xref: /freebsd/stand/libsa/zfs/zfsimpl.c (revision 4d3fc8b0570b29fb0d6ee9525f104d52176ff0d4)
1 /*-
2  * Copyright (c) 2007 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 /*
31  *	Stand-alone ZFS file reader.
32  */
33 
34 #include <stdbool.h>
35 #include <sys/endian.h>
36 #include <sys/stat.h>
37 #include <sys/stdint.h>
38 #include <sys/list.h>
39 #include <sys/zfs_bootenv.h>
40 #include <machine/_inttypes.h>
41 
42 #include "zfsimpl.h"
43 #include "zfssubr.c"
44 
45 #ifdef HAS_ZSTD_ZFS
46 extern int zstd_init(void);
47 #endif
48 
49 struct zfsmount {
50 	char			*path;
51 	const spa_t		*spa;
52 	objset_phys_t		objset;
53 	uint64_t		rootobj;
54 	STAILQ_ENTRY(zfsmount)	next;
55 };
56 
57 typedef STAILQ_HEAD(zfs_mnt_list, zfsmount) zfs_mnt_list_t;
58 static zfs_mnt_list_t zfsmount = STAILQ_HEAD_INITIALIZER(zfsmount);
59 
60 /*
61  * The indirect_child_t represents the vdev that we will read from, when we
62  * need to read all copies of the data (e.g. for scrub or reconstruction).
63  * For plain (non-mirror) top-level vdevs (i.e. is_vdev is not a mirror),
64  * ic_vdev is the same as is_vdev.  However, for mirror top-level vdevs,
65  * ic_vdev is a child of the mirror.
66  */
67 typedef struct indirect_child {
68 	void *ic_data;
69 	vdev_t *ic_vdev;
70 } indirect_child_t;
71 
72 /*
73  * The indirect_split_t represents one mapped segment of an i/o to the
74  * indirect vdev. For non-split (contiguously-mapped) blocks, there will be
75  * only one indirect_split_t, with is_split_offset==0 and is_size==io_size.
76  * For split blocks, there will be several of these.
77  */
78 typedef struct indirect_split {
79 	list_node_t is_node; /* link on iv_splits */
80 
81 	/*
82 	 * is_split_offset is the offset into the i/o.
83 	 * This is the sum of the previous splits' is_size's.
84 	 */
85 	uint64_t is_split_offset;
86 
87 	vdev_t *is_vdev; /* top-level vdev */
88 	uint64_t is_target_offset; /* offset on is_vdev */
89 	uint64_t is_size;
90 	int is_children; /* number of entries in is_child[] */
91 
92 	/*
93 	 * is_good_child is the child that we are currently using to
94 	 * attempt reconstruction.
95 	 */
96 	int is_good_child;
97 
98 	indirect_child_t is_child[1]; /* variable-length */
99 } indirect_split_t;
100 
101 /*
102  * The indirect_vsd_t is associated with each i/o to the indirect vdev.
103  * It is the "Vdev-Specific Data" in the zio_t's io_vsd.
104  */
105 typedef struct indirect_vsd {
106 	boolean_t iv_split_block;
107 	boolean_t iv_reconstruct;
108 
109 	list_t iv_splits; /* list of indirect_split_t's */
110 } indirect_vsd_t;
111 
112 /*
113  * List of all vdevs, chained through v_alllink.
114  */
115 static vdev_list_t zfs_vdevs;
116 
117 /*
118  * List of ZFS features supported for read
119  */
120 static const char *features_for_read[] = {
121 	"com.datto:bookmark_v2",
122 	"com.datto:encryption",
123 	"com.datto:resilver_defer",
124 	"com.delphix:bookmark_written",
125 	"com.delphix:device_removal",
126 	"com.delphix:embedded_data",
127 	"com.delphix:extensible_dataset",
128 	"com.delphix:head_errlog",
129 	"com.delphix:hole_birth",
130 	"com.delphix:obsolete_counts",
131 	"com.delphix:spacemap_histogram",
132 	"com.delphix:spacemap_v2",
133 	"com.delphix:zpool_checkpoint",
134 	"com.intel:allocation_classes",
135 	"com.joyent:multi_vdev_crash_dump",
136 	"org.freebsd:zstd_compress",
137 	"org.illumos:lz4_compress",
138 	"org.illumos:sha512",
139 	"org.illumos:skein",
140 	"org.open-zfs:large_blocks",
141 	"org.openzfs:blake3",
142 	"org.zfsonlinux:allocation_classes",
143 	"org.zfsonlinux:large_dnode",
144 	NULL
145 };
146 
147 /*
148  * List of all pools, chained through spa_link.
149  */
150 static spa_list_t zfs_pools;
151 
152 static const dnode_phys_t *dnode_cache_obj;
153 static uint64_t dnode_cache_bn;
154 static char *dnode_cache_buf;
155 
156 static int zio_read(const spa_t *spa, const blkptr_t *bp, void *buf);
157 static int zfs_get_root(const spa_t *spa, uint64_t *objid);
158 static int zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result);
159 static int zap_lookup(const spa_t *spa, const dnode_phys_t *dnode,
160     const char *name, uint64_t integer_size, uint64_t num_integers,
161     void *value);
162 static int objset_get_dnode(const spa_t *, const objset_phys_t *, uint64_t,
163     dnode_phys_t *);
164 static int dnode_read(const spa_t *, const dnode_phys_t *, off_t, void *,
165     size_t);
166 static int vdev_indirect_read(vdev_t *, const blkptr_t *, void *, off_t,
167     size_t);
168 static int vdev_mirror_read(vdev_t *, const blkptr_t *, void *, off_t, size_t);
169 vdev_indirect_mapping_t *vdev_indirect_mapping_open(spa_t *, objset_phys_t *,
170     uint64_t);
171 vdev_indirect_mapping_entry_phys_t *
172     vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *, uint64_t,
173     uint64_t, uint64_t *);
174 
175 static void
176 zfs_init(void)
177 {
178 	STAILQ_INIT(&zfs_vdevs);
179 	STAILQ_INIT(&zfs_pools);
180 
181 	dnode_cache_buf = malloc(SPA_MAXBLOCKSIZE);
182 
183 	zfs_init_crc();
184 #ifdef HAS_ZSTD_ZFS
185 	zstd_init();
186 #endif
187 }
188 
189 static int
190 nvlist_check_features_for_read(nvlist_t *nvl)
191 {
192 	nvlist_t *features = NULL;
193 	nvs_data_t *data;
194 	nvp_header_t *nvp;
195 	nv_string_t *nvp_name;
196 	int rc;
197 
198 	rc = nvlist_find(nvl, ZPOOL_CONFIG_FEATURES_FOR_READ,
199 	    DATA_TYPE_NVLIST, NULL, &features, NULL);
200 	switch (rc) {
201 	case 0:
202 		break;		/* Continue with checks */
203 
204 	case ENOENT:
205 		return (0);	/* All features are disabled */
206 
207 	default:
208 		return (rc);	/* Error while reading nvlist */
209 	}
210 
211 	data = (nvs_data_t *)features->nv_data;
212 	nvp = &data->nvl_pair;	/* first pair in nvlist */
213 
214 	while (nvp->encoded_size != 0 && nvp->decoded_size != 0) {
215 		int i, found;
216 
217 		nvp_name = (nv_string_t *)((uintptr_t)nvp + sizeof(*nvp));
218 		found = 0;
219 
220 		for (i = 0; features_for_read[i] != NULL; i++) {
221 			if (memcmp(nvp_name->nv_data, features_for_read[i],
222 			    nvp_name->nv_size) == 0) {
223 				found = 1;
224 				break;
225 			}
226 		}
227 
228 		if (!found) {
229 			printf("ZFS: unsupported feature: %.*s\n",
230 			    nvp_name->nv_size, nvp_name->nv_data);
231 			rc = EIO;
232 		}
233 		nvp = (nvp_header_t *)((uint8_t *)nvp + nvp->encoded_size);
234 	}
235 	nvlist_destroy(features);
236 
237 	return (rc);
238 }
239 
240 static int
241 vdev_read_phys(vdev_t *vdev, const blkptr_t *bp, void *buf,
242     off_t offset, size_t size)
243 {
244 	size_t psize;
245 	int rc;
246 
247 	if (vdev->v_phys_read == NULL)
248 		return (ENOTSUP);
249 
250 	if (bp) {
251 		psize = BP_GET_PSIZE(bp);
252 	} else {
253 		psize = size;
254 	}
255 
256 	rc = vdev->v_phys_read(vdev, vdev->v_priv, offset, buf, psize);
257 	if (rc == 0) {
258 		if (bp != NULL)
259 			rc = zio_checksum_verify(vdev->v_spa, bp, buf);
260 	}
261 
262 	return (rc);
263 }
264 
265 static int
266 vdev_write_phys(vdev_t *vdev, void *buf, off_t offset, size_t size)
267 {
268 	if (vdev->v_phys_write == NULL)
269 		return (ENOTSUP);
270 
271 	return (vdev->v_phys_write(vdev, offset, buf, size));
272 }
273 
274 typedef struct remap_segment {
275 	vdev_t *rs_vd;
276 	uint64_t rs_offset;
277 	uint64_t rs_asize;
278 	uint64_t rs_split_offset;
279 	list_node_t rs_node;
280 } remap_segment_t;
281 
282 static remap_segment_t *
283 rs_alloc(vdev_t *vd, uint64_t offset, uint64_t asize, uint64_t split_offset)
284 {
285 	remap_segment_t *rs = malloc(sizeof (remap_segment_t));
286 
287 	if (rs != NULL) {
288 		rs->rs_vd = vd;
289 		rs->rs_offset = offset;
290 		rs->rs_asize = asize;
291 		rs->rs_split_offset = split_offset;
292 	}
293 
294 	return (rs);
295 }
296 
297 vdev_indirect_mapping_t *
298 vdev_indirect_mapping_open(spa_t *spa, objset_phys_t *os,
299     uint64_t mapping_object)
300 {
301 	vdev_indirect_mapping_t *vim;
302 	vdev_indirect_mapping_phys_t *vim_phys;
303 	int rc;
304 
305 	vim = calloc(1, sizeof (*vim));
306 	if (vim == NULL)
307 		return (NULL);
308 
309 	vim->vim_dn = calloc(1, sizeof (*vim->vim_dn));
310 	if (vim->vim_dn == NULL) {
311 		free(vim);
312 		return (NULL);
313 	}
314 
315 	rc = objset_get_dnode(spa, os, mapping_object, vim->vim_dn);
316 	if (rc != 0) {
317 		free(vim->vim_dn);
318 		free(vim);
319 		return (NULL);
320 	}
321 
322 	vim->vim_spa = spa;
323 	vim->vim_phys = malloc(sizeof (*vim->vim_phys));
324 	if (vim->vim_phys == NULL) {
325 		free(vim->vim_dn);
326 		free(vim);
327 		return (NULL);
328 	}
329 
330 	vim_phys = (vdev_indirect_mapping_phys_t *)DN_BONUS(vim->vim_dn);
331 	*vim->vim_phys = *vim_phys;
332 
333 	vim->vim_objset = os;
334 	vim->vim_object = mapping_object;
335 	vim->vim_entries = NULL;
336 
337 	vim->vim_havecounts =
338 	    (vim->vim_dn->dn_bonuslen > VDEV_INDIRECT_MAPPING_SIZE_V0);
339 
340 	return (vim);
341 }
342 
343 /*
344  * Compare an offset with an indirect mapping entry; there are three
345  * possible scenarios:
346  *
347  *     1. The offset is "less than" the mapping entry; meaning the
348  *        offset is less than the source offset of the mapping entry. In
349  *        this case, there is no overlap between the offset and the
350  *        mapping entry and -1 will be returned.
351  *
352  *     2. The offset is "greater than" the mapping entry; meaning the
353  *        offset is greater than the mapping entry's source offset plus
354  *        the entry's size. In this case, there is no overlap between
355  *        the offset and the mapping entry and 1 will be returned.
356  *
357  *        NOTE: If the offset is actually equal to the entry's offset
358  *        plus size, this is considered to be "greater" than the entry,
359  *        and this case applies (i.e. 1 will be returned). Thus, the
360  *        entry's "range" can be considered to be inclusive at its
361  *        start, but exclusive at its end: e.g. [src, src + size).
362  *
363  *     3. The last case to consider is if the offset actually falls
364  *        within the mapping entry's range. If this is the case, the
365  *        offset is considered to be "equal to" the mapping entry and
366  *        0 will be returned.
367  *
368  *        NOTE: If the offset is equal to the entry's source offset,
369  *        this case applies and 0 will be returned. If the offset is
370  *        equal to the entry's source plus its size, this case does
371  *        *not* apply (see "NOTE" above for scenario 2), and 1 will be
372  *        returned.
373  */
374 static int
375 dva_mapping_overlap_compare(const void *v_key, const void *v_array_elem)
376 {
377 	const uint64_t *key = v_key;
378 	const vdev_indirect_mapping_entry_phys_t *array_elem =
379 	    v_array_elem;
380 	uint64_t src_offset = DVA_MAPPING_GET_SRC_OFFSET(array_elem);
381 
382 	if (*key < src_offset) {
383 		return (-1);
384 	} else if (*key < src_offset + DVA_GET_ASIZE(&array_elem->vimep_dst)) {
385 		return (0);
386 	} else {
387 		return (1);
388 	}
389 }
390 
391 /*
392  * Return array entry.
