1 /*- 2 * Copyright (c) 2007 Doug Rabson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 /* 31 * Stand-alone ZFS file reader. 32 */ 33 34 #include <sys/endian.h> 35 #include <sys/stat.h> 36 #include <sys/stdint.h> 37 #include <sys/list.h> 38 #include <machine/_inttypes.h> 39 40 #include "zfsimpl.h" 41 #include "zfssubr.c" 42 43 44 struct zfsmount { 45 const spa_t *spa; 46 objset_phys_t objset; 47 uint64_t rootobj; 48 }; 49 static struct zfsmount zfsmount __unused; 50 51 /* 52 * The indirect_child_t represents the vdev that we will read from, when we 53 * need to read all copies of the data (e.g. for scrub or reconstruction). 54 * For plain (non-mirror) top-level vdevs (i.e. is_vdev is not a mirror), 55 * ic_vdev is the same as is_vdev. However, for mirror top-level vdevs, 56 * ic_vdev is a child of the mirror. 57 */ 58 typedef struct indirect_child { 59 void *ic_data; 60 vdev_t *ic_vdev; 61 } indirect_child_t; 62 63 /* 64 * The indirect_split_t represents one mapped segment of an i/o to the 65 * indirect vdev. For non-split (contiguously-mapped) blocks, there will be 66 * only one indirect_split_t, with is_split_offset==0 and is_size==io_size. 67 * For split blocks, there will be several of these. 68 */ 69 typedef struct indirect_split { 70 list_node_t is_node; /* link on iv_splits */ 71 72 /* 73 * is_split_offset is the offset into the i/o. 74 * This is the sum of the previous splits' is_size's. 75 */ 76 uint64_t is_split_offset; 77 78 vdev_t *is_vdev; /* top-level vdev */ 79 uint64_t is_target_offset; /* offset on is_vdev */ 80 uint64_t is_size; 81 int is_children; /* number of entries in is_child[] */ 82 83 /* 84 * is_good_child is the child that we are currently using to 85 * attempt reconstruction. 86 */ 87 int is_good_child; 88 89 indirect_child_t is_child[1]; /* variable-length */ 90 } indirect_split_t; 91 92 /* 93 * The indirect_vsd_t is associated with each i/o to the indirect vdev. 94 * It is the "Vdev-Specific Data" in the zio_t's io_vsd. 95 */ 96 typedef struct indirect_vsd { 97 boolean_t iv_split_block; 98 boolean_t iv_reconstruct; 99 100 list_t iv_splits; /* list of indirect_split_t's */ 101 } indirect_vsd_t; 102 103 /* 104 * List of all vdevs, chained through v_alllink. 105 */ 106 static vdev_list_t zfs_vdevs; 107 108 /* 109 * List of ZFS features supported for read 110 */ 111 static const char *features_for_read[] = { 112 "org.illumos:lz4_compress", 113 "com.delphix:hole_birth", 114 "com.delphix:extensible_dataset", 115 "com.delphix:embedded_data", 116 "org.open-zfs:large_blocks", 117 "org.illumos:sha512", 118 "org.illumos:skein", 119 "org.zfsonlinux:large_dnode", 120 "com.joyent:multi_vdev_crash_dump", 121 "com.delphix:spacemap_histogram", 122 "com.delphix:zpool_checkpoint", 123 "com.delphix:spacemap_v2", 124 "com.datto:encryption", 125 "org.zfsonlinux:allocation_classes", 126 "com.datto:resilver_defer", 127 "com.delphix:device_removal", 128 "com.delphix:obsolete_counts", 129 "com.intel:allocation_classes", 130 NULL 131 }; 132 133 /* 134 * List of all pools, chained through spa_link. 135 */ 136 static spa_list_t zfs_pools; 137 138 static const dnode_phys_t *dnode_cache_obj; 139 static uint64_t dnode_cache_bn; 140 static char *dnode_cache_buf; 141 142 static int zio_read(const spa_t *spa, const blkptr_t *bp, void *buf); 143 static int zfs_get_root(const spa_t *spa, uint64_t *objid); 144 static int zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result); 145 static int zap_lookup(const spa_t *spa, const dnode_phys_t *dnode, 146 const char *name, uint64_t integer_size, uint64_t num_integers, 147 void *value); 148 static int objset_get_dnode(const spa_t *, const objset_phys_t *, uint64_t, 149 dnode_phys_t *); 150 static int dnode_read(const spa_t *, const dnode_phys_t *, off_t, void *, 151 size_t); 152 static int vdev_indirect_read(vdev_t *, const blkptr_t *, void *, off_t, 153 size_t); 154 static int vdev_mirror_read(vdev_t *, const blkptr_t *, void *, off_t, size_t); 155 vdev_indirect_mapping_t *vdev_indirect_mapping_open(spa_t *, objset_phys_t *, 156 uint64_t); 157 vdev_indirect_mapping_entry_phys_t * 158 vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *, uint64_t, 159 uint64_t, uint64_t *); 160 161 static void 162 zfs_init(void) 163 { 164 STAILQ_INIT(&zfs_vdevs); 165 STAILQ_INIT(&zfs_pools); 166 167 dnode_cache_buf = malloc(SPA_MAXBLOCKSIZE); 168 169 zfs_init_crc(); 170 } 171 172 static int 173 nvlist_check_features_for_read(nvlist_t *nvl) 174 { 175 nvlist_t *features = NULL; 176 nvs_data_t *data; 177 nvp_header_t *nvp; 178 nv_string_t *nvp_name; 179 int rc; 180 181 rc = nvlist_find(nvl, ZPOOL_CONFIG_FEATURES_FOR_READ, 182 DATA_TYPE_NVLIST, NULL, &features, NULL); 183 if (rc != 0) 184 return (rc); 185 186 data = (nvs_data_t *)features->nv_data; 187 nvp = &data->nvl_pair; /* first pair in nvlist */ 188 189 while (nvp->encoded_size != 0 && nvp->decoded_size != 0) { 190 int i, found; 191 192 nvp_name = (nv_string_t *)((uintptr_t)nvp + sizeof(*nvp)); 193 found = 0; 194 195 for (i = 0; features_for_read[i] != NULL; i++) { 196 if (memcmp(nvp_name->nv_data, features_for_read[i], 197 nvp_name->nv_size) == 0) { 198 found = 1; 199 break; 200 } 201 } 202 203 if (!found) { 204 printf("ZFS: unsupported feature: %.*s\n", 205 nvp_name->nv_size, nvp_name->nv_data); 206 rc = EIO; 207 } 208 nvp = (nvp_header_t *)((uint8_t *)nvp + nvp->encoded_size); 209 } 210 nvlist_destroy(features); 211 212 return (rc); 213 } 214 215 static int 216 vdev_read_phys(vdev_t *vdev, const blkptr_t *bp, void *buf, 217 off_t offset, size_t size) 218 { 219 size_t psize; 220 int rc; 221 222 if (!vdev->v_phys_read) 223 return (EIO); 224 225 if (bp) { 226 psize = BP_GET_PSIZE(bp); 227 } else { 228 psize = size; 229 } 230 231 rc = vdev->v_phys_read(vdev, vdev->v_read_priv, offset, buf, psize); 232 if (rc == 0) { 233 if (bp != NULL) 234 rc = zio_checksum_verify(vdev->v_spa, bp, buf); 235 } 236 237 return (rc); 238 } 239 240 typedef struct remap_segment { 241 vdev_t *rs_vd; 242 uint64_t rs_offset; 243 uint64_t rs_asize; 244 uint64_t rs_split_offset; 245 list_node_t rs_node; 246 } remap_segment_t; 247 248 static remap_segment_t * 249 rs_alloc(vdev_t *vd, uint64_t offset, uint64_t asize, uint64_t split_offset) 250 { 251 remap_segment_t *rs = malloc(sizeof (remap_segment_t)); 252 253 if (rs != NULL) { 254 rs->rs_vd = vd; 255 rs->rs_offset = offset; 256 rs->rs_asize = asize; 257 rs->rs_split_offset = split_offset; 258 } 259 260 return (rs); 261 } 262 263 vdev_indirect_mapping_t * 264 vdev_indirect_mapping_open(spa_t *spa, objset_phys_t *os, 265 uint64_t mapping_object) 266 { 267 vdev_indirect_mapping_t *vim; 268 vdev_indirect_mapping_phys_t *vim_phys; 269 int rc; 270 271 vim = calloc(1, sizeof (*vim)); 272 if (vim == NULL) 273 return (NULL); 274 275 vim->vim_dn = calloc(1, sizeof (*vim->vim_dn)); 276 if (vim->vim_dn == NULL) { 277 free(vim); 278 return (NULL); 279 } 280 281 rc = objset_get_dnode(spa, os, mapping_object, vim->vim_dn); 282 if (rc != 0) { 283 free(vim->vim_dn); 284 free(vim); 285 return (NULL); 286 } 287 288 vim->vim_spa = spa; 289 vim->vim_phys = malloc(sizeof (*vim->vim_phys)); 290 if (vim->vim_phys == NULL) { 291 free(vim->vim_dn); 292 free(vim); 293 return (NULL); 294 } 295 296 vim_phys = (vdev_indirect_mapping_phys_t *)DN_BONUS(vim->vim_dn); 297 *vim->vim_phys = *vim_phys; 298 299 vim->vim_objset = os; 300 vim->vim_object = mapping_object; 301 vim->vim_entries = NULL; 302 303 vim->vim_havecounts = 304 (vim->vim_dn->dn_bonuslen > VDEV_INDIRECT_MAPPING_SIZE_V0); 305 306 return (vim); 307 } 308 309 /* 310 * Compare an offset with an indirect mapping entry; there are three 311 * possible scenarios: 312 * 313 * 1. The offset is "less than" the mapping entry; meaning the 314 * offset is less than the source offset of the mapping entry. In 315 * this case, there is no overlap between the offset and the 316 * mapping entry and -1 will be returned. 317 * 318 * 2. The offset is "greater than" the mapping entry; meaning the 319 * offset is greater than the mapping entry's source offset plus 320 * the entry's size. In this case, there is no overlap between 321 * the offset and the mapping entry and 1 will be returned. 322 * 323 * NOTE: If the offset is actually equal to the entry's offset 324 * plus size, this is considered to be "greater" than the entry, 325 * and this case applies (i.e. 1 will be returned). Thus, the 326 * entry's "range" can be considered to be inclusive at its 327 * start, but exclusive at its end: e.g. [src, src + size). 328 * 329 * 3. The last case to consider is if the offset actually falls 330 * within the mapping entry's range. If this is the case, the 331 * offset is considered to be "equal to" the mapping entry and 332 * 0 will be returned. 333 * 334 * NOTE: If the offset is equal to the entry's source offset, 335 * this case applies and 0 will be returned. If the offset is 336 * equal to the entry's source plus its size, this case does 337 * *not* apply (see "NOTE" above for scenario 2), and 1 will be 338 * returned. 339 */ 340 static int 341 dva_mapping_overlap_compare(const void *v_key, const void *v_array_elem) 342 { 343 const uint64_t *key = v_key; 344 const vdev_indirect_mapping_entry_phys_t *array_elem = 345 v_array_elem; 346 uint64_t src_offset = DVA_MAPPING_GET_SRC_OFFSET(array_elem); 347 348 if (*key < src_offset) { 349 return (-1); 350 } else if (*key < src_offset + DVA_GET_ASIZE(&array_elem->vimep_dst)) { 351 return (0); 352 } else { 353 return (1); 354 } 355 } 356 357 /* 358 * Return array entry. 359 */ 360 static vdev_indirect_mapping_entry_phys_t * 361 vdev_indirect_mapping_entry(vdev_indirect_mapping_t *vim, uint64_t index) 362 { 363 uint64_t size; 364 off_t offset = 0; 365 int rc; 366 367 if (vim->vim_phys->vimp_num_entries == 0) 368 return (NULL); 369 370 if (vim->vim_entries == NULL) { 371 uint64_t bsize; 372 373 bsize = vim->vim_dn->dn_datablkszsec << SPA_MINBLOCKSHIFT; 374 size = vim->vim_phys->vimp_num_entries * 375 sizeof (*vim->vim_entries); 376 if (size > bsize) { 377 size = bsize / sizeof (*vim->vim_entries); 378 size *= sizeof (*vim->vim_entries); 379 } 380 vim->vim_entries = malloc(size); 381 if (vim->vim_entries == NULL) 382 return (NULL); 383 vim->vim_num_entries = size / sizeof (*vim->vim_entries); 384 offset = index * sizeof (*vim->vim_entries); 385 } 386 387 /* We have data in vim_entries */ 388 if (offset == 0) { 389 if (index >= vim->vim_entry_offset && 390 index <= vim->vim_entry_offset + vim->vim_num_entries) { 391 index -= vim->vim_entry_offset; 392 return (&vim->vim_entries[index]); 393 } 394 offset = index * sizeof (*vim->vim_entries); 395 } 396 397 vim->vim_entry_offset = index; 398 size = vim->vim_num_entries * sizeof (*vim->vim_entries); 399 rc = dnode_read(vim->vim_spa, vim->vim_dn, offset, vim->vim_entries, 400 size); 401 if (rc != 0) { 402 /* Read error, invalidate vim_entries. */ 403 free(vim->vim_entries); 404 vim->vim_entries = NULL; 405 return (NULL); 406 } 407 index -= vim->vim_entry_offset; 408 return (&vim->vim_entries[index]); 409 } 410 411 /* 412 * Returns the mapping entry for the given offset. 413 * 414 * It's possible that the given offset will not be in the mapping table 415 * (i.e. no mapping entries contain this offset), in which case, the 416 * return value value depends on the "next_if_missing" parameter. 