static void 1188 vdev_set_state(vdev_t *vdev) 1189 { 1190 vdev_t *kid; 1191 int good_kids; 1192 int bad_kids; 1193 1194 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) { 1195 vdev_set_state(kid); 1196 } 1197 1198 /* 1199 * A mirror or raidz is healthy if all its kids are healthy. A 1200 * mirror is degraded if any of its kids is healthy; a raidz 1201 * is degraded if at most nparity kids are offline. 1202 */ 1203 if (STAILQ_FIRST(&vdev->v_children)) { 1204 good_kids = 0; 1205 bad_kids = 0; 1206 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) { 1207 if (kid->v_state == VDEV_STATE_HEALTHY) 1208 good_kids++; 1209 else 1210 bad_kids++; 1211 } 1212 if (bad_kids == 0) { 1213 vdev->v_state = VDEV_STATE_HEALTHY; 1214 } else { 1215 if (vdev->v_read == vdev_mirror_read) { 1216 if (good_kids) { 1217 vdev->v_state = VDEV_STATE_DEGRADED; 1218 } else { 1219 vdev->v_state = VDEV_STATE_OFFLINE; 1220 } 1221 } else if (vdev->v_read == vdev_raidz_read) { 1222 if (bad_kids > vdev->v_nparity) { 1223 vdev->v_state = VDEV_STATE_OFFLINE; 1224 } else { 1225 vdev->v_state = VDEV_STATE_DEGRADED; 1226 } 1227 } 1228 } 1229 } 1230 } 1231 1232 static int 1233 vdev_update_from_nvlist(uint64_t top_guid, const nvlist_t *nvlist) 1234 { 1235 vdev_t *vdev; 1236 nvlist_t **kids = NULL; 1237 int rc, nkids; 1238 1239 /* Update top vdev. */ 1240 vdev = vdev_find(top_guid); 1241 if (vdev != NULL) 1242 vdev_set_initial_state(vdev, nvlist); 1243 1244 /* Update children if there are any. */ 1245 rc = nvlist_find(nvlist, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY, 1246 &nkids, &kids, NULL); 1247 if (rc == 0) { 1248 for (int i = 0; i < nkids; i++) { 1249 uint64_t guid; 1250 1251 rc = nvlist_find(kids[i], ZPOOL_CONFIG_GUID, 1252 DATA_TYPE_UINT64, NULL, &guid, NULL); 1253 if (rc != 0) 1254 break; 1255 1256 vdev = vdev_find(guid); 1257 if (vdev != NULL) 1258 vdev_set_initial_state(vdev, kids[i]); 1259 } 1260 } else { 1261 rc = 0; 1262 } 1263 if (kids != NULL) { 1264 for (int i = 0; i < nkids; i++) 1265 nvlist_destroy(kids[i]); 1266 free(kids); 1267 } 1268 1269 return (rc); 1270 } 1271 1272 static int 1273 vdev_init_from_nvlist(spa_t *spa, const nvlist_t *nvlist) 1274 { 1275 uint64_t pool_guid, vdev_children; 1276 nvlist_t *vdevs = NULL, **kids = NULL; 1277 int rc, nkids; 1278 1279 if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64, 1280 NULL, &pool_guid, NULL) || 1281 nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_CHILDREN, DATA_TYPE_UINT64, 1282 NULL, &vdev_children, NULL) || 1283 nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST, 1284 NULL, &vdevs, NULL)) { 1285 printf("ZFS: can't find vdev details\n"); 1286 return (ENOENT); 1287 } 1288 1289 /* Wrong guid?! */ 1290 if (spa->spa_guid != pool_guid) { 1291 nvlist_destroy(vdevs); 1292 return (EINVAL); 1293 } 1294 1295 spa->spa_root_vdev->v_nchildren = vdev_children; 1296 1297 rc = nvlist_find(vdevs, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY, 1298 &nkids, &kids, NULL); 1299 nvlist_destroy(vdevs); 1300 1301 /* 1302 * MOS config has at least one child for root vdev. 1303 */ 1304 if (rc != 0) 1305 return (rc); 1306 1307 for (int i = 0; i < nkids; i++) { 1308 uint64_t guid; 1309 vdev_t *vdev; 1310 1311 rc = nvlist_find(kids[i], ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64, 1312 NULL, &guid, NULL); 1313 if (rc != 0) 1314 break; 1315 vdev = vdev_find(guid); 1316 /* 1317 * Top level vdev is missing, create it. 1318 */ 1319 if (vdev == NULL) 1320 rc = vdev_from_nvlist(spa, guid, kids[i]); 1321 else 1322 rc = vdev_update_from_nvlist(guid, kids[i]); 1323 if (rc != 0) 1324 break; 1325 } 1326 if (kids != NULL) { 1327 for (int i = 0; i < nkids; i++) 1328 nvlist_destroy(kids[i]); 1329 free(kids); 1330 } 1331 1332 /* 1333 * Re-evaluate top-level vdev state. 1334 */ 1335 vdev_set_state(spa->spa_root_vdev); 1336 1337 return (rc); 1338 } 1339 1340 static spa_t * 1341 spa_find_by_guid(uint64_t guid) 1342 { 1343 spa_t *spa; 1344 1345 STAILQ_FOREACH(spa, &zfs_pools, spa_link) 1346 if (spa->spa_guid == guid) 1347 return (spa); 1348 1349 return (NULL); 1350 } 1351 1352 static spa_t * 1353 spa_find_by_name(const char *name) 1354 { 1355 spa_t *spa; 1356 1357 STAILQ_FOREACH(spa, &zfs_pools, spa_link) 1358 if (strcmp(spa->spa_name, name) == 0) 1359 return (spa); 1360 1361 return (NULL); 1362 } 1363 1364 static spa_t * 1365 spa_find_by_dev(struct zfs_devdesc *dev) 1366 { 1367 1368 if (dev->dd.d_dev->dv_type != DEVT_ZFS) 1369 return (NULL); 1370 1371 if (dev->pool_guid == 0) 1372 return (STAILQ_FIRST(&zfs_pools)); 1373 1374 return (spa_find_by_guid(dev->pool_guid)); 1375 } 1376 1377 static spa_t * 1378 spa_create(uint64_t guid, const char *name) 1379 { 1380 spa_t *spa; 1381 1382 if ((spa = calloc(1, sizeof(spa_t))) == NULL) 1383 return (NULL); 1384 if ((spa->spa_name = strdup(name)) == NULL) { 1385 free(spa); 1386 return (NULL); 1387 } 1388 spa->spa_uberblock = &spa->spa_uberblock_master; 1389 spa->spa_mos = &spa->spa_mos_master; 1390 spa->spa_guid = guid; 1391 spa->spa_root_vdev = vdev_create(guid, NULL); 1392 if (spa->spa_root_vdev == NULL) { 1393 free(spa->spa_name); 1394 free(spa); 1395 return (NULL); 1396 } 1397 spa->spa_root_vdev->v_name = strdup("root"); 1398 STAILQ_INSERT_TAIL(&zfs_pools, spa, spa_link); 1399 1400 return (spa); 1401 } 1402 1403 static const char * 1404 state_name(vdev_state_t state) 1405 { 1406 static const char *names[] = { 1407 "UNKNOWN", 1408 "CLOSED", 1409 "OFFLINE", 1410 "REMOVED", 1411 "CANT_OPEN", 1412 "FAULTED", 1413 "DEGRADED", 1414 "ONLINE" 1415 }; 1416 return (names[state]); 1417 } 1418 1419 #ifdef BOOT2 1420 1421 #define pager_printf printf 1422 1423 #else 1424 1425 static int 1426 pager_printf(const char *fmt, ...) 1427 { 1428 char line[80]; 1429 va_list args; 1430 1431 va_start(args, fmt); 1432 vsnprintf(line, sizeof(line), fmt, args); 1433 va_end(args); 1434 return (pager_output(line)); 1435 } 1436 1437 #endif 1438 1439 #define STATUS_FORMAT " %s %s\n" 1440 1441 static int 1442 print_state(int indent, const char *name, vdev_state_t state) 1443 { 1444 int i; 1445 char buf[512]; 1446 1447 buf[0] = 0; 1448 for (i = 0; i < indent; i++) 1449 strcat(buf, " "); 1450 strcat(buf, name); 1451 return (pager_printf(STATUS_FORMAT, buf, state_name(state))); 1452 } 1453 1454 static int 1455 vdev_status(vdev_t *vdev, int indent) 1456 { 1457 vdev_t *kid; 1458 int ret; 1459 1460 if (vdev->v_islog) { 1461 (void) pager_output(" logs\n"); 1462 indent++; 1463 } 1464 1465 ret = print_state(indent, vdev->v_name, vdev->v_state); 1466 if (ret != 0) 1467 return (ret); 1468 1469 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) { 1470 ret = vdev_status(kid, indent + 1); 1471 if (ret != 0) 1472 return (ret); 1473 } 1474 return (ret); 1475 } 1476 1477 static int 1478 spa_status(spa_t *spa) 1479 { 1480 static char bootfs[ZFS_MAXNAMELEN]; 1481 uint64_t rootid; 1482 vdev_list_t *vlist; 1483 vdev_t *vdev; 1484 int good_kids, bad_kids, degraded_kids, ret; 1485 vdev_state_t state; 1486 1487 ret = pager_printf(" pool: %s\n", spa->spa_name); 1488 if (ret != 0) 1489 return (ret); 1490 1491 if (zfs_get_root(spa, &rootid) == 0 && 1492 zfs_rlookup(spa, rootid, bootfs) == 0) { 1493 if (bootfs[0] == '\0') 1494 ret = pager_printf("bootfs: %s\n", spa->spa_name); 1495 else 1496 ret = pager_printf("bootfs: %s/%s\n", spa->spa_name, 1497 bootfs); 1498 if (ret != 0) 1499 return (ret); 1500 } 1501 ret = pager_printf("config:\n\n"); 1502 if (ret != 0) 1503 return (ret); 1504 ret = pager_printf(STATUS_FORMAT, "NAME", "STATE"); 1505 if (ret != 0) 1506 return (ret); 1507 1508 good_kids = 0; 1509 degraded_kids = 0; 1510 bad_kids = 0; 1511 vlist = &spa->spa_root_vdev->v_children; 1512 STAILQ_FOREACH(vdev, vlist, v_childlink) { 1513 if (vdev->v_state == VDEV_STATE_HEALTHY) 1514 good_kids++; 1515 else if (vdev->v_state == VDEV_STATE_DEGRADED) 1516 degraded_kids++; 1517 else 1518 bad_kids++; 1519 } 1520 1521 state = VDEV_STATE_CLOSED; 1522 if (good_kids > 0 && (degraded_kids + bad_kids) == 0) 1523 state = VDEV_STATE_HEALTHY; 1524 else if ((good_kids + degraded_kids) > 0) 1525 state = VDEV_STATE_DEGRADED; 1526 1527 ret = print_state(0, spa->spa_name, state); 1528 if (ret != 0) 1529 return (ret); 1530 1531 