393  */
394 static vdev_indirect_mapping_entry_phys_t *
395 vdev_indirect_mapping_entry(vdev_indirect_mapping_t *vim, uint64_t index)
396 {
397 	uint64_t size;
398 	off_t offset = 0;
399 	int rc;
400 
401 	if (vim->vim_phys->vimp_num_entries == 0)
402 		return (NULL);
403 
404 	if (vim->vim_entries == NULL) {
405 		uint64_t bsize;
406 
407 		bsize = vim->vim_dn->dn_datablkszsec << SPA_MINBLOCKSHIFT;
408 		size = vim->vim_phys->vimp_num_entries *
409 		    sizeof (*vim->vim_entries);
410 		if (size > bsize) {
411 			size = bsize / sizeof (*vim->vim_entries);
412 			size *= sizeof (*vim->vim_entries);
413 		}
414 		vim->vim_entries = malloc(size);
415 		if (vim->vim_entries == NULL)
416 			return (NULL);
417 		vim->vim_num_entries = size / sizeof (*vim->vim_entries);
418 		offset = index * sizeof (*vim->vim_entries);
419 	}
420 
421 	/* We have data in vim_entries */
422 	if (offset == 0) {
423 		if (index >= vim->vim_entry_offset &&
424 		    index <= vim->vim_entry_offset + vim->vim_num_entries) {
425 			index -= vim->vim_entry_offset;
426 			return (&vim->vim_entries[index]);
427 		}
428 		offset = index * sizeof (*vim->vim_entries);
429 	}
430 
431 	vim->vim_entry_offset = index;
432 	size = vim->vim_num_entries * sizeof (*vim->vim_entries);
433 	rc = dnode_read(vim->vim_spa, vim->vim_dn, offset, vim->vim_entries,
434 	    size);
435 	if (rc != 0) {
436 		/* Read error, invalidate vim_entries. */
437 		free(vim->vim_entries);
438 		vim->vim_entries = NULL;
439 		return (NULL);
440 	}
441 	index -= vim->vim_entry_offset;
442 	return (&vim->vim_entries[index]);
443 }
444 
445 /*
446  * Returns the mapping entry for the given offset.
447  *
448  * It's possible that the given offset will not be in the mapping table
449  * (i.e. no mapping entries contain this offset), in which case, the
450  * return value value depends on the "next_if_missing" parameter.
451  *
452  * If the offset is not found in the table and "next_if_missing" is
453  * B_FALSE, then NULL will always be returned. The behavior is intended
454  * to allow consumers to get the entry corresponding to the offset
455  * parameter, iff the offset overlaps with an entry in the table.
456  *
457  * If the offset is not found in the table and "next_if_missing" is
458  * B_TRUE, then the entry nearest to the given offset will be returned,
459  * such that the entry's source offset is greater than the offset
460  * passed in (i.e. the "next" mapping entry in the table is returned, if
461  * the offset is missing from the table). If there are no entries whose
462  * source offset is greater than the passed in offset, NULL is returned.
463  */
464 static vdev_indirect_mapping_entry_phys_t *
465 vdev_indirect_mapping_entry_for_offset(vdev_indirect_mapping_t *vim,
466     uint64_t offset)
467 {
468 	ASSERT(vim->vim_phys->vimp_num_entries > 0);
469 
470 	vdev_indirect_mapping_entry_phys_t *entry;
471 
472 	uint64_t last = vim->vim_phys->vimp_num_entries - 1;
473 	uint64_t base = 0;
474 
475 	/*
476 	 * We don't define these inside of the while loop because we use
477 	 * their value in the case that offset isn't in the mapping.
478 	 */
479 	uint64_t mid;
480 	int result;
481 
482 	while (last >= base) {
483 		mid = base + ((last - base) >> 1);
484 
485 		entry = vdev_indirect_mapping_entry(vim, mid);
486 		if (entry == NULL)
487 			break;
488 		result = dva_mapping_overlap_compare(&offset, entry);
489 
490 		if (result == 0) {
491 			break;
492 		} else if (result < 0) {
493 			last = mid - 1;
494 		} else {
495 			base = mid + 1;
496 		}
497 	}
498 	return (entry);
499 }
500 
501 /*
502  * Given an indirect vdev and an extent on that vdev, it duplicates the
503  * physical entries of the indirect mapping that correspond to the extent
504  * to a new array and returns a pointer to it. In addition, copied_entries
505  * is populated with the number of mapping entries that were duplicated.
506  *
507  * Finally, since we are doing an allocation, it is up to the caller to
508  * free the array allocated in this function.
509  */
510 vdev_indirect_mapping_entry_phys_t *
511 vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *vd, uint64_t offset,
512     uint64_t asize, uint64_t *copied_entries)
513 {
514 	vdev_indirect_mapping_entry_phys_t *duplicate_mappings = NULL;
515 	vdev_indirect_mapping_t *vim = vd->v_mapping;
516 	uint64_t entries = 0;
517 
518 	vdev_indirect_mapping_entry_phys_t *first_mapping =
519 	    vdev_indirect_mapping_entry_for_offset(vim, offset);
520 	ASSERT3P(first_mapping, !=, NULL);
521 
522 	vdev_indirect_mapping_entry_phys_t *m = first_mapping;
523 	while (asize > 0) {
524 		uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
525 		uint64_t inner_offset = offset - DVA_MAPPING_GET_SRC_OFFSET(m);
526 		uint64_t inner_size = MIN(asize, size - inner_offset);
527 
528 		offset += inner_size;
529 		asize -= inner_size;
530 		entries++;
531 		m++;
532 	}
533 
534 	size_t copy_length = entries * sizeof (*first_mapping);
535 	duplicate_mappings = malloc(copy_length);
536 	if (duplicate_mappings != NULL)
537 		bcopy(first_mapping, duplicate_mappings, copy_length);
538 	else
539 		entries = 0;
540 
541 	*copied_entries = entries;
542 
543 	return (duplicate_mappings);
544 }
545 
546 static vdev_t *
547 vdev_lookup_top(spa_t *spa, uint64_t vdev)
548 {
549 	vdev_t *rvd;
550 	vdev_list_t *vlist;
551 
552 	vlist = &spa->spa_root_vdev->v_children;
553 	STAILQ_FOREACH(rvd, vlist, v_childlink)
554 		if (rvd->v_id == vdev)
555 			break;
556 
557 	return (rvd);
558 }
559 
560 /*
561  * This is a callback for vdev_indirect_remap() which allocates an
562  * indirect_split_t for each split segment and adds it to iv_splits.
563  */
564 static void
565 vdev_indirect_gather_splits(uint64_t split_offset, vdev_t *vd, uint64_t offset,
566     uint64_t size, void *arg)
567 {
568 	int n = 1;
569 	zio_t *zio = arg;
570 	indirect_vsd_t *iv = zio->io_vsd;
571 
572 	if (vd->v_read == vdev_indirect_read)
573 		return;
574 
575 	if (vd->v_read == vdev_mirror_read)
576 		n = vd->v_nchildren;
577 
578 	indirect_split_t *is =
579 	    malloc(offsetof(indirect_split_t, is_child[n]));
580 	if (is == NULL) {
581 		zio->io_error = ENOMEM;
582 		return;
583 	}
584 	bzero(is, offsetof(indirect_split_t, is_child[n]));
585 
586 	is->is_children = n;
587 	is->is_size = size;
588 	is->is_split_offset = split_offset;
589 	is->is_target_offset = offset;
590 	is->is_vdev = vd;
591 
592 	/*
593 	 * Note that we only consider multiple copies of the data for
594 	 * *mirror* vdevs.  We don't for "replacing" or "spare" vdevs, even
595 	 * though they use the same ops as mirror, because there's only one
596 	 * "good" copy under the replacing/spare.
597 	 */
598 	if (vd->v_read == vdev_mirror_read) {
599 		int i = 0;
600 		vdev_t *kid;
601 
602 		STAILQ_FOREACH(kid, &vd->v_children, v_childlink) {
603 			is->is_child[i++].ic_vdev = kid;
604 		}
605 	} else {
606 		is->is_child[0].ic_vdev = vd;
607 	}
608 
609 	list_insert_tail(&iv->iv_splits, is);
610 }
611 
612 static void
613 vdev_indirect_remap(vdev_t *vd, uint64_t offset, uint64_t asize, void *arg)
614 {
615 	list_t stack;
616 	spa_t *spa = vd->v_spa;
617 	zio_t *zio = arg;
618 	remap_segment_t *rs;
619 
620 	list_create(&stack, sizeof (remap_segment_t),
621 	    offsetof(remap_segment_t, rs_node));
622 
623 	rs = rs_alloc(vd, offset, asize, 0);
624 	if (rs == NULL) {
625 		printf("vdev_indirect_remap: out of memory.\n");
626 		zio->io_error = ENOMEM;
627 	}
628 	for (; rs != NULL; rs = list_remove_head(&stack)) {
629 		vdev_t *v = rs->rs_vd;
630 		uint64_t num_entries = 0;
631 		/* vdev_indirect_mapping_t *vim = v->v_mapping; */
632 		vdev_indirect_mapping_entry_phys_t *mapping =
633 		    vdev_indirect_mapping_duplicate_adjacent_entries(v,
634 		    rs->rs_offset, rs->rs_asize, &num_entries);
635 
636 		if (num_entries == 0)
637 			zio->io_error = ENOMEM;
638 
639 		for (uint64_t i = 0; i < num_entries; i++) {
640 			vdev_indirect_mapping_entry_phys_t *m = &mapping[i];
641 			uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
642 			uint64_t dst_offset = DVA_GET_OFFSET(&m->vimep_dst);
643 			uint64_t dst_vdev = DVA_GET_VDEV(&m->vimep_dst);
644 			uint64_t inner_offset = rs->rs_offset -
645 			    DVA_MAPPING_GET_SRC_OFFSET(m);
646 			uint64_t inner_size =
647 			    MIN(rs->rs_asize, size - inner_offset);
648 			vdev_t *dst_v = vdev_lookup_top(spa, dst_vdev);
649 
650 			if (dst_v->v_read == vdev_indirect_read) {
651 				remap_segment_t *o;
652 
653 				o = rs_alloc(dst_v, dst_offset + inner_offset,
654 				    inner_size, rs->rs_split_offset);
655 				if (o == NULL) {
656 					printf("vdev_indirect_remap: "
657 					    "out of memory.\n");
658 					zio->io_error = ENOMEM;
659 					break;
660 				}
661 
662 				list_insert_head(&stack, o);
663 			}
664 			vdev_indirect_gather_splits(rs->rs_split_offset, dst_v,
665 			    dst_offset + inner_offset,
666 			    inner_size, arg);
667 
668 			/*
669 			 * vdev_indirect_gather_splits can have memory
670 			 * allocation error, we can not recover from it.
671 			 */
672 			if (zio->io_error != 0)
673 				break;
674 			rs->rs_offset += inner_size;
675 			rs->rs_asize -= inner_size;
676 			rs->rs_split_offset += inner_size;
677 		}
678 
679 		free(mapping);
680 		free(rs);
681 		if (zio->io_error != 0)
682 			break;
683 	}
684 
685 	list_destroy(&stack);
686 }
687 
688 static void
689 vdev_indirect_map_free(zio_t *zio)
690 {
691 	indirect_vsd_t *iv = zio->io_vsd;
692 	indirect_split_t *is;
693 
694 	while ((is = list_head(&iv->iv_splits)) != NULL) {
695 		for (int c = 0; c < is->is_children; c++) {
696 			indirect_child_t *ic = &is->is_child[c];
697 			free(ic->ic_data);
698 		}
699 		list_remove(&iv->iv_splits, is);
700 		free(is);
701 	}
702 	free(iv);
703 }
704 
705 static int
706 vdev_indirect_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
707     off_t offset, size_t bytes)
708 {
709 	zio_t zio;
710 	spa_t *spa = vdev->v_spa;
711 	indirect_vsd_t *iv;
712 	indirect_split_t *first;
713 	int rc = EIO;
714 
715 	iv = calloc(1, sizeof(*iv));
716 	if (iv == NULL)
717 		return (ENOMEM);
718 
719 	list_create(&iv->iv_splits,
720 	    sizeof (indirect_split_t), offsetof(indirect_split_t, is_node));
721 
722 	bzero(&zio, sizeof(zio));
723 	zio.io_spa = spa;
724 	zio.io_bp = (blkptr_t *)bp;
725 	zio.io_data = buf;
726 	zio.io_size = bytes;
727 	zio.io_offset = offset;
728 	zio.io_vd = vdev;
729 	zio.io_vsd = iv;
730 
731 	if (vdev->v_mapping == NULL) {
732 		vdev_indirect_config_t *vic;
733 
734 		vic = &vdev->vdev_indirect_config;
735 		vdev->v_mapping = vdev_indirect_mapping_open(spa,
736 		    spa->spa_mos, vic->vic_mapping_object);
737 	}
738 
739 	vdev_indirect_remap(vdev, offset, bytes, &zio);
740 	if (zio.io_error != 0)
741 		return (zio.io_error);
742 
743 	first = list_head(&iv->iv_splits);
744 	if (first->is_size == zio.io_size) {
745 		/*
746 		 * This is not a split block; we are pointing to the entire
747 		 * data, which will checksum the same as the original data.
748 		 * Pass the BP down so that the child i/o can verify the
749 		 * checksum, and try a different location if available
750 		 * (e.g. on a mirror).
751 		 *
752 		 * While this special case could be handled the same as the
753 		 * general (split block) case, doing it this way ensures
754 		 * that the vast majority of blocks on indirect vdevs
755 		 * (which are not split) are handled identically to blocks
756 		 * on non-indirect vdevs.  This allows us to be less strict
757 		 * about performance in the general (but rare) case.
758 		 */
759 		rc = first->is_vdev->v_read(first->is_vdev, zio.io_bp,
760 		    zio.io_data, first->is_target_offset, bytes);
761 	} else {
762 		iv->iv_split_block = B_TRUE;
763 		/*
764 		 * Read one copy of each split segment, from the
765 		 * top-level vdev.  Since we don't know the
766 		 * checksum of each split individually, the child
767 		 * zio can't ensure that we get the right data.
768 		 * E.g. if it's a mirror, it will just read from a
769 		 * random (healthy) leaf vdev.  We have to verify
770 		 * the checksum in vdev_indirect_io_done().