417 * 418 * If the offset is not found in the table and "next_if_missing" is 419 * B_FALSE, then NULL will always be returned. The behavior is intended 420 * to allow consumers to get the entry corresponding to the offset 421 * parameter, iff the offset overlaps with an entry in the table. 422 * 423 * If the offset is not found in the table and "next_if_missing" is 424 * B_TRUE, then the entry nearest to the given offset will be returned, 425 * such that the entry's source offset is greater than the offset 426 * passed in (i.e. the "next" mapping entry in the table is returned, if 427 * the offset is missing from the table). If there are no entries whose 428 * source offset is greater than the passed in offset, NULL is returned. 429 */ 430 static vdev_indirect_mapping_entry_phys_t * 431 vdev_indirect_mapping_entry_for_offset(vdev_indirect_mapping_t *vim, 432 uint64_t offset) 433 { 434 ASSERT(vim->vim_phys->vimp_num_entries > 0); 435 436 vdev_indirect_mapping_entry_phys_t *entry; 437 438 uint64_t last = vim->vim_phys->vimp_num_entries - 1; 439 uint64_t base = 0; 440 441 /* 442 * We don't define these inside of the while loop because we use 443 * their value in the case that offset isn't in the mapping. 444 */ 445 uint64_t mid; 446 int result; 447 448 while (last >= base) { 449 mid = base + ((last - base) >> 1); 450 451 entry = vdev_indirect_mapping_entry(vim, mid); 452 if (entry == NULL) 453 break; 454 result = dva_mapping_overlap_compare(&offset, entry); 455 456 if (result == 0) { 457 break; 458 } else if (result < 0) { 459 last = mid - 1; 460 } else { 461 base = mid + 1; 462 } 463 } 464 return (entry); 465 } 466 467 /* 468 * Given an indirect vdev and an extent on that vdev, it duplicates the 469 * physical entries of the indirect mapping that correspond to the extent 470 * to a new array and returns a pointer to it. In addition, copied_entries 471 * is populated with the number of mapping entries that were duplicated. 472 * 473 * Finally, since we are doing an allocation, it is up to the caller to 474 * free the array allocated in this function. 475 */ 476 vdev_indirect_mapping_entry_phys_t * 477 vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *vd, uint64_t offset, 478 uint64_t asize, uint64_t *copied_entries) 479 { 480 vdev_indirect_mapping_entry_phys_t *duplicate_mappings = NULL; 481 vdev_indirect_mapping_t *vim = vd->v_mapping; 482 uint64_t entries = 0; 483 484 vdev_indirect_mapping_entry_phys_t *first_mapping = 485 vdev_indirect_mapping_entry_for_offset(vim, offset); 486 ASSERT3P(first_mapping, !=, NULL); 487 488 vdev_indirect_mapping_entry_phys_t *m = first_mapping; 489 while (asize > 0) { 490 uint64_t size = DVA_GET_ASIZE(&m->vimep_dst); 491 uint64_t inner_offset = offset - DVA_MAPPING_GET_SRC_OFFSET(m); 492 uint64_t inner_size = MIN(asize, size - inner_offset); 493 494 offset += inner_size; 495 asize -= inner_size; 496 entries++; 497 m++; 498 } 499 500 size_t copy_length = entries * sizeof (*first_mapping); 501 duplicate_mappings = malloc(copy_length); 502 if (duplicate_mappings != NULL) 503 bcopy(first_mapping, duplicate_mappings, copy_length); 504 else 505 entries = 0; 506 507 *copied_entries = entries; 508 509 return (duplicate_mappings); 510 } 511 512 static vdev_t * 513 vdev_lookup_top(spa_t *spa, uint64_t vdev) 514 { 515 vdev_t *rvd; 516 vdev_list_t *vlist; 517 518 vlist = &spa->spa_root_vdev->v_children; 519 STAILQ_FOREACH(rvd, vlist, v_childlink) 520 if (rvd->v_id == vdev) 521 break; 522 523 return (rvd); 524 } 525 526 /* 527 * This is a callback for vdev_indirect_remap() which allocates an 528 * indirect_split_t for each split segment and adds it to iv_splits. 529 */ 530 static void 531 vdev_indirect_gather_splits(uint64_t split_offset, vdev_t *vd, uint64_t offset, 532 uint64_t size, void *arg) 533 { 534 int n = 1; 535 zio_t *zio = arg; 536 indirect_vsd_t *iv = zio->io_vsd; 537 538 if (vd->v_read == vdev_indirect_read) 539 return; 540 541 if (vd->v_read == vdev_mirror_read) 542 n = vd->v_nchildren; 543 544 indirect_split_t *is = 545 malloc(offsetof(indirect_split_t, is_child[n])); 546 if (is == NULL) { 547 zio->io_error = ENOMEM; 548 return; 549 } 550 bzero(is, offsetof(indirect_split_t, is_child[n])); 551 552 is->is_children = n; 553 is->is_size = size; 554 is->is_split_offset = split_offset; 555 is->is_target_offset = offset; 556 is->is_vdev = vd; 557 558 /* 559 * Note that we only consider multiple copies of the data for 560 * *mirror* vdevs. We don't for "replacing" or "spare" vdevs, even 561 * though they use the same ops as mirror, because there's only one 562 * "good" copy under the replacing/spare. 563 */ 564 if (vd->v_read == vdev_mirror_read) { 565 int i = 0; 566 vdev_t *kid; 567 568 STAILQ_FOREACH(kid, &vd->v_children, v_childlink) { 569 is->is_child[i++].ic_vdev = kid; 570 } 571 } else { 572 is->is_child[0].ic_vdev = vd; 573 } 574 575 list_insert_tail(&iv->iv_splits, is); 576 } 577 578 static void 579 vdev_indirect_remap(vdev_t *vd, uint64_t offset, uint64_t asize, void *arg) 580 { 581 list_t stack; 582 spa_t *spa = vd->v_spa; 583 zio_t *zio = arg; 584 remap_segment_t *rs; 585 586 list_create(&stack, sizeof (remap_segment_t), 587 offsetof(remap_segment_t, rs_node)); 588 589 rs = rs_alloc(vd, offset, asize, 0); 590 if (rs == NULL) { 591 printf("vdev_indirect_remap: out of memory.\n"); 592 zio->io_error = ENOMEM; 593 } 594 for (; rs != NULL; rs = list_remove_head(&stack)) { 595 vdev_t *v = rs->rs_vd; 596 uint64_t num_entries = 0; 597 /* vdev_indirect_mapping_t *vim = v->v_mapping; */ 598 vdev_indirect_mapping_entry_phys_t *mapping = 599 vdev_indirect_mapping_duplicate_adjacent_entries(v, 600 rs->rs_offset, rs->rs_asize, &num_entries); 601 602 if (num_entries == 0) 603 zio->io_error = ENOMEM; 604 605 for (uint64_t i = 0; i < num_entries; i++) { 606 vdev_indirect_mapping_entry_phys_t *m = &mapping[i]; 607 uint64_t size = DVA_GET_ASIZE(&m->vimep_dst); 608 uint64_t dst_offset = DVA_GET_OFFSET(&m->vimep_dst); 609 uint64_t dst_vdev = DVA_GET_VDEV(&m->vimep_dst); 610 uint64_t inner_offset = rs->rs_offset - 611 DVA_MAPPING_GET_SRC_OFFSET(m); 612 uint64_t inner_size = 613 MIN(rs->rs_asize, size - inner_offset); 614 vdev_t *dst_v = vdev_lookup_top(spa, dst_vdev); 615 616 if (dst_v->v_read == vdev_indirect_read) { 617 remap_segment_t *o; 618 619 o = rs_alloc(dst_v, dst_offset + inner_offset, 620 inner_size, rs->rs_split_offset); 621 if (o == NULL) { 622 printf("vdev_indirect_remap: " 623 "out of memory.\n"); 624 zio->io_error = ENOMEM; 625 break; 626 } 627 628 list_insert_head(&stack, o); 629 } 630 vdev_indirect_gather_splits(rs->rs_split_offset, dst_v, 631 dst_offset + inner_offset, 632 inner_size, arg); 633 634 /* 635 * vdev_indirect_gather_splits can have memory 636 * allocation error, we can not recover from it. 637 */ 638 if (zio->io_error != 0) 639 break; 640 rs->rs_offset += inner_size; 641 rs->rs_asize -= inner_size; 642 rs->rs_split_offset += inner_size; 643 } 644 645 free(mapping); 646 free(rs); 647 if (zio->io_error != 0) 648 break; 649 } 650 651 list_destroy(&stack); 652 } 653 654 static void 655 vdev_indirect_map_free(zio_t *zio) 656 { 657 indirect_vsd_t *iv = zio->io_vsd; 658 indirect_split_t *is; 659 660 while ((is = list_head(&iv->iv_splits)) != NULL) { 661 for (int c = 0; c < is->is_children; c++) { 662 indirect_child_t *ic = &is->is_child[c]; 663 free(ic->ic_data); 664 } 665 list_remove(&iv->iv_splits, is); 666 free(is); 667 } 668 free(iv); 669 } 670 671 static int 672 vdev_indirect_read(vdev_t *vdev, const blkptr_t *bp, void *buf, 673 off_t offset, size_t bytes) 674 { 675 zio_t zio; 676 spa_t *spa = vdev->v_spa; 677 indirect_vsd_t *iv; 678 indirect_split_t *first; 679 int rc = EIO; 680 681 iv = calloc(1, sizeof(*iv)); 682 if (iv == NULL) 683 return (ENOMEM); 684 685 list_create(&iv->iv_splits, 686 sizeof (indirect_split_t), offsetof(indirect_split_t, is_node)); 687 688 bzero(&zio, sizeof(zio)); 689 zio.io_spa = spa; 690 zio.io_bp = (blkptr_t *)bp; 691 zio.io_data = buf; 692 zio.io_size = bytes; 693 zio.io_offset = offset; 694 zio.io_vd = vdev; 695 zio.io_vsd = iv; 696 697 if (vdev->v_mapping == NULL) { 698 vdev_indirect_config_t *vic; 699 700 vic = &vdev->vdev_indirect_config; 701 vdev->v_mapping = vdev_indirect_mapping_open(spa, 702 &spa->spa_mos, vic->vic_mapping_object); 703 } 704 705 vdev_indirect_remap(vdev, offset, bytes, &zio); 706 if (zio.io_error != 0) 707 return (zio.io_error); 708 709 first = list_head(&iv->iv_splits); 710 if (first->is_size == zio.io_size) { 711 /* 712 * This is not a split block; we are pointing to the entire 713 * data, which will checksum the same as the original data. 714 * Pass the BP down so that the child i/o can verify the 715 * checksum, and try a different location if available 716 * (e.g. on a mirror). 717 * 718 * While this special case could be handled the same as the 719 * general (split block) case, doing it this way ensures 720 * that the vast majority of blocks on indirect vdevs 721 * (which are not split) are handled identically to blocks 722 * on non-indirect vdevs. This allows us to be less strict 723 * about performance in the general (but rare) case. 724 */ 725 rc = first->is_vdev->v_read(first->is_vdev, zio.io_bp, 726 zio.io_data, first->is_target_offset, bytes); 727 } else { 728 iv->iv_split_block = B_TRUE; 729 /* 730 * Read one copy of each split segment, from the 731 * top-level vdev. Since we don't know the 732 * checksum of each split individually, the child 733 * zio can't ensure that we get the right data. 734 * E.g. if it's a mirror, it will just read from a 735 * random (healthy) leaf vdev. We have to verify 736 * the checksum in vdev_indirect_io_done(). 737 */ 738 for (indirect_split_t *is = list_head(&iv->iv_splits); 739 is != NULL; is = list_next(&iv->iv_splits, is)) { 740 char *ptr = zio.io_data; 741 742 rc = is->is_vdev->v_read(is->is_vdev, zio.io_bp, 743 ptr + is->is_split_offset, is->is_target_offset, 744 is->is_size); 745 } 746 if (zio_checksum_verify(spa, zio.io_bp, zio.io_data)) 747 rc = ECKSUM; 748 else 749 rc = 0; 750 } 751 752 vdev_indirect_map_free(&zio); 753 if (rc == 0) 754 rc = zio.io_error; 755 756 return (rc); 757 } 758 759 static int 760 vdev_disk_read(vdev_t *vdev, const blkptr_t *bp, void *buf, 761 off_t offset, size_t bytes) 762 { 763 764 return (vdev_read_phys(vdev, bp, buf, 765 offset + VDEV_LABEL_START_SIZE, bytes)); 766 } 767 768 static int 769 vdev_missing_read(vdev_t *vdev __unused, const blkptr_t *bp __unused, 770 void *buf __unused, off_t offset __unused, size_t bytes __unused) 771 { 772 773 return (ENOTSUP); 774 } 775 776 static int 777 vdev_mirror_read(vdev_t *vdev, const blkptr_t *bp, void *buf, 778 off_t offset, size_t bytes) 779 { 780 vdev_t *kid; 781 int rc; 782 783 rc = EIO; 784 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) { 785 if (kid->v_state != VDEV_STATE_HEALTHY) 786 continue; 787 rc = kid->v_read(kid, bp, buf, offset, bytes); 788 if (!rc) 789 return (0); 790 } 791 792 return (rc); 793 } 794 795 static int 796 vdev_replacing_read(vdev_t *vdev, const blkptr_t *bp, void *buf, 797 off_t offset, size_t bytes) 798 { 799 vdev_t *kid; 800 801 /* 802 * Here we should have two kids: 803 * First one which is the one we are replacing and we can trust 804 * only this one to have valid data, but it might not be present. 