STAILQ_FOREACH(vdev, vlist, v_childlink) { 1532 ret = vdev_status(vdev, 1); 1533 if (ret != 0) 1534 return (ret); 1535 } 1536 return (ret); 1537 } 1538 1539 static int 1540 spa_all_status(void) 1541 { 1542 spa_t *spa; 1543 int first = 1, ret = 0; 1544 1545 STAILQ_FOREACH(spa, &zfs_pools, spa_link) { 1546 if (!first) { 1547 ret = pager_printf("\n"); 1548 if (ret != 0) 1549 return (ret); 1550 } 1551 first = 0; 1552 ret = spa_status(spa); 1553 if (ret != 0) 1554 return (ret); 1555 } 1556 return (ret); 1557 } 1558 1559 static uint64_t 1560 vdev_label_offset(uint64_t psize, int l, uint64_t offset) 1561 { 1562 uint64_t label_offset; 1563 1564 if (l < VDEV_LABELS / 2) 1565 label_offset = 0; 1566 else 1567 label_offset = psize - VDEV_LABELS * sizeof (vdev_label_t); 1568 1569 return (offset + l * sizeof (vdev_label_t) + label_offset); 1570 } 1571 1572 static int 1573 vdev_uberblock_compare(const uberblock_t *ub1, const uberblock_t *ub2) 1574 { 1575 unsigned int seq1 = 0; 1576 unsigned int seq2 = 0; 1577 int cmp = AVL_CMP(ub1->ub_txg, ub2->ub_txg); 1578 1579 if (cmp != 0) 1580 return (cmp); 1581 1582 cmp = AVL_CMP(ub1->ub_timestamp, ub2->ub_timestamp); 1583 if (cmp != 0) 1584 return (cmp); 1585 1586 if (MMP_VALID(ub1) && MMP_SEQ_VALID(ub1)) 1587 seq1 = MMP_SEQ(ub1); 1588 1589 if (MMP_VALID(ub2) && MMP_SEQ_VALID(ub2)) 1590 seq2 = MMP_SEQ(ub2); 1591 1592 return (AVL_CMP(seq1, seq2)); 1593 } 1594 1595 static int 1596 uberblock_verify(uberblock_t *ub) 1597 { 1598 if (ub->ub_magic == BSWAP_64((uint64_t)UBERBLOCK_MAGIC)) { 1599 byteswap_uint64_array(ub, sizeof (uberblock_t)); 1600 } 1601 1602 if (ub->ub_magic != UBERBLOCK_MAGIC || 1603 !SPA_VERSION_IS_SUPPORTED(ub->ub_version)) 1604 return (EINVAL); 1605 1606 return (0); 1607 } 1608 1609 static int 1610 vdev_label_read(vdev_t *vd, int l, void *buf, uint64_t offset, 1611 size_t size) 1612 { 1613 blkptr_t bp; 1614 off_t off; 1615 1616 off = vdev_label_offset(vd->v_psize, l, offset); 1617 1618 BP_ZERO(&bp); 1619 BP_SET_LSIZE(&bp, size); 1620 BP_SET_PSIZE(&bp, size); 1621 BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_LABEL); 1622 BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF); 1623 DVA_SET_OFFSET(BP_IDENTITY(&bp), off); 1624 ZIO_SET_CHECKSUM(&bp.blk_cksum, off, 0, 0, 0); 1625 1626 return (vdev_read_phys(vd, &bp, buf, off, size)); 1627 } 1628 1629 /* 1630 * We do need to be sure we write to correct location. 1631 * Our vdev label does consist of 4 fields: 1632 * pad1 (8k), reserved. 1633 * bootenv (8k), checksummed, previously reserved, may contian garbage. 1634 * vdev_phys (112k), checksummed 1635 * uberblock ring (128k), checksummed. 1636 * 1637 * Since bootenv area may contain garbage, we can not reliably read it, as 1638 * we can get checksum errors. 1639 * Next best thing is vdev_phys - it is just after bootenv. It still may 1640 * be corrupted, but in such case we will miss this one write. 1641 */ 1642 static int 1643 vdev_label_write_validate(vdev_t *vd, int l, uint64_t offset) 1644 { 1645 uint64_t off, o_phys; 1646 void *buf; 1647 size_t size = VDEV_PHYS_SIZE; 1648 int rc; 1649 1650 o_phys = offsetof(vdev_label_t, vl_vdev_phys); 1651 off = vdev_label_offset(vd->v_psize, l, o_phys); 1652 1653 /* off should be 8K from bootenv */ 1654 if (vdev_label_offset(vd->v_psize, l, offset) + VDEV_PAD_SIZE != off) 1655 return (EINVAL); 1656 1657 buf = malloc(size); 1658 if (buf == NULL) 1659 return (ENOMEM); 1660 1661 /* Read vdev_phys */ 1662 rc = vdev_label_read(vd, l, buf, o_phys, size); 1663 free(buf); 1664 return (rc); 1665 } 1666 1667 static int 1668 vdev_label_write(vdev_t *vd, int l, vdev_boot_envblock_t *be, uint64_t offset) 1669 { 1670 zio_checksum_info_t *ci; 1671 zio_cksum_t cksum; 1672 off_t off; 1673 size_t size = VDEV_PAD_SIZE; 1674 int rc; 1675 1676 if (vd->v_phys_write == NULL) 1677 return (ENOTSUP); 1678 1679 off = vdev_label_offset(vd->v_psize, l, offset); 1680 1681 rc = vdev_label_write_validate(vd, l, offset); 1682 if (rc != 0) { 1683 return (rc); 1684 } 1685 1686 ci = &zio_checksum_table[ZIO_CHECKSUM_LABEL]; 1687 be->vbe_zbt.zec_magic = ZEC_MAGIC; 1688 zio_checksum_label_verifier(&be->vbe_zbt.zec_cksum, off); 1689 ci->ci_func[0](be, size, NULL, &cksum); 1690 be->vbe_zbt.zec_cksum = cksum; 1691 1692 return (vdev_write_phys(vd, be, off, size)); 1693 } 1694 1695 static int 1696 vdev_write_bootenv_impl(vdev_t *vdev, vdev_boot_envblock_t *be) 1697 { 1698 vdev_t *kid; 1699 int rv = 0, rc; 1700 1701 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) { 1702 if (kid->v_state != VDEV_STATE_HEALTHY) 1703 continue; 1704 rc = vdev_write_bootenv_impl(kid, be); 1705 if (rv == 0) 1706 rv = rc; 1707 } 1708 1709 /* 1710 * Non-leaf vdevs do not have v_phys_write. 1711 */ 1712 if (vdev->v_phys_write == NULL) 1713 return (rv); 1714 1715 for (int l = 0; l < VDEV_LABELS; l++) { 1716 rc = vdev_label_write(vdev, l, be, 1717 offsetof(vdev_label_t, vl_be)); 1718 if (rc != 0) { 1719 printf("failed to write bootenv to %s label %d: %d\n", 1720 vdev->v_name ? vdev->v_name : "unknown", l, rc); 1721 rv = rc; 1722 } 1723 } 1724 return (rv); 1725 } 1726 1727 int 1728 vdev_write_bootenv(vdev_t *vdev, nvlist_t *nvl) 1729 { 1730 vdev_boot_envblock_t *be; 1731 nvlist_t nv, *nvp; 1732 uint64_t version; 1733 int rv; 1734 1735 if (nvl->nv_size > sizeof(be->vbe_bootenv)) 1736 return (E2BIG); 1737 1738 version = VB_RAW; 1739 nvp = vdev_read_bootenv(vdev); 1740 if (nvp != NULL) { 1741 nvlist_find(nvp, BOOTENV_VERSION, DATA_TYPE_UINT64, NULL, 1742 &version, NULL); 1743 nvlist_destroy(nvp); 1744 } 1745 1746 be = calloc(1, sizeof(*be)); 1747 if (be == NULL) 1748 return (ENOMEM); 1749 1750 be->vbe_version = version; 1751 switch (version) { 1752 case VB_RAW: 1753 /* 1754 * If there is no envmap, we will just wipe bootenv. 1755 */ 1756 nvlist_find(nvl, GRUB_ENVMAP, DATA_TYPE_STRING, NULL, 1757 be->vbe_bootenv, NULL); 1758 rv = 0; 1759 break; 1760 1761 case VB_NVLIST: 1762 nv.nv_header = nvl->nv_header; 1763 nv.nv_asize = nvl->nv_asize; 1764 nv.nv_size = nvl->nv_size; 1765 1766 bcopy(&nv.nv_header, be->vbe_bootenv, sizeof(nv.nv_header)); 1767 nv.nv_data = be->vbe_bootenv + sizeof(nvs_header_t); 1768 bcopy(nvl->nv_data, nv.nv_data, nv.nv_size); 1769 rv = nvlist_export(&nv); 1770 break; 1771 1772 default: 1773 rv = EINVAL; 1774 break; 1775 } 1776 1777 if (rv == 0) { 1778 be->vbe_version = htobe64(be->vbe_version); 1779 rv = vdev_write_bootenv_impl(vdev, be); 1780 } 1781 free(be); 1782 return (rv); 1783 } 1784 1785 /* 1786 * Read the bootenv area from pool label, return the nvlist from it. 1787 * We return from first successful read. 1788 */ 1789 nvlist_t * 1790 vdev_read_bootenv(vdev_t *vdev) 1791 { 1792 vdev_t *kid; 1793 nvlist_t *benv; 1794 vdev_boot_envblock_t *be; 1795 char *command; 1796 bool ok; 1797 int rv; 1798 1799 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) { 1800 if (kid->v_state != VDEV_STATE_HEALTHY) 1801 continue; 1802 1803 benv = vdev_read_bootenv(kid); 1804 if (benv != NULL) 1805 return (benv); 1806 } 1807 1808 be = malloc(sizeof (*be)); 1809 if (be == NULL) 1810 return (NULL); 1811 1812 rv = 0; 1813 for (int l = 0; l < VDEV_LABELS; l++) { 1814 rv = vdev_label_read(vdev, l, be, 1815 offsetof(vdev_label_t, vl_be), 1816 sizeof (*be)); 1817 if (rv == 0) 1818 break; 1819 } 1820 if (rv != 0) { 1821 free(be); 1822 return (NULL); 1823 } 1824 1825 be->vbe_version = be64toh(be->vbe_version); 1826 switch (be->vbe_version) { 1827 case VB_RAW: 1828 /* 1829 * we have textual data in vbe_bootenv, create nvlist 1830 * with key "envmap". 