771 		 */
772 		for (indirect_split_t *is = list_head(&iv->iv_splits);
773 		    is != NULL; is = list_next(&iv->iv_splits, is)) {
774 			char *ptr = zio.io_data;
775 
776 			rc = is->is_vdev->v_read(is->is_vdev, zio.io_bp,
777 			    ptr + is->is_split_offset, is->is_target_offset,
778 			    is->is_size);
779 		}
780 		if (zio_checksum_verify(spa, zio.io_bp, zio.io_data))
781 			rc = ECKSUM;
782 		else
783 			rc = 0;
784 	}
785 
786 	vdev_indirect_map_free(&zio);
787 	if (rc == 0)
788 		rc = zio.io_error;
789 
790 	return (rc);
791 }
792 
793 static int
794 vdev_disk_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
795     off_t offset, size_t bytes)
796 {
797 
798 	return (vdev_read_phys(vdev, bp, buf,
799 	    offset + VDEV_LABEL_START_SIZE, bytes));
800 }
801 
802 static int
803 vdev_missing_read(vdev_t *vdev __unused, const blkptr_t *bp __unused,
804     void *buf __unused, off_t offset __unused, size_t bytes __unused)
805 {
806 
807 	return (ENOTSUP);
808 }
809 
810 static int
811 vdev_mirror_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
812     off_t offset, size_t bytes)
813 {
814 	vdev_t *kid;
815 	int rc;
816 
817 	rc = EIO;
818 	STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
819 		if (kid->v_state != VDEV_STATE_HEALTHY)
820 			continue;
821 		rc = kid->v_read(kid, bp, buf, offset, bytes);
822 		if (!rc)
823 			return (0);
824 	}
825 
826 	return (rc);
827 }
828 
829 static int
830 vdev_replacing_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
831     off_t offset, size_t bytes)
832 {
833 	vdev_t *kid;
834 
835 	/*
836 	 * Here we should have two kids:
837 	 * First one which is the one we are replacing and we can trust
838 	 * only this one to have valid data, but it might not be present.
839 	 * Second one is that one we are replacing with. It is most likely
840 	 * healthy, but we can't trust it has needed data, so we won't use it.
841 	 */
842 	kid = STAILQ_FIRST(&vdev->v_children);
843 	if (kid == NULL)
844 		return (EIO);
845 	if (kid->v_state != VDEV_STATE_HEALTHY)
846 		return (EIO);
847 	return (kid->v_read(kid, bp, buf, offset, bytes));
848 }
849 
850 static vdev_t *
851 vdev_find(uint64_t guid)
852 {
853 	vdev_t *vdev;
854 
855 	STAILQ_FOREACH(vdev, &zfs_vdevs, v_alllink)
856 		if (vdev->v_guid == guid)
857 			return (vdev);
858 
859 	return (0);
860 }
861 
862 static vdev_t *
863 vdev_create(uint64_t guid, vdev_read_t *_read)
864 {
865 	vdev_t *vdev;
866 	vdev_indirect_config_t *vic;
867 
868 	vdev = calloc(1, sizeof(vdev_t));
869 	if (vdev != NULL) {
870 		STAILQ_INIT(&vdev->v_children);
871 		vdev->v_guid = guid;
872 		vdev->v_read = _read;
873 
874 		/*
875 		 * root vdev has no read function, we use this fact to
876 		 * skip setting up data we do not need for root vdev.
877 		 * We only point root vdev from spa.
878 		 */
879 		if (_read != NULL) {
880 			vic = &vdev->vdev_indirect_config;
881 			vic->vic_prev_indirect_vdev = UINT64_MAX;
882 			STAILQ_INSERT_TAIL(&zfs_vdevs, vdev, v_alllink);
883 		}
884 	}
885 
886 	return (vdev);
887 }
888 
889 static void
890 vdev_set_initial_state(vdev_t *vdev, const nvlist_t *nvlist)
891 {
892 	uint64_t is_offline, is_faulted, is_degraded, is_removed, isnt_present;
893 	uint64_t is_log;
894 
895 	is_offline = is_removed = is_faulted = is_degraded = isnt_present = 0;
896 	is_log = 0;
897 	(void) nvlist_find(nvlist, ZPOOL_CONFIG_OFFLINE, DATA_TYPE_UINT64, NULL,
898 	    &is_offline, NULL);
899 	(void) nvlist_find(nvlist, ZPOOL_CONFIG_REMOVED, DATA_TYPE_UINT64, NULL,
900 	    &is_removed, NULL);
901 	(void) nvlist_find(nvlist, ZPOOL_CONFIG_FAULTED, DATA_TYPE_UINT64, NULL,
902 	    &is_faulted, NULL);
903 	(void) nvlist_find(nvlist, ZPOOL_CONFIG_DEGRADED, DATA_TYPE_UINT64,
904 	    NULL, &is_degraded, NULL);
905 	(void) nvlist_find(nvlist, ZPOOL_CONFIG_NOT_PRESENT, DATA_TYPE_UINT64,
906 	    NULL, &isnt_present, NULL);
907 	(void) nvlist_find(nvlist, ZPOOL_CONFIG_IS_LOG, DATA_TYPE_UINT64, NULL,
908 	    &is_log, NULL);
909 
910 	if (is_offline != 0)
911 		vdev->v_state = VDEV_STATE_OFFLINE;
912 	else if (is_removed != 0)
913 		vdev->v_state = VDEV_STATE_REMOVED;
914 	else if (is_faulted != 0)
915 		vdev->v_state = VDEV_STATE_FAULTED;
916 	else if (is_degraded != 0)
917 		vdev->v_state = VDEV_STATE_DEGRADED;
918 	else if (isnt_present != 0)
919 		vdev->v_state = VDEV_STATE_CANT_OPEN;
920 
921 	vdev->v_islog = is_log != 0;
922 }
923 
924 static int
925 vdev_init(uint64_t guid, const nvlist_t *nvlist, vdev_t **vdevp)
926 {
927 	uint64_t id, ashift, asize, nparity;
928 	const char *path;
929 	const char *type;
930 	int len, pathlen;
931 	char *name;
932 	vdev_t *vdev;
933 
934 	if (nvlist_find(nvlist, ZPOOL_CONFIG_ID, DATA_TYPE_UINT64, NULL, &id,
935 	    NULL) ||
936 	    nvlist_find(nvlist, ZPOOL_CONFIG_TYPE, DATA_TYPE_STRING, NULL,
937 	    &type, &len)) {
938 		return (ENOENT);
939 	}
940 
941 	if (memcmp(type, VDEV_TYPE_MIRROR, len) != 0 &&
942 	    memcmp(type, VDEV_TYPE_DISK, len) != 0 &&
943 #ifdef ZFS_TEST
944 	    memcmp(type, VDEV_TYPE_FILE, len) != 0 &&
945 #endif
946 	    memcmp(type, VDEV_TYPE_RAIDZ, len) != 0 &&
947 	    memcmp(type, VDEV_TYPE_INDIRECT, len) != 0 &&
948 	    memcmp(type, VDEV_TYPE_REPLACING, len) != 0 &&
949 	    memcmp(type, VDEV_TYPE_HOLE, len) != 0) {
950 		printf("ZFS: can only boot from disk, mirror, raidz1, "
951 		    "raidz2 and raidz3 vdevs, got: %.*s\n", len, type);
952 		return (EIO);
953 	}
954 
955 	if (memcmp(type, VDEV_TYPE_MIRROR, len) == 0)
956 		vdev = vdev_create(guid, vdev_mirror_read);
957 	else if (memcmp(type, VDEV_TYPE_RAIDZ, len) == 0)
958 		vdev = vdev_create(guid, vdev_raidz_read);
959 	else if (memcmp(type, VDEV_TYPE_REPLACING, len) == 0)
960 		vdev = vdev_create(guid, vdev_replacing_read);
961 	else if (memcmp(type, VDEV_TYPE_INDIRECT, len) == 0) {
962 		vdev_indirect_config_t *vic;
963 
964 		vdev = vdev_create(guid, vdev_indirect_read);
965 		if (vdev != NULL) {
966 			vdev->v_state = VDEV_STATE_HEALTHY;
967 			vic = &vdev->vdev_indirect_config;
968 
969 			nvlist_find(nvlist,
970 			    ZPOOL_CONFIG_INDIRECT_OBJECT,
971 			    DATA_TYPE_UINT64,
972 			    NULL, &vic->vic_mapping_object, NULL);
973 			nvlist_find(nvlist,
974 			    ZPOOL_CONFIG_INDIRECT_BIRTHS,
975 			    DATA_TYPE_UINT64,
976 			    NULL, &vic->vic_births_object, NULL);
977 			nvlist_find(nvlist,
978 			    ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
979 			    DATA_TYPE_UINT64,
980 			    NULL, &vic->vic_prev_indirect_vdev, NULL);
981 		}
982 	} else if (memcmp(type, VDEV_TYPE_HOLE, len) == 0) {
983 		vdev = vdev_create(guid, vdev_missing_read);
984 	} else {
985 		vdev = vdev_create(guid, vdev_disk_read);
986 	}
987 
988 	if (vdev == NULL)
989 		return (ENOMEM);
990 
991 	vdev_set_initial_state(vdev, nvlist);
992 	vdev->v_id = id;
993 	if (nvlist_find(nvlist, ZPOOL_CONFIG_ASHIFT,
994 	    DATA_TYPE_UINT64, NULL, &ashift, NULL) == 0)
995 		vdev->v_ashift = ashift;
996 
997 	if (nvlist_find(nvlist, ZPOOL_CONFIG_ASIZE,
998 	    DATA_TYPE_UINT64, NULL, &asize, NULL) == 0) {
999 		vdev->v_psize = asize +
1000 		    VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
1001 	}
1002 
1003 	if (nvlist_find(nvlist, ZPOOL_CONFIG_NPARITY,
1004 	    DATA_TYPE_UINT64, NULL, &nparity, NULL) == 0)
1005 		vdev->v_nparity = nparity;
1006 
1007 	if (nvlist_find(nvlist, ZPOOL_CONFIG_PATH,
1008 	    DATA_TYPE_STRING, NULL, &path, &pathlen) == 0) {
1009 		char prefix[] = "/dev/";
1010 
1011 		len = strlen(prefix);
1012 		if (len < pathlen && memcmp(path, prefix, len) == 0) {
1013 			path += len;
1014 			pathlen -= len;
1015 		}
1016 		name = malloc(pathlen + 1);
1017 		bcopy(path, name, pathlen);
1018 		name[pathlen] = '\0';
1019 		vdev->v_name = name;
1020 	} else {
1021 		name = NULL;
1022 		if (memcmp(type, VDEV_TYPE_RAIDZ, len) == 0) {
1023 			if (vdev->v_nparity < 1 ||
1024 			    vdev->v_nparity > 3) {
1025 				printf("ZFS: invalid raidz parity: %d\n",
1026 				    vdev->v_nparity);
1027 				return (EIO);
1028 			}
1029 			(void) asprintf(&name, "%.*s%d-%" PRIu64, len, type,
1030 			    vdev->v_nparity, id);
1031 		} else {
1032 			(void) asprintf(&name, "%.*s-%" PRIu64, len, type, id);
1033 		}
1034 		vdev->v_name = name;
1035 	}
1036 	*vdevp = vdev;
1037 	return (0);
1038 }
1039 
1040 /*
1041  * Find slot for vdev. We return either NULL to signal to use
1042  * STAILQ_INSERT_HEAD, or we return link element to be used with
1043  * STAILQ_INSERT_AFTER.
1044  */
1045 static vdev_t *
1046 vdev_find_previous(vdev_t *top_vdev, vdev_t *vdev)
1047 {
1048 	vdev_t *v, *previous;
1049 
1050 	if (STAILQ_EMPTY(&top_vdev->v_children))
1051 		return (NULL);
1052 
1053 	previous = NULL;
1054 	STAILQ_FOREACH(v, &top_vdev->v_children, v_childlink) {
1055 		if (v->v_id > vdev->v_id)
1056 			return (previous);
1057 
1058 		if (v->v_id == vdev->v_id)
1059 			return (v);
1060 
1061 		if (v->v_id < vdev->v_id)
1062 			previous = v;
1063 	}
1064 	return (previous);
1065 }
1066 
1067 static size_t
1068 vdev_child_count(vdev_t *vdev)
1069 {
1070 	vdev_t *v;
1071 	size_t count;
1072 
1073 	count = 0;
1074 	STAILQ_FOREACH(v, &vdev->v_children, v_childlink) {
1075 		count++;
1076 	}
1077 	return (count);
1078 }
1079 
1080 /*
1081  * Insert vdev into top_vdev children list. List is ordered by v_id.
1082  */
1083 static void
1084 vdev_insert(vdev_t *top_vdev, vdev_t *vdev)
1085 {
1086 	vdev_t *previous;
1087 	size_t count;
1088 
1089 	/*
1090 	 * The top level vdev can appear in random order, depending how
1091 	 * the firmware is presenting the disk devices.
1092 	 * However, we will insert vdev to create list ordered by v_id,
1093 	 * so we can use either STAILQ_INSERT_HEAD or STAILQ_INSERT_AFTER
1094 	 * as STAILQ does not have insert before.
1095 	 */
1096 	previous = vdev_find_previous(top_vdev, vdev);
1097 
1098 	if (previous == NULL) {
1099 		STAILQ_INSERT_HEAD(&top_vdev->v_children, vdev, v_childlink);
1100 	} else if (previous->v_id == vdev->v_id) {
1101 		/*
1102 		 * This vdev was configured from label config,
1103 		 * do not insert duplicate.
1104 		 */
1105 		return;
1106 	} else {
1107 		STAILQ_INSERT_AFTER(&top_vdev->v_children, previous, vdev,
1108 		    v_childlink);
1109 	}
1110 
1111 	count = vdev_child_count(top_vdev);
1112 	if (top_vdev->v_nchildren < count)
1113 		top_vdev->v_nchildren = count;
1114 }
1115 
1116 static int
1117 vdev_from_nvlist(spa_t *spa, uint64_t top_guid, const nvlist_t *nvlist)
1118 {
1119 	vdev_t *top_vdev, *vdev;
1120 	nvlist_t **kids = NULL;
1121 	int rc, nkids;
1122 
1123 	/* Get top vdev. */
1124 	top_vdev = vdev_find(top_guid);
1125 	if (top_vdev == NULL) {
1126 		rc = vdev_init(top_guid, nvlist, &top_vdev);
1127 		if (rc != 0)
1128 			return (rc);
1129 		top_vdev->v_spa = spa;
1130 		top_vdev->v_top = top_vdev;
1131 		vdev_insert(spa->spa_root_vdev, top_vdev);
1132 	}
1133 
1134 	/* Add children if there are any. */
1135 	rc = nvlist_find(nvlist, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY,
1136 	    &nkids, &kids, NULL);
1137 	if (rc == 0) {
1138 		for (int i = 0; i < nkids; i++) {
1139 			uint64_t guid;
1140 
1141 			rc = nvlist_find(kids[i], ZPOOL_CONFIG_GUID,
1142 			    DATA_TYPE_UINT64, NULL, &guid, NULL);
1143 			if (rc != 0)
1144 				goto done;
1145 
1146 			rc = vdev_init(guid, kids[i], &vdev);
1147 			if (rc != 0)
1148 				goto done;
1149 
1150 			vdev->v_spa = spa;
1151 			vdev->v_top = top_vdev;
1152 			vdev_insert(top_vdev, vdev);
1153 		}
1154 	} else {
1155 		/*
1156 		 * When there are no children, nvlist_find() does return
1157 		 * error, reset it because leaf devices have no children.