805 * Second one is that one we are replacing with. It is most likely 806 * healthy, but we can't trust it has needed data, so we won't use it. 807 */ 808 kid = STAILQ_FIRST(&vdev->v_children); 809 if (kid == NULL) 810 return (EIO); 811 if (kid->v_state != VDEV_STATE_HEALTHY) 812 return (EIO); 813 return (kid->v_read(kid, bp, buf, offset, bytes)); 814 } 815 816 static vdev_t * 817 vdev_find(uint64_t guid) 818 { 819 vdev_t *vdev; 820 821 STAILQ_FOREACH(vdev, &zfs_vdevs, v_alllink) 822 if (vdev->v_guid == guid) 823 return (vdev); 824 825 return (0); 826 } 827 828 static vdev_t * 829 vdev_create(uint64_t guid, vdev_read_t *_read) 830 { 831 vdev_t *vdev; 832 vdev_indirect_config_t *vic; 833 834 vdev = calloc(1, sizeof(vdev_t)); 835 if (vdev != NULL) { 836 STAILQ_INIT(&vdev->v_children); 837 vdev->v_guid = guid; 838 vdev->v_read = _read; 839 840 /* 841 * root vdev has no read function, we use this fact to 842 * skip setting up data we do not need for root vdev. 843 * We only point root vdev from spa. 844 */ 845 if (_read != NULL) { 846 vic = &vdev->vdev_indirect_config; 847 vic->vic_prev_indirect_vdev = UINT64_MAX; 848 STAILQ_INSERT_TAIL(&zfs_vdevs, vdev, v_alllink); 849 } 850 } 851 852 return (vdev); 853 } 854 855 static void 856 vdev_set_initial_state(vdev_t *vdev, const nvlist_t *nvlist) 857 { 858 uint64_t is_offline, is_faulted, is_degraded, is_removed, isnt_present; 859 uint64_t is_log; 860 861 is_offline = is_removed = is_faulted = is_degraded = isnt_present = 0; 862 is_log = 0; 863 (void) nvlist_find(nvlist, ZPOOL_CONFIG_OFFLINE, DATA_TYPE_UINT64, NULL, 864 &is_offline, NULL); 865 (void) nvlist_find(nvlist, ZPOOL_CONFIG_REMOVED, DATA_TYPE_UINT64, NULL, 866 &is_removed, NULL); 867 (void) nvlist_find(nvlist, ZPOOL_CONFIG_FAULTED, DATA_TYPE_UINT64, NULL, 868 &is_faulted, NULL); 869 (void) nvlist_find(nvlist, ZPOOL_CONFIG_DEGRADED, DATA_TYPE_UINT64, 870 NULL, &is_degraded, NULL); 871 (void) nvlist_find(nvlist, ZPOOL_CONFIG_NOT_PRESENT, DATA_TYPE_UINT64, 872 NULL, &isnt_present, NULL); 873 (void) nvlist_find(nvlist, ZPOOL_CONFIG_IS_LOG, DATA_TYPE_UINT64, NULL, 874 &is_log, NULL); 875 876 if (is_offline != 0) 877 vdev->v_state = VDEV_STATE_OFFLINE; 878 else if (is_removed != 0) 879 vdev->v_state = VDEV_STATE_REMOVED; 880 else if (is_faulted != 0) 881 vdev->v_state = VDEV_STATE_FAULTED; 882 else if (is_degraded != 0) 883 vdev->v_state = VDEV_STATE_DEGRADED; 884 else if (isnt_present != 0) 885 vdev->v_state = VDEV_STATE_CANT_OPEN; 886 887 vdev->v_islog = is_log != 0; 888 } 889 890 static int 891 vdev_init(uint64_t guid, const nvlist_t *nvlist, vdev_t **vdevp) 892 { 893 uint64_t id, ashift, asize, nparity; 894 const char *path; 895 const char *type; 896 int len, pathlen; 897 char *name; 898 vdev_t *vdev; 899 900 if (nvlist_find(nvlist, ZPOOL_CONFIG_ID, DATA_TYPE_UINT64, NULL, &id, 901 NULL) || 902 nvlist_find(nvlist, ZPOOL_CONFIG_TYPE, DATA_TYPE_STRING, NULL, 903 &type, &len)) { 904 return (ENOENT); 905 } 906 907 if (memcmp(type, VDEV_TYPE_MIRROR, len) != 0 && 908 memcmp(type, VDEV_TYPE_DISK, len) != 0 && 909 #ifdef ZFS_TEST 910 memcmp(type, VDEV_TYPE_FILE, len) != 0 && 911 #endif 912 memcmp(type, VDEV_TYPE_RAIDZ, len) != 0 && 913 memcmp(type, VDEV_TYPE_INDIRECT, len) != 0 && 914 memcmp(type, VDEV_TYPE_REPLACING, len) != 0 && 915 memcmp(type, VDEV_TYPE_HOLE, len) != 0) { 916 printf("ZFS: can only boot from disk, mirror, raidz1, " 917 "raidz2 and raidz3 vdevs, got: %.*s\n", len, type); 918 return (EIO); 919 } 920 921 if (memcmp(type, VDEV_TYPE_MIRROR, len) == 0) 922 vdev = vdev_create(guid, vdev_mirror_read); 923 else if (memcmp(type, VDEV_TYPE_RAIDZ, len) == 0) 924 vdev = vdev_create(guid, vdev_raidz_read); 925 else if (memcmp(type, VDEV_TYPE_REPLACING, len) == 0) 926 vdev = vdev_create(guid, vdev_replacing_read); 927 else if (memcmp(type, VDEV_TYPE_INDIRECT, len) == 0) { 928 vdev_indirect_config_t *vic; 929 930 vdev = vdev_create(guid, vdev_indirect_read); 931 if (vdev != NULL) { 932 vdev->v_state = VDEV_STATE_HEALTHY; 933 vic = &vdev->vdev_indirect_config; 934 935 nvlist_find(nvlist, 936 ZPOOL_CONFIG_INDIRECT_OBJECT, 937 DATA_TYPE_UINT64, 938 NULL, &vic->vic_mapping_object, NULL); 939 nvlist_find(nvlist, 940 ZPOOL_CONFIG_INDIRECT_BIRTHS, 941 DATA_TYPE_UINT64, 942 NULL, &vic->vic_births_object, NULL); 943 nvlist_find(nvlist, 944 ZPOOL_CONFIG_PREV_INDIRECT_VDEV, 945 DATA_TYPE_UINT64, 946 NULL, &vic->vic_prev_indirect_vdev, NULL); 947 } 948 } else if (memcmp(type, VDEV_TYPE_HOLE, len) == 0) { 949 vdev = vdev_create(guid, vdev_missing_read); 950 } else { 951 vdev = vdev_create(guid, vdev_disk_read); 952 } 953 954 if (vdev == NULL) 955 return (ENOMEM); 956 957 vdev_set_initial_state(vdev, nvlist); 958 vdev->v_id = id; 959 if (nvlist_find(nvlist, ZPOOL_CONFIG_ASHIFT, 960 DATA_TYPE_UINT64, NULL, &ashift, NULL) == 0) 961 vdev->v_ashift = ashift; 962 963 if (nvlist_find(nvlist, ZPOOL_CONFIG_ASIZE, 964 DATA_TYPE_UINT64, NULL, &asize, NULL) == 0) { 965 vdev->v_psize = asize + 966 VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; 967 } 968 969 if (nvlist_find(nvlist, ZPOOL_CONFIG_NPARITY, 970 DATA_TYPE_UINT64, NULL, &nparity, NULL) == 0) 971 vdev->v_nparity = nparity; 972 973 if (nvlist_find(nvlist, ZPOOL_CONFIG_PATH, 974 DATA_TYPE_STRING, NULL, &path, &pathlen) == 0) { 975 char prefix[] = "/dev/"; 976 977 len = strlen(prefix); 978 if (len < pathlen && memcmp(path, prefix, len) == 0) { 979 path += len; 980 pathlen -= len; 981 } 982 name = malloc(pathlen + 1); 983 bcopy(path, name, pathlen); 984 name[pathlen] = '\0'; 985 vdev->v_name = name; 986 } else { 987 name = NULL; 988 if (memcmp(type, VDEV_TYPE_RAIDZ, len) == 0) { 989 if (vdev->v_nparity < 1 || 990 vdev->v_nparity > 3) { 991 printf("ZFS: invalid raidz parity: %d\n", 992 vdev->v_nparity); 993 return (EIO); 994 } 995 (void) asprintf(&name, "%.*s%d-%" PRIu64, len, type, 996 vdev->v_nparity, id); 997 } else { 998 (void) asprintf(&name, "%.*s-%" PRIu64, len, type, id); 999 } 1000 vdev->v_name = name; 1001 } 1002 *vdevp = vdev; 1003 return (0); 1004 } 1005 1006 /* 1007 * Find slot for vdev. We return either NULL to signal to use 1008 * STAILQ_INSERT_HEAD, or we return link element to be used with 1009 * STAILQ_INSERT_AFTER. 1010 */ 1011 static vdev_t * 1012 vdev_find_previous(vdev_t *top_vdev, vdev_t *vdev) 1013 { 1014 vdev_t *v, *previous; 1015 1016 if (STAILQ_EMPTY(&top_vdev->v_children)) 1017 return (NULL); 1018 1019 previous = NULL; 1020 STAILQ_FOREACH(v, &top_vdev->v_children, v_childlink) { 1021 if (v->v_id > vdev->v_id) 1022 return (previous); 1023 1024 if (v->v_id == vdev->v_id) 1025 return (v); 1026 1027 if (v->v_id < vdev->v_id) 1028 previous = v; 1029 } 1030 return (previous); 1031 } 1032 1033 static size_t 1034 vdev_child_count(vdev_t *vdev) 1035 { 1036 vdev_t *v; 1037 size_t count; 1038 1039 count = 0; 1040 STAILQ_FOREACH(v, &vdev->v_children, v_childlink) { 1041 count++; 1042 } 1043 return (count); 1044 } 1045 1046 /* 1047 * Insert vdev into top_vdev children list. List is ordered by v_id. 1048 */ 1049 static void 1050 vdev_insert(vdev_t *top_vdev, vdev_t *vdev) 1051 { 1052 vdev_t *previous; 1053 size_t count; 1054 1055 /* 1056 * The top level vdev can appear in random order, depending how 1057 * the firmware is presenting the disk devices. 1058 * However, we will insert vdev to create list ordered by v_id, 1059 * so we can use either STAILQ_INSERT_HEAD or STAILQ_INSERT_AFTER 1060 * as STAILQ does not have insert before. 1061 */ 1062 previous = vdev_find_previous(top_vdev, vdev); 1063 1064 if (previous == NULL) { 1065 STAILQ_INSERT_HEAD(&top_vdev->v_children, vdev, v_childlink); 1066 } else if (previous->v_id == vdev->v_id) { 1067 /* 1068 * This vdev was configured from label config, 1069 * do not insert duplicate. 1070 */ 1071 return; 1072 } else { 1073 STAILQ_INSERT_AFTER(&top_vdev->v_children, previous, vdev, 1074 v_childlink); 1075 } 1076 1077 count = vdev_child_count(top_vdev); 1078 if (top_vdev->v_nchildren < count) 1079 top_vdev->v_nchildren = count; 1080 } 1081 1082 static int 1083 vdev_from_nvlist(spa_t *spa, uint64_t top_guid, const nvlist_t *nvlist) 1084 { 1085 vdev_t *top_vdev, *vdev; 1086 nvlist_t *kids = NULL; 1087 int rc, nkids; 1088 1089 /* Get top vdev. */ 1090 top_vdev = vdev_find(top_guid); 1091 if (top_vdev == NULL) { 1092 rc = vdev_init(top_guid, nvlist, &top_vdev); 1093 if (rc != 0) 1094 return (rc); 1095 top_vdev->v_spa = spa; 1096 top_vdev->v_top = top_vdev; 1097 vdev_insert(spa->spa_root_vdev, top_vdev); 1098 } 1099 1100 /* Add children if there are any. */ 1101 rc = nvlist_find(nvlist, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY, 1102 &nkids, &kids, NULL); 1103 if (rc == 0) { 1104 for (int i = 0; i < nkids; i++) { 1105 uint64_t guid; 1106 1107 rc = nvlist_find(kids, ZPOOL_CONFIG_GUID, 1108 DATA_TYPE_UINT64, NULL, &guid, NULL); 1109 if (rc != 0) { 1110 nvlist_destroy(kids); 1111 return (rc); 1112 } 1113 rc = vdev_init(guid, kids, &vdev); 1114 if (rc != 0) 1115 return (rc); 1116 1117 vdev->v_spa = spa; 1118 vdev->v_top = top_vdev; 1119 vdev_insert(top_vdev, vdev); 1120 1121 rc = nvlist_next(kids); 1122 } 1123 } else { 1124 /* 1125 * When there are no children, nvlist_find() does return 1126 * error, reset it because leaf devices have no children. 1127 */ 1128 rc = 0; 1129 } 1130 nvlist_destroy(kids); 1131 1132 return (rc); 1133 } 1134 1135 static int 1136 vdev_init_from_label(spa_t *spa, const nvlist_t *nvlist) 1137 { 1138 uint64_t pool_guid, top_guid; 1139 nvlist_t *vdevs; 1140 int rc; 1141 1142 if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64, 1143 NULL, &pool_guid, NULL) || 1144 nvlist_find(nvlist, ZPOOL_CONFIG_TOP_GUID, DATA_TYPE_UINT64, 1145 NULL, &top_guid, NULL) || 1146 nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST, 1147 NULL, &vdevs, NULL)) { 1148 printf("ZFS: can't find vdev details\n"); 1149 return (ENOENT); 1150 } 1151 1152 rc = vdev_from_nvlist(spa, top_guid, vdevs); 1153 nvlist_destroy(vdevs); 1154 return (rc); 1155 } 1156 1157 static void 1158 vdev_set_state(vdev_t *vdev) 1159 { 1160 vdev_t *kid; 1161 int good_kids; 1162 int bad_kids; 1163 1164 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) { 1165 vdev_set_state(kid); 1166 } 1167 1168 /* 1169 * A mirror or raidz is healthy if all its kids are healthy. A 1170 * mirror is degraded if any of its kids is healthy; a raidz 1171 * is degraded if at most nparity kids are offline. 