1831 */ 1832 benv = nvlist_create(NV_UNIQUE_NAME); 1833 if (benv != NULL) { 1834 if (*be->vbe_bootenv == '\0') { 1835 nvlist_add_uint64(benv, BOOTENV_VERSION, 1836 VB_NVLIST); 1837 break; 1838 } 1839 nvlist_add_uint64(benv, BOOTENV_VERSION, VB_RAW); 1840 be->vbe_bootenv[sizeof (be->vbe_bootenv) - 1] = '\0'; 1841 nvlist_add_string(benv, GRUB_ENVMAP, be->vbe_bootenv); 1842 } 1843 break; 1844 1845 case VB_NVLIST: 1846 benv = nvlist_import(be->vbe_bootenv, sizeof(be->vbe_bootenv)); 1847 break; 1848 1849 default: 1850 command = (char *)be; 1851 ok = false; 1852 1853 /* Check for legacy zfsbootcfg command string */ 1854 for (int i = 0; command[i] != '\0'; i++) { 1855 if (iscntrl(command[i])) { 1856 ok = false; 1857 break; 1858 } else { 1859 ok = true; 1860 } 1861 } 1862 benv = nvlist_create(NV_UNIQUE_NAME); 1863 if (benv != NULL) { 1864 if (ok) 1865 nvlist_add_string(benv, FREEBSD_BOOTONCE, 1866 command); 1867 else 1868 nvlist_add_uint64(benv, BOOTENV_VERSION, 1869 VB_NVLIST); 1870 } 1871 break; 1872 } 1873 free(be); 1874 return (benv); 1875 } 1876 1877 static uint64_t 1878 vdev_get_label_asize(nvlist_t *nvl) 1879 { 1880 nvlist_t *vdevs; 1881 uint64_t asize; 1882 const char *type; 1883 int len; 1884 1885 asize = 0; 1886 /* Get vdev tree */ 1887 if (nvlist_find(nvl, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST, 1888 NULL, &vdevs, NULL) != 0) 1889 return (asize); 1890 1891 /* 1892 * Get vdev type. We will calculate asize for raidz, mirror and disk. 1893 * For raidz, the asize is raw size of all children. 1894 */ 1895 if (nvlist_find(vdevs, ZPOOL_CONFIG_TYPE, DATA_TYPE_STRING, 1896 NULL, &type, &len) != 0) 1897 goto done; 1898 1899 if (memcmp(type, VDEV_TYPE_MIRROR, len) != 0 && 1900 memcmp(type, VDEV_TYPE_DISK, len) != 0 && 1901 memcmp(type, VDEV_TYPE_RAIDZ, len) != 0) 1902 goto done; 1903 1904 if (nvlist_find(vdevs, ZPOOL_CONFIG_ASIZE, DATA_TYPE_UINT64, 1905 NULL, &asize, NULL) != 0) 1906 goto done; 1907 1908 if (memcmp(type, VDEV_TYPE_RAIDZ, len) == 0) { 1909 nvlist_t **kids; 1910 int nkids; 1911 1912 if (nvlist_find(vdevs, ZPOOL_CONFIG_CHILDREN, 1913 DATA_TYPE_NVLIST_ARRAY, &nkids, &kids, NULL) != 0) { 1914 asize = 0; 1915 goto done; 1916 } 1917 1918 asize /= nkids; 1919 for (int i = 0; i < nkids; i++) 1920 nvlist_destroy(kids[i]); 1921 free(kids); 1922 } 1923 1924 asize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; 1925 done: 1926 nvlist_destroy(vdevs); 1927 return (asize); 1928 } 1929 1930 static nvlist_t * 1931 vdev_label_read_config(vdev_t *vd, uint64_t txg) 1932 { 1933 vdev_phys_t *label; 1934 uint64_t best_txg = 0; 1935 uint64_t label_txg = 0; 1936 uint64_t asize; 1937 nvlist_t *nvl = NULL, *tmp; 1938 int error; 1939 1940 label = malloc(sizeof (vdev_phys_t)); 1941 if (label == NULL) 1942 return (NULL); 1943 1944 for (int l = 0; l < VDEV_LABELS; l++) { 1945 if (vdev_label_read(vd, l, label, 1946 offsetof(vdev_label_t, vl_vdev_phys), 1947 sizeof (vdev_phys_t))) 1948 continue; 1949 1950 tmp = nvlist_import(label->vp_nvlist, 1951 sizeof(label->vp_nvlist)); 1952 if (tmp == NULL) 1953 continue; 1954 1955 error = nvlist_find(tmp, ZPOOL_CONFIG_POOL_TXG, 1956 DATA_TYPE_UINT64, NULL, &label_txg, NULL); 1957 if (error != 0 || label_txg == 0) { 1958 nvlist_destroy(nvl); 1959 nvl = tmp; 1960 goto done; 1961 } 1962 1963 if (label_txg <= txg && label_txg > best_txg) { 1964 best_txg = label_txg; 1965 nvlist_destroy(nvl); 1966 nvl = tmp; 1967 tmp = NULL; 1968 1969 /* 1970 * Use asize from pool config. We need this 1971 * because we can get bad value from BIOS. 1972 */ 1973 asize = vdev_get_label_asize(nvl); 1974 if (asize != 0) { 1975 vd->v_psize = asize; 1976 } 1977 } 1978 nvlist_destroy(tmp); 1979 } 1980 1981 if (best_txg == 0) { 1982 nvlist_destroy(nvl); 1983 nvl = NULL; 1984 } 1985 done: 1986 free(label); 1987 return (nvl); 1988 } 1989 1990 static void 1991 vdev_uberblock_load(vdev_t *vd, uberblock_t *ub) 1992 { 1993 uberblock_t *buf; 1994 1995 buf = malloc(VDEV_UBERBLOCK_SIZE(vd)); 1996 if (buf == NULL) 1997 return; 1998 1999 for (int l = 0; l < VDEV_LABELS; l++) { 2000 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) { 2001 if (vdev_label_read(vd, l, buf, 2002 VDEV_UBERBLOCK_OFFSET(vd, n), 2003 VDEV_UBERBLOCK_SIZE(vd))) 2004 continue; 2005 if (uberblock_verify(buf) != 0) 2006 continue; 2007 2008 if (vdev_uberblock_compare(buf, ub) > 0) 2009 *ub = *buf; 2010 } 2011 } 2012 free(buf); 2013 } 2014 2015 static int 2016 vdev_probe(vdev_phys_read_t *_read, vdev_phys_write_t *_write, void *priv, 2017 spa_t **spap) 2018 { 2019 vdev_t vtmp; 2020 spa_t *spa; 2021 vdev_t *vdev; 2022 nvlist_t *nvl; 2023 uint64_t val; 2024 uint64_t guid, vdev_children; 2025 uint64_t pool_txg, pool_guid; 2026 const char *pool_name; 2027 int rc, namelen; 2028 2029 /* 2030 * Load the vdev label and figure out which 2031 * uberblock is most current. 2032 */ 2033 memset(&vtmp, 0, sizeof(vtmp)); 2034 vtmp.v_phys_read = _read; 2035 vtmp.v_phys_write = _write; 2036 vtmp.v_priv = priv; 2037 vtmp.v_psize = P2ALIGN(ldi_get_size(priv), 2038 (uint64_t)sizeof (vdev_label_t)); 2039 2040 /* Test for minimum device size. */ 2041 if (vtmp.v_psize < SPA_MINDEVSIZE) 2042 return (EIO); 2043 2044 nvl = vdev_label_read_config(&vtmp, UINT64_MAX); 2045 if (nvl == NULL) 2046 return (EIO); 2047 2048 if (nvlist_find(nvl, ZPOOL_CONFIG_VERSION, DATA_TYPE_UINT64, 2049 NULL, &val, NULL) != 0) { 2050 nvlist_destroy(nvl); 2051 return (EIO); 2052 } 2053 2054 if (!SPA_VERSION_IS_SUPPORTED(val)) { 2055 printf("ZFS: unsupported ZFS version %u (should be %u)\n", 2056 (unsigned)val, (unsigned)SPA_VERSION); 2057 nvlist_destroy(nvl); 2058 return (EIO); 2059 } 2060 2061 /* Check ZFS features for read */ 2062 rc = nvlist_check_features_for_read(nvl); 2063 if (rc != 0) { 2064 nvlist_destroy(nvl); 2065 return (EIO); 2066 } 2067 2068 if (nvlist_find(nvl, ZPOOL_CONFIG_POOL_STATE, DATA_TYPE_UINT64, 2069 NULL, &val, NULL) != 0) { 2070 nvlist_destroy(nvl); 2071 return (EIO); 2072 } 2073 2074 if (val == POOL_STATE_DESTROYED) { 2075 /* We don't boot only from destroyed pools. */ 2076 nvlist_destroy(nvl); 2077 return (EIO); 2078 } 2079 2080 if (nvlist_find(nvl, ZPOOL_CONFIG_POOL_TXG, DATA_TYPE_UINT64, 2081 NULL, &pool_txg, NULL) != 0 || 2082 nvlist_find(nvl, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64, 2083 NULL, &pool_guid, NULL) != 0 || 2084 nvlist_find(nvl, ZPOOL_CONFIG_POOL_NAME, DATA_TYPE_STRING, 2085 NULL, &pool_name, &namelen) != 0) { 2086 /* 2087 * Cache and spare devices end up here - just ignore 2088 * them. 2089 */ 2090 nvlist_destroy(nvl); 2091 return (EIO); 2092 } 2093 2094 /* 2095 * Create the pool if this is the first time we've seen it. 2096 */ 2097 spa = spa_find_by_guid(pool_guid); 2098 if (spa == NULL) { 2099 char *name; 2100 2101 nvlist_find(nvl, ZPOOL_CONFIG_VDEV_CHILDREN, 2102 DATA_TYPE_UINT64, NULL, &vdev_children, NULL); 2103 name = malloc(namelen + 1); 2104 if (name == NULL) { 2105 nvlist_destroy(nvl); 2106 return (ENOMEM); 2107 } 2108 bcopy(pool_name, name, namelen); 2109 name[namelen] = '\0'; 2110 spa = spa_create(pool_guid, name); 2111 free(name); 2112 if (spa == NULL) { 2113 nvlist_destroy(nvl); 2114 return (ENOMEM); 2115 } 2116 spa->spa_root_vdev->v_nchildren = vdev_children; 2117 } 2118 if (pool_txg > spa->spa_txg) 2119 spa->spa_txg = pool_txg; 2120 2121 /* 2122 * Get the vdev tree and create our in-core copy of it. 2123 * If we already have a vdev with this guid, this must 2124 * be some kind of alias (overlapping slices, dangerously dedicated 2125 * disks etc). 2126 */ 2127 if (nvlist_find(nvl, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64, 2128 NULL, &guid, NULL) != 0) { 2129 nvlist_destroy(nvl); 2130 return (EIO); 2131 } 2132 vdev = vdev_find(guid); 2133 /* Has this vdev already been inited? */ 2134 if (vdev && vdev->v_phys_read) { 2135 nvlist_destroy(nvl); 2136 return (EIO); 2137 } 2138 2139 rc = vdev_init_from_label(spa, nvl); 2140 nvlist_destroy(nvl); 2141 if (rc != 0) 2142 return (rc); 2143 2144 /* 2145 * We should already have created an incomplete vdev for this 2146 * vdev. Find it and initialise it with our read proc. 2147 */ 2148 vdev = vdev_find(guid); 2149 if (vdev != NULL) { 2150 vdev->v_phys_read = _read; 2151 vdev->v_phys_write = _write; 2152 vdev->v_priv = priv; 2153 vdev->v_psize = vtmp.v_psize; 2154 /* 2155 * If no other state is set, mark vdev healthy. 2156 */ 2157 if (vdev->v_state == VDEV_STATE_UNKNOWN) 2158 vdev->v_state = VDEV_STATE_HEALTHY; 2159 } else { 2160 printf("ZFS: inconsistent nvlist contents\n"); 2161 return (EIO); 2162 } 2163 2164 if (vdev->v_islog) 2165 spa->spa_with_log = vdev->v_islog; 2166 2167 /* 2168 * Re-evaluate top-level vdev state. 