1158 		 */
1159 		rc = 0;
1160 	}
1161 done:
1162 	if (kids != NULL) {
1163 		for (int i = 0; i < nkids; i++)
1164 			nvlist_destroy(kids[i]);
1165 		free(kids);
1166 	}
1167 
1168 	return (rc);
1169 }
1170 
1171 static int
1172 vdev_init_from_label(spa_t *spa, const nvlist_t *nvlist)
1173 {
1174 	uint64_t pool_guid, top_guid;
1175 	nvlist_t *vdevs;
1176 	int rc;
1177 
1178 	if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64,
1179 	    NULL, &pool_guid, NULL) ||
1180 	    nvlist_find(nvlist, ZPOOL_CONFIG_TOP_GUID, DATA_TYPE_UINT64,
1181 	    NULL, &top_guid, NULL) ||
1182 	    nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST,
1183 	    NULL, &vdevs, NULL)) {
1184 		printf("ZFS: can't find vdev details\n");
1185 		return (ENOENT);
1186 	}
1187 
1188 	rc = vdev_from_nvlist(spa, top_guid, vdevs);
1189 	nvlist_destroy(vdevs);
1190 	return (rc);
1191 }
1192 
1193 static void
1194 vdev_set_state(vdev_t *vdev)
1195 {
1196 	vdev_t *kid;
1197 	int good_kids;
1198 	int bad_kids;
1199 
1200 	STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1201 		vdev_set_state(kid);
1202 	}
1203 
1204 	/*
1205 	 * A mirror or raidz is healthy if all its kids are healthy. A
1206 	 * mirror is degraded if any of its kids is healthy; a raidz
1207 	 * is degraded if at most nparity kids are offline.
1208 	 */
1209 	if (STAILQ_FIRST(&vdev->v_children)) {
1210 		good_kids = 0;
1211 		bad_kids = 0;
1212 		STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1213 			if (kid->v_state == VDEV_STATE_HEALTHY)
1214 				good_kids++;
1215 			else
1216 				bad_kids++;
1217 		}
1218 		if (bad_kids == 0) {
1219 			vdev->v_state = VDEV_STATE_HEALTHY;
1220 		} else {
1221 			if (vdev->v_read == vdev_mirror_read) {
1222 				if (good_kids) {
1223 					vdev->v_state = VDEV_STATE_DEGRADED;
1224 				} else {
1225 					vdev->v_state = VDEV_STATE_OFFLINE;
1226 				}
1227 			} else if (vdev->v_read == vdev_raidz_read) {
1228 				if (bad_kids > vdev->v_nparity) {
1229 					vdev->v_state = VDEV_STATE_OFFLINE;
1230 				} else {
1231 					vdev->v_state = VDEV_STATE_DEGRADED;
1232 				}
1233 			}
1234 		}
1235 	}
1236 }
1237 
1238 static int
1239 vdev_update_from_nvlist(uint64_t top_guid, const nvlist_t *nvlist)
1240 {
1241 	vdev_t *vdev;
1242 	nvlist_t **kids = NULL;
1243 	int rc, nkids;
1244 
1245 	/* Update top vdev. */
1246 	vdev = vdev_find(top_guid);
1247 	if (vdev != NULL)
1248 		vdev_set_initial_state(vdev, nvlist);
1249 
1250 	/* Update children if there are any. */
1251 	rc = nvlist_find(nvlist, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY,
1252 	    &nkids, &kids, NULL);
1253 	if (rc == 0) {
1254 		for (int i = 0; i < nkids; i++) {
1255 			uint64_t guid;
1256 
1257 			rc = nvlist_find(kids[i], ZPOOL_CONFIG_GUID,
1258 			    DATA_TYPE_UINT64, NULL, &guid, NULL);
1259 			if (rc != 0)
1260 				break;
1261 
1262 			vdev = vdev_find(guid);
1263 			if (vdev != NULL)
1264 				vdev_set_initial_state(vdev, kids[i]);
1265 		}
1266 	} else {
1267 		rc = 0;
1268 	}
1269 	if (kids != NULL) {
1270 		for (int i = 0; i < nkids; i++)
1271 			nvlist_destroy(kids[i]);
1272 		free(kids);
1273 	}
1274 
1275 	return (rc);
1276 }
1277 
1278 static int
1279 vdev_init_from_nvlist(spa_t *spa, const nvlist_t *nvlist)
1280 {
1281 	uint64_t pool_guid, vdev_children;
1282 	nvlist_t *vdevs = NULL, **kids = NULL;
1283 	int rc, nkids;
1284 
1285 	if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64,
1286 	    NULL, &pool_guid, NULL) ||
1287 	    nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_CHILDREN, DATA_TYPE_UINT64,
1288 	    NULL, &vdev_children, NULL) ||
1289 	    nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST,
1290 	    NULL, &vdevs, NULL)) {
1291 		printf("ZFS: can't find vdev details\n");
1292 		return (ENOENT);
1293 	}
1294 
1295 	/* Wrong guid?! */
1296 	if (spa->spa_guid != pool_guid) {
1297 		nvlist_destroy(vdevs);
1298 		return (EINVAL);
1299 	}
1300 
1301 	spa->spa_root_vdev->v_nchildren = vdev_children;
1302 
1303 	rc = nvlist_find(vdevs, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY,
1304 	    &nkids, &kids, NULL);
1305 	nvlist_destroy(vdevs);
1306 
1307 	/*
1308 	 * MOS config has at least one child for root vdev.
1309 	 */
1310 	if (rc != 0)
1311 		return (rc);
1312 
1313 	for (int i = 0; i < nkids; i++) {
1314 		uint64_t guid;
1315 		vdev_t *vdev;
1316 
1317 		rc = nvlist_find(kids[i], ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64,
1318 		    NULL, &guid, NULL);
1319 		if (rc != 0)
1320 			break;
1321 		vdev = vdev_find(guid);
1322 		/*
1323 		 * Top level vdev is missing, create it.
1324 		 */
1325 		if (vdev == NULL)
1326 			rc = vdev_from_nvlist(spa, guid, kids[i]);
1327 		else
1328 			rc = vdev_update_from_nvlist(guid, kids[i]);
1329 		if (rc != 0)
1330 			break;
1331 	}
1332 	if (kids != NULL) {
1333 		for (int i = 0; i < nkids; i++)
1334 			nvlist_destroy(kids[i]);
1335 		free(kids);
1336 	}
1337 
1338 	/*
1339 	 * Re-evaluate top-level vdev state.
1340 	 */
1341 	vdev_set_state(spa->spa_root_vdev);
1342 
1343 	return (rc);
1344 }
1345 
1346 static spa_t *
1347 spa_find_by_guid(uint64_t guid)
1348 {
1349 	spa_t *spa;
1350 
1351 	STAILQ_FOREACH(spa, &zfs_pools, spa_link)
1352 		if (spa->spa_guid == guid)
1353 			return (spa);
1354 
1355 	return (NULL);
1356 }
1357 
1358 static spa_t *
1359 spa_find_by_name(const char *name)
1360 {
1361 	spa_t *spa;
1362 
1363 	STAILQ_FOREACH(spa, &zfs_pools, spa_link)
1364 		if (strcmp(spa->spa_name, name) == 0)
1365 			return (spa);
1366 
1367 	return (NULL);
1368 }
1369 
1370 static spa_t *
1371 spa_find_by_dev(struct zfs_devdesc *dev)
1372 {
1373 
1374 	if (dev->dd.d_dev->dv_type != DEVT_ZFS)
1375 		return (NULL);
1376 
1377 	if (dev->pool_guid == 0)
1378 		return (STAILQ_FIRST(&zfs_pools));
1379 
1380 	return (spa_find_by_guid(dev->pool_guid));
1381 }
1382 
1383 static spa_t *
1384 spa_create(uint64_t guid, const char *name)
1385 {
1386 	spa_t *spa;
1387 
1388 	if ((spa = calloc(1, sizeof(spa_t))) == NULL)
1389 		return (NULL);
1390 	if ((spa->spa_name = strdup(name)) == NULL) {
1391 		free(spa);
1392 		return (NULL);
1393 	}
1394 	spa->spa_uberblock = &spa->spa_uberblock_master;
1395 	spa->spa_mos = &spa->spa_mos_master;
1396 	spa->spa_guid = guid;
1397 	spa->spa_root_vdev = vdev_create(guid, NULL);
1398 	if (spa->spa_root_vdev == NULL) {
1399 		free(spa->spa_name);
1400 		free(spa);
1401 		return (NULL);
1402 	}
1403 	spa->spa_root_vdev->v_name = strdup("root");
1404 	STAILQ_INSERT_TAIL(&zfs_pools, spa, spa_link);
1405 
1406 	return (spa);
1407 }
1408 
1409 static const char *
1410 state_name(vdev_state_t state)
1411 {
1412 	static const char *names[] = {
1413 		"UNKNOWN",
1414 		"CLOSED",
1415 		"OFFLINE",
1416 		"REMOVED",
1417 		"CANT_OPEN",
1418 		"FAULTED",
1419 		"DEGRADED",
1420 		"ONLINE"
1421 	};
1422 	return (names[state]);
1423 }
1424 
1425 #ifdef BOOT2
1426 
1427 #define pager_printf printf
1428 
1429 #else
1430 
1431 static int
1432 pager_printf(const char *fmt, ...)
1433 {
1434 	char line[80];
1435 	va_list args;
1436 
1437 	va_start(args, fmt);
1438 	vsnprintf(line, sizeof(line), fmt, args);
1439 	va_end(args);
1440 	return (pager_output(line));
1441 }
1442 
1443 #endif
1444 
1445 #define	STATUS_FORMAT	"        %s %s\n"
1446 
1447 static int
1448 print_state(int indent, const char *name, vdev_state_t state)
1449 {
1450 	int i;
1451 	char buf[512];
1452 
1453 	buf[0] = 0;
1454 	for (i = 0; i < indent; i++)
1455 		strcat(buf, "  ");
1456 	strcat(buf, name);
1457 	return (pager_printf(STATUS_FORMAT, buf, state_name(state)));
1458 }
1459 
1460 static int
1461 vdev_status(vdev_t *vdev, int indent)
1462 {
1463 	vdev_t *kid;
1464 	int ret;
1465 
1466 	if (vdev->v_islog) {
1467 		(void) pager_output("        logs\n");
1468 		indent++;
1469 	}
1470 
1471 	ret = print_state(indent, vdev->v_name, vdev->v_state);
1472 	if (ret != 0)
1473 		return (ret);
1474 
1475 	STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1476 		ret = vdev_status(kid, indent + 1);
1477 		if (ret != 0)
1478 			return (ret);
1479 	}
1480 	return (ret);
1481 }
1482 
1483 static int
1484 spa_status(spa_t *spa)
1485 {
1486 	static char bootfs[ZFS_MAXNAMELEN];
1487 	uint64_t rootid;
1488 	vdev_list_t *vlist;
1489 	vdev_t *vdev;
1490 	int good_kids, bad_kids, degraded_kids, ret;
1491 	vdev_state_t state;
1492 
1493 	ret = pager_printf("  pool: %s\n", spa->spa_name);
1494 	if (ret != 0)
1495 		return (ret);
1496 
1497 	if (zfs_get_root(spa, &rootid) == 0 &&
1498 	    zfs_rlookup(spa, rootid, bootfs) == 0) {
1499 		if (bootfs[0] == '\0')
1500 			ret = pager_printf("bootfs: %s\n", spa->spa_name);
1501 		else
1502 			ret = pager_printf("bootfs: %s/%s\n", spa->spa_name,
1503 			    bootfs);
1504 		if (ret != 0)
1505 			return (ret);
1506 	}
1507 	ret = pager_printf("config:\n\n");
1508 	if (ret != 0)
1509 		return (ret);
1510 	ret = pager_printf(STATUS_FORMAT, "NAME", "STATE");
1511 	if (ret != 0)
1512 		return (ret);
1513 
1514 	good_kids = 0;
1515 	degraded_kids = 0;
1516 	bad_kids = 0;
1517 	vlist = &spa->spa_root_vdev->v_children;
1518 	STAILQ_FOREACH(vdev, vlist, v_childlink) {
1519 		if (vdev->v_state == VDEV_STATE_HEALTHY)
1520 			good_kids++;
1521 		else if (vdev->v_state == VDEV_STATE_DEGRADED)
1522 			degraded_kids++;
1523 		else
1524 			bad_kids++;
1525 	}
1526 
1527 	state = VDEV_STATE_CLOSED;
1528 	if (good_kids > 0 && (degraded_kids + bad_kids) == 0)
1529 		state = VDEV_STATE_HEALTHY;
1530 	else if ((good_kids + degraded_kids) > 0)
1531 		state = VDEV_STATE_DEGRADED;
1532 
1533 	ret = print_state(0, spa->spa_name, state);
1534 	if (ret != 0)
1535 		return (ret);
1536 
1537 	STAILQ_FOREACH(vdev, vlist, v_childlink) {
1538 		ret = vdev_status(vdev, 1);
1539 		if (ret != 0)
1540 			return (ret);
1541 	}
1542 	return (ret);
1543 }
1544 
1545 static int
1546 spa_all_status(void)
1547 {
1548 	spa_t *spa;
1549 	int first = 1, ret = 0;
1550 
1551 	STAILQ_FOREACH(spa, &zfs_pools, spa_link) {
1552 		if (!first) {
1553 			ret = pager_printf("\n");
1554 			if (ret != 0)
1555 				return (ret);
1556 		}
1557 		first = 0;
1558 		ret = spa_status(spa);
1559 		if (ret != 0)
1560 			return (ret);
1561 	}
1562 	return (ret);
1563 }
1564 
1565 static uint64_t
1566 vdev_label_offset(uint64_t psize, int l, uint64_t offset)
1567 {
1568 	uint64_t label_offset;
1569 
1570 	if (l < VDEV_LABELS / 2)
1571 		label_offset = 0;
1572 	else
1573 		label_offset = psize - VDEV_LABELS * sizeof (vdev_label_t);
1574 
1575 	return (offset + l * sizeof (vdev_label_t) + label_offset);
1576 }
1577 
1578 static int
1579 vdev_uberblock_compare(const uberblock_t *ub1, const uberblock_t *ub2)
1580 {
1581 	unsigned int seq1 = 0;
1582 	unsigned int seq2 = 0;
1583 	int cmp = AVL_CMP(ub1->ub_txg, ub2->ub_txg);
1584 
1585 	if (cmp != 0)
1586 		return (cmp);
1587 
1588 	cmp = AVL_CMP(ub1->ub_timestamp, ub2->ub_timestamp);
1589 	if (cmp != 0)
1590 		return (cmp);
1591 
1592 	if (MMP_VALID(ub1) && MMP_SEQ_VALID(ub1))
1593 		seq1 = MMP_SEQ(ub1);
1594 
1595 	if (MMP_VALID(ub2) && MMP_SEQ_VALID(ub2))
1596 		seq2 = MMP_SEQ(ub2);
1597 
1598 	return (AVL_CMP(seq1, seq2));
1599 }
1600 
1601 static int
1602 uberblock_verify(uberblock_t *ub)
1603 {
1604 	if (ub->ub_magic == BSWAP_64((uint64_t)UBERBLOCK_MAGIC)) {
1605 		byteswap_uint64_array(ub, sizeof (uberblock_t));
1606 	}
1607 
1608 	if (ub->ub_magic != UBERBLOCK_MAGIC ||
1609 	    !SPA_VERSION_IS_SUPPORTED(ub->ub_version))
1610 		return (EINVAL);
1611 
1612 	return (0);
1613 }
1614 
1615 static int
1616 vdev_label_read(vdev_t *vd, int l, void *buf, uint64_t offset,
1617     size_t size)
1618 {
1619 	blkptr_t bp;
1620 	off_t off;
1621 
1622 	off = vdev_label_offset(vd->v_psize, l, offset);
1623 
1624 	BP_ZERO(&bp);
1625 	BP_SET_LSIZE(&bp, size);
1626 	BP_SET_PSIZE(&bp, size);
1627 	BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_LABEL);
1628 	BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF);
1629 	DVA_SET_OFFSET(BP_IDENTITY(&bp), off);
1630 	ZIO_SET_CHECKSUM(&bp.blk_cksum, off, 0, 0, 0);
1631 
1632 	return (vdev_read_phys(vd, &bp, buf, off, size));
1633 }
1634 
1635 /*
1636  * We do need to be sure we write to correct location.