1172 */ 1173 if (STAILQ_FIRST(&vdev->v_children)) { 1174 good_kids = 0; 1175 bad_kids = 0; 1176 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) { 1177 if (kid->v_state == VDEV_STATE_HEALTHY) 1178 good_kids++; 1179 else 1180 bad_kids++; 1181 } 1182 if (bad_kids == 0) { 1183 vdev->v_state = VDEV_STATE_HEALTHY; 1184 } else { 1185 if (vdev->v_read == vdev_mirror_read) { 1186 if (good_kids) { 1187 vdev->v_state = VDEV_STATE_DEGRADED; 1188 } else { 1189 vdev->v_state = VDEV_STATE_OFFLINE; 1190 } 1191 } else if (vdev->v_read == vdev_raidz_read) { 1192 if (bad_kids > vdev->v_nparity) { 1193 vdev->v_state = VDEV_STATE_OFFLINE; 1194 } else { 1195 vdev->v_state = VDEV_STATE_DEGRADED; 1196 } 1197 } 1198 } 1199 } 1200 } 1201 1202 static int 1203 vdev_update_from_nvlist(uint64_t top_guid, const nvlist_t *nvlist) 1204 { 1205 vdev_t *vdev; 1206 nvlist_t *kids = NULL; 1207 int rc, nkids; 1208 1209 /* Update top vdev. */ 1210 vdev = vdev_find(top_guid); 1211 if (vdev != NULL) 1212 vdev_set_initial_state(vdev, nvlist); 1213 1214 /* Update children if there are any. */ 1215 rc = nvlist_find(nvlist, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY, 1216 &nkids, &kids, NULL); 1217 if (rc == 0) { 1218 for (int i = 0; i < nkids; i++) { 1219 uint64_t guid; 1220 1221 rc = nvlist_find(kids, ZPOOL_CONFIG_GUID, 1222 DATA_TYPE_UINT64, NULL, &guid, NULL); 1223 if (rc != 0) 1224 break; 1225 1226 vdev = vdev_find(guid); 1227 if (vdev != NULL) 1228 vdev_set_initial_state(vdev, kids); 1229 1230 rc = nvlist_next(kids); 1231 } 1232 } else { 1233 rc = 0; 1234 } 1235 nvlist_destroy(kids); 1236 1237 return (rc); 1238 } 1239 1240 static int 1241 vdev_init_from_nvlist(spa_t *spa, const nvlist_t *nvlist) 1242 { 1243 uint64_t pool_guid, vdev_children; 1244 nvlist_t *vdevs = NULL, *kids = NULL; 1245 int rc, nkids; 1246 1247 if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64, 1248 NULL, &pool_guid, NULL) || 1249 nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_CHILDREN, DATA_TYPE_UINT64, 1250 NULL, &vdev_children, NULL) || 1251 nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST, 1252 NULL, &vdevs, NULL)) { 1253 printf("ZFS: can't find vdev details\n"); 1254 return (ENOENT); 1255 } 1256 1257 /* Wrong guid?! */ 1258 if (spa->spa_guid != pool_guid) { 1259 nvlist_destroy(vdevs); 1260 return (EINVAL); 1261 } 1262 1263 spa->spa_root_vdev->v_nchildren = vdev_children; 1264 1265 rc = nvlist_find(vdevs, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY, 1266 &nkids, &kids, NULL); 1267 nvlist_destroy(vdevs); 1268 1269 /* 1270 * MOS config has at least one child for root vdev. 1271 */ 1272 if (rc != 0) 1273 return (rc); 1274 1275 for (int i = 0; i < nkids; i++) { 1276 uint64_t guid; 1277 vdev_t *vdev; 1278 1279 rc = nvlist_find(kids, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64, 1280 NULL, &guid, NULL); 1281 if (rc != 0) 1282 break; 1283 vdev = vdev_find(guid); 1284 /* 1285 * Top level vdev is missing, create it. 1286 */ 1287 if (vdev == NULL) 1288 rc = vdev_from_nvlist(spa, guid, kids); 1289 else 1290 rc = vdev_update_from_nvlist(guid, kids); 1291 if (rc != 0) 1292 break; 1293 nvlist_next(kids); 1294 } 1295 nvlist_destroy(kids); 1296 1297 /* 1298 * Re-evaluate top-level vdev state. 1299 */ 1300 vdev_set_state(spa->spa_root_vdev); 1301 1302 return (rc); 1303 } 1304 1305 static spa_t * 1306 spa_find_by_guid(uint64_t guid) 1307 { 1308 spa_t *spa; 1309 1310 STAILQ_FOREACH(spa, &zfs_pools, spa_link) 1311 if (spa->spa_guid == guid) 1312 return (spa); 1313 1314 return (NULL); 1315 } 1316 1317 static spa_t * 1318 spa_find_by_name(const char *name) 1319 { 1320 spa_t *spa; 1321 1322 STAILQ_FOREACH(spa, &zfs_pools, spa_link) 1323 if (strcmp(spa->spa_name, name) == 0) 1324 return (spa); 1325 1326 return (NULL); 1327 } 1328 1329 #ifdef BOOT2 1330 static spa_t * 1331 spa_get_primary(void) 1332 { 1333 1334 return (STAILQ_FIRST(&zfs_pools)); 1335 } 1336 1337 static vdev_t * 1338 spa_get_primary_vdev(const spa_t *spa) 1339 { 1340 vdev_t *vdev; 1341 vdev_t *kid; 1342 1343 if (spa == NULL) 1344 spa = spa_get_primary(); 1345 if (spa == NULL) 1346 return (NULL); 1347 vdev = spa->spa_root_vdev; 1348 if (vdev == NULL) 1349 return (NULL); 1350 for (kid = STAILQ_FIRST(&vdev->v_children); kid != NULL; 1351 kid = STAILQ_FIRST(&vdev->v_children)) 1352 vdev = kid; 1353 return (vdev); 1354 } 1355 #endif 1356 1357 static spa_t * 1358 spa_create(uint64_t guid, const char *name) 1359 { 1360 spa_t *spa; 1361 1362 if ((spa = calloc(1, sizeof(spa_t))) == NULL) 1363 return (NULL); 1364 if ((spa->spa_name = strdup(name)) == NULL) { 1365 free(spa); 1366 return (NULL); 1367 } 1368 spa->spa_guid = guid; 1369 spa->spa_root_vdev = vdev_create(guid, NULL); 1370 if (spa->spa_root_vdev == NULL) { 1371 free(spa->spa_name); 1372 free(spa); 1373 return (NULL); 1374 } 1375 spa->spa_root_vdev->v_name = strdup("root"); 1376 STAILQ_INSERT_TAIL(&zfs_pools, spa, spa_link); 1377 1378 return (spa); 1379 } 1380 1381 static const char * 1382 state_name(vdev_state_t state) 1383 { 1384 static const char *names[] = { 1385 "UNKNOWN", 1386 "CLOSED", 1387 "OFFLINE", 1388 "REMOVED", 1389 "CANT_OPEN", 1390 "FAULTED", 1391 "DEGRADED", 1392 "ONLINE" 1393 }; 1394 return (names[state]); 1395 } 1396 1397 #ifdef BOOT2 1398 1399 #define pager_printf printf 1400 1401 #else 1402 1403 static int 1404 pager_printf(const char *fmt, ...) 1405 { 1406 char line[80]; 1407 va_list args; 1408 1409 va_start(args, fmt); 1410 vsnprintf(line, sizeof(line), fmt, args); 1411 va_end(args); 1412 return (pager_output(line)); 1413 } 1414 1415 #endif 1416 1417 #define STATUS_FORMAT " %s %s\n" 1418 1419 static int 1420 print_state(int indent, const char *name, vdev_state_t state) 1421 { 1422 int i; 1423 char buf[512]; 1424 1425 buf[0] = 0; 1426 for (i = 0; i < indent; i++) 1427 strcat(buf, " "); 1428 strcat(buf, name); 1429 return (pager_printf(STATUS_FORMAT, buf, state_name(state))); 1430 } 1431 1432 static int 1433 vdev_status(vdev_t *vdev, int indent) 1434 { 1435 vdev_t *kid; 1436 int ret; 1437 1438 if (vdev->v_islog) { 1439 (void) pager_output(" logs\n"); 1440 indent++; 1441 } 1442 1443 ret = print_state(indent, vdev->v_name, vdev->v_state); 1444 if (ret != 0) 1445 return (ret); 1446 1447 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) { 1448 ret = vdev_status(kid, indent + 1); 1449 if (ret != 0) 1450 return (ret); 1451 } 1452 return (ret); 1453 } 1454 1455 static int 1456 spa_status(spa_t *spa) 1457 { 1458 static char bootfs[ZFS_MAXNAMELEN]; 1459 uint64_t rootid; 1460 vdev_list_t *vlist; 1461 vdev_t *vdev; 1462 int good_kids, bad_kids, degraded_kids, ret; 1463 vdev_state_t state; 1464 1465 ret = pager_printf(" pool: %s\n", spa->spa_name); 1466 if (ret != 0) 1467 return (ret); 1468 1469 if (zfs_get_root(spa, &rootid) == 0 && 1470 zfs_rlookup(spa, rootid, bootfs) == 0) { 1471 if (bootfs[0] == '\0') 1472 ret = pager_printf("bootfs: %s\n", spa->spa_name); 1473 else 1474 ret = pager_printf("bootfs: %s/%s\n", spa->spa_name, 1475 bootfs); 1476 if (ret != 0) 1477 return (ret); 1478 } 1479 ret = pager_printf("config:\n\n"); 1480 if (ret != 0) 1481 return (ret); 1482 ret = pager_printf(STATUS_FORMAT, "NAME", "STATE"); 1483 if (ret != 0) 1484 return (ret); 1485 1486 good_kids = 0; 1487 degraded_kids = 0; 1488 bad_kids = 0; 1489 vlist = &spa->spa_root_vdev->v_children; 1490 STAILQ_FOREACH(vdev, vlist, v_childlink) { 1491 if (vdev->v_state == VDEV_STATE_HEALTHY) 1492 good_kids++; 1493 else if (vdev->v_state == VDEV_STATE_DEGRADED) 1494 degraded_kids++; 1495 else 1496 bad_kids++; 1497 } 1498 1499 state = VDEV_STATE_CLOSED; 1500 if (good_kids > 0 && (degraded_kids + bad_kids) == 0) 1501 state = VDEV_STATE_HEALTHY; 1502 else if ((good_kids + degraded_kids) > 0) 1503 state = VDEV_STATE_DEGRADED; 1504 1505 ret = print_state(0, spa->spa_name, state); 1506 if (ret != 0) 1507 return (ret); 1508 1509 STAILQ_FOREACH(vdev, vlist, v_childlink) { 1510 ret = vdev_status(vdev, 1); 1511 if (ret != 0) 1512 return (ret); 1513 } 1514 return (ret); 1515 } 1516 1517 static int 1518 spa_all_status(void) 1519 { 1520 spa_t *spa; 1521 int first = 1, ret = 0; 1522 1523 STAILQ_FOREACH(spa, &zfs_pools, spa_link) { 1524 if (!first) { 1525 ret = pager_printf("\n"); 1526 if (ret != 0) 1527 return (ret); 1528 } 1529 first = 0; 1530 ret = spa_status(spa); 1531 if (ret != 0) 1532 return (ret); 1533 } 1534 return (ret); 1535 } 1536 1537 static uint64_t 1538 vdev_label_offset(uint64_t psize, int l, uint64_t offset) 1539 { 1540 uint64_t label_offset; 1541 1542 if (l < VDEV_LABELS / 2) 1543 label_offset = 0; 1544 else 1545 label_offset = psize - VDEV_LABELS * sizeof (vdev_label_t); 1546 1547 return (offset + l * sizeof (vdev_label_t) + label_offset); 1548 } 1549 1550 static int 1551 vdev_uberblock_compare(const uberblock_t *ub1, const uberblock_t *ub2) 1552 { 1553 unsigned int seq1 = 0; 1554 unsigned int seq2 = 0; 1555 int cmp = AVL_CMP(ub1->ub_txg, ub2->ub_txg); 1556 1557 if (cmp != 0) 1558 return (cmp); 1559 1560 cmp = AVL_CMP(ub1->ub_timestamp, ub2->ub_timestamp); 1561 if (cmp != 0) 1562 return (cmp); 1563 1564 if (MMP_VALID(ub1) && MMP_SEQ_VALID(ub1)) 1565 seq1 = MMP_SEQ(ub1); 1566 1567 if (MMP_VALID(ub2) && MMP_SEQ_VALID(ub2)) 1568 seq2 = MMP_SEQ(ub2); 1569 1570 return (AVL_CMP(seq1, seq2)); 1571 } 1572 1573 static int 1574 uberblock_verify(uberblock_t *ub) 1575 { 1576 if (ub->ub_magic == BSWAP_64((uint64_t)UBERBLOCK_MAGIC)) { 1577 byteswap_uint64_array(ub, sizeof (uberblock_t)); 1578 } 1579 1580 if (ub->ub_magic != UBERBLOCK_MAGIC || 1581 !SPA_VERSION_IS_SUPPORTED(ub->ub_version)) 1582 return (EINVAL); 1583 1584 return (0); 1585 } 1586 1587 static int 1588 vdev_label_read(vdev_t *vd, int l, void *buf, uint64_t offset, 1589 size_t size) 1590 { 1591 blkptr_t bp; 1592 off_t off; 1593 1594 off = vdev_label_offset(vd->v_psize, l, offset); 1595 1596 BP_ZERO(&bp); 1597 BP_SET_LSIZE(&bp, size); 1598 BP_SET_PSIZE(&bp, size); 1599 BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_LABEL); 1600 BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF); 1601 DVA_SET_OFFSET(BP_IDENTITY(&bp), off); 1602 ZIO_SET_CHECKSUM(&bp.blk_cksum, off, 0, 0, 0); 1603 1604 return (vdev_read_phys(vd, &bp, buf, off, size)); 1605 } 1606 1607 static nvlist_t * 1608 vdev_label_read_config(vdev_t *vd, uint64_t txg) 1609 { 1610 vdev_phys_t *label; 1611 uint64_t best_txg = 0; 1612 uint64_t label_txg = 0; 1613 uint64_t asize; 1614 nvlist_t *nvl = NULL, *tmp; 1615 int error; 1616 1617 label = malloc(sizeof (vdev_phys_t)); 1618 if (label == NULL) 1619 return (NULL); 1620 1621 for (int l = 0; l < VDEV_LABELS; l++) { 1622 const unsigned char *nvlist; 1623 1624 if (vdev_label_read(vd, l, label, 1625 offsetof(vdev_label_t, vl_vdev_phys), 1626 sizeof (vdev_phys_t))) 1627 continue; 1628 1629 nvlist = (const unsigned char *) label->vp_nvlist; 1630 tmp = nvlist_import(nvlist + 4, nvlist[0], nvlist[1]); 1631 if (tmp == NULL) 1632 continue; 1633 1634 error = nvlist_find(tmp, ZPOOL_CONFIG_POOL_TXG, 1635 DATA_TYPE_UINT64, NULL, &label_txg, NULL); 1636 if (error != 0 || label_txg == 0) { 1637 nvlist_destroy(nvl); 1638 nvl = tmp; 1639 goto done; 1640 } 1641 1642 if (label_txg <= txg && label_txg > best_txg) { 1643 best_txg = label_txg; 1644 nvlist_destroy(nvl); 1645 nvl = tmp; 1646 tmp = NULL; 1647 1648 /* 1649 * Use asize from pool config. We need this 1650 * because we can get bad value from BIOS. 1651 */ 1652 if (nvlist_find(nvl, ZPOOL_CONFIG_ASIZE, 1653 DATA_TYPE_UINT64, NULL, &asize, NULL) == 0) { 1654 vd->v_psize = asize + 1655 VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; 1656 } 1657 } 1658 nvlist_destroy(tmp); 1659 } 1660 1661 if (best_txg == 0) { 1662 nvlist_destroy(nvl); 1663 nvl = NULL; 1664 } 1665 done: 1666 free(label); 1667 return (nvl); 1668 } 1669 1670 static void 1671 vdev_uberblock_load(vdev_t *vd, uberblock_t *ub) 1672 { 1673 uberblock_t *buf; 1674 1675 buf = malloc(VDEV_UBERBLOCK_SIZE(vd)); 1676 if (buf == NULL) 1677 return; 1678 1679 for (int l = 0; l < VDEV_LABELS; l++) { 1680 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) { 1681 if (vdev_label_read(vd, l, buf, 1682 VDEV_UBERBLOCK_OFFSET(vd, n), 1683 VDEV_UBERBLOCK_SIZE(vd))) 1684 continue; 1685 if (uberblock_verify(buf) != 0) 1686 continue; 1687 1688 if (vdev_uberblock_compare(buf, ub) > 0) 1689 *ub = *buf; 1690 } 1691 } 1692 free(buf); 1693 } 1694 1695 static int 1696 vdev_probe(vdev_phys_read_t *_read, void *read_priv, spa_t **spap) 1697 { 1698 vdev_t vtmp; 1699 spa_t *spa; 1700 vdev_t *vdev; 1701 nvlist_t *nvl; 1702 uint64_t val; 1703 uint64_t guid, vdev_children; 1704 uint64_t pool_txg, pool_guid; 1705 const char *pool_name; 1706 int rc, namelen; 1707 1708 /* 1709 * Load the vdev label and figure out which 1710 * uberblock is most current. 