2169 */ 2170 vdev_set_state(vdev->v_top); 2171 2172 /* 2173 * Ok, we are happy with the pool so far. Lets find 2174 * the best uberblock and then we can actually access 2175 * the contents of the pool. 2176 */ 2177 vdev_uberblock_load(vdev, spa->spa_uberblock); 2178 2179 if (spap != NULL) 2180 *spap = spa; 2181 return (0); 2182 } 2183 2184 static int 2185 ilog2(int n) 2186 { 2187 int v; 2188 2189 for (v = 0; v < 32; v++) 2190 if (n == (1 << v)) 2191 return (v); 2192 return (-1); 2193 } 2194 2195 static int 2196 zio_read_gang(const spa_t *spa, const blkptr_t *bp, void *buf) 2197 { 2198 blkptr_t gbh_bp; 2199 zio_gbh_phys_t zio_gb; 2200 char *pbuf; 2201 int i; 2202 2203 /* Artificial BP for gang block header. */ 2204 gbh_bp = *bp; 2205 BP_SET_PSIZE(&gbh_bp, SPA_GANGBLOCKSIZE); 2206 BP_SET_LSIZE(&gbh_bp, SPA_GANGBLOCKSIZE); 2207 BP_SET_CHECKSUM(&gbh_bp, ZIO_CHECKSUM_GANG_HEADER); 2208 BP_SET_COMPRESS(&gbh_bp, ZIO_COMPRESS_OFF); 2209 for (i = 0; i < SPA_DVAS_PER_BP; i++) 2210 DVA_SET_GANG(&gbh_bp.blk_dva[i], 0); 2211 2212 /* Read gang header block using the artificial BP. */ 2213 if (zio_read(spa, &gbh_bp, &zio_gb)) 2214 return (EIO); 2215 2216 pbuf = buf; 2217 for (i = 0; i < SPA_GBH_NBLKPTRS; i++) { 2218 blkptr_t *gbp = &zio_gb.zg_blkptr[i]; 2219 2220 if (BP_IS_HOLE(gbp)) 2221 continue; 2222 if (zio_read(spa, gbp, pbuf)) 2223 return (EIO); 2224 pbuf += BP_GET_PSIZE(gbp); 2225 } 2226 2227 if (zio_checksum_verify(spa, bp, buf)) 2228 return (EIO); 2229 return (0); 2230 } 2231 2232 static int 2233 zio_read(const spa_t *spa, const blkptr_t *bp, void *buf) 2234 { 2235 int cpfunc = BP_GET_COMPRESS(bp); 2236 uint64_t align, size; 2237 void *pbuf; 2238 int i, error; 2239 2240 /* 2241 * Process data embedded in block pointer 2242 */ 2243 if (BP_IS_EMBEDDED(bp)) { 2244 ASSERT(BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA); 2245 2246 size = BPE_GET_PSIZE(bp); 2247 ASSERT(size <= BPE_PAYLOAD_SIZE); 2248 2249 if (cpfunc != ZIO_COMPRESS_OFF) 2250 pbuf = malloc(size); 2251 else 2252 pbuf = buf; 2253 2254 if (pbuf == NULL) 2255 return (ENOMEM); 2256 2257 decode_embedded_bp_compressed(bp, pbuf); 2258 error = 0; 2259 2260 if (cpfunc != ZIO_COMPRESS_OFF) { 2261 error = zio_decompress_data(cpfunc, pbuf, 2262 size, buf, BP_GET_LSIZE(bp)); 2263 free(pbuf); 2264 } 2265 if (error != 0) 2266 printf("ZFS: i/o error - unable to decompress " 2267 "block pointer data, error %d\n", error); 2268 return (error); 2269 } 2270 2271 error = EIO; 2272 2273 for (i = 0; i < SPA_DVAS_PER_BP; i++) { 2274 const dva_t *dva = &bp->blk_dva[i]; 2275 vdev_t *vdev; 2276 vdev_list_t *vlist; 2277 uint64_t vdevid; 2278 off_t offset; 2279 2280 if (!dva->dva_word[0] && !dva->dva_word[1]) 2281 continue; 2282 2283 vdevid = DVA_GET_VDEV(dva); 2284 offset = DVA_GET_OFFSET(dva); 2285 vlist = &spa->spa_root_vdev->v_children; 2286 STAILQ_FOREACH(vdev, vlist, v_childlink) { 2287 if (vdev->v_id == vdevid) 2288 break; 2289 } 2290 if (!vdev || !vdev->v_read) 2291 continue; 2292 2293 size = BP_GET_PSIZE(bp); 2294 if (vdev->v_read == vdev_raidz_read) { 2295 align = 1ULL << vdev->v_ashift; 2296 if (P2PHASE(size, align) != 0) 2297 size = P2ROUNDUP(size, align); 2298 } 2299 if (size != BP_GET_PSIZE(bp) || cpfunc != ZIO_COMPRESS_OFF) 2300 pbuf = malloc(size); 2301 else 2302 pbuf = buf; 2303 2304 if (pbuf == NULL) { 2305 error = ENOMEM; 2306 break; 2307 } 2308 2309 if (DVA_GET_GANG(dva)) 2310 error = zio_read_gang(spa, bp, pbuf); 2311 else 2312 error = vdev->v_read(vdev, bp, pbuf, offset, size); 2313 if (error == 0) { 2314 if (cpfunc != ZIO_COMPRESS_OFF) 2315 error = zio_decompress_data(cpfunc, pbuf, 2316 BP_GET_PSIZE(bp), buf, BP_GET_LSIZE(bp)); 2317 else if (size != BP_GET_PSIZE(bp)) 2318 bcopy(pbuf, buf, BP_GET_PSIZE(bp)); 2319 } else { 2320 printf("zio_read error: %d\n", error); 2321 } 2322 if (buf != pbuf) 2323 free(pbuf); 2324 if (error == 0) 2325 break; 2326 } 2327 if (error != 0) 2328 printf("ZFS: i/o error - all block copies unavailable\n"); 2329 2330 return (error); 2331 } 2332 2333 static int 2334 dnode_read(const spa_t *spa, const dnode_phys_t *dnode, off_t offset, 2335 void *buf, size_t buflen) 2336 { 2337 int ibshift = dnode->dn_indblkshift - SPA_BLKPTRSHIFT; 2338 int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2339 int nlevels = dnode->dn_nlevels; 2340 int i, rc; 2341 2342 if (bsize > SPA_MAXBLOCKSIZE) { 2343 printf("ZFS: I/O error - blocks larger than %llu are not " 2344 "supported\n", SPA_MAXBLOCKSIZE); 2345 return (EIO); 2346 } 2347 2348 /* 2349 * Note: bsize may not be a power of two here so we need to do an 2350 * actual divide rather than a bitshift. 2351 */ 2352 while (buflen > 0) { 2353 uint64_t bn = offset / bsize; 2354 int boff = offset % bsize; 2355 int ibn; 2356 const blkptr_t *indbp; 2357 blkptr_t bp; 2358 2359 if (bn > dnode->dn_maxblkid) 2360 return (EIO); 2361 2362 if (dnode == dnode_cache_obj && bn == dnode_cache_bn) 2363 goto cached; 2364 2365 indbp = dnode->dn_blkptr; 2366 for (i = 0; i < nlevels; i++) { 2367 /* 2368 * Copy the bp from the indirect array so that 2369 * we can re-use the scratch buffer for multi-level 2370 * objects. 2371 */ 2372 ibn = bn >> ((nlevels - i - 1) * ibshift); 2373 ibn &= ((1 << ibshift) - 1); 2374 bp = indbp[ibn]; 2375 if (BP_IS_HOLE(&bp)) { 2376 memset(dnode_cache_buf, 0, bsize); 2377 break; 2378 } 2379 rc = zio_read(spa, &bp, dnode_cache_buf); 2380 if (rc) 2381 return (rc); 2382 indbp = (const blkptr_t *) dnode_cache_buf; 2383 } 2384 dnode_cache_obj = dnode; 2385 dnode_cache_bn = bn; 2386 cached: 2387 2388 /* 2389 * The buffer contains our data block. Copy what we 2390 * need from it and loop. 2391 */ 2392 i = bsize - boff; 2393 if (i > buflen) i = buflen; 2394 memcpy(buf, &dnode_cache_buf[boff], i); 2395 buf = ((char *)buf) + i; 2396 offset += i; 2397 buflen -= i; 2398 } 2399 2400 return (0); 2401 } 2402 2403 /* 2404 * Lookup a value in a microzap directory. 2405 */ 2406 static int 2407 mzap_lookup(const mzap_phys_t *mz, size_t size, const char *name, 2408 uint64_t *value) 2409 { 2410 const mzap_ent_phys_t *mze; 2411 int chunks, i; 2412 2413 /* 2414 * Microzap objects use exactly one block. Read the whole 2415 * thing. 2416 */ 2417 chunks = size / MZAP_ENT_LEN - 1; 2418 for (i = 0; i < chunks; i++) { 2419 mze = &mz->mz_chunk[i]; 2420 if (strcmp(mze->mze_name, name) == 0) { 2421 *value = mze->mze_value; 2422 return (0); 2423 } 2424 } 2425 2426 return (ENOENT); 2427 } 2428 2429 /* 2430 * Compare a name with a zap leaf entry. Return non-zero if the name 2431 * matches. 2432 */ 2433 static int 2434 fzap_name_equal(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, 2435 const char *name) 2436 { 2437 size_t namelen; 2438 const zap_leaf_chunk_t *nc; 2439 const char *p; 2440 2441 namelen = zc->l_entry.le_name_numints; 2442 2443 nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk); 2444 p = name; 2445 while (namelen > 0) { 2446 size_t len; 2447 2448 len = namelen; 2449 if (len > ZAP_LEAF_ARRAY_BYTES) 2450 len = ZAP_LEAF_ARRAY_BYTES; 2451 if (memcmp(p, nc->l_array.la_array, len)) 2452 return (0); 2453 p += len; 2454 namelen -= len; 2455 nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next); 2456 } 2457 2458 return (1); 2459 } 2460 2461 /* 2462 * Extract a uint64_t value from a zap leaf entry. 2463 */ 2464 static uint64_t 2465 fzap_leaf_value(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc) 2466 { 2467 const zap_leaf_chunk_t *vc; 2468 int i; 2469 uint64_t value; 2470 const uint8_t *p; 2471 2472 vc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_value_chunk); 2473 for (i = 0, value = 0, p = vc->l_array.la_array; i < 8; i++) { 2474 value = (value << 8) | p[i]; 2475 } 2476 2477 return (value); 2478 } 2479 2480 static void 2481 stv(int len, void *addr, uint64_t value) 2482 { 2483 switch (len) { 2484 case 1: 2485 *(uint8_t *)addr = value; 2486 return; 2487 case 2: 2488 *(uint16_t *)addr = value; 2489 return; 2490 case 4: 2491 *(uint32_t *)addr = value; 2492 return; 2493 case 8: 2494 *(uint64_t *)addr = value; 2495 return; 2496 } 2497 } 2498 2499 /* 2500 * Extract a array from a zap leaf entry. 