1637  * Our vdev label does consist of 4 fields:
1638  * pad1 (8k), reserved.
1639  * bootenv (8k), checksummed, previously reserved, may contian garbage.
1640  * vdev_phys (112k), checksummed
1641  * uberblock ring (128k), checksummed.
1642  *
1643  * Since bootenv area may contain garbage, we can not reliably read it, as
1644  * we can get checksum errors.
1645  * Next best thing is vdev_phys - it is just after bootenv. It still may
1646  * be corrupted, but in such case we will miss this one write.
1647  */
1648 static int
1649 vdev_label_write_validate(vdev_t *vd, int l, uint64_t offset)
1650 {
1651 	uint64_t off, o_phys;
1652 	void *buf;
1653 	size_t size = VDEV_PHYS_SIZE;
1654 	int rc;
1655 
1656 	o_phys = offsetof(vdev_label_t, vl_vdev_phys);
1657 	off = vdev_label_offset(vd->v_psize, l, o_phys);
1658 
1659 	/* off should be 8K from bootenv */
1660 	if (vdev_label_offset(vd->v_psize, l, offset) + VDEV_PAD_SIZE != off)
1661 		return (EINVAL);
1662 
1663 	buf = malloc(size);
1664 	if (buf == NULL)
1665 		return (ENOMEM);
1666 
1667 	/* Read vdev_phys */
1668 	rc = vdev_label_read(vd, l, buf, o_phys, size);
1669 	free(buf);
1670 	return (rc);
1671 }
1672 
1673 static int
1674 vdev_label_write(vdev_t *vd, int l, vdev_boot_envblock_t *be, uint64_t offset)
1675 {
1676 	zio_checksum_info_t *ci;
1677 	zio_cksum_t cksum;
1678 	off_t off;
1679 	size_t size = VDEV_PAD_SIZE;
1680 	int rc;
1681 
1682 	if (vd->v_phys_write == NULL)
1683 		return (ENOTSUP);
1684 
1685 	off = vdev_label_offset(vd->v_psize, l, offset);
1686 
1687 	rc = vdev_label_write_validate(vd, l, offset);
1688 	if (rc != 0) {
1689 		return (rc);
1690 	}
1691 
1692 	ci = &zio_checksum_table[ZIO_CHECKSUM_LABEL];
1693 	be->vbe_zbt.zec_magic = ZEC_MAGIC;
1694 	zio_checksum_label_verifier(&be->vbe_zbt.zec_cksum, off);
1695 	ci->ci_func[0](be, size, NULL, &cksum);
1696 	be->vbe_zbt.zec_cksum = cksum;
1697 
1698 	return (vdev_write_phys(vd, be, off, size));
1699 }
1700 
1701 static int
1702 vdev_write_bootenv_impl(vdev_t *vdev, vdev_boot_envblock_t *be)
1703 {
1704 	vdev_t *kid;
1705 	int rv = 0, rc;
1706 
1707 	STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1708 		if (kid->v_state != VDEV_STATE_HEALTHY)
1709 			continue;
1710 		rc = vdev_write_bootenv_impl(kid, be);
1711 		if (rv == 0)
1712 			rv = rc;
1713 	}
1714 
1715 	/*
1716 	 * Non-leaf vdevs do not have v_phys_write.
1717 	 */
1718 	if (vdev->v_phys_write == NULL)
1719 		return (rv);
1720 
1721 	for (int l = 0; l < VDEV_LABELS; l++) {
1722 		rc = vdev_label_write(vdev, l, be,
1723 		    offsetof(vdev_label_t, vl_be));
1724 		if (rc != 0) {
1725 			printf("failed to write bootenv to %s label %d: %d\n",
1726 			    vdev->v_name ? vdev->v_name : "unknown", l, rc);
1727 			rv = rc;
1728 		}
1729 	}
1730 	return (rv);
1731 }
1732 
1733 int
1734 vdev_write_bootenv(vdev_t *vdev, nvlist_t *nvl)
1735 {
1736 	vdev_boot_envblock_t *be;
1737 	nvlist_t nv, *nvp;
1738 	uint64_t version;
1739 	int rv;
1740 
1741 	if (nvl->nv_size > sizeof(be->vbe_bootenv))
1742 		return (E2BIG);
1743 
1744 	version = VB_RAW;
1745 	nvp = vdev_read_bootenv(vdev);
1746 	if (nvp != NULL) {
1747 		nvlist_find(nvp, BOOTENV_VERSION, DATA_TYPE_UINT64, NULL,
1748 		    &version, NULL);
1749 		nvlist_destroy(nvp);
1750 	}
1751 
1752 	be = calloc(1, sizeof(*be));
1753 	if (be == NULL)
1754 		return (ENOMEM);
1755 
1756 	be->vbe_version = version;
1757 	switch (version) {
1758 	case VB_RAW:
1759 		/*
1760 		 * If there is no envmap, we will just wipe bootenv.
1761 		 */
1762 		nvlist_find(nvl, GRUB_ENVMAP, DATA_TYPE_STRING, NULL,
1763 		    be->vbe_bootenv, NULL);
1764 		rv = 0;
1765 		break;
1766 
1767 	case VB_NVLIST:
1768 		nv.nv_header = nvl->nv_header;
1769 		nv.nv_asize = nvl->nv_asize;
1770 		nv.nv_size = nvl->nv_size;
1771 
1772 		bcopy(&nv.nv_header, be->vbe_bootenv, sizeof(nv.nv_header));
1773 		nv.nv_data = be->vbe_bootenv + sizeof(nvs_header_t);
1774 		bcopy(nvl->nv_data, nv.nv_data, nv.nv_size);
1775 		rv = nvlist_export(&nv);
1776 		break;
1777 
1778 	default:
1779 		rv = EINVAL;
1780 		break;
1781 	}
1782 
1783 	if (rv == 0) {
1784 		be->vbe_version = htobe64(be->vbe_version);
1785 		rv = vdev_write_bootenv_impl(vdev, be);
1786 	}
1787 	free(be);
1788 	return (rv);
1789 }
1790 
1791 /*
1792  * Read the bootenv area from pool label, return the nvlist from it.
1793  * We return from first successful read.
1794  */
1795 nvlist_t *
1796 vdev_read_bootenv(vdev_t *vdev)
1797 {
1798 	vdev_t *kid;
1799 	nvlist_t *benv;
1800 	vdev_boot_envblock_t *be;
1801 	char *command;
1802 	bool ok;
1803 	int rv;
1804 
1805 	STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1806 		if (kid->v_state != VDEV_STATE_HEALTHY)
1807 			continue;
1808 
1809 		benv = vdev_read_bootenv(kid);
1810 		if (benv != NULL)
1811 			return (benv);
1812 	}
1813 
1814 	be = malloc(sizeof (*be));
1815 	if (be == NULL)
1816 		return (NULL);
1817 
1818 	rv = 0;
1819 	for (int l = 0; l < VDEV_LABELS; l++) {
1820 		rv = vdev_label_read(vdev, l, be,
1821 		    offsetof(vdev_label_t, vl_be),
1822 		    sizeof (*be));
1823 		if (rv == 0)
1824 			break;
1825 	}
1826 	if (rv != 0) {
1827 		free(be);
1828 		return (NULL);
1829 	}
1830 
1831 	be->vbe_version = be64toh(be->vbe_version);
1832 	switch (be->vbe_version) {
1833 	case VB_RAW:
1834 		/*
1835 		 * we have textual data in vbe_bootenv, create nvlist
1836 		 * with key "envmap".
1837 		 */
1838 		benv = nvlist_create(NV_UNIQUE_NAME);
1839 		if (benv != NULL) {
1840 			if (*be->vbe_bootenv == '\0') {
1841 				nvlist_add_uint64(benv, BOOTENV_VERSION,
1842 				    VB_NVLIST);
1843 				break;
1844 			}
1845 			nvlist_add_uint64(benv, BOOTENV_VERSION, VB_RAW);
1846 			be->vbe_bootenv[sizeof (be->vbe_bootenv) - 1] = '\0';
1847 			nvlist_add_string(benv, GRUB_ENVMAP, be->vbe_bootenv);
1848 		}
1849 		break;
1850 
1851 	case VB_NVLIST:
1852 		benv = nvlist_import(be->vbe_bootenv, sizeof(be->vbe_bootenv));
1853 		break;
1854 
1855 	default:
1856 		command = (char *)be;
1857 		ok = false;
1858 
1859 		/* Check for legacy zfsbootcfg command string */
1860 		for (int i = 0; command[i] != '\0'; i++) {
1861 			if (iscntrl(command[i])) {
1862 				ok = false;
1863 				break;
1864 			} else {
1865 				ok = true;
1866 			}
1867 		}
1868 		benv = nvlist_create(NV_UNIQUE_NAME);
1869 		if (benv != NULL) {
1870 			if (ok)
1871 				nvlist_add_string(benv, FREEBSD_BOOTONCE,
1872 				    command);
1873 			else
1874 				nvlist_add_uint64(benv, BOOTENV_VERSION,
1875 				    VB_NVLIST);
1876 		}
1877 		break;
1878 	}
1879 	free(be);
1880 	return (benv);
1881 }
1882 
1883 static uint64_t
1884 vdev_get_label_asize(nvlist_t *nvl)
1885 {
1886 	nvlist_t *vdevs;
1887 	uint64_t asize;
1888 	const char *type;
1889 	int len;
1890 
1891 	asize = 0;
1892 	/* Get vdev tree */
1893 	if (nvlist_find(nvl, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST,
1894 	    NULL, &vdevs, NULL) != 0)
1895 		return (asize);
1896 
1897 	/*
1898 	 * Get vdev type. We will calculate asize for raidz, mirror and disk.
1899 	 * For raidz, the asize is raw size of all children.
1900 	 */
1901 	if (nvlist_find(vdevs, ZPOOL_CONFIG_TYPE, DATA_TYPE_STRING,
1902 	    NULL, &type, &len) != 0)
1903 		goto done;
1904 
1905 	if (memcmp(type, VDEV_TYPE_MIRROR, len) != 0 &&
1906 	    memcmp(type, VDEV_TYPE_DISK, len) != 0 &&
1907 	    memcmp(type, VDEV_TYPE_RAIDZ, len) != 0)
1908 		goto done;
1909 
1910 	if (nvlist_find(vdevs, ZPOOL_CONFIG_ASIZE, DATA_TYPE_UINT64,
1911 	    NULL, &asize, NULL) != 0)
1912 		goto done;
1913 
1914 	if (memcmp(type, VDEV_TYPE_RAIDZ, len) == 0) {
1915 		nvlist_t **kids;
1916 		int nkids;
1917 
1918 		if (nvlist_find(vdevs, ZPOOL_CONFIG_CHILDREN,
1919 		    DATA_TYPE_NVLIST_ARRAY, &nkids, &kids, NULL) != 0) {
1920 			asize = 0;
1921 			goto done;
1922 		}
1923 
1924 		asize /= nkids;
1925 		for (int i = 0; i < nkids; i++)
1926 			nvlist_destroy(kids[i]);
1927 		free(kids);
1928 	}
1929 
1930 	asize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
1931 done:
1932 	nvlist_destroy(vdevs);
1933 	return (asize);
1934 }
1935 
1936 static nvlist_t *
1937 vdev_label_read_config(vdev_t *vd, uint64_t txg)
1938 {
1939 	vdev_phys_t *label;
1940 	uint64_t best_txg = 0;
1941 	uint64_t label_txg = 0;
1942 	uint64_t asize;
1943 	nvlist_t *nvl = NULL, *tmp;
1944 	int error;
1945 
1946 	label = malloc(sizeof (vdev_phys_t));
1947 	if (label == NULL)
1948 		return (NULL);
1949 
1950 	for (int l = 0; l < VDEV_LABELS; l++) {
1951 		if (vdev_label_read(vd, l, label,
1952 		    offsetof(vdev_label_t, vl_vdev_phys),
1953 		    sizeof (vdev_phys_t)))
1954 			continue;
1955 
1956 		tmp = nvlist_import(label->vp_nvlist,
1957 		    sizeof(label->vp_nvlist));
1958 		if (tmp == NULL)
1959 			continue;
1960 
1961 		error = nvlist_find(tmp, ZPOOL_CONFIG_POOL_TXG,
1962 		    DATA_TYPE_UINT64, NULL, &label_txg, NULL);
1963 		if (error != 0 || label_txg == 0) {
1964 			nvlist_destroy(nvl);
1965 			nvl = tmp;
1966 			goto done;
1967 		}
1968 
1969 		if (label_txg <= txg && label_txg > best_txg) {
1970 			best_txg = label_txg;
1971 			nvlist_destroy(nvl);
1972 			nvl = tmp;
1973 			tmp = NULL;
1974 
1975 			/*
1976 			 * Use asize from pool config. We need this
1977 			 * because we can get bad value from BIOS.