1711 */ 1712 memset(&vtmp, 0, sizeof(vtmp)); 1713 vtmp.v_phys_read = _read; 1714 vtmp.v_read_priv = read_priv; 1715 vtmp.v_psize = P2ALIGN(ldi_get_size(read_priv), 1716 (uint64_t)sizeof (vdev_label_t)); 1717 1718 /* Test for minimum device size. */ 1719 if (vtmp.v_psize < SPA_MINDEVSIZE) 1720 return (EIO); 1721 1722 nvl = vdev_label_read_config(&vtmp, UINT64_MAX); 1723 if (nvl == NULL) 1724 return (EIO); 1725 1726 if (nvlist_find(nvl, ZPOOL_CONFIG_VERSION, DATA_TYPE_UINT64, 1727 NULL, &val, NULL) != 0) { 1728 nvlist_destroy(nvl); 1729 return (EIO); 1730 } 1731 1732 if (!SPA_VERSION_IS_SUPPORTED(val)) { 1733 printf("ZFS: unsupported ZFS version %u (should be %u)\n", 1734 (unsigned)val, (unsigned)SPA_VERSION); 1735 nvlist_destroy(nvl); 1736 return (EIO); 1737 } 1738 1739 /* Check ZFS features for read */ 1740 rc = nvlist_check_features_for_read(nvl); 1741 if (rc != 0) { 1742 nvlist_destroy(nvl); 1743 return (EIO); 1744 } 1745 1746 if (nvlist_find(nvl, ZPOOL_CONFIG_POOL_STATE, DATA_TYPE_UINT64, 1747 NULL, &val, NULL) != 0) { 1748 nvlist_destroy(nvl); 1749 return (EIO); 1750 } 1751 1752 if (val == POOL_STATE_DESTROYED) { 1753 /* We don't boot only from destroyed pools. */ 1754 nvlist_destroy(nvl); 1755 return (EIO); 1756 } 1757 1758 if (nvlist_find(nvl, ZPOOL_CONFIG_POOL_TXG, DATA_TYPE_UINT64, 1759 NULL, &pool_txg, NULL) != 0 || 1760 nvlist_find(nvl, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64, 1761 NULL, &pool_guid, NULL) != 0 || 1762 nvlist_find(nvl, ZPOOL_CONFIG_POOL_NAME, DATA_TYPE_STRING, 1763 NULL, &pool_name, &namelen) != 0) { 1764 /* 1765 * Cache and spare devices end up here - just ignore 1766 * them. 1767 */ 1768 nvlist_destroy(nvl); 1769 return (EIO); 1770 } 1771 1772 /* 1773 * Create the pool if this is the first time we've seen it. 1774 */ 1775 spa = spa_find_by_guid(pool_guid); 1776 if (spa == NULL) { 1777 char *name; 1778 1779 nvlist_find(nvl, ZPOOL_CONFIG_VDEV_CHILDREN, 1780 DATA_TYPE_UINT64, NULL, &vdev_children, NULL); 1781 name = malloc(namelen + 1); 1782 if (name == NULL) { 1783 nvlist_destroy(nvl); 1784 return (ENOMEM); 1785 } 1786 bcopy(pool_name, name, namelen); 1787 name[namelen] = '\0'; 1788 spa = spa_create(pool_guid, name); 1789 free(name); 1790 if (spa == NULL) { 1791 nvlist_destroy(nvl); 1792 return (ENOMEM); 1793 } 1794 spa->spa_root_vdev->v_nchildren = vdev_children; 1795 } 1796 if (pool_txg > spa->spa_txg) 1797 spa->spa_txg = pool_txg; 1798 1799 /* 1800 * Get the vdev tree and create our in-core copy of it. 1801 * If we already have a vdev with this guid, this must 1802 * be some kind of alias (overlapping slices, dangerously dedicated 1803 * disks etc). 1804 */ 1805 if (nvlist_find(nvl, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64, 1806 NULL, &guid, NULL) != 0) { 1807 nvlist_destroy(nvl); 1808 return (EIO); 1809 } 1810 vdev = vdev_find(guid); 1811 /* Has this vdev already been inited? */ 1812 if (vdev && vdev->v_phys_read) { 1813 nvlist_destroy(nvl); 1814 return (EIO); 1815 } 1816 1817 rc = vdev_init_from_label(spa, nvl); 1818 nvlist_destroy(nvl); 1819 if (rc != 0) 1820 return (rc); 1821 1822 /* 1823 * We should already have created an incomplete vdev for this 1824 * vdev. Find it and initialise it with our read proc. 1825 */ 1826 vdev = vdev_find(guid); 1827 if (vdev != NULL) { 1828 vdev->v_phys_read = _read; 1829 vdev->v_read_priv = read_priv; 1830 vdev->v_psize = vtmp.v_psize; 1831 /* 1832 * If no other state is set, mark vdev healthy. 1833 */ 1834 if (vdev->v_state == VDEV_STATE_UNKNOWN) 1835 vdev->v_state = VDEV_STATE_HEALTHY; 1836 } else { 1837 printf("ZFS: inconsistent nvlist contents\n"); 1838 return (EIO); 1839 } 1840 1841 if (vdev->v_islog) 1842 spa->spa_with_log = vdev->v_islog; 1843 1844 /* 1845 * Re-evaluate top-level vdev state. 1846 */ 1847 vdev_set_state(vdev->v_top); 1848 1849 /* 1850 * Ok, we are happy with the pool so far. Lets find 1851 * the best uberblock and then we can actually access 1852 * the contents of the pool. 1853 */ 1854 vdev_uberblock_load(vdev, &spa->spa_uberblock); 1855 1856 if (spap != NULL) 1857 *spap = spa; 1858 return (0); 1859 } 1860 1861 static int 1862 ilog2(int n) 1863 { 1864 int v; 1865 1866 for (v = 0; v < 32; v++) 1867 if (n == (1 << v)) 1868 return (v); 1869 return (-1); 1870 } 1871 1872 static int 1873 zio_read_gang(const spa_t *spa, const blkptr_t *bp, void *buf) 1874 { 1875 blkptr_t gbh_bp; 1876 zio_gbh_phys_t zio_gb; 1877 char *pbuf; 1878 int i; 1879 1880 /* Artificial BP for gang block header. */ 1881 gbh_bp = *bp; 1882 BP_SET_PSIZE(&gbh_bp, SPA_GANGBLOCKSIZE); 1883 BP_SET_LSIZE(&gbh_bp, SPA_GANGBLOCKSIZE); 1884 BP_SET_CHECKSUM(&gbh_bp, ZIO_CHECKSUM_GANG_HEADER); 1885 BP_SET_COMPRESS(&gbh_bp, ZIO_COMPRESS_OFF); 1886 for (i = 0; i < SPA_DVAS_PER_BP; i++) 1887 DVA_SET_GANG(&gbh_bp.blk_dva[i], 0); 1888 1889 /* Read gang header block using the artificial BP. */ 1890 if (zio_read(spa, &gbh_bp, &zio_gb)) 1891 return (EIO); 1892 1893 pbuf = buf; 1894 for (i = 0; i < SPA_GBH_NBLKPTRS; i++) { 1895 blkptr_t *gbp = &zio_gb.zg_blkptr[i]; 1896 1897 if (BP_IS_HOLE(gbp)) 1898 continue; 1899 if (zio_read(spa, gbp, pbuf)) 1900 return (EIO); 1901 pbuf += BP_GET_PSIZE(gbp); 1902 } 1903 1904 if (zio_checksum_verify(spa, bp, buf)) 1905 return (EIO); 1906 return (0); 1907 } 1908 1909 static int 1910 zio_read(const spa_t *spa, const blkptr_t *bp, void *buf) 1911 { 1912 int cpfunc = BP_GET_COMPRESS(bp); 1913 uint64_t align, size; 1914 void *pbuf; 1915 int i, error; 1916 1917 /* 1918 * Process data embedded in block pointer 1919 */ 1920 if (BP_IS_EMBEDDED(bp)) { 1921 ASSERT(BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA); 1922 1923 size = BPE_GET_PSIZE(bp); 1924 ASSERT(size <= BPE_PAYLOAD_SIZE); 1925 1926 if (cpfunc != ZIO_COMPRESS_OFF) 1927 pbuf = malloc(size); 1928 else 1929 pbuf = buf; 1930 1931 if (pbuf == NULL) 1932 return (ENOMEM); 1933 1934 decode_embedded_bp_compressed(bp, pbuf); 1935 error = 0; 1936 1937 if (cpfunc != ZIO_COMPRESS_OFF) { 1938 error = zio_decompress_data(cpfunc, pbuf, 1939 size, buf, BP_GET_LSIZE(bp)); 1940 free(pbuf); 1941 } 1942 if (error != 0) 1943 printf("ZFS: i/o error - unable to decompress " 1944 "block pointer data, error %d\n", error); 1945 return (error); 1946 } 1947 1948 error = EIO; 1949 1950 for (i = 0; i < SPA_DVAS_PER_BP; i++) { 1951 const dva_t *dva = &bp->blk_dva[i]; 1952 vdev_t *vdev; 1953 vdev_list_t *vlist; 1954 uint64_t vdevid; 1955 off_t offset; 1956 1957 if (!dva->dva_word[0] && !dva->dva_word[1]) 1958 continue; 1959 1960 vdevid = DVA_GET_VDEV(dva); 1961 offset = DVA_GET_OFFSET(dva); 1962 vlist = &spa->spa_root_vdev->v_children; 1963 STAILQ_FOREACH(vdev, vlist, v_childlink) { 1964 if (vdev->v_id == vdevid) 1965 break; 1966 } 1967 if (!vdev || !vdev->v_read) 1968 continue; 1969 1970 size = BP_GET_PSIZE(bp); 1971 if (vdev->v_read == vdev_raidz_read) { 1972 align = 1ULL << vdev->v_ashift; 1973 if (P2PHASE(size, align) != 0) 1974 size = P2ROUNDUP(size, align); 1975 } 1976 if (size != BP_GET_PSIZE(bp) || cpfunc != ZIO_COMPRESS_OFF) 1977 pbuf = malloc(size); 1978 else 1979 pbuf = buf; 1980 1981 if (pbuf == NULL) { 1982 error = ENOMEM; 1983 break; 1984 } 1985 1986 if (DVA_GET_GANG(dva)) 1987 error = zio_read_gang(spa, bp, pbuf); 1988 else 1989 error = vdev->v_read(vdev, bp, pbuf, offset, size); 1990 if (error == 0) { 1991 if (cpfunc != ZIO_COMPRESS_OFF) 1992 error = zio_decompress_data(cpfunc, pbuf, 1993 BP_GET_PSIZE(bp), buf, BP_GET_LSIZE(bp)); 1994 else if (size != BP_GET_PSIZE(bp)) 1995 bcopy(pbuf, buf, BP_GET_PSIZE(bp)); 1996 } else { 1997 printf("zio_read error: %d\n", error); 1998 } 1999 if (buf != pbuf) 2000 free(pbuf); 2001 if (error == 0) 2002 break; 2003 } 2004 if (error != 0) 2005 printf("ZFS: i/o error - all block copies unavailable\n"); 2006 2007 return (error); 2008 } 2009 2010 static int 2011 dnode_read(const spa_t *spa, const dnode_phys_t *dnode, off_t offset, 2012 void *buf, size_t buflen) 2013 { 2014 int ibshift = dnode->dn_indblkshift - SPA_BLKPTRSHIFT; 2015 int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2016 int nlevels = dnode->dn_nlevels; 2017 int i, rc; 2018 2019 if (bsize > SPA_MAXBLOCKSIZE) { 2020 printf("ZFS: I/O error - blocks larger than %llu are not " 2021 "supported\n", SPA_MAXBLOCKSIZE); 2022 return (EIO); 2023 } 2024 2025 /* 2026 * Note: bsize may not be a power of two here so we need to do an 2027 * actual divide rather than a bitshift. 2028 */ 2029 while (buflen > 0) { 2030 uint64_t bn = offset / bsize; 2031 int boff = offset % bsize; 2032 int ibn; 2033 const blkptr_t *indbp; 2034 blkptr_t bp; 2035 2036 if (bn > dnode->dn_maxblkid) 2037 return (EIO); 2038 2039 if (dnode == dnode_cache_obj && bn == dnode_cache_bn) 2040 goto cached; 2041 2042 indbp = dnode->dn_blkptr; 2043 for (i = 0; i < nlevels; i++) { 2044 /* 2045 * Copy the bp from the indirect array so that 2046 * we can re-use the scratch buffer for multi-level 2047 * objects. 2048 */ 2049 ibn = bn >> ((nlevels - i - 1) * ibshift); 2050 ibn &= ((1 << ibshift) - 1); 2051 bp = indbp[ibn]; 2052 if (BP_IS_HOLE(&bp)) { 2053 memset(dnode_cache_buf, 0, bsize); 2054 break; 2055 } 2056 rc = zio_read(spa, &bp, dnode_cache_buf); 2057 if (rc) 2058 return (rc); 2059 indbp = (const blkptr_t *) dnode_cache_buf; 2060 } 2061 dnode_cache_obj = dnode; 2062 dnode_cache_bn = bn; 2063 cached: 2064 2065 /* 2066 * The buffer contains our data block. Copy what we 2067 * need from it and loop. 2068 */ 2069 i = bsize - boff; 2070 if (i > buflen) i = buflen; 2071 memcpy(buf, &dnode_cache_buf[boff], i); 2072 buf = ((char *)buf) + i; 2073 offset += i; 2074 buflen -= i; 2075 } 2076 2077 return (0); 2078 } 2079 2080 /* 2081 * Lookup a value in a microzap directory. 2082 */ 2083 static int 2084 mzap_lookup(const mzap_phys_t *mz, size_t size, const char *name, 2085 uint64_t *value) 2086 { 2087 const mzap_ent_phys_t *mze; 2088 int chunks, i; 2089 2090 /* 2091 * Microzap objects use exactly one block. Read the whole 2092 * thing. 2093 */ 2094 chunks = size / MZAP_ENT_LEN - 1; 2095 for (i = 0; i < chunks; i++) { 2096 mze = &mz->mz_chunk[i]; 2097 if (strcmp(mze->mze_name, name) == 0) { 2098 *value = mze->mze_value; 2099 return (0); 2100 } 2101 } 2102 2103 return (ENOENT); 2104 } 2105 2106 /* 2107 * Compare a name with a zap leaf entry. Return non-zero if the name 2108 * matches. 2109 */ 2110 static int 2111 fzap_name_equal(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, 2112 const char *name) 2113 { 2114 size_t namelen; 2115 const zap_leaf_chunk_t *nc; 2116 const char *p; 2117 2118 namelen = zc->l_entry.le_name_numints; 2119 2120 nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk); 2121 p = name; 2122 while (namelen > 0) { 2123 size_t len; 2124 2125 len = namelen; 2126 if (len > ZAP_LEAF_ARRAY_BYTES) 2127 len = ZAP_LEAF_ARRAY_BYTES; 2128 if (memcmp(p, nc->l_array.la_array, len)) 2129 return (0); 2130 p += len; 2131 namelen -= len; 2132 nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next); 2133 } 2134 2135 return (1); 2136 } 2137 2138 /* 2139 * Extract a uint64_t value from a zap leaf entry. 