2501 */ 2502 static void 2503 fzap_leaf_array(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, 2504 uint64_t integer_size, uint64_t num_integers, void *buf) 2505 { 2506 uint64_t array_int_len = zc->l_entry.le_value_intlen; 2507 uint64_t value = 0; 2508 uint64_t *u64 = buf; 2509 char *p = buf; 2510 int len = MIN(zc->l_entry.le_value_numints, num_integers); 2511 int chunk = zc->l_entry.le_value_chunk; 2512 int byten = 0; 2513 2514 if (integer_size == 8 && len == 1) { 2515 *u64 = fzap_leaf_value(zl, zc); 2516 return; 2517 } 2518 2519 while (len > 0) { 2520 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(zl, chunk).l_array; 2521 int i; 2522 2523 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(zl)); 2524 for (i = 0; i < ZAP_LEAF_ARRAY_BYTES && len > 0; i++) { 2525 value = (value << 8) | la->la_array[i]; 2526 byten++; 2527 if (byten == array_int_len) { 2528 stv(integer_size, p, value); 2529 byten = 0; 2530 len--; 2531 if (len == 0) 2532 return; 2533 p += integer_size; 2534 } 2535 } 2536 chunk = la->la_next; 2537 } 2538 } 2539 2540 static int 2541 fzap_check_size(uint64_t integer_size, uint64_t num_integers) 2542 { 2543 2544 switch (integer_size) { 2545 case 1: 2546 case 2: 2547 case 4: 2548 case 8: 2549 break; 2550 default: 2551 return (EINVAL); 2552 } 2553 2554 if (integer_size * num_integers > ZAP_MAXVALUELEN) 2555 return (E2BIG); 2556 2557 return (0); 2558 } 2559 2560 static void 2561 zap_leaf_free(zap_leaf_t *leaf) 2562 { 2563 free(leaf->l_phys); 2564 free(leaf); 2565 } 2566 2567 static int 2568 zap_get_leaf_byblk(fat_zap_t *zap, uint64_t blk, zap_leaf_t **lp) 2569 { 2570 int bs = FZAP_BLOCK_SHIFT(zap); 2571 int err; 2572 2573 *lp = malloc(sizeof(**lp)); 2574 if (*lp == NULL) 2575 return (ENOMEM); 2576 2577 (*lp)->l_bs = bs; 2578 (*lp)->l_phys = malloc(1 << bs); 2579 2580 if ((*lp)->l_phys == NULL) { 2581 free(*lp); 2582 return (ENOMEM); 2583 } 2584 err = dnode_read(zap->zap_spa, zap->zap_dnode, blk << bs, (*lp)->l_phys, 2585 1 << bs); 2586 if (err != 0) { 2587 zap_leaf_free(*lp); 2588 } 2589 return (err); 2590 } 2591 2592 static int 2593 zap_table_load(fat_zap_t *zap, zap_table_phys_t *tbl, uint64_t idx, 2594 uint64_t *valp) 2595 { 2596 int bs = FZAP_BLOCK_SHIFT(zap); 2597 uint64_t blk = idx >> (bs - 3); 2598 uint64_t off = idx & ((1 << (bs - 3)) - 1); 2599 uint64_t *buf; 2600 int rc; 2601 2602 buf = malloc(1 << zap->zap_block_shift); 2603 if (buf == NULL) 2604 return (ENOMEM); 2605 rc = dnode_read(zap->zap_spa, zap->zap_dnode, (tbl->zt_blk + blk) << bs, 2606 buf, 1 << zap->zap_block_shift); 2607 if (rc == 0) 2608 *valp = buf[off]; 2609 free(buf); 2610 return (rc); 2611 } 2612 2613 static int 2614 zap_idx_to_blk(fat_zap_t *zap, uint64_t idx, uint64_t *valp) 2615 { 2616 if (zap->zap_phys->zap_ptrtbl.zt_numblks == 0) { 2617 *valp = ZAP_EMBEDDED_PTRTBL_ENT(zap, idx); 2618 return (0); 2619 } else { 2620 return (zap_table_load(zap, &zap->zap_phys->zap_ptrtbl, 2621 idx, valp)); 2622 } 2623 } 2624 2625 #define ZAP_HASH_IDX(hash, n) (((n) == 0) ? 0 : ((hash) >> (64 - (n)))) 2626 static int 2627 zap_deref_leaf(fat_zap_t *zap, uint64_t h, zap_leaf_t **lp) 2628 { 2629 uint64_t idx, blk; 2630 int err; 2631 2632 idx = ZAP_HASH_IDX(h, zap->zap_phys->zap_ptrtbl.zt_shift); 2633 err = zap_idx_to_blk(zap, idx, &blk); 2634 if (err != 0) 2635 return (err); 2636 return (zap_get_leaf_byblk(zap, blk, lp)); 2637 } 2638 2639 #define CHAIN_END 0xffff /* end of the chunk chain */ 2640 #define LEAF_HASH(l, h) \ 2641 ((ZAP_LEAF_HASH_NUMENTRIES(l)-1) & \ 2642 ((h) >> \ 2643 (64 - ZAP_LEAF_HASH_SHIFT(l) - (l)->l_phys->l_hdr.lh_prefix_len))) 2644 #define LEAF_HASH_ENTPTR(l, h) (&(l)->l_phys->l_hash[LEAF_HASH(l, h)]) 2645 2646 static int 2647 zap_leaf_lookup(zap_leaf_t *zl, uint64_t hash, const char *name, 2648 uint64_t integer_size, uint64_t num_integers, void *value) 2649 { 2650 int rc; 2651 uint16_t *chunkp; 2652 struct zap_leaf_entry *le; 2653 2654 /* 2655 * Make sure this chunk matches our hash. 2656 */ 2657 if (zl->l_phys->l_hdr.lh_prefix_len > 0 && 2658 zl->l_phys->l_hdr.lh_prefix != 2659 hash >> (64 - zl->l_phys->l_hdr.lh_prefix_len)) 2660 return (EIO); 2661 2662 rc = ENOENT; 2663 for (chunkp = LEAF_HASH_ENTPTR(zl, hash); 2664 *chunkp != CHAIN_END; chunkp = &le->le_next) { 2665 zap_leaf_chunk_t *zc; 2666 uint16_t chunk = *chunkp; 2667 2668 le = ZAP_LEAF_ENTRY(zl, chunk); 2669 if (le->le_hash != hash) 2670 continue; 2671 zc = &ZAP_LEAF_CHUNK(zl, chunk); 2672 if (fzap_name_equal(zl, zc, name)) { 2673 if (zc->l_entry.le_value_intlen > integer_size) { 2674 rc = EINVAL; 2675 } else { 2676 fzap_leaf_array(zl, zc, integer_size, 2677 num_integers, value); 2678 rc = 0; 2679 } 2680 break; 2681 } 2682 } 2683 return (rc); 2684 } 2685 2686 /* 2687 * Lookup a value in a fatzap directory. 2688 */ 2689 static int 2690 fzap_lookup(const spa_t *spa, const dnode_phys_t *dnode, zap_phys_t *zh, 2691 const char *name, uint64_t integer_size, uint64_t num_integers, 2692 void *value) 2693 { 2694 int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2695 fat_zap_t z; 2696 zap_leaf_t *zl; 2697 uint64_t hash; 2698 int rc; 2699 2700 if (zh->zap_magic != ZAP_MAGIC) 2701 return (EIO); 2702 2703 if ((rc = fzap_check_size(integer_size, num_integers)) != 0) { 2704 return (rc); 2705 } 2706 2707 z.zap_block_shift = ilog2(bsize); 2708 z.zap_phys = zh; 2709 z.zap_spa = spa; 2710 z.zap_dnode = dnode; 2711 2712 hash = zap_hash(zh->zap_salt, name); 2713 rc = zap_deref_leaf(&z, hash, &zl); 2714 if (rc != 0) 2715 return (rc); 2716 2717 rc = zap_leaf_lookup(zl, hash, name, integer_size, num_integers, value); 2718 2719 zap_leaf_free(zl); 2720 return (rc); 2721 } 2722 2723 /* 2724 * Lookup a name in a zap object and return its value as a uint64_t. 2725 */ 2726 static int 2727 zap_lookup(const spa_t *spa, const dnode_phys_t *dnode, const char *name, 2728 uint64_t integer_size, uint64_t num_integers, void *value) 2729 { 2730 int rc; 2731 zap_phys_t *zap; 2732 size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2733 2734 zap = malloc(size); 2735 if (zap == NULL) 2736 return (ENOMEM); 2737 2738 rc = dnode_read(spa, dnode, 0, zap, size); 2739 if (rc) 2740 goto done; 2741 2742 switch (zap->zap_block_type) { 2743 case ZBT_MICRO: 2744 rc = mzap_lookup((const mzap_phys_t *)zap, size, name, value); 2745 break; 2746 case ZBT_HEADER: 2747 rc = fzap_lookup(spa, dnode, zap, name, integer_size, 2748 num_integers, value); 2749 break; 2750 default: 2751 printf("ZFS: invalid zap_type=%" PRIx64 "\n", 2752 zap->zap_block_type); 2753 rc = EIO; 2754 } 2755 done: 2756 free(zap); 2757 return (rc); 2758 } 2759 2760 /* 2761 * List a microzap directory. 2762 */ 2763 static int 2764 mzap_list(const mzap_phys_t *mz, size_t size, 2765 int (*callback)(const char *, uint64_t)) 2766 { 2767 const mzap_ent_phys_t *mze; 2768 int chunks, i, rc; 2769 2770 /* 2771 * Microzap objects use exactly one block. Read the whole 2772 * thing. 2773 */ 2774 rc = 0; 2775 chunks = size / MZAP_ENT_LEN - 1; 2776 for (i = 0; i < chunks; i++) { 2777 mze = &mz->mz_chunk[i]; 2778 if (mze->mze_name[0]) { 2779 rc = callback(mze->mze_name, mze->mze_value); 2780 if (rc != 0) 2781 break; 2782 } 2783 } 2784 2785 return (rc); 2786 } 2787 2788 /* 2789 * List a fatzap directory. 2790 */ 2791 static int 2792 fzap_list(const spa_t *spa, const dnode_phys_t *dnode, zap_phys_t *zh, 2793 int (*callback)(const char *, uint64_t)) 2794 { 2795 int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2796 fat_zap_t z; 2797 uint64_t i; 2798 int j, rc; 2799 2800 if (zh->zap_magic != ZAP_MAGIC) 2801 return (EIO); 2802 2803 z.zap_block_shift = ilog2(bsize); 2804 z.zap_phys = zh; 2805 2806 /* 2807 * This assumes that the leaf blocks start at block 1. The 2808 * documentation isn't exactly clear on this. 2809 */ 2810 zap_leaf_t zl; 2811 zl.l_bs = z.zap_block_shift; 2812 zl.l_phys = malloc(bsize); 2813 if (zl.l_phys == NULL) 2814 return (ENOMEM); 2815 2816 for (i = 0; i < zh->zap_num_leafs; i++) { 2817 off_t off = ((off_t)(i + 1)) << zl.l_bs; 2818 char name[256], *p; 2819 uint64_t value; 2820 2821 if (dnode_read(spa, dnode, off, zl.l_phys, bsize)) { 2822 free(zl.l_phys); 2823 return (EIO); 2824 } 2825 2826 for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) { 2827 zap_leaf_chunk_t *zc, *nc; 2828 int namelen; 2829 2830 zc = &ZAP_LEAF_CHUNK(&zl, j); 2831 if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY) 2832 continue; 2833 namelen = zc->l_entry.le_name_numints; 2834 if (namelen > sizeof(name)) 2835 namelen = sizeof(name); 2836 2837 /* 2838 * Paste the name back together. 