1978 			 */
1979 			asize = vdev_get_label_asize(nvl);
1980 			if (asize != 0) {
1981 				vd->v_psize = asize;
1982 			}
1983 		}
1984 		nvlist_destroy(tmp);
1985 	}
1986 
1987 	if (best_txg == 0) {
1988 		nvlist_destroy(nvl);
1989 		nvl = NULL;
1990 	}
1991 done:
1992 	free(label);
1993 	return (nvl);
1994 }
1995 
1996 static void
1997 vdev_uberblock_load(vdev_t *vd, uberblock_t *ub)
1998 {
1999 	uberblock_t *buf;
2000 
2001 	buf = malloc(VDEV_UBERBLOCK_SIZE(vd));
2002 	if (buf == NULL)
2003 		return;
2004 
2005 	for (int l = 0; l < VDEV_LABELS; l++) {
2006 		for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
2007 			if (vdev_label_read(vd, l, buf,
2008 			    VDEV_UBERBLOCK_OFFSET(vd, n),
2009 			    VDEV_UBERBLOCK_SIZE(vd)))
2010 				continue;
2011 			if (uberblock_verify(buf) != 0)
2012 				continue;
2013 
2014 			if (vdev_uberblock_compare(buf, ub) > 0)
2015 				*ub = *buf;
2016 		}
2017 	}
2018 	free(buf);
2019 }
2020 
2021 static int
2022 vdev_probe(vdev_phys_read_t *_read, vdev_phys_write_t *_write, void *priv,
2023     spa_t **spap)
2024 {
2025 	vdev_t vtmp;
2026 	spa_t *spa;
2027 	vdev_t *vdev;
2028 	nvlist_t *nvl;
2029 	uint64_t val;
2030 	uint64_t guid, vdev_children;
2031 	uint64_t pool_txg, pool_guid;
2032 	const char *pool_name;
2033 	int rc, namelen;
2034 
2035 	/*
2036 	 * Load the vdev label and figure out which
2037 	 * uberblock is most current.
2038 	 */
2039 	memset(&vtmp, 0, sizeof(vtmp));
2040 	vtmp.v_phys_read = _read;
2041 	vtmp.v_phys_write = _write;
2042 	vtmp.v_priv = priv;
2043 	vtmp.v_psize = P2ALIGN(ldi_get_size(priv),
2044 	    (uint64_t)sizeof (vdev_label_t));
2045 
2046 	/* Test for minimum device size. */
2047 	if (vtmp.v_psize < SPA_MINDEVSIZE)
2048 		return (EIO);
2049 
2050 	nvl = vdev_label_read_config(&vtmp, UINT64_MAX);
2051 	if (nvl == NULL)
2052 		return (EIO);
2053 
2054 	if (nvlist_find(nvl, ZPOOL_CONFIG_VERSION, DATA_TYPE_UINT64,
2055 	    NULL, &val, NULL) != 0) {
2056 		nvlist_destroy(nvl);
2057 		return (EIO);
2058 	}
2059 
2060 	if (!SPA_VERSION_IS_SUPPORTED(val)) {
2061 		printf("ZFS: unsupported ZFS version %u (should be %u)\n",
2062 		    (unsigned)val, (unsigned)SPA_VERSION);
2063 		nvlist_destroy(nvl);
2064 		return (EIO);
2065 	}
2066 
2067 	/* Check ZFS features for read */
2068 	rc = nvlist_check_features_for_read(nvl);
2069 	if (rc != 0) {
2070 		nvlist_destroy(nvl);
2071 		return (EIO);
2072 	}
2073 
2074 	if (nvlist_find(nvl, ZPOOL_CONFIG_POOL_STATE, DATA_TYPE_UINT64,
2075 	    NULL, &val, NULL) != 0) {
2076 		nvlist_destroy(nvl);
2077 		return (EIO);
2078 	}
2079 
2080 	if (val == POOL_STATE_DESTROYED) {
2081 		/* We don't boot only from destroyed pools. */
2082 		nvlist_destroy(nvl);
2083 		return (EIO);
2084 	}
2085 
2086 	if (nvlist_find(nvl, ZPOOL_CONFIG_POOL_TXG, DATA_TYPE_UINT64,
2087 	    NULL, &pool_txg, NULL) != 0 ||
2088 	    nvlist_find(nvl, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64,
2089 	    NULL, &pool_guid, NULL) != 0 ||
2090 	    nvlist_find(nvl, ZPOOL_CONFIG_POOL_NAME, DATA_TYPE_STRING,
2091 	    NULL, &pool_name, &namelen) != 0) {
2092 		/*
2093 		 * Cache and spare devices end up here - just ignore
2094 		 * them.
2095 		 */
2096 		nvlist_destroy(nvl);
2097 		return (EIO);
2098 	}
2099 
2100 	/*
2101 	 * Create the pool if this is the first time we've seen it.
2102 	 */
2103 	spa = spa_find_by_guid(pool_guid);
2104 	if (spa == NULL) {
2105 		char *name;
2106 
2107 		nvlist_find(nvl, ZPOOL_CONFIG_VDEV_CHILDREN,
2108 		    DATA_TYPE_UINT64, NULL, &vdev_children, NULL);
2109 		name = malloc(namelen + 1);
2110 		if (name == NULL) {
2111 			nvlist_destroy(nvl);
2112 			return (ENOMEM);
2113 		}
2114 		bcopy(pool_name, name, namelen);
2115 		name[namelen] = '\0';
2116 		spa = spa_create(pool_guid, name);
2117 		free(name);
2118 		if (spa == NULL) {
2119 			nvlist_destroy(nvl);
2120 			return (ENOMEM);
2121 		}
2122 		spa->spa_root_vdev->v_nchildren = vdev_children;
2123 	}
2124 	if (pool_txg > spa->spa_txg)
2125 		spa->spa_txg = pool_txg;
2126 
2127 	/*
2128 	 * Get the vdev tree and create our in-core copy of it.
2129 	 * If we already have a vdev with this guid, this must
2130 	 * be some kind of alias (overlapping slices, dangerously dedicated
2131 	 * disks etc).
2132 	 */
2133 	if (nvlist_find(nvl, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64,
2134 	    NULL, &guid, NULL) != 0) {
2135 		nvlist_destroy(nvl);
2136 		return (EIO);
2137 	}
2138 	vdev = vdev_find(guid);
2139 	/* Has this vdev already been inited? */
2140 	if (vdev && vdev->v_phys_read) {
2141 		nvlist_destroy(nvl);
2142 		return (EIO);
2143 	}
2144 
2145 	rc = vdev_init_from_label(spa, nvl);
2146 	nvlist_destroy(nvl);
2147 	if (rc != 0)
2148 		return (rc);
2149 
2150 	/*
2151 	 * We should already have created an incomplete vdev for this
2152 	 * vdev. Find it and initialise it with our read proc.
2153 	 */
2154 	vdev = vdev_find(guid);
2155 	if (vdev != NULL) {
2156 		vdev->v_phys_read = _read;
2157 		vdev->v_phys_write = _write;
2158 		vdev->v_priv = priv;
2159 		vdev->v_psize = vtmp.v_psize;
2160 		/*
2161 		 * If no other state is set, mark vdev healthy.
2162 		 */
2163 		if (vdev->v_state == VDEV_STATE_UNKNOWN)
2164 			vdev->v_state = VDEV_STATE_HEALTHY;
2165 	} else {
2166 		printf("ZFS: inconsistent nvlist contents\n");
2167 		return (EIO);
2168 	}
2169 
2170 	if (vdev->v_islog)
2171 		spa->spa_with_log = vdev->v_islog;
2172 
2173 	/*
2174 	 * Re-evaluate top-level vdev state.
2175 	 */
2176 	vdev_set_state(vdev->v_top);
2177 
2178 	/*
2179 	 * Ok, we are happy with the pool so far. Lets find
2180 	 * the best uberblock and then we can actually access
2181 	 * the contents of the pool.
2182 	 */
2183 	vdev_uberblock_load(vdev, spa->spa_uberblock);
2184 
2185 	if (spap != NULL)
2186 		*spap = spa;
2187 	return (0);
2188 }
2189 
2190 static int
2191 ilog2(int n)
2192 {
2193 	int v;
2194 
2195 	for (v = 0; v < 32; v++)
2196 		if (n == (1 << v))
2197 			return (v);
2198 	return (-1);
2199 }
2200 
2201 static int
2202 zio_read_gang(const spa_t *spa, const blkptr_t *bp, void *buf)
2203 {
2204 	blkptr_t gbh_bp;
2205 	zio_gbh_phys_t zio_gb;
2206 	char *pbuf;
2207 	int i;
2208 
2209 	/* Artificial BP for gang block header. */
2210 	gbh_bp = *bp;
2211 	BP_SET_PSIZE(&gbh_bp, SPA_GANGBLOCKSIZE);
2212 	BP_SET_LSIZE(&gbh_bp, SPA_GANGBLOCKSIZE);
2213 	BP_SET_CHECKSUM(&gbh_bp, ZIO_CHECKSUM_GANG_HEADER);
2214 	BP_SET_COMPRESS(&gbh_bp, ZIO_COMPRESS_OFF);
2215 	for (i = 0; i < SPA_DVAS_PER_BP; i++)
2216 		DVA_SET_GANG(&gbh_bp.blk_dva[i], 0);
2217 
2218 	/* Read gang header block using the artificial BP. */
2219 	if (zio_read(spa, &gbh_bp, &zio_gb))
2220 		return (EIO);
2221 
2222 	pbuf = buf;
2223 	for (i = 0; i < SPA_GBH_NBLKPTRS; i++) {
2224 		blkptr_t *gbp = &zio_gb.zg_blkptr[i];
2225 
2226 		if (BP_IS_HOLE(gbp))
2227 			continue;
2228 		if (zio_read(spa, gbp, pbuf))
2229 			return (EIO);
2230 		pbuf += BP_GET_PSIZE(gbp);
2231 	}
2232 
2233 	if (zio_checksum_verify(spa, bp, buf))
2234 		return (EIO);
2235 	return (0);
2236 }
2237 
2238 static int
2239 zio_read(const spa_t *spa, const blkptr_t *bp, void *buf)
2240 {
2241 	int cpfunc = BP_GET_COMPRESS(bp);
2242 	uint64_t align, size;
2243 	void *pbuf;
2244 	int i, error;
2245 
2246 	/*
2247 	 * Process data embedded in block pointer
2248 	 */
2249 	if (BP_IS_EMBEDDED(bp)) {
2250 		ASSERT(BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
2251 
2252 		size = BPE_GET_PSIZE(bp);
2253 		ASSERT(size <= BPE_PAYLOAD_SIZE);
2254 
2255 		if (cpfunc != ZIO_COMPRESS_OFF)
2256 			pbuf = malloc(size);
2257 		else
2258 			pbuf = buf;
2259 
2260 		if (pbuf == NULL)
2261 			return (ENOMEM);
2262 
2263 		decode_embedded_bp_compressed(bp, pbuf);
2264 		error = 0;
2265 
2266 		if (cpfunc != ZIO_COMPRESS_OFF) {
2267 			error = zio_decompress_data(cpfunc, pbuf,
2268 			    size, buf, BP_GET_LSIZE(bp));
2269 			free(pbuf);
2270 		}
2271 		if (error != 0)
2272 			printf("ZFS: i/o error - unable to decompress "
2273 			    "block pointer data, error %d\n", error);
2274 		return (error);
2275 	}
2276 
2277 	error = EIO;
2278 
2279 	for (i = 0; i < SPA_DVAS_PER_BP; i++) {
2280 		const dva_t *dva = &bp->blk_dva[i];
2281 		vdev_t *vdev;
2282 		vdev_list_t *vlist;
2283 		uint64_t vdevid;
2284 		off_t offset;
2285 
2286 		if (!dva->dva_word[0] && !dva->dva_word[1])
2287 			continue;
2288 
2289 		vdevid = DVA_GET_VDEV(dva);
2290 		offset = DVA_GET_OFFSET(dva);
2291 		vlist = &spa->spa_root_vdev->v_children;
2292 		STAILQ_FOREACH(vdev, vlist, v_childlink) {
2293 			if (vdev->v_id == vdevid)
2294 				break;
2295 		}
2296 		if (!vdev || !vdev->v_read)
2297 			continue;
2298 
2299 		size = BP_GET_PSIZE(bp);
2300 		if (vdev->v_read == vdev_raidz_read) {
2301 			align = 1ULL << vdev->v_ashift;
2302 			if (P2PHASE(size, align) != 0)
2303 				size = P2ROUNDUP(size, align);
2304 		}
2305 		if (size != BP_GET_PSIZE(bp) || cpfunc != ZIO_COMPRESS_OFF)
2306 			pbuf = malloc(size);
2307 		else
2308 			pbuf = buf;
2309 
2310 		if (pbuf == NULL) {
2311 			error = ENOMEM;
2312 			break;
2313 		}
2314 
2315 		if (DVA_GET_GANG(dva))
2316 			error = zio_read_gang(spa, bp, pbuf);
2317 		else
2318 			error = vdev->v_read(vdev, bp, pbuf, offset, size);
2319 		if (error == 0) {
2320 			if (cpfunc != ZIO_COMPRESS_OFF)
2321 				error = zio_decompress_data(cpfunc, pbuf,
2322 				    BP_GET_PSIZE(bp), buf, BP_GET_LSIZE(bp));
2323 			else if (size != BP_GET_PSIZE(bp))
2324 				bcopy(pbuf, buf, BP_GET_PSIZE(bp));
2325 		} else {
2326 			printf("zio_read error: %d\n", error);
2327 		}
2328 		if (buf != pbuf)
2329 			free(pbuf);
2330 		if (error == 0)
2331 			break;
2332 	}
2333 	if (error != 0)
2334 		printf("ZFS: i/o error - all block copies unavailable\n");
2335 
2336 	return (error);
2337 }
2338 
2339 static int
2340 dnode_read(const spa_t *spa, const dnode_phys_t *dnode, off_t offset,
2341     void *buf, size_t buflen)
2342 {
2343 	int ibshift = dnode->dn_indblkshift - SPA_BLKPTRSHIFT;
2344 	int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2345 	int nlevels = dnode->dn_nlevels;
2346 	int i, rc;
2347 
2348 	if (bsize > SPA_MAXBLOCKSIZE) {
2349 		printf("ZFS: I/O error - blocks larger than %llu are not "
2350 		    "supported\n", SPA_MAXBLOCKSIZE);
2351 		return (EIO);
2352 	}
2353 
2354 	/*
2355 	 * Handle odd block sizes, mirrors dmu_read_impl().  Data can't exist
2356 	 * past the first block, so we'll clip the read to the portion of the
2357 	 * buffer within bsize and zero out the remainder.