2140 */ 2141 static uint64_t 2142 fzap_leaf_value(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc) 2143 { 2144 const zap_leaf_chunk_t *vc; 2145 int i; 2146 uint64_t value; 2147 const uint8_t *p; 2148 2149 vc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_value_chunk); 2150 for (i = 0, value = 0, p = vc->l_array.la_array; i < 8; i++) { 2151 value = (value << 8) | p[i]; 2152 } 2153 2154 return (value); 2155 } 2156 2157 static void 2158 stv(int len, void *addr, uint64_t value) 2159 { 2160 switch (len) { 2161 case 1: 2162 *(uint8_t *)addr = value; 2163 return; 2164 case 2: 2165 *(uint16_t *)addr = value; 2166 return; 2167 case 4: 2168 *(uint32_t *)addr = value; 2169 return; 2170 case 8: 2171 *(uint64_t *)addr = value; 2172 return; 2173 } 2174 } 2175 2176 /* 2177 * Extract a array from a zap leaf entry. 2178 */ 2179 static void 2180 fzap_leaf_array(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, 2181 uint64_t integer_size, uint64_t num_integers, void *buf) 2182 { 2183 uint64_t array_int_len = zc->l_entry.le_value_intlen; 2184 uint64_t value = 0; 2185 uint64_t *u64 = buf; 2186 char *p = buf; 2187 int len = MIN(zc->l_entry.le_value_numints, num_integers); 2188 int chunk = zc->l_entry.le_value_chunk; 2189 int byten = 0; 2190 2191 if (integer_size == 8 && len == 1) { 2192 *u64 = fzap_leaf_value(zl, zc); 2193 return; 2194 } 2195 2196 while (len > 0) { 2197 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(zl, chunk).l_array; 2198 int i; 2199 2200 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(zl)); 2201 for (i = 0; i < ZAP_LEAF_ARRAY_BYTES && len > 0; i++) { 2202 value = (value << 8) | la->la_array[i]; 2203 byten++; 2204 if (byten == array_int_len) { 2205 stv(integer_size, p, value); 2206 byten = 0; 2207 len--; 2208 if (len == 0) 2209 return; 2210 p += integer_size; 2211 } 2212 } 2213 chunk = la->la_next; 2214 } 2215 } 2216 2217 static int 2218 fzap_check_size(uint64_t integer_size, uint64_t num_integers) 2219 { 2220 2221 switch (integer_size) { 2222 case 1: 2223 case 2: 2224 case 4: 2225 case 8: 2226 break; 2227 default: 2228 return (EINVAL); 2229 } 2230 2231 if (integer_size * num_integers > ZAP_MAXVALUELEN) 2232 return (E2BIG); 2233 2234 return (0); 2235 } 2236 2237 static void 2238 zap_leaf_free(zap_leaf_t *leaf) 2239 { 2240 free(leaf->l_phys); 2241 free(leaf); 2242 } 2243 2244 static int 2245 zap_get_leaf_byblk(fat_zap_t *zap, uint64_t blk, zap_leaf_t **lp) 2246 { 2247 int bs = FZAP_BLOCK_SHIFT(zap); 2248 int err; 2249 2250 *lp = malloc(sizeof(**lp)); 2251 if (*lp == NULL) 2252 return (ENOMEM); 2253 2254 (*lp)->l_bs = bs; 2255 (*lp)->l_phys = malloc(1 << bs); 2256 2257 if ((*lp)->l_phys == NULL) { 2258 free(*lp); 2259 return (ENOMEM); 2260 } 2261 err = dnode_read(zap->zap_spa, zap->zap_dnode, blk << bs, (*lp)->l_phys, 2262 1 << bs); 2263 if (err != 0) { 2264 zap_leaf_free(*lp); 2265 } 2266 return (err); 2267 } 2268 2269 static int 2270 zap_table_load(fat_zap_t *zap, zap_table_phys_t *tbl, uint64_t idx, 2271 uint64_t *valp) 2272 { 2273 int bs = FZAP_BLOCK_SHIFT(zap); 2274 uint64_t blk = idx >> (bs - 3); 2275 uint64_t off = idx & ((1 << (bs - 3)) - 1); 2276 uint64_t *buf; 2277 int rc; 2278 2279 buf = malloc(1 << zap->zap_block_shift); 2280 if (buf == NULL) 2281 return (ENOMEM); 2282 rc = dnode_read(zap->zap_spa, zap->zap_dnode, (tbl->zt_blk + blk) << bs, 2283 buf, 1 << zap->zap_block_shift); 2284 if (rc == 0) 2285 *valp = buf[off]; 2286 free(buf); 2287 return (rc); 2288 } 2289 2290 static int 2291 zap_idx_to_blk(fat_zap_t *zap, uint64_t idx, uint64_t *valp) 2292 { 2293 if (zap->zap_phys->zap_ptrtbl.zt_numblks == 0) { 2294 *valp = ZAP_EMBEDDED_PTRTBL_ENT(zap, idx); 2295 return (0); 2296 } else { 2297 return (zap_table_load(zap, &zap->zap_phys->zap_ptrtbl, 2298 idx, valp)); 2299 } 2300 } 2301 2302 #define ZAP_HASH_IDX(hash, n) (((n) == 0) ? 0 : ((hash) >> (64 - (n)))) 2303 static int 2304 zap_deref_leaf(fat_zap_t *zap, uint64_t h, zap_leaf_t **lp) 2305 { 2306 uint64_t idx, blk; 2307 int err; 2308 2309 idx = ZAP_HASH_IDX(h, zap->zap_phys->zap_ptrtbl.zt_shift); 2310 err = zap_idx_to_blk(zap, idx, &blk); 2311 if (err != 0) 2312 return (err); 2313 return (zap_get_leaf_byblk(zap, blk, lp)); 2314 } 2315 2316 #define CHAIN_END 0xffff /* end of the chunk chain */ 2317 #define LEAF_HASH(l, h) \ 2318 ((ZAP_LEAF_HASH_NUMENTRIES(l)-1) & \ 2319 ((h) >> \ 2320 (64 - ZAP_LEAF_HASH_SHIFT(l) - (l)->l_phys->l_hdr.lh_prefix_len))) 2321 #define LEAF_HASH_ENTPTR(l, h) (&(l)->l_phys->l_hash[LEAF_HASH(l, h)]) 2322 2323 static int 2324 zap_leaf_lookup(zap_leaf_t *zl, uint64_t hash, const char *name, 2325 uint64_t integer_size, uint64_t num_integers, void *value) 2326 { 2327 int rc; 2328 uint16_t *chunkp; 2329 struct zap_leaf_entry *le; 2330 2331 /* 2332 * Make sure this chunk matches our hash. 2333 */ 2334 if (zl->l_phys->l_hdr.lh_prefix_len > 0 && 2335 zl->l_phys->l_hdr.lh_prefix != 2336 hash >> (64 - zl->l_phys->l_hdr.lh_prefix_len)) 2337 return (EIO); 2338 2339 rc = ENOENT; 2340 for (chunkp = LEAF_HASH_ENTPTR(zl, hash); 2341 *chunkp != CHAIN_END; chunkp = &le->le_next) { 2342 zap_leaf_chunk_t *zc; 2343 uint16_t chunk = *chunkp; 2344 2345 le = ZAP_LEAF_ENTRY(zl, chunk); 2346 if (le->le_hash != hash) 2347 continue; 2348 zc = &ZAP_LEAF_CHUNK(zl, chunk); 2349 if (fzap_name_equal(zl, zc, name)) { 2350 if (zc->l_entry.le_value_intlen > integer_size) { 2351 rc = EINVAL; 2352 } else { 2353 fzap_leaf_array(zl, zc, integer_size, 2354 num_integers, value); 2355 rc = 0; 2356 } 2357 break; 2358 } 2359 } 2360 return (rc); 2361 } 2362 2363 /* 2364 * Lookup a value in a fatzap directory. 2365 */ 2366 static int 2367 fzap_lookup(const spa_t *spa, const dnode_phys_t *dnode, zap_phys_t *zh, 2368 const char *name, uint64_t integer_size, uint64_t num_integers, 2369 void *value) 2370 { 2371 int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2372 fat_zap_t z; 2373 zap_leaf_t *zl; 2374 uint64_t hash; 2375 int rc; 2376 2377 if (zh->zap_magic != ZAP_MAGIC) 2378 return (EIO); 2379 2380 if ((rc = fzap_check_size(integer_size, num_integers)) != 0) 2381 return (rc); 2382 2383 z.zap_block_shift = ilog2(bsize); 2384 z.zap_phys = zh; 2385 z.zap_spa = spa; 2386 z.zap_dnode = dnode; 2387 2388 hash = zap_hash(zh->zap_salt, name); 2389 rc = zap_deref_leaf(&z, hash, &zl); 2390 if (rc != 0) 2391 return (rc); 2392 2393 rc = zap_leaf_lookup(zl, hash, name, integer_size, num_integers, value); 2394 2395 zap_leaf_free(zl); 2396 return (rc); 2397 } 2398 2399 /* 2400 * Lookup a name in a zap object and return its value as a uint64_t. 2401 */ 2402 static int 2403 zap_lookup(const spa_t *spa, const dnode_phys_t *dnode, const char *name, 2404 uint64_t integer_size, uint64_t num_integers, void *value) 2405 { 2406 int rc; 2407 zap_phys_t *zap; 2408 size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2409 2410 zap = malloc(size); 2411 if (zap == NULL) 2412 return (ENOMEM); 2413 2414 rc = dnode_read(spa, dnode, 0, zap, size); 2415 if (rc) 2416 goto done; 2417 2418 switch (zap->zap_block_type) { 2419 case ZBT_MICRO: 2420 rc = mzap_lookup((const mzap_phys_t *)zap, size, name, value); 2421 break; 2422 case ZBT_HEADER: 2423 rc = fzap_lookup(spa, dnode, zap, name, integer_size, 2424 num_integers, value); 2425 break; 2426 default: 2427 printf("ZFS: invalid zap_type=%" PRIx64 "\n", 2428 zap->zap_block_type); 2429 rc = EIO; 2430 } 2431 done: 2432 free(zap); 2433 return (rc); 2434 } 2435 2436 /* 2437 * List a microzap directory. 2438 */ 2439 static int 2440 mzap_list(const mzap_phys_t *mz, size_t size, 2441 int (*callback)(const char *, uint64_t)) 2442 { 2443 const mzap_ent_phys_t *mze; 2444 int chunks, i, rc; 2445 2446 /* 2447 * Microzap objects use exactly one block. Read the whole 2448 * thing. 2449 */ 2450 rc = 0; 2451 chunks = size / MZAP_ENT_LEN - 1; 2452 for (i = 0; i < chunks; i++) { 2453 mze = &mz->mz_chunk[i]; 2454 if (mze->mze_name[0]) { 2455 rc = callback(mze->mze_name, mze->mze_value); 2456 if (rc != 0) 2457 break; 2458 } 2459 } 2460 2461 return (rc); 2462 } 2463 2464 /* 2465 * List a fatzap directory. 2466 */ 2467 static int 2468 fzap_list(const spa_t *spa, const dnode_phys_t *dnode, zap_phys_t *zh, 2469 int (*callback)(const char *, uint64_t)) 2470 { 2471 int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2472 fat_zap_t z; 2473 uint64_t i; 2474 int j, rc; 2475 2476 if (zh->zap_magic != ZAP_MAGIC) 2477 return (EIO); 2478 2479 z.zap_block_shift = ilog2(bsize); 2480 z.zap_phys = zh; 2481 2482 /* 2483 * This assumes that the leaf blocks start at block 1. The 2484 * documentation isn't exactly clear on this. 2485 */ 2486 zap_leaf_t zl; 2487 zl.l_bs = z.zap_block_shift; 2488 zl.l_phys = malloc(bsize); 2489 if (zl.l_phys == NULL) 2490 return (ENOMEM); 2491 2492 for (i = 0; i < zh->zap_num_leafs; i++) { 2493 off_t off = ((off_t)(i + 1)) << zl.l_bs; 2494 char name[256], *p; 2495 uint64_t value; 2496 2497 if (dnode_read(spa, dnode, off, zl.l_phys, bsize)) { 2498 free(zl.l_phys); 2499 return (EIO); 2500 } 2501 2502 for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) { 2503 zap_leaf_chunk_t *zc, *nc; 2504 int namelen; 2505 2506 zc = &ZAP_LEAF_CHUNK(&zl, j); 2507 if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY) 2508 continue; 2509 namelen = zc->l_entry.le_name_numints; 2510 if (namelen > sizeof(name)) 2511 namelen = sizeof(name); 2512 2513 /* 2514 * Paste the name back together. 2515 */ 2516 nc = &ZAP_LEAF_CHUNK(&zl, zc->l_entry.le_name_chunk); 2517 p = name; 2518 while (namelen > 0) { 2519 int len; 2520 len = namelen; 2521 if (len > ZAP_LEAF_ARRAY_BYTES) 2522 len = ZAP_LEAF_ARRAY_BYTES; 2523 memcpy(p, nc->l_array.la_array, len); 2524 p += len; 2525 namelen -= len; 2526 nc = &ZAP_LEAF_CHUNK(&zl, nc->l_array.la_next); 2527 } 2528 2529 /* 2530 * Assume the first eight bytes of the value are 2531 * a uint64_t. 2532 */ 2533 value = fzap_leaf_value(&zl, zc); 2534 2535 /* printf("%s 0x%jx\n", name, (uintmax_t)value); */ 2536 rc = callback((const char *)name, value); 2537 if (rc != 0) { 2538 free(zl.l_phys); 2539 return (rc); 2540 } 2541 } 2542 } 2543 2544 free(zl.l_phys); 2545 return (0); 2546 } 2547 2548 static int zfs_printf(const char *name, uint64_t value __unused) 2549 { 2550 2551 printf("%s\n", name); 2552 2553 return (0); 2554 } 2555 2556 /* 2557 * List a zap directory. 2558 */ 2559 static int 2560 zap_list(const spa_t *spa, const dnode_phys_t *dnode) 2561 { 2562 zap_phys_t *zap; 2563 size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2564 int rc; 2565 2566 zap = malloc(size); 2567 if (zap == NULL) 2568 return (ENOMEM); 2569 2570 rc = dnode_read(spa, dnode, 0, zap, size); 2571 if (rc == 0) { 2572 if (zap->zap_block_type == ZBT_MICRO) 2573 rc = mzap_list((const mzap_phys_t *)zap, size, 2574 zfs_printf); 2575 else 2576 rc = fzap_list(spa, dnode, zap, zfs_printf); 2577 } 2578 free(zap); 2579 return (rc); 2580 } 2581 2582 static int 2583 objset_get_dnode(const spa_t *spa, const objset_phys_t *os, uint64_t objnum, 2584 dnode_phys_t *dnode) 2585 { 2586 off_t offset; 2587 2588 offset = objnum * sizeof(dnode_phys_t); 2589 return dnode_read(spa, &os->os_meta_dnode, offset, 2590 dnode, sizeof(dnode_phys_t)); 2591 } 2592 2593 /* 2594 * Lookup a name in a microzap directory. 