2839 */ 2840 nc = &ZAP_LEAF_CHUNK(&zl, zc->l_entry.le_name_chunk); 2841 p = name; 2842 while (namelen > 0) { 2843 int len; 2844 len = namelen; 2845 if (len > ZAP_LEAF_ARRAY_BYTES) 2846 len = ZAP_LEAF_ARRAY_BYTES; 2847 memcpy(p, nc->l_array.la_array, len); 2848 p += len; 2849 namelen -= len; 2850 nc = &ZAP_LEAF_CHUNK(&zl, nc->l_array.la_next); 2851 } 2852 2853 /* 2854 * Assume the first eight bytes of the value are 2855 * a uint64_t. 2856 */ 2857 value = fzap_leaf_value(&zl, zc); 2858 2859 /* printf("%s 0x%jx\n", name, (uintmax_t)value); */ 2860 rc = callback((const char *)name, value); 2861 if (rc != 0) { 2862 free(zl.l_phys); 2863 return (rc); 2864 } 2865 } 2866 } 2867 2868 free(zl.l_phys); 2869 return (0); 2870 } 2871 2872 static int zfs_printf(const char *name, uint64_t value __unused) 2873 { 2874 2875 printf("%s\n", name); 2876 2877 return (0); 2878 } 2879 2880 /* 2881 * List a zap directory. 2882 */ 2883 static int 2884 zap_list(const spa_t *spa, const dnode_phys_t *dnode) 2885 { 2886 zap_phys_t *zap; 2887 size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2888 int rc; 2889 2890 zap = malloc(size); 2891 if (zap == NULL) 2892 return (ENOMEM); 2893 2894 rc = dnode_read(spa, dnode, 0, zap, size); 2895 if (rc == 0) { 2896 if (zap->zap_block_type == ZBT_MICRO) 2897 rc = mzap_list((const mzap_phys_t *)zap, size, 2898 zfs_printf); 2899 else 2900 rc = fzap_list(spa, dnode, zap, zfs_printf); 2901 } 2902 free(zap); 2903 return (rc); 2904 } 2905 2906 static int 2907 objset_get_dnode(const spa_t *spa, const objset_phys_t *os, uint64_t objnum, 2908 dnode_phys_t *dnode) 2909 { 2910 off_t offset; 2911 2912 offset = objnum * sizeof(dnode_phys_t); 2913 return dnode_read(spa, &os->os_meta_dnode, offset, 2914 dnode, sizeof(dnode_phys_t)); 2915 } 2916 2917 /* 2918 * Lookup a name in a microzap directory. 2919 */ 2920 static int 2921 mzap_rlookup(const mzap_phys_t *mz, size_t size, char *name, uint64_t value) 2922 { 2923 const mzap_ent_phys_t *mze; 2924 int chunks, i; 2925 2926 /* 2927 * Microzap objects use exactly one block. Read the whole 2928 * thing. 2929 */ 2930 chunks = size / MZAP_ENT_LEN - 1; 2931 for (i = 0; i < chunks; i++) { 2932 mze = &mz->mz_chunk[i]; 2933 if (value == mze->mze_value) { 2934 strcpy(name, mze->mze_name); 2935 return (0); 2936 } 2937 } 2938 2939 return (ENOENT); 2940 } 2941 2942 static void 2943 fzap_name_copy(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, char *name) 2944 { 2945 size_t namelen; 2946 const zap_leaf_chunk_t *nc; 2947 char *p; 2948 2949 namelen = zc->l_entry.le_name_numints; 2950 2951 nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk); 2952 p = name; 2953 while (namelen > 0) { 2954 size_t len; 2955 len = namelen; 2956 if (len > ZAP_LEAF_ARRAY_BYTES) 2957 len = ZAP_LEAF_ARRAY_BYTES; 2958 memcpy(p, nc->l_array.la_array, len); 2959 p += len; 2960 namelen -= len; 2961 nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next); 2962 } 2963 2964 *p = '\0'; 2965 } 2966 2967 static int 2968 fzap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, zap_phys_t *zh, 2969 char *name, uint64_t value) 2970 { 2971 int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2972 fat_zap_t z; 2973 uint64_t i; 2974 int j, rc; 2975 2976 if (zh->zap_magic != ZAP_MAGIC) 2977 return (EIO); 2978 2979 z.zap_block_shift = ilog2(bsize); 2980 z.zap_phys = zh; 2981 2982 /* 2983 * This assumes that the leaf blocks start at block 1. The 2984 * documentation isn't exactly clear on this. 2985 */ 2986 zap_leaf_t zl; 2987 zl.l_bs = z.zap_block_shift; 2988 zl.l_phys = malloc(bsize); 2989 if (zl.l_phys == NULL) 2990 return (ENOMEM); 2991 2992 for (i = 0; i < zh->zap_num_leafs; i++) { 2993 off_t off = ((off_t)(i + 1)) << zl.l_bs; 2994 2995 rc = dnode_read(spa, dnode, off, zl.l_phys, bsize); 2996 if (rc != 0) 2997 goto done; 2998 2999 for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) { 3000 zap_leaf_chunk_t *zc; 3001 3002 zc = &ZAP_LEAF_CHUNK(&zl, j); 3003 if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY) 3004 continue; 3005 if (zc->l_entry.le_value_intlen != 8 || 3006 zc->l_entry.le_value_numints != 1) 3007 continue; 3008 3009 if (fzap_leaf_value(&zl, zc) == value) { 3010 fzap_name_copy(&zl, zc, name); 3011 goto done; 3012 } 3013 } 3014 } 3015 3016 rc = ENOENT; 3017 done: 3018 free(zl.l_phys); 3019 return (rc); 3020 } 3021 3022 static int 3023 zap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, char *name, 3024 uint64_t value) 3025 { 3026 zap_phys_t *zap; 3027 size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 3028 int rc; 3029 3030 zap = malloc(size); 3031 if (zap == NULL) 3032 return (ENOMEM); 3033 3034 rc = dnode_read(spa, dnode, 0, zap, size); 3035 if (rc == 0) { 3036 if (zap->zap_block_type == ZBT_MICRO) 3037 rc = mzap_rlookup((const mzap_phys_t *)zap, size, 3038 name, value); 3039 else 3040 rc = fzap_rlookup(spa, dnode, zap, name, value); 3041 } 3042 free(zap); 3043 return (rc); 3044 } 3045 3046 static int 3047 zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result) 3048 { 3049 char name[256]; 3050 char component[256]; 3051 uint64_t dir_obj, parent_obj, child_dir_zapobj; 3052 dnode_phys_t child_dir_zap, dataset, dir, parent; 3053 dsl_dir_phys_t *dd; 3054 dsl_dataset_phys_t *ds; 3055 char *p; 3056 int len; 3057 3058 p = &name[sizeof(name) - 1]; 3059 *p = '\0'; 3060 3061 if (objset_get_dnode(spa, spa->spa_mos, objnum, &dataset)) { 3062 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum); 3063 return (EIO); 3064 } 3065 ds = (dsl_dataset_phys_t *)&dataset.dn_bonus; 3066 dir_obj = ds->ds_dir_obj; 3067 3068 for (;;) { 3069 if (objset_get_dnode(spa, spa->spa_mos, dir_obj, &dir) != 0) 3070 return (EIO); 3071 dd = (dsl_dir_phys_t *)&dir.dn_bonus; 3072 3073 /* Actual loop condition. */ 3074 parent_obj = dd->dd_parent_obj; 3075 if (parent_obj == 0) 3076 break; 3077 3078 if (objset_get_dnode(spa, spa->spa_mos, parent_obj, 3079 &parent) != 0) 3080 return (EIO); 3081 dd = (dsl_dir_phys_t *)&parent.dn_bonus; 3082 child_dir_zapobj = dd->dd_child_dir_zapobj; 3083 if (objset_get_dnode(spa, spa->spa_mos, child_dir_zapobj, 3084 &child_dir_zap) != 0) 3085 return (EIO); 3086 if (zap_rlookup(spa, &child_dir_zap, component, dir_obj) != 0) 3087 return (EIO); 3088 3089 len = strlen(component); 3090 p -= len; 3091 memcpy(p, component, len); 3092 --p; 3093 *p = '/'; 3094 3095 /* Actual loop iteration. */ 3096 dir_obj = parent_obj; 3097 } 3098 3099 if (*p != '\0') 3100 ++p; 3101 strcpy(result, p); 3102 3103 return (0); 3104 } 3105 3106 static int 3107 zfs_lookup_dataset(const spa_t *spa, const char *name, uint64_t *objnum) 3108 { 3109 char element[256]; 3110 uint64_t dir_obj, child_dir_zapobj; 3111 dnode_phys_t child_dir_zap, dir; 3112 dsl_dir_phys_t *dd; 3113 const char *p, *q; 3114 3115 if (objset_get_dnode(spa, spa->spa_mos, 3116 DMU_POOL_DIRECTORY_OBJECT, &dir)) 3117 return (EIO); 3118 if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET, sizeof (dir_obj), 3119 1, &dir_obj)) 3120 return (EIO); 3121 3122 p = name; 3123 for (;;) { 3124 if (objset_get_dnode(spa, spa->spa_mos, dir_obj, &dir)) 3125 return (EIO); 3126 dd = (dsl_dir_phys_t *)&dir.dn_bonus; 3127 3128 while (*p == '/') 3129 p++; 3130 /* Actual loop condition #1. */ 3131 if (*p == '\0') 3132 break; 3133 3134 q = strchr(p, '/'); 3135 if (q) { 3136 memcpy(element, p, q - p); 3137 element[q - p] = '\0'; 3138 p = q + 1; 3139 } else { 3140 strcpy(element, p); 3141 p += strlen(p); 3142 } 3143 3144 child_dir_zapobj = dd->dd_child_dir_zapobj; 3145 if (objset_get_dnode(spa, spa->spa_mos, child_dir_zapobj, 3146 &child_dir_zap) != 0) 3147 return (EIO); 3148 3149 /* Actual loop condition #2. */ 3150 if (zap_lookup(spa, &child_dir_zap, element, sizeof (dir_obj), 3151 1, &dir_obj) != 0) 3152 return (ENOENT); 3153 } 3154 3155 *objnum = dd->dd_head_dataset_obj; 3156 return (0); 3157 } 3158 3159 #ifndef BOOT2 3160 static int 3161 zfs_list_dataset(const spa_t *spa, uint64_t objnum/*, int pos, char *entry*/) 3162 { 3163 uint64_t dir_obj, child_dir_zapobj; 3164 dnode_phys_t child_dir_zap, dir, dataset; 3165 dsl_dataset_phys_t *ds; 3166 dsl_dir_phys_t *dd; 3167 3168 if (objset_get_dnode(spa, spa->spa_mos, objnum, &dataset)) { 3169 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum); 