2358 	 */
2359 	if (dnode->dn_maxblkid == 0) {
2360 		size_t newbuflen;
2361 
2362 		newbuflen = offset > bsize ? 0 : MIN(buflen, bsize - offset);
2363 		bzero((char *)buf + newbuflen, buflen - newbuflen);
2364 		buflen = newbuflen;
2365 	}
2366 
2367 	/*
2368 	 * Note: bsize may not be a power of two here so we need to do an
2369 	 * actual divide rather than a bitshift.
2370 	 */
2371 	while (buflen > 0) {
2372 		uint64_t bn = offset / bsize;
2373 		int boff = offset % bsize;
2374 		int ibn;
2375 		const blkptr_t *indbp;
2376 		blkptr_t bp;
2377 
2378 		if (bn > dnode->dn_maxblkid)
2379 			return (EIO);
2380 
2381 		if (dnode == dnode_cache_obj && bn == dnode_cache_bn)
2382 			goto cached;
2383 
2384 		indbp = dnode->dn_blkptr;
2385 		for (i = 0; i < nlevels; i++) {
2386 			/*
2387 			 * Copy the bp from the indirect array so that
2388 			 * we can re-use the scratch buffer for multi-level
2389 			 * objects.
2390 			 */
2391 			ibn = bn >> ((nlevels - i - 1) * ibshift);
2392 			ibn &= ((1 << ibshift) - 1);
2393 			bp = indbp[ibn];
2394 			if (BP_IS_HOLE(&bp)) {
2395 				memset(dnode_cache_buf, 0, bsize);
2396 				break;
2397 			}
2398 			rc = zio_read(spa, &bp, dnode_cache_buf);
2399 			if (rc)
2400 				return (rc);
2401 			indbp = (const blkptr_t *) dnode_cache_buf;
2402 		}
2403 		dnode_cache_obj = dnode;
2404 		dnode_cache_bn = bn;
2405 	cached:
2406 
2407 		/*
2408 		 * The buffer contains our data block. Copy what we
2409 		 * need from it and loop.
2410 		 */
2411 		i = bsize - boff;
2412 		if (i > buflen) i = buflen;
2413 		memcpy(buf, &dnode_cache_buf[boff], i);
2414 		buf = ((char *)buf) + i;
2415 		offset += i;
2416 		buflen -= i;
2417 	}
2418 
2419 	return (0);
2420 }
2421 
2422 /*
2423  * Lookup a value in a microzap directory.
2424  */
2425 static int
2426 mzap_lookup(const mzap_phys_t *mz, size_t size, const char *name,
2427     uint64_t *value)
2428 {
2429 	const mzap_ent_phys_t *mze;
2430 	int chunks, i;
2431 
2432 	/*
2433 	 * Microzap objects use exactly one block. Read the whole
2434 	 * thing.
2435 	 */
2436 	chunks = size / MZAP_ENT_LEN - 1;
2437 	for (i = 0; i < chunks; i++) {
2438 		mze = &mz->mz_chunk[i];
2439 		if (strcmp(mze->mze_name, name) == 0) {
2440 			*value = mze->mze_value;
2441 			return (0);
2442 		}
2443 	}
2444 
2445 	return (ENOENT);
2446 }
2447 
2448 /*
2449  * Compare a name with a zap leaf entry. Return non-zero if the name
2450  * matches.
2451  */
2452 static int
2453 fzap_name_equal(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc,
2454     const char *name)
2455 {
2456 	size_t namelen;
2457 	const zap_leaf_chunk_t *nc;
2458 	const char *p;
2459 
2460 	namelen = zc->l_entry.le_name_numints;
2461 
2462 	nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk);
2463 	p = name;
2464 	while (namelen > 0) {
2465 		size_t len;
2466 
2467 		len = namelen;
2468 		if (len > ZAP_LEAF_ARRAY_BYTES)
2469 			len = ZAP_LEAF_ARRAY_BYTES;
2470 		if (memcmp(p, nc->l_array.la_array, len))
2471 			return (0);
2472 		p += len;
2473 		namelen -= len;
2474 		nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next);
2475 	}
2476 
2477 	return (1);
2478 }
2479 
2480 /*
2481  * Extract a uint64_t value from a zap leaf entry.
2482  */
2483 static uint64_t
2484 fzap_leaf_value(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc)
2485 {
2486 	const zap_leaf_chunk_t *vc;
2487 	int i;
2488 	uint64_t value;
2489 	const uint8_t *p;
2490 
2491 	vc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_value_chunk);
2492 	for (i = 0, value = 0, p = vc->l_array.la_array; i < 8; i++) {
2493 		value = (value << 8) | p[i];
2494 	}
2495 
2496 	return (value);
2497 }
2498 
2499 static void
2500 stv(int len, void *addr, uint64_t value)
2501 {
2502 	switch (len) {
2503 	case 1:
2504 		*(uint8_t *)addr = value;
2505 		return;
2506 	case 2:
2507 		*(uint16_t *)addr = value;
2508 		return;
2509 	case 4:
2510 		*(uint32_t *)addr = value;
2511 		return;
2512 	case 8:
2513 		*(uint64_t *)addr = value;
2514 		return;
2515 	}
2516 }
2517 
2518 /*
2519  * Extract a array from a zap leaf entry.
2520  */
2521 static void
2522 fzap_leaf_array(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc,
2523     uint64_t integer_size, uint64_t num_integers, void *buf)
2524 {
2525 	uint64_t array_int_len = zc->l_entry.le_value_intlen;
2526 	uint64_t value = 0;
2527 	uint64_t *u64 = buf;
2528 	char *p = buf;
2529 	int len = MIN(zc->l_entry.le_value_numints, num_integers);
2530 	int chunk = zc->l_entry.le_value_chunk;
2531 	int byten = 0;
2532 
2533 	if (integer_size == 8 && len == 1) {
2534 		*u64 = fzap_leaf_value(zl, zc);
2535 		return;
2536 	}
2537 
2538 	while (len > 0) {
2539 		struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(zl, chunk).l_array;
2540 		int i;
2541 
2542 		ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(zl));
2543 		for (i = 0; i < ZAP_LEAF_ARRAY_BYTES && len > 0; i++) {
2544 			value = (value << 8) | la->la_array[i];
2545 			byten++;
2546 			if (byten == array_int_len) {
2547 				stv(integer_size, p, value);
2548 				byten = 0;
2549 				len--;
2550 				if (len == 0)
2551 					return;
2552 				p += integer_size;
2553 			}
2554 		}
2555 		chunk = la->la_next;
2556 	}
2557 }
2558 
2559 static int
2560 fzap_check_size(uint64_t integer_size, uint64_t num_integers)
2561 {
2562 
2563 	switch (integer_size) {
2564 	case 1:
2565 	case 2:
2566 	case 4:
2567 	case 8:
2568 		break;
2569 	default:
2570 		return (EINVAL);
2571 	}
2572 
2573 	if (integer_size * num_integers > ZAP_MAXVALUELEN)
2574 		return (E2BIG);
2575 
2576 	return (0);
2577 }
2578 
2579 static void
2580 zap_leaf_free(zap_leaf_t *leaf)
2581 {
2582 	free(leaf->l_phys);
2583 	free(leaf);
2584 }
2585 
2586 static int
2587 zap_get_leaf_byblk(fat_zap_t *zap, uint64_t blk, zap_leaf_t **lp)
2588 {
2589 	int bs = FZAP_BLOCK_SHIFT(zap);
2590 	int err;
2591 
2592 	*lp = malloc(sizeof(**lp));
2593 	if (*lp == NULL)
2594 		return (ENOMEM);
2595 
2596 	(*lp)->l_bs = bs;
2597 	(*lp)->l_phys = malloc(1 << bs);
2598 
2599 	if ((*lp)->l_phys == NULL) {
2600 		free(*lp);
2601 		return (ENOMEM);
2602 	}
2603 	err = dnode_read(zap->zap_spa, zap->zap_dnode, blk << bs, (*lp)->l_phys,
2604 	    1 << bs);
2605 	if (err != 0) {
2606 		zap_leaf_free(*lp);
2607 	}
2608 	return (err);
2609 }
2610 
2611 static int
2612 zap_table_load(fat_zap_t *zap, zap_table_phys_t *tbl, uint64_t idx,
2613     uint64_t *valp)
2614 {
2615 	int bs = FZAP_BLOCK_SHIFT(zap);
2616 	uint64_t blk = idx >> (bs - 3);
2617 	uint64_t off = idx & ((1 << (bs - 3)) - 1);
2618 	uint64_t *buf;
2619 	int rc;
2620 
2621 	buf = malloc(1 << zap->zap_block_shift);
2622 	if (buf == NULL)
2623 		return (ENOMEM);
2624 	rc = dnode_read(zap->zap_spa, zap->zap_dnode, (tbl->zt_blk + blk) << bs,
2625 	    buf, 1 << zap->zap_block_shift);
2626 	if (rc == 0)
2627 		*valp = buf[off];
2628 	free(buf);
2629 	return (rc);
2630 }
2631 
2632 static int
2633 zap_idx_to_blk(fat_zap_t *zap, uint64_t idx, uint64_t *valp)
2634 {
2635 	if (zap->zap_phys->zap_ptrtbl.zt_numblks == 0) {
2636 		*valp = ZAP_EMBEDDED_PTRTBL_ENT(zap, idx);
2637 		return (0);
2638 	} else {
2639 		return (zap_table_load(zap, &zap->zap_phys->zap_ptrtbl,
2640 		    idx, valp));
2641 	}
2642 }
2643 
2644 #define	ZAP_HASH_IDX(hash, n)	(((n) == 0) ? 0 : ((hash) >> (64 - (n))))
2645 static int
2646 zap_deref_leaf(fat_zap_t *zap, uint64_t h, zap_leaf_t **lp)
2647 {
2648 	uint64_t idx, blk;
2649 	int err;
2650 
2651 	idx = ZAP_HASH_IDX(h, zap->zap_phys->zap_ptrtbl.zt_shift);
2652 	err = zap_idx_to_blk(zap, idx, &blk);
2653 	if (err != 0)
2654 		return (err);
2655 	return (zap_get_leaf_byblk(zap, blk, lp));
2656 }
2657 
2658 #define	CHAIN_END	0xffff	/* end of the chunk chain */
2659 #define	LEAF_HASH(l, h) \
2660 	((ZAP_LEAF_HASH_NUMENTRIES(l)-1) & \
2661 	((h) >> \
2662 	(64 - ZAP_LEAF_HASH_SHIFT(l) - (l)->l_phys->l_hdr.lh_prefix_len)))
2663 #define	LEAF_HASH_ENTPTR(l, h)	(&(l)->l_phys->l_hash[LEAF_HASH(l, h)])
2664 
2665 static int
2666 zap_leaf_lookup(zap_leaf_t *zl, uint64_t hash, const char *name,
2667     uint64_t integer_size, uint64_t num_integers, void *value)
2668 {
2669 	int rc;
2670 	uint16_t *chunkp;
2671 	struct zap_leaf_entry *le;
2672 
2673 	/*
2674 	 * Make sure this chunk matches our hash.
2675 	 */
2676 	if (zl->l_phys->l_hdr.lh_prefix_len > 0 &&
2677 	    zl->l_phys->l_hdr.lh_prefix !=
2678 	    hash >> (64 - zl->l_phys->l_hdr.lh_prefix_len))
2679 		return (EIO);
2680 
2681 	rc = ENOENT;
2682 	for (chunkp = LEAF_HASH_ENTPTR(zl, hash);
2683 	    *chunkp != CHAIN_END; chunkp = &le->le_next) {
2684 		zap_leaf_chunk_t *zc;
2685 		uint16_t chunk = *chunkp;
2686 
2687 		le = ZAP_LEAF_ENTRY(zl, chunk);
2688 		if (le->le_hash != hash)
2689 			continue;
2690 		zc = &ZAP_LEAF_CHUNK(zl, chunk);
2691 		if (fzap_name_equal(zl, zc, name)) {
2692 			if (zc->l_entry.le_value_intlen > integer_size) {
2693 				rc = EINVAL;
2694 			} else {
2695 				fzap_leaf_array(zl, zc, integer_size,
2696 				    num_integers, value);
2697 				rc = 0;
2698 			}
2699 			break;
2700 		}
2701 	}
2702 	return (rc);
2703 }
2704 
2705 /*
2706  * Lookup a value in a fatzap directory.