2595 */ 2596 static int 2597 mzap_rlookup(const mzap_phys_t *mz, size_t size, char *name, uint64_t value) 2598 { 2599 const mzap_ent_phys_t *mze; 2600 int chunks, i; 2601 2602 /* 2603 * Microzap objects use exactly one block. Read the whole 2604 * thing. 2605 */ 2606 chunks = size / MZAP_ENT_LEN - 1; 2607 for (i = 0; i < chunks; i++) { 2608 mze = &mz->mz_chunk[i]; 2609 if (value == mze->mze_value) { 2610 strcpy(name, mze->mze_name); 2611 return (0); 2612 } 2613 } 2614 2615 return (ENOENT); 2616 } 2617 2618 static void 2619 fzap_name_copy(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, char *name) 2620 { 2621 size_t namelen; 2622 const zap_leaf_chunk_t *nc; 2623 char *p; 2624 2625 namelen = zc->l_entry.le_name_numints; 2626 2627 nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk); 2628 p = name; 2629 while (namelen > 0) { 2630 size_t len; 2631 len = namelen; 2632 if (len > ZAP_LEAF_ARRAY_BYTES) 2633 len = ZAP_LEAF_ARRAY_BYTES; 2634 memcpy(p, nc->l_array.la_array, len); 2635 p += len; 2636 namelen -= len; 2637 nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next); 2638 } 2639 2640 *p = '\0'; 2641 } 2642 2643 static int 2644 fzap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, zap_phys_t *zh, 2645 char *name, uint64_t value) 2646 { 2647 int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2648 fat_zap_t z; 2649 uint64_t i; 2650 int j, rc; 2651 2652 if (zh->zap_magic != ZAP_MAGIC) 2653 return (EIO); 2654 2655 z.zap_block_shift = ilog2(bsize); 2656 z.zap_phys = zh; 2657 2658 /* 2659 * This assumes that the leaf blocks start at block 1. The 2660 * documentation isn't exactly clear on this. 2661 */ 2662 zap_leaf_t zl; 2663 zl.l_bs = z.zap_block_shift; 2664 zl.l_phys = malloc(bsize); 2665 if (zl.l_phys == NULL) 2666 return (ENOMEM); 2667 2668 for (i = 0; i < zh->zap_num_leafs; i++) { 2669 off_t off = ((off_t)(i + 1)) << zl.l_bs; 2670 2671 rc = dnode_read(spa, dnode, off, zl.l_phys, bsize); 2672 if (rc != 0) 2673 goto done; 2674 2675 for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) { 2676 zap_leaf_chunk_t *zc; 2677 2678 zc = &ZAP_LEAF_CHUNK(&zl, j); 2679 if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY) 2680 continue; 2681 if (zc->l_entry.le_value_intlen != 8 || 2682 zc->l_entry.le_value_numints != 1) 2683 continue; 2684 2685 if (fzap_leaf_value(&zl, zc) == value) { 2686 fzap_name_copy(&zl, zc, name); 2687 goto done; 2688 } 2689 } 2690 } 2691 2692 rc = ENOENT; 2693 done: 2694 free(zl.l_phys); 2695 return (rc); 2696 } 2697 2698 static int 2699 zap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, char *name, 2700 uint64_t value) 2701 { 2702 zap_phys_t *zap; 2703 size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2704 int rc; 2705 2706 zap = malloc(size); 2707 if (zap == NULL) 2708 return (ENOMEM); 2709 2710 rc = dnode_read(spa, dnode, 0, zap, size); 2711 if (rc == 0) { 2712 if (zap->zap_block_type == ZBT_MICRO) 2713 rc = mzap_rlookup((const mzap_phys_t *)zap, size, 2714 name, value); 2715 else 2716 rc = fzap_rlookup(spa, dnode, zap, name, value); 2717 } 2718 free(zap); 2719 return (rc); 2720 } 2721 2722 static int 2723 zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result) 2724 { 2725 char name[256]; 2726 char component[256]; 2727 uint64_t dir_obj, parent_obj, child_dir_zapobj; 2728 dnode_phys_t child_dir_zap, dataset, dir, parent; 2729 dsl_dir_phys_t *dd; 2730 dsl_dataset_phys_t *ds; 2731 char *p; 2732 int len; 2733 2734 p = &name[sizeof(name) - 1]; 2735 *p = '\0'; 2736 2737 if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) { 2738 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum); 2739 return (EIO); 2740 } 2741 ds = (dsl_dataset_phys_t *)&dataset.dn_bonus; 2742 dir_obj = ds->ds_dir_obj; 2743 2744 for (;;) { 2745 if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir) != 0) 2746 return (EIO); 2747 dd = (dsl_dir_phys_t *)&dir.dn_bonus; 2748 2749 /* Actual loop condition. */ 2750 parent_obj = dd->dd_parent_obj; 2751 if (parent_obj == 0) 2752 break; 2753 2754 if (objset_get_dnode(spa, &spa->spa_mos, parent_obj, 2755 &parent) != 0) 2756 return (EIO); 2757 dd = (dsl_dir_phys_t *)&parent.dn_bonus; 2758 child_dir_zapobj = dd->dd_child_dir_zapobj; 2759 if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, 2760 &child_dir_zap) != 0) 2761 return (EIO); 2762 if (zap_rlookup(spa, &child_dir_zap, component, dir_obj) != 0) 2763 return (EIO); 2764 2765 len = strlen(component); 2766 p -= len; 2767 memcpy(p, component, len); 2768 --p; 2769 *p = '/'; 2770 2771 /* Actual loop iteration. */ 2772 dir_obj = parent_obj; 2773 } 2774 2775 if (*p != '\0') 2776 ++p; 2777 strcpy(result, p); 2778 2779 return (0); 2780 } 2781 2782 static int 2783 zfs_lookup_dataset(const spa_t *spa, const char *name, uint64_t *objnum) 2784 { 2785 char element[256]; 2786 uint64_t dir_obj, child_dir_zapobj; 2787 dnode_phys_t child_dir_zap, dir; 2788 dsl_dir_phys_t *dd; 2789 const char *p, *q; 2790 2791 if (objset_get_dnode(spa, &spa->spa_mos, 2792 DMU_POOL_DIRECTORY_OBJECT, &dir)) 2793 return (EIO); 2794 if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET, sizeof (dir_obj), 2795 1, &dir_obj)) 2796 return (EIO); 2797 2798 p = name; 2799 for (;;) { 2800 if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir)) 2801 return (EIO); 2802 dd = (dsl_dir_phys_t *)&dir.dn_bonus; 2803 2804 while (*p == '/') 2805 p++; 2806 /* Actual loop condition #1. */ 2807 if (*p == '\0') 2808 break; 2809 2810 q = strchr(p, '/'); 2811 if (q) { 2812 memcpy(element, p, q - p); 2813 element[q - p] = '\0'; 2814 p = q + 1; 2815 } else { 2816 strcpy(element, p); 2817 p += strlen(p); 2818 } 2819 2820 child_dir_zapobj = dd->dd_child_dir_zapobj; 2821 if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, 2822 &child_dir_zap) != 0) 2823 return (EIO); 2824 2825 /* Actual loop condition #2. */ 2826 if (zap_lookup(spa, &child_dir_zap, element, sizeof (dir_obj), 2827 1, &dir_obj) != 0) 2828 return (ENOENT); 2829 } 2830 2831 *objnum = dd->dd_head_dataset_obj; 2832 return (0); 2833 } 2834 2835 #ifndef BOOT2 2836 static int 2837 zfs_list_dataset(const spa_t *spa, uint64_t objnum/*, int pos, char *entry*/) 2838 { 2839 uint64_t dir_obj, child_dir_zapobj; 2840 dnode_phys_t child_dir_zap, dir, dataset; 2841 dsl_dataset_phys_t *ds; 2842 dsl_dir_phys_t *dd; 2843 2844 if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) { 2845 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum); 2846 return (EIO); 2847 } 2848 ds = (dsl_dataset_phys_t *)&dataset.dn_bonus; 2849 dir_obj = ds->ds_dir_obj; 2850 2851 if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir)) { 2852 printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj); 2853 return (EIO); 2854 } 2855 dd = (dsl_dir_phys_t *)&dir.dn_bonus; 2856 2857 child_dir_zapobj = dd->dd_child_dir_zapobj; 2858 if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, 2859 &child_dir_zap) != 0) { 2860 printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj); 2861 return (EIO); 2862 } 2863 2864 return (zap_list(spa, &child_dir_zap) != 0); 2865 } 2866 2867 int 2868 zfs_callback_dataset(const spa_t *spa, uint64_t objnum, 2869 int (*callback)(const char *, uint64_t)) 2870 { 2871 uint64_t dir_obj, child_dir_zapobj; 2872 dnode_phys_t child_dir_zap, dir, dataset; 2873 dsl_dataset_phys_t *ds; 2874 dsl_dir_phys_t *dd; 2875 zap_phys_t *zap; 2876 size_t size; 2877 int err; 2878 2879 err = objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset); 2880 if (err != 0) { 2881 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum); 2882 return (err); 2883 } 2884 ds = (dsl_dataset_phys_t *)&dataset.dn_bonus; 2885 dir_obj = ds->ds_dir_obj; 2886 2887 err = objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir); 2888 if (err != 0) { 2889 printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj); 2890 return (err); 2891 } 2892 dd = (dsl_dir_phys_t *)&dir.dn_bonus; 2893 2894 child_dir_zapobj = dd->dd_child_dir_zapobj; 2895 err = objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, 2896 &child_dir_zap); 2897 if (err != 0) { 2898 printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj); 2899 return (err); 2900 } 2901 2902 size = child_dir_zap.dn_datablkszsec << SPA_MINBLOCKSHIFT; 2903 zap = malloc(size); 2904 if (zap != NULL) { 2905 err = dnode_read(spa, &child_dir_zap, 0, zap, size); 2906 if (err != 0) 2907 goto done; 2908 2909 if (zap->zap_block_type == ZBT_MICRO) 2910 err = mzap_list((const mzap_phys_t *)zap, size, 2911 callback); 2912 else 2913 err = fzap_list(spa, &child_dir_zap, zap, callback); 2914 } else { 2915 err = ENOMEM; 2916 } 2917 done: 2918 free(zap); 2919 return (err); 2920 } 2921 #endif 2922 2923 /* 2924 * Find the object set given the object number of its dataset object 2925 * and return its details in *objset 2926 */ 2927 static int 2928 zfs_mount_dataset(const spa_t *spa, uint64_t objnum, objset_phys_t *objset) 2929 { 2930 dnode_phys_t dataset; 2931 dsl_dataset_phys_t *ds; 2932 2933 if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) { 2934 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum); 2935 return (EIO); 2936 } 2937 2938 ds = (dsl_dataset_phys_t *)&dataset.dn_bonus; 2939 if (zio_read(spa, &ds->ds_bp, objset)) { 2940 printf("ZFS: can't read object set for dataset %ju\n", 2941 (uintmax_t)objnum); 2942 return (EIO); 2943 } 2944 2945 return (0); 2946 } 2947 2948 /* 2949 * Find the object set pointed to by the BOOTFS property or the root 2950 * dataset if there is none and return its details in *objset 2951 */ 2952 static int 2953 zfs_get_root(const spa_t *spa, uint64_t *objid) 2954 { 2955 dnode_phys_t dir, propdir; 2956 uint64_t props, bootfs, root; 2957 2958 *objid = 0; 2959 2960 /* 2961 * Start with the MOS directory object. 2962 */ 2963 if (objset_get_dnode(spa, &spa->spa_mos, 2964 DMU_POOL_DIRECTORY_OBJECT, &dir)) { 2965 printf("ZFS: can't read MOS object directory\n"); 2966 return (EIO); 2967 } 2968 2969 /* 2970 * Lookup the pool_props and see if we can find a bootfs. 2971 */ 2972 if (zap_lookup(spa, &dir, DMU_POOL_PROPS, 2973 sizeof(props), 1, &props) == 0 && 2974 objset_get_dnode(spa, &spa->spa_mos, props, &propdir) == 0 && 2975 zap_lookup(spa, &propdir, "bootfs", 2976 sizeof(bootfs), 1, &bootfs) == 0 && bootfs != 0) { 2977 *objid = bootfs; 2978 return (0); 2979 } 2980 /* 2981 * Lookup the root dataset directory 2982 */ 2983 if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET, 2984 sizeof(root), 1, &root) || 2985 objset_get_dnode(spa, &spa->spa_mos, root, &dir)) { 2986 printf("ZFS: can't find root dsl_dir\n"); 2987 return (EIO); 2988 } 2989 2990 /* 2991 * Use the information from the dataset directory's bonus buffer 2992 * to find the dataset object and from that the object set itself. 