3170 return (EIO); 3171 } 3172 ds = (dsl_dataset_phys_t *)&dataset.dn_bonus; 3173 dir_obj = ds->ds_dir_obj; 3174 3175 if (objset_get_dnode(spa, spa->spa_mos, dir_obj, &dir)) { 3176 printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj); 3177 return (EIO); 3178 } 3179 dd = (dsl_dir_phys_t *)&dir.dn_bonus; 3180 3181 child_dir_zapobj = dd->dd_child_dir_zapobj; 3182 if (objset_get_dnode(spa, spa->spa_mos, child_dir_zapobj, 3183 &child_dir_zap) != 0) { 3184 printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj); 3185 return (EIO); 3186 } 3187 3188 return (zap_list(spa, &child_dir_zap) != 0); 3189 } 3190 3191 int 3192 zfs_callback_dataset(const spa_t *spa, uint64_t objnum, 3193 int (*callback)(const char *, uint64_t)) 3194 { 3195 uint64_t dir_obj, child_dir_zapobj; 3196 dnode_phys_t child_dir_zap, dir, dataset; 3197 dsl_dataset_phys_t *ds; 3198 dsl_dir_phys_t *dd; 3199 zap_phys_t *zap; 3200 size_t size; 3201 int err; 3202 3203 err = objset_get_dnode(spa, spa->spa_mos, objnum, &dataset); 3204 if (err != 0) { 3205 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum); 3206 return (err); 3207 } 3208 ds = (dsl_dataset_phys_t *)&dataset.dn_bonus; 3209 dir_obj = ds->ds_dir_obj; 3210 3211 err = objset_get_dnode(spa, spa->spa_mos, dir_obj, &dir); 3212 if (err != 0) { 3213 printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj); 3214 return (err); 3215 } 3216 dd = (dsl_dir_phys_t *)&dir.dn_bonus; 3217 3218 child_dir_zapobj = dd->dd_child_dir_zapobj; 3219 err = objset_get_dnode(spa, spa->spa_mos, child_dir_zapobj, 3220 &child_dir_zap); 3221 if (err != 0) { 3222 printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj); 3223 return (err); 3224 } 3225 3226 size = child_dir_zap.dn_datablkszsec << SPA_MINBLOCKSHIFT; 3227 zap = malloc(size); 3228 if (zap != NULL) { 3229 err = dnode_read(spa, &child_dir_zap, 0, zap, size); 3230 if (err != 0) 3231 goto done; 3232 3233 if (zap->zap_block_type == ZBT_MICRO) 3234 err = mzap_list((const mzap_phys_t *)zap, size, 3235 callback); 3236 else 3237 err = fzap_list(spa, &child_dir_zap, zap, callback); 3238 } else { 3239 err = ENOMEM; 3240 } 3241 done: 3242 free(zap); 3243 return (err); 3244 } 3245 #endif 3246 3247 /* 3248 * Find the object set given the object number of its dataset object 3249 * and return its details in *objset 3250 */ 3251 static int 3252 zfs_mount_dataset(const spa_t *spa, uint64_t objnum, objset_phys_t *objset) 3253 { 3254 dnode_phys_t dataset; 3255 dsl_dataset_phys_t *ds; 3256 3257 if (objset_get_dnode(spa, spa->spa_mos, objnum, &dataset)) { 3258 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum); 3259 return (EIO); 3260 } 3261 3262 ds = (dsl_dataset_phys_t *)&dataset.dn_bonus; 3263 if (zio_read(spa, &ds->ds_bp, objset)) { 3264 printf("ZFS: can't read object set for dataset %ju\n", 3265 (uintmax_t)objnum); 3266 return (EIO); 3267 } 3268 3269 return (0); 3270 } 3271 3272 /* 3273 * Find the object set pointed to by the BOOTFS property or the root 3274 * dataset if there is none and return its details in *objset 3275 */ 3276 static int 3277 zfs_get_root(const spa_t *spa, uint64_t *objid) 3278 { 3279 dnode_phys_t dir, propdir; 3280 uint64_t props, bootfs, root; 3281 3282 *objid = 0; 3283 3284 /* 3285 * Start with the MOS directory object. 3286 */ 3287 if (objset_get_dnode(spa, spa->spa_mos, 3288 DMU_POOL_DIRECTORY_OBJECT, &dir)) { 3289 printf("ZFS: can't read MOS object directory\n"); 3290 return (EIO); 3291 } 3292 3293 /* 3294 * Lookup the pool_props and see if we can find a bootfs. 3295 */ 3296 if (zap_lookup(spa, &dir, DMU_POOL_PROPS, 3297 sizeof(props), 1, &props) == 0 && 3298 objset_get_dnode(spa, spa->spa_mos, props, &propdir) == 0 && 3299 zap_lookup(spa, &propdir, "bootfs", 3300 sizeof(bootfs), 1, &bootfs) == 0 && bootfs != 0) { 3301 *objid = bootfs; 3302 return (0); 3303 } 3304 /* 3305 * Lookup the root dataset directory 3306 */ 3307 if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET, 3308 sizeof(root), 1, &root) || 3309 objset_get_dnode(spa, spa->spa_mos, root, &dir)) { 3310 printf("ZFS: can't find root dsl_dir\n"); 3311 return (EIO); 3312 } 3313 3314 /* 3315 * Use the information from the dataset directory's bonus buffer 3316 * to find the dataset object and from that the object set itself. 3317 */ 3318 dsl_dir_phys_t *dd = (dsl_dir_phys_t *)&dir.dn_bonus; 3319 *objid = dd->dd_head_dataset_obj; 3320 return (0); 3321 } 3322 3323 static int 3324 zfs_mount(const spa_t *spa, uint64_t rootobj, struct zfsmount *mount) 3325 { 3326 3327 mount->spa = spa; 3328 3329 /* 3330 * Find the root object set if not explicitly provided 3331 */ 3332 if (rootobj == 0 && zfs_get_root(spa, &rootobj)) { 3333 printf("ZFS: can't find root filesystem\n"); 3334 return (EIO); 3335 } 3336 3337 if (zfs_mount_dataset(spa, rootobj, &mount->objset)) { 3338 printf("ZFS: can't open root filesystem\n"); 3339 return (EIO); 3340 } 3341 3342 mount->rootobj = rootobj; 3343 3344 return (0); 3345 } 3346 3347 /* 3348 * callback function for feature name checks. 3349 */ 3350 static int 3351 check_feature(const char *name, uint64_t value) 3352 { 3353 int i; 3354 3355 if (value == 0) 3356 return (0); 3357 if (name[0] == '\0') 3358 return (0); 3359 3360 for (i = 0; features_for_read[i] != NULL; i++) { 3361 if (strcmp(name, features_for_read[i]) == 0) 3362 return (0); 3363 } 3364 printf("ZFS: unsupported feature: %s\n", name); 3365 return (EIO); 3366 } 3367 3368 /* 3369 * Checks whether the MOS features that are active are supported. 3370 */ 3371 static int 3372 check_mos_features(const spa_t *spa) 3373 { 3374 dnode_phys_t dir; 3375 zap_phys_t *zap; 3376 uint64_t objnum; 3377 size_t size; 3378 int rc; 3379 3380 if ((rc = objset_get_dnode(spa, spa->spa_mos, DMU_OT_OBJECT_DIRECTORY, 3381 &dir)) != 0) 3382 return (rc); 3383 if ((rc = zap_lookup(spa, &dir, DMU_POOL_FEATURES_FOR_READ, 3384 sizeof (objnum), 1, &objnum)) != 0) { 3385 /* 3386 * It is older pool without features. As we have already 3387 * tested the label, just return without raising the error. 3388 */ 3389 return (0); 3390 } 3391 3392 if ((rc = objset_get_dnode(spa, spa->spa_mos, objnum, &dir)) != 0) 3393 return (rc); 3394 3395 if (dir.dn_type != DMU_OTN_ZAP_METADATA) 3396 return (EIO); 3397 3398 size = dir.dn_datablkszsec << SPA_MINBLOCKSHIFT; 3399 zap = malloc(size); 3400 if (zap == NULL) 3401 return (ENOMEM); 3402 3403 if (dnode_read(spa, &dir, 0, zap, size)) { 3404 free(zap); 3405 return (EIO); 3406 } 3407 3408 if (zap->zap_block_type == ZBT_MICRO) 3409 rc = mzap_list((const mzap_phys_t *)zap, size, check_feature); 3410 else 3411 rc = fzap_list(spa, &dir, zap, check_feature); 3412 3413 free(zap); 3414 return (rc); 3415 } 3416 3417 static int 3418 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 3419 { 3420 dnode_phys_t dir; 3421 size_t size; 3422 int rc; 3423 char *nv; 3424 3425 *value = NULL; 3426 if ((rc = objset_get_dnode(spa, spa->spa_mos, obj, &dir)) != 0) 3427 return (rc); 3428 if (dir.dn_type != DMU_OT_PACKED_NVLIST && 3429 dir.dn_bonustype != DMU_OT_PACKED_NVLIST_SIZE) { 3430 return (EIO); 3431 } 3432 3433 if (dir.dn_bonuslen != sizeof (uint64_t)) 3434 return (EIO); 3435 3436 size = *(uint64_t *)DN_BONUS(&dir); 3437 nv = malloc(size); 3438 if (nv == NULL) 3439 return (ENOMEM); 3440 3441 rc = dnode_read(spa, &dir, 0, nv, size); 3442 if (rc != 0) { 3443 free(nv); 3444 nv = NULL; 3445 return (rc); 3446 } 3447 *value = nvlist_import(nv, size); 3448 free(nv); 3449 return (rc); 3450 } 3451 3452 static int 3453 zfs_spa_init(spa_t *spa) 3454 { 3455 struct uberblock checkpoint; 3456 dnode_phys_t dir; 3457 uint64_t config_object; 3458 nvlist_t *nvlist; 3459 int rc; 3460 3461 if (zio_read(spa, &spa->spa_uberblock->ub_rootbp, spa->spa_mos)) { 3462 printf("ZFS: can't read MOS of pool %s\n", spa->spa_name); 3463 return (EIO); 3464 } 3465 if (spa->spa_mos->os_type != DMU_OST_META) { 3466 printf("ZFS: corrupted MOS of pool %s\n", spa->spa_name); 3467 return (EIO); 3468 } 3469 3470 if (objset_get_dnode(spa, &spa->spa_mos_master, 3471 DMU_POOL_DIRECTORY_OBJECT, &dir)) { 3472 printf("ZFS: failed to read pool %s directory object\n", 3473 spa->spa_name); 3474 return (EIO); 3475 } 3476 /* this is allowed to fail, older pools do not have salt */ 3477 rc = zap_lookup(spa, &dir, DMU_POOL_CHECKSUM_SALT, 1, 3478 sizeof (spa->spa_cksum_salt.zcs_bytes), 3479 spa->spa_cksum_salt.zcs_bytes); 3480 3481 rc = check_mos_features(spa); 3482 if (rc != 0) { 3483 printf("ZFS: pool %s is not supported\n", spa->spa_name); 3484 return (rc); 3485 } 3486 3487 rc = zap_lookup(spa, &dir, DMU_POOL_CONFIG, 3488 sizeof (config_object), 1, &config_object); 3489 if (rc != 0) { 3490 printf("ZFS: can not read MOS %s\n", DMU_POOL_CONFIG); 3491 return (EIO); 3492 } 3493 rc = load_nvlist(spa, config_object, &nvlist); 3494 if (rc != 0) 3495 return (rc); 3496 3497 rc = zap_lookup(spa, &dir, DMU_POOL_ZPOOL_CHECKPOINT, 3498 sizeof(uint64_t), sizeof(checkpoint) / sizeof(uint64_t), 3499 &checkpoint); 3500 if (rc == 0 && checkpoint.ub_checkpoint_txg != 0) { 3501 memcpy(&spa->spa_uberblock_checkpoint, &checkpoint, 3502 sizeof(checkpoint)); 3503 if (zio_read(spa, &spa->spa_uberblock_checkpoint.ub_rootbp, 3504 &spa->spa_mos_checkpoint)) { 3505 printf("ZFS: can not read checkpoint data.