2993 */ 2994 dsl_dir_phys_t *dd = (dsl_dir_phys_t *)&dir.dn_bonus; 2995 *objid = dd->dd_head_dataset_obj; 2996 return (0); 2997 } 2998 2999 static int 3000 zfs_mount(const spa_t *spa, uint64_t rootobj, struct zfsmount *mount) 3001 { 3002 3003 mount->spa = spa; 3004 3005 /* 3006 * Find the root object set if not explicitly provided 3007 */ 3008 if (rootobj == 0 && zfs_get_root(spa, &rootobj)) { 3009 printf("ZFS: can't find root filesystem\n"); 3010 return (EIO); 3011 } 3012 3013 if (zfs_mount_dataset(spa, rootobj, &mount->objset)) { 3014 printf("ZFS: can't open root filesystem\n"); 3015 return (EIO); 3016 } 3017 3018 mount->rootobj = rootobj; 3019 3020 return (0); 3021 } 3022 3023 /* 3024 * callback function for feature name checks. 3025 */ 3026 static int 3027 check_feature(const char *name, uint64_t value) 3028 { 3029 int i; 3030 3031 if (value == 0) 3032 return (0); 3033 if (name[0] == '\0') 3034 return (0); 3035 3036 for (i = 0; features_for_read[i] != NULL; i++) { 3037 if (strcmp(name, features_for_read[i]) == 0) 3038 return (0); 3039 } 3040 printf("ZFS: unsupported feature: %s\n", name); 3041 return (EIO); 3042 } 3043 3044 /* 3045 * Checks whether the MOS features that are active are supported. 3046 */ 3047 static int 3048 check_mos_features(const spa_t *spa) 3049 { 3050 dnode_phys_t dir; 3051 zap_phys_t *zap; 3052 uint64_t objnum; 3053 size_t size; 3054 int rc; 3055 3056 if ((rc = objset_get_dnode(spa, &spa->spa_mos, DMU_OT_OBJECT_DIRECTORY, 3057 &dir)) != 0) 3058 return (rc); 3059 if ((rc = zap_lookup(spa, &dir, DMU_POOL_FEATURES_FOR_READ, 3060 sizeof (objnum), 1, &objnum)) != 0) { 3061 /* 3062 * It is older pool without features. As we have already 3063 * tested the label, just return without raising the error. 3064 */ 3065 return (0); 3066 } 3067 3068 if ((rc = objset_get_dnode(spa, &spa->spa_mos, objnum, &dir)) != 0) 3069 return (rc); 3070 3071 if (dir.dn_type != DMU_OTN_ZAP_METADATA) 3072 return (EIO); 3073 3074 size = dir.dn_datablkszsec << SPA_MINBLOCKSHIFT; 3075 zap = malloc(size); 3076 if (zap == NULL) 3077 return (ENOMEM); 3078 3079 if (dnode_read(spa, &dir, 0, zap, size)) { 3080 free(zap); 3081 return (EIO); 3082 } 3083 3084 if (zap->zap_block_type == ZBT_MICRO) 3085 rc = mzap_list((const mzap_phys_t *)zap, size, check_feature); 3086 else 3087 rc = fzap_list(spa, &dir, zap, check_feature); 3088 3089 free(zap); 3090 return (rc); 3091 } 3092 3093 static int 3094 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 3095 { 3096 dnode_phys_t dir; 3097 size_t size; 3098 int rc; 3099 unsigned char *nv; 3100 3101 *value = NULL; 3102 if ((rc = objset_get_dnode(spa, &spa->spa_mos, obj, &dir)) != 0) 3103 return (rc); 3104 if (dir.dn_type != DMU_OT_PACKED_NVLIST && 3105 dir.dn_bonustype != DMU_OT_PACKED_NVLIST_SIZE) { 3106 return (EIO); 3107 } 3108 3109 if (dir.dn_bonuslen != sizeof (uint64_t)) 3110 return (EIO); 3111 3112 size = *(uint64_t *)DN_BONUS(&dir); 3113 nv = malloc(size); 3114 if (nv == NULL) 3115 return (ENOMEM); 3116 3117 rc = dnode_read(spa, &dir, 0, nv, size); 3118 if (rc != 0) { 3119 free(nv); 3120 nv = NULL; 3121 return (rc); 3122 } 3123 *value = nvlist_import(nv + 4, nv[0], nv[1]); 3124 free(nv); 3125 return (rc); 3126 } 3127 3128 static int 3129 zfs_spa_init(spa_t *spa) 3130 { 3131 dnode_phys_t dir; 3132 uint64_t config_object; 3133 nvlist_t *nvlist; 3134 int rc; 3135 3136 if (zio_read(spa, &spa->spa_uberblock.ub_rootbp, &spa->spa_mos)) { 3137 printf("ZFS: can't read MOS of pool %s\n", spa->spa_name); 3138 return (EIO); 3139 } 3140 if (spa->spa_mos.os_type != DMU_OST_META) { 3141 printf("ZFS: corrupted MOS of pool %s\n", spa->spa_name); 3142 return (EIO); 3143 } 3144 3145 if (objset_get_dnode(spa, &spa->spa_mos, DMU_POOL_DIRECTORY_OBJECT, 3146 &dir)) { 3147 printf("ZFS: failed to read pool %s directory object\n", 3148 spa->spa_name); 3149 return (EIO); 3150 } 3151 /* this is allowed to fail, older pools do not have salt */ 3152 rc = zap_lookup(spa, &dir, DMU_POOL_CHECKSUM_SALT, 1, 3153 sizeof (spa->spa_cksum_salt.zcs_bytes), 3154 spa->spa_cksum_salt.zcs_bytes); 3155 3156 rc = check_mos_features(spa); 3157 if (rc != 0) { 3158 printf("ZFS: pool %s is not supported\n", spa->spa_name); 3159 return (rc); 3160 } 3161 3162 rc = zap_lookup(spa, &dir, DMU_POOL_CONFIG, 3163 sizeof (config_object), 1, &config_object); 3164 if (rc != 0) { 3165 printf("ZFS: can not read MOS %s\n", DMU_POOL_CONFIG); 3166 return (EIO); 3167 } 3168 rc = load_nvlist(spa, config_object, &nvlist); 3169 if (rc != 0) 3170 return (rc); 3171 /* 3172 * Update vdevs from MOS config. Note, we do skip encoding bytes 3173 * here. See also vdev_label_read_config(). 3174 */ 3175 rc = vdev_init_from_nvlist(spa, nvlist); 3176 nvlist_destroy(nvlist); 3177 return (rc); 3178 } 3179 3180 static int 3181 zfs_dnode_stat(const spa_t *spa, dnode_phys_t *dn, struct stat *sb) 3182 { 3183 3184 if (dn->dn_bonustype != DMU_OT_SA) { 3185 znode_phys_t *zp = (znode_phys_t *)dn->dn_bonus; 3186 3187 sb->st_mode = zp->zp_mode; 3188 sb->st_uid = zp->zp_uid; 3189 sb->st_gid = zp->zp_gid; 3190 sb->st_size = zp->zp_size; 3191 } else { 3192 sa_hdr_phys_t *sahdrp; 3193 int hdrsize; 3194 size_t size = 0; 3195 void *buf = NULL; 3196 3197 if (dn->dn_bonuslen != 0) 3198 sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn); 3199 else { 3200 if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0) { 3201 blkptr_t *bp = DN_SPILL_BLKPTR(dn); 3202 int error; 3203 3204 size = BP_GET_LSIZE(bp); 3205 buf = malloc(size); 3206 if (buf == NULL) 3207 error = ENOMEM; 3208 else 3209 error = zio_read(spa, bp, buf); 3210 3211 if (error != 0) { 3212 free(buf); 3213 return (error); 3214 } 3215 sahdrp = buf; 3216 } else { 3217 return (EIO); 3218 } 3219 } 3220 hdrsize = SA_HDR_SIZE(sahdrp); 3221 sb->st_mode = *(uint64_t *)((char *)sahdrp + hdrsize + 3222 SA_MODE_OFFSET); 3223 sb->st_uid = *(uint64_t *)((char *)sahdrp + hdrsize + 3224 SA_UID_OFFSET); 3225 sb->st_gid = *(uint64_t *)((char *)sahdrp + hdrsize + 3226 SA_GID_OFFSET); 3227 sb->st_size = *(uint64_t *)((char *)sahdrp + hdrsize + 3228 SA_SIZE_OFFSET); 3229 free(buf); 3230 } 3231 3232 return (0); 3233 } 3234 3235 static int 3236 zfs_dnode_readlink(const spa_t *spa, dnode_phys_t *dn, char *path, size_t psize) 3237 { 3238 int rc = 0; 3239 3240 if (dn->dn_bonustype == DMU_OT_SA) { 3241 sa_hdr_phys_t *sahdrp = NULL; 3242 size_t size = 0; 3243 void *buf = NULL; 3244 int hdrsize; 3245 char *p; 3246 3247 if (dn->dn_bonuslen != 0) { 3248 sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn); 3249 } else { 3250 blkptr_t *bp; 3251 3252 if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) == 0) 3253 return (EIO); 3254 bp = DN_SPILL_BLKPTR(dn); 3255 3256 size = BP_GET_LSIZE(bp); 3257 buf = malloc(size); 3258 if (buf == NULL) 3259 rc = ENOMEM; 3260 else 3261 rc = zio_read(spa, bp, buf); 3262 if (rc != 0) { 3263 free(buf); 3264 return (rc); 3265 } 3266 sahdrp = buf; 3267 } 3268 hdrsize = SA_HDR_SIZE(sahdrp); 3269 p = (char *)((uintptr_t)sahdrp + hdrsize + SA_SYMLINK_OFFSET); 3270 memcpy(path, p, psize); 3271 free(buf); 3272 return (0); 3273 } 3274 /* 3275 * Second test is purely to silence bogus compiler 3276 * warning about accessing past the end of dn_bonus. 3277 */ 3278 if (psize + sizeof(znode_phys_t) <= dn->dn_bonuslen && 3279 sizeof(znode_phys_t) <= sizeof(dn->dn_bonus)) { 3280 memcpy(path, &dn->dn_bonus[sizeof(znode_phys_t)], psize); 3281 } else { 3282 rc = dnode_read(spa, dn, 0, path, psize); 3283 } 3284 return (rc); 3285 } 3286 3287 struct obj_list { 3288 uint64_t objnum; 3289 STAILQ_ENTRY(obj_list) entry; 3290 }; 3291 3292 /* 3293 * Lookup a file and return its dnode. 3294 */ 3295 static int 3296 zfs_lookup(const struct zfsmount *mount, const char *upath, dnode_phys_t *dnode) 3297 { 3298 int rc; 3299 uint64_t objnum; 3300 const spa_t *spa; 3301 dnode_phys_t dn; 3302 const char *p, *q; 3303 char element[256]; 3304 char path[1024]; 3305 int symlinks_followed = 0; 3306 struct stat sb; 3307 struct obj_list *entry, *tentry; 3308 STAILQ_HEAD(, obj_list) on_cache = STAILQ_HEAD_INITIALIZER(on_cache); 3309 3310 spa = mount->spa; 3311 if (mount->objset.os_type != DMU_OST_ZFS) { 3312 printf("ZFS: unexpected object set type %ju\n", 3313 (uintmax_t)mount->objset.os_type); 3314 return (EIO); 3315 } 3316 3317 if ((entry = malloc(sizeof(struct obj_list))) == NULL) 3318 return (ENOMEM); 3319 3320 /* 3321 * Get the root directory dnode. 3322 */ 3323 rc = objset_get_dnode(spa, &mount->objset, MASTER_NODE_OBJ, &dn); 3324 if (rc) { 3325 free(entry); 3326 return (rc); 3327 } 3328 3329 rc = zap_lookup(spa, &dn, ZFS_ROOT_OBJ, sizeof(objnum), 1, &objnum); 3330 if (rc) { 3331 free(entry); 3332 return (rc); 3333 } 3334 entry->objnum = objnum; 3335 STAILQ_INSERT_HEAD(&on_cache, entry, entry); 3336 3337 rc = objset_get_dnode(spa, &mount->objset, objnum, &dn); 3338 if (rc != 0) 3339 goto done; 3340 3341 p = upath; 3342 while (p && *p) { 3343 rc = objset_get_dnode(spa, &mount->objset, objnum, &dn); 3344 if (rc != 0) 3345 goto done; 3346 3347 while (*p == '/') 3348 p++; 3349 if (*p == '\0') 3350 break; 3351 q = p; 3352 while (*q != '\0' && *q != '/') 3353 q++; 3354 3355 /* skip dot */ 3356 if (p + 1 == q && p[0] == '.') { 3357 p++; 3358 continue; 3359 } 3360 /* double dot */ 3361 if (p + 2 == q && p[0] == '.' && p[1] == '.') { 3362 p += 2; 3363 if (STAILQ_FIRST(&on_cache) == 3364 STAILQ_LAST(&on_cache, obj_list, entry)) { 3365 rc = ENOENT; 3366 goto done; 3367 } 3368 entry = STAILQ_FIRST(&on_cache); 3369 STAILQ_REMOVE_HEAD(&on_cache, entry); 3370 free(entry); 3371 objnum = (STAILQ_FIRST(&on_cache))->objnum; 3372 continue; 3373 } 3374 if (q - p + 1 > sizeof(element)) { 3375 rc = ENAMETOOLONG; 3376 goto done; 3377 } 3378 memcpy(element, p, q - p); 3379 element[q - p] = 0; 3380 p = q; 3381 3382 if ((rc = zfs_dnode_stat(spa, &dn, &sb)) != 0) 3383 goto done; 3384 if (!S_ISDIR(sb.st_mode)) { 3385 rc = ENOTDIR; 3386 goto done; 3387 } 3388 3389 rc = zap_lookup(spa, &dn, element, sizeof (objnum), 1, &objnum); 3390 if (rc) 3391 goto done; 3392 objnum = ZFS_DIRENT_OBJ(objnum); 3393 3394 if ((entry = malloc(sizeof(struct obj_list))) == NULL) { 3395 rc = ENOMEM; 3396 goto done; 3397 } 3398 entry->objnum = objnum; 3399 STAILQ_INSERT_HEAD(&on_cache, entry, entry); 3400 rc = objset_get_dnode(spa, &mount->objset, objnum, &dn); 3401 if (rc) 3402 goto done; 3403 3404 /* 3405 * Check for symlink. 3406 */ 3407 rc = zfs_dnode_stat(spa, &dn, &sb); 3408 if (rc) 3409 goto done; 3410 if (S_ISLNK(sb.st_mode)) { 3411 if (symlinks_followed > 10) { 3412 rc = EMLINK; 3413 goto done; 3414 } 3415 symlinks_followed++; 3416 3417 /* 3418 * Read the link value and copy the tail of our 3419 * current path onto the end. 3420 */ 3421 if (sb.st_size + strlen(p) + 1 > sizeof(path)) { 3422 rc = ENAMETOOLONG; 3423 goto done; 3424 } 3425 strcpy(&path[sb.st_size], p); 3426 3427 rc = zfs_dnode_readlink(spa, &dn, path, sb.st_size); 3428 if (rc != 0) 3429 goto done; 3430 3431 /* 3432 * Restart with the new path, starting either at 3433 * the root or at the parent depending whether or 3434 * not the link is relative. 3435 */ 3436 p = path; 3437 if (*p == '/') { 3438 while (STAILQ_FIRST(&on_cache) != 3439 STAILQ_LAST(&on_cache, obj_list, entry)) { 3440 entry = STAILQ_FIRST(&on_cache); 3441 STAILQ_REMOVE_HEAD(&on_cache, entry); 3442 free(entry); 3443 } 3444 } else { 3445 entry = STAILQ_FIRST(&on_cache); 3446 STAILQ_REMOVE_HEAD(&on_cache, entry); 3447 free(entry); 3448 } 3449 objnum = (STAILQ_FIRST(&on_cache))->objnum; 3450 } 3451 } 3452 3453 *dnode = dn; 3454 done: 3455 STAILQ_FOREACH_SAFE(entry, &on_cache, entry, tentry) 3456 free(entry); 3457 return (rc); 3458 } 3459