\n"); 3506 return (EIO); 3507 } 3508 } 3509 3510 /* 3511 * Update vdevs from MOS config. Note, we do skip encoding bytes 3512 * here. See also vdev_label_read_config(). 3513 */ 3514 rc = vdev_init_from_nvlist(spa, nvlist); 3515 nvlist_destroy(nvlist); 3516 return (rc); 3517 } 3518 3519 static int 3520 zfs_dnode_stat(const spa_t *spa, dnode_phys_t *dn, struct stat *sb) 3521 { 3522 3523 if (dn->dn_bonustype != DMU_OT_SA) { 3524 znode_phys_t *zp = (znode_phys_t *)dn->dn_bonus; 3525 3526 sb->st_mode = zp->zp_mode; 3527 sb->st_uid = zp->zp_uid; 3528 sb->st_gid = zp->zp_gid; 3529 sb->st_size = zp->zp_size; 3530 } else { 3531 sa_hdr_phys_t *sahdrp; 3532 int hdrsize; 3533 size_t size = 0; 3534 void *buf = NULL; 3535 3536 if (dn->dn_bonuslen != 0) 3537 sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn); 3538 else { 3539 if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0) { 3540 blkptr_t *bp = DN_SPILL_BLKPTR(dn); 3541 int error; 3542 3543 size = BP_GET_LSIZE(bp); 3544 buf = malloc(size); 3545 if (buf == NULL) 3546 error = ENOMEM; 3547 else 3548 error = zio_read(spa, bp, buf); 3549 3550 if (error != 0) { 3551 free(buf); 3552 return (error); 3553 } 3554 sahdrp = buf; 3555 } else { 3556 return (EIO); 3557 } 3558 } 3559 hdrsize = SA_HDR_SIZE(sahdrp); 3560 sb->st_mode = *(uint64_t *)((char *)sahdrp + hdrsize + 3561 SA_MODE_OFFSET); 3562 sb->st_uid = *(uint64_t *)((char *)sahdrp + hdrsize + 3563 SA_UID_OFFSET); 3564 sb->st_gid = *(uint64_t *)((char *)sahdrp + hdrsize + 3565 SA_GID_OFFSET); 3566 sb->st_size = *(uint64_t *)((char *)sahdrp + hdrsize + 3567 SA_SIZE_OFFSET); 3568 free(buf); 3569 } 3570 3571 return (0); 3572 } 3573 3574 static int 3575 zfs_dnode_readlink(const spa_t *spa, dnode_phys_t *dn, char *path, size_t psize) 3576 { 3577 int rc = 0; 3578 3579 if (dn->dn_bonustype == DMU_OT_SA) { 3580 sa_hdr_phys_t *sahdrp = NULL; 3581 size_t size = 0; 3582 void *buf = NULL; 3583 int hdrsize; 3584 char *p; 3585 3586 if (dn->dn_bonuslen != 0) { 3587 sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn); 3588 } else { 3589 blkptr_t *bp; 3590 3591 if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) == 0) 3592 return (EIO); 3593 bp = DN_SPILL_BLKPTR(dn); 3594 3595 size = BP_GET_LSIZE(bp); 3596 buf = malloc(size); 3597 if (buf == NULL) 3598 rc = ENOMEM; 3599 else 3600 rc = zio_read(spa, bp, buf); 3601 if (rc != 0) { 3602 free(buf); 3603 return (rc); 3604 } 3605 sahdrp = buf; 3606 } 3607 hdrsize = SA_HDR_SIZE(sahdrp); 3608 p = (char *)((uintptr_t)sahdrp + hdrsize + SA_SYMLINK_OFFSET); 3609 memcpy(path, p, psize); 3610 free(buf); 3611 return (0); 3612 } 3613 /* 3614 * Second test is purely to silence bogus compiler 3615 * warning about accessing past the end of dn_bonus. 3616 */ 3617 if (psize + sizeof(znode_phys_t) <= dn->dn_bonuslen && 3618 sizeof(znode_phys_t) <= sizeof(dn->dn_bonus)) { 3619 memcpy(path, &dn->dn_bonus[sizeof(znode_phys_t)], psize); 3620 } else { 3621 rc = dnode_read(spa, dn, 0, path, psize); 3622 } 3623 return (rc); 3624 } 3625 3626 struct obj_list { 3627 uint64_t objnum; 3628 STAILQ_ENTRY(obj_list) entry; 3629 }; 3630 3631 /* 3632 * Lookup a file and return its dnode. 3633 */ 3634 static int 3635 zfs_lookup(const struct zfsmount *mount, const char *upath, dnode_phys_t *dnode) 3636 { 3637 int rc; 3638 uint64_t objnum; 3639 const spa_t *spa; 3640 dnode_phys_t dn; 3641 const char *p, *q; 3642 char element[256]; 3643 char path[1024]; 3644 int symlinks_followed = 0; 3645 struct stat sb; 3646 struct obj_list *entry, *tentry; 3647 STAILQ_HEAD(, obj_list) on_cache = STAILQ_HEAD_INITIALIZER(on_cache); 3648 3649 spa = mount->spa; 3650 if (mount->objset.os_type != DMU_OST_ZFS) { 3651 printf("ZFS: unexpected object set type %ju\n", 3652 (uintmax_t)mount->objset.os_type); 3653 return (EIO); 3654 } 3655 3656 if ((entry = malloc(sizeof(struct obj_list))) == NULL) 3657 return (ENOMEM); 3658 3659 /* 3660 * Get the root directory dnode. 3661 */ 3662 rc = objset_get_dnode(spa, &mount->objset, MASTER_NODE_OBJ, &dn); 3663 if (rc) { 3664 free(entry); 3665 return (rc); 3666 } 3667 3668 rc = zap_lookup(spa, &dn, ZFS_ROOT_OBJ, sizeof(objnum), 1, &objnum); 3669 if (rc) { 3670 free(entry); 3671 return (rc); 3672 } 3673 entry->objnum = objnum; 3674 STAILQ_INSERT_HEAD(&on_cache, entry, entry); 3675 3676 rc = objset_get_dnode(spa, &mount->objset, objnum, &dn); 3677 if (rc != 0) 3678 goto done; 3679 3680 p = upath; 3681 while (p && *p) { 3682 rc = objset_get_dnode(spa, &mount->objset, objnum, &dn); 3683 if (rc != 0) 3684 goto done; 3685 3686 while (*p == '/') 3687 p++; 3688 if (*p == '\0') 3689 break; 3690 q = p; 3691 while (*q != '\0' && *q != '/') 3692 q++; 3693 3694 /* skip dot */ 3695 if (p + 1 == q && p[0] == '.') { 3696 p++; 3697 continue; 3698 } 3699 /* double dot */ 3700 if (p + 2 == q && p[0] == '.' && p[1] == '.') { 3701 p += 2; 3702 if (STAILQ_FIRST(&on_cache) == 3703 STAILQ_LAST(&on_cache, obj_list, entry)) { 3704 rc = ENOENT; 3705 goto done; 3706 } 3707 entry = STAILQ_FIRST(&on_cache); 3708 STAILQ_REMOVE_HEAD(&on_cache, entry); 3709 free(entry); 3710 objnum = (STAILQ_FIRST(&on_cache))->objnum; 3711 continue; 3712 } 3713 if (q - p + 1 > sizeof(element)) { 3714 rc = ENAMETOOLONG; 3715 goto done; 3716 } 3717 memcpy(element, p, q - p); 3718 element[q - p] = 0; 3719 p = q; 3720 3721 if ((rc = zfs_dnode_stat(spa, &dn, &sb)) != 0) 3722 goto done; 3723 if (!S_ISDIR(sb.st_mode)) { 3724 rc = ENOTDIR; 3725 goto done; 3726 } 3727 3728 rc = zap_lookup(spa, &dn, element, sizeof (objnum), 1, &objnum); 3729 if (rc) 3730 goto done; 3731 objnum = ZFS_DIRENT_OBJ(objnum); 3732 3733 if ((entry = malloc(sizeof(struct obj_list))) == NULL) { 3734 rc = ENOMEM; 3735 goto done; 3736 } 3737 entry->objnum = objnum; 3738 STAILQ_INSERT_HEAD(&on_cache, entry, entry); 3739 rc = objset_get_dnode(spa, &mount->objset, objnum, &dn); 3740 if (rc) 3741 goto done; 3742 3743 /* 3744 * Check for symlink. 3745 */ 3746 rc = zfs_dnode_stat(spa, &dn, &sb); 3747 if (rc) 3748 goto done; 3749 if (S_ISLNK(sb.st_mode)) { 3750 if (symlinks_followed > 10) { 3751 rc = EMLINK; 3752 goto done; 3753 } 3754 symlinks_followed++; 3755 3756 /* 3757 * Read the link value and copy the tail of our 3758 * current path onto the end. 3759 */ 3760 if (sb.st_size + strlen(p) + 1 > sizeof(path)) { 3761 rc = ENAMETOOLONG; 3762 goto done; 3763 } 3764 strcpy(&path[sb.st_size], p); 3765 3766 rc = zfs_dnode_readlink(spa, &dn, path, sb.st_size); 3767 if (rc != 0) 3768 goto done; 3769 3770 /* 3771 * Restart with the new path, starting either at 3772 * the root or at the parent depending whether or 3773 * not the link is relative. 3774 */ 3775 p = path; 3776 if (*p == '/') { 3777 while (STAILQ_FIRST(&on_cache) != 3778 STAILQ_LAST(&on_cache, obj_list, entry)) { 3779 entry = STAILQ_FIRST(&on_cache); 3780 STAILQ_REMOVE_HEAD(&on_cache, entry); 3781 free(entry); 3782 } 3783 } else { 3784 entry = STAILQ_FIRST(&on_cache); 3785 STAILQ_REMOVE_HEAD(&on_cache, entry); 3786 free(entry); 3787 } 3788 objnum = (STAILQ_FIRST(&on_cache))->objnum; 3789 } 3790 } 3791 3792 *dnode = dn; 3793 done: 3794 STAILQ_FOREACH_SAFE(entry, &on_cache, entry, tentry) 3795 free(entry); 3796 return (rc); 3797 } 3798