2707  */
2708 static int
2709 fzap_lookup(const spa_t *spa, const dnode_phys_t *dnode, zap_phys_t *zh,
2710     const char *name, uint64_t integer_size, uint64_t num_integers,
2711     void *value)
2712 {
2713 	int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2714 	fat_zap_t z;
2715 	zap_leaf_t *zl;
2716 	uint64_t hash;
2717 	int rc;
2718 
2719 	if (zh->zap_magic != ZAP_MAGIC)
2720 		return (EIO);
2721 
2722 	if ((rc = fzap_check_size(integer_size, num_integers)) != 0) {
2723 		return (rc);
2724 	}
2725 
2726 	z.zap_block_shift = ilog2(bsize);
2727 	z.zap_phys = zh;
2728 	z.zap_spa = spa;
2729 	z.zap_dnode = dnode;
2730 
2731 	hash = zap_hash(zh->zap_salt, name);
2732 	rc = zap_deref_leaf(&z, hash, &zl);
2733 	if (rc != 0)
2734 		return (rc);
2735 
2736 	rc = zap_leaf_lookup(zl, hash, name, integer_size, num_integers, value);
2737 
2738 	zap_leaf_free(zl);
2739 	return (rc);
2740 }
2741 
2742 /*
2743  * Lookup a name in a zap object and return its value as a uint64_t.
2744  */
2745 static int
2746 zap_lookup(const spa_t *spa, const dnode_phys_t *dnode, const char *name,
2747     uint64_t integer_size, uint64_t num_integers, void *value)
2748 {
2749 	int rc;
2750 	zap_phys_t *zap;
2751 	size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2752 
2753 	zap = malloc(size);
2754 	if (zap == NULL)
2755 		return (ENOMEM);
2756 
2757 	rc = dnode_read(spa, dnode, 0, zap, size);
2758 	if (rc)
2759 		goto done;
2760 
2761 	switch (zap->zap_block_type) {
2762 	case ZBT_MICRO:
2763 		rc = mzap_lookup((const mzap_phys_t *)zap, size, name, value);
2764 		break;
2765 	case ZBT_HEADER:
2766 		rc = fzap_lookup(spa, dnode, zap, name, integer_size,
2767 		    num_integers, value);
2768 		break;
2769 	default:
2770 		printf("ZFS: invalid zap_type=%" PRIx64 "\n",
2771 		    zap->zap_block_type);
2772 		rc = EIO;
2773 	}
2774 done:
2775 	free(zap);
2776 	return (rc);
2777 }
2778 
2779 /*
2780  * List a microzap directory.
2781  */
2782 static int
2783 mzap_list(const mzap_phys_t *mz, size_t size,
2784     int (*callback)(const char *, uint64_t))
2785 {
2786 	const mzap_ent_phys_t *mze;
2787 	int chunks, i, rc;
2788 
2789 	/*
2790 	 * Microzap objects use exactly one block. Read the whole
2791 	 * thing.
2792 	 */
2793 	rc = 0;
2794 	chunks = size / MZAP_ENT_LEN - 1;
2795 	for (i = 0; i < chunks; i++) {
2796 		mze = &mz->mz_chunk[i];
2797 		if (mze->mze_name[0]) {
2798 			rc = callback(mze->mze_name, mze->mze_value);
2799 			if (rc != 0)
2800 				break;
2801 		}
2802 	}
2803 
2804 	return (rc);
2805 }
2806 
2807 /*
2808  * List a fatzap directory.
2809  */
2810 static int
2811 fzap_list(const spa_t *spa, const dnode_phys_t *dnode, zap_phys_t *zh,
2812     int (*callback)(const char *, uint64_t))
2813 {
2814 	int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2815 	fat_zap_t z;
2816 	uint64_t i;
2817 	int j, rc;
2818 
2819 	if (zh->zap_magic != ZAP_MAGIC)
2820 		return (EIO);
2821 
2822 	z.zap_block_shift = ilog2(bsize);
2823 	z.zap_phys = zh;
2824 
2825 	/*
2826 	 * This assumes that the leaf blocks start at block 1. The
2827 	 * documentation isn't exactly clear on this.
2828 	 */
2829 	zap_leaf_t zl;
2830 	zl.l_bs = z.zap_block_shift;
2831 	zl.l_phys = malloc(bsize);
2832 	if (zl.l_phys == NULL)
2833 		return (ENOMEM);
2834 
2835 	for (i = 0; i < zh->zap_num_leafs; i++) {
2836 		off_t off = ((off_t)(i + 1)) << zl.l_bs;
2837 		char name[256], *p;
2838 		uint64_t value;
2839 
2840 		if (dnode_read(spa, dnode, off, zl.l_phys, bsize)) {
2841 			free(zl.l_phys);
2842 			return (EIO);
2843 		}
2844 
2845 		for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) {
2846 			zap_leaf_chunk_t *zc, *nc;
2847 			int namelen;
2848 
2849 			zc = &ZAP_LEAF_CHUNK(&zl, j);
2850 			if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY)
2851 				continue;
2852 			namelen = zc->l_entry.le_name_numints;
2853 			if (namelen > sizeof(name))
2854 				namelen = sizeof(name);
2855 
2856 			/*
2857 			 * Paste the name back together.
2858 			 */
2859 			nc = &ZAP_LEAF_CHUNK(&zl, zc->l_entry.le_name_chunk);
2860 			p = name;
2861 			while (namelen > 0) {
2862 				int len;
2863 				len = namelen;
2864 				if (len > ZAP_LEAF_ARRAY_BYTES)
2865 					len = ZAP_LEAF_ARRAY_BYTES;
2866 				memcpy(p, nc->l_array.la_array, len);
2867 				p += len;
2868 				namelen -= len;
2869 				nc = &ZAP_LEAF_CHUNK(&zl, nc->l_array.la_next);
2870 			}
2871 
2872 			/*
2873 			 * Assume the first eight bytes of the value are
2874 			 * a uint64_t.
2875 			 */
2876 			value = fzap_leaf_value(&zl, zc);
2877 
2878 			/* printf("%s 0x%jx\n", name, (uintmax_t)value); */
2879 			rc = callback((const char *)name, value);
2880 			if (rc != 0) {
2881 				free(zl.l_phys);
2882 				return (rc);
2883 			}
2884 		}
2885 	}
2886 
2887 	free(zl.l_phys);
2888 	return (0);
2889 }
2890 
2891 static int zfs_printf(const char *name, uint64_t value __unused)
2892 {
2893 
2894 	printf("%s\n", name);
2895 
2896 	return (0);
2897 }
2898 
2899 /*
2900  * List a zap directory.
2901  */
2902 static int
2903 zap_list(const spa_t *spa, const dnode_phys_t *dnode)
2904 {
2905 	zap_phys_t *zap;
2906 	size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2907 	int rc;
2908 
2909 	zap = malloc(size);
2910 	if (zap == NULL)
2911 		return (ENOMEM);
2912 
2913 	rc = dnode_read(spa, dnode, 0, zap, size);
2914 	if (rc == 0) {
2915 		if (zap->zap_block_type == ZBT_MICRO)
2916 			rc = mzap_list((const mzap_phys_t *)zap, size,
2917 			    zfs_printf);
2918 		else
2919 			rc = fzap_list(spa, dnode, zap, zfs_printf);
2920 	}
2921 	free(zap);
2922 	return (rc);
2923 }
2924 
2925 static int
2926 objset_get_dnode(const spa_t *spa, const objset_phys_t *os, uint64_t objnum,
2927     dnode_phys_t *dnode)
2928 {
2929 	off_t offset;
2930 
2931 	offset = objnum * sizeof(dnode_phys_t);
2932 	return dnode_read(spa, &os->os_meta_dnode, offset,
2933 		dnode, sizeof(dnode_phys_t));
2934 }
2935 
2936 /*
2937  * Lookup a name in a microzap directory.
2938  */
2939 static int
2940 mzap_rlookup(const mzap_phys_t *mz, size_t size, char *name, uint64_t value)
2941 {
2942 	const mzap_ent_phys_t *mze;
2943 	int chunks, i;
2944 
2945 	/*
2946 	 * Microzap objects use exactly one block. Read the whole
2947 	 * thing.
2948 	 */
2949 	chunks = size / MZAP_ENT_LEN - 1;
2950 	for (i = 0; i < chunks; i++) {
2951 		mze = &mz->mz_chunk[i];
2952 		if (value == mze->mze_value) {
2953 			strcpy(name, mze->mze_name);
2954 			return (0);
2955 		}
2956 	}
2957 
2958 	return (ENOENT);
2959 }
2960 
2961 static void
2962 fzap_name_copy(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, char *name)
2963 {
2964 	size_t namelen;
2965 	const zap_leaf_chunk_t *nc;
2966 	char *p;
2967 
2968 	namelen = zc->l_entry.le_name_numints;
2969 
2970 	nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk);
2971 	p = name;
2972 	while (namelen > 0) {
2973 		size_t len;
2974 		len = namelen;
2975 		if (len > ZAP_LEAF_ARRAY_BYTES)
2976 			len = ZAP_LEAF_ARRAY_BYTES;
2977 		memcpy(p, nc->l_array.la_array, len);
2978 		p += len;
2979 		namelen -= len;
2980 		nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next);
2981 	}
2982 
2983 	*p = '\0';
2984 }
2985 
2986 static int
2987 fzap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, zap_phys_t *zh,
2988     char *name, uint64_t value)
2989 {
2990 	int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2991 	fat_zap_t z;
2992 	uint64_t i;
2993 	int j, rc;
2994 
2995 	if (zh->zap_magic != ZAP_MAGIC)
2996 		return (EIO);
2997 
2998 	z.zap_block_shift = ilog2(bsize);
2999 	z.zap_phys = zh;
3000 
3001 	/*
3002 	 * This assumes that the leaf blocks start at block 1. The
3003 	 * documentation isn't exactly clear on this.
3004 	 */
3005 	zap_leaf_t zl;
3006 	zl.l_bs = z.zap_block_shift;
3007 	zl.l_phys = malloc(bsize);
3008 	if (zl.l_phys == NULL)
3009 		return (ENOMEM);
3010 
3011 	for (i = 0; i < zh->zap_num_leafs; i++) {
3012 		off_t off = ((off_t)(i + 1)) << zl.l_bs;
3013 
3014 		rc = dnode_read(spa, dnode, off, zl.l_phys, bsize);
3015 		if (rc != 0)
3016 			goto done;
3017 
3018 		for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) {
3019 			zap_leaf_chunk_t *zc;
3020 
3021 			zc = &ZAP_LEAF_CHUNK(&zl, j);
3022 			if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY)
3023 				continue;
3024 			if (zc->l_entry.le_value_intlen != 8 ||
3025 			    zc->l_entry.le_value_numints != 1)
3026 				continue;
3027 
3028 			if (fzap_leaf_value(&zl, zc) == value) {
3029 				fzap_name_copy(&zl, zc, name);
3030 				goto done;
3031 			}
3032 		}
3033 	}
3034 
3035 	rc = ENOENT;
3036 done:
3037 	free(zl.l_phys);
3038 	return (rc);
3039 }
3040 
3041 static int
3042 zap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, char *name,
3043     uint64_t value)
3044 {
3045 	zap_phys_t *zap;
3046 	size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
3047 	int rc;
3048 
3049 	zap = malloc(size);
3050 	if (zap == NULL)
3051 		return (ENOMEM);
3052 
3053 	rc = dnode_read(spa, dnode, 0, zap, size);
3054 	if (rc == 0) {
3055 		if (zap->zap_block_type == ZBT_MICRO)
3056 			rc = mzap_rlookup((const mzap_phys_t *)zap, size,
3057 			    name, value);
3058 		else
3059 			rc = fzap_rlookup(spa, dnode, zap, name, value);
3060 	}
3061 	free(zap);
3062 	return (rc);
3063 }
3064 
3065 static int
3066 zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result)
3067 {
3068 	char name[256];
3069 	char component[256];
3070 	uint64_t dir_obj, parent_obj, child_dir_zapobj;
3071 	dnode_phys_t child_dir_zap, snapnames_zap, dataset, dir, parent;
3072 	dsl_dir_phys_t *dd;
3073 	dsl_dataset_phys_t *ds;
3074 	char *p;
3075 	int len;
3076 	boolean_t issnap = B_FALSE;
3077 
3078 	p = &name[sizeof(name) - 1];
3079 	*p = '\0';
3080 
3081 	if (objset_get_dnode(spa, spa->spa_mos, objnum, &dataset)) {
3082 		printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
3083 		return (EIO);
3084 	}
3085 	ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
3086 	dir_obj = ds->ds_dir_obj;
3087 	if (ds->ds_snapnames_zapobj == 0)
3088 		issnap = B_TRUE;
3089 
3090 	for (;;) {
3091 		if (objset_get_dnode(spa, spa->spa_mos, dir_obj, &dir) != 0)
3092 			return (EIO);
3093 		dd = (dsl_dir_phys_t *)&dir.dn_bonus;
3094 
3095 		/* Actual loop condition. */
3096 		parent_obj = dd->dd_parent_obj;
3097 		if (parent_obj == 0)
3098 			break;
3099 
3100 		if (objset_get_dnode(spa, spa->spa_mos, parent_obj,
3101 		    &parent) != 0)
3102 			return (EIO);
3103 		dd = (dsl_dir_phys_t *)&parent.dn_bonus;
3104 		if (issnap == B_TRUE) {
3105 			/*
3106 			 * The dataset we are looking up is a snapshot
3107 			 * the dir_obj is the parent already, we don't want
3108 			 * the grandparent just yet. Reset to the parent.
3109 			 */
3110 			dd = (dsl_dir_phys_t *)&dir.dn_bonus;
3111 			/* Lookup the dataset to get the snapname ZAP */
3112 			if (objset_get_dnode(spa, spa->spa_mos,
3113 			    dd->dd_head_dataset_obj, &dataset))
3114 				return (EIO);
3115 			ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
3116 			if (objset_get_dnode(spa, spa->spa_mos,
3117 			    ds->ds_snapnames_zapobj, &snapnames_zap) != 0)
3118 				return (EIO);
3119 			/* Get the name of the snapshot */
3120 			if (zap_rlookup(spa, &snapnames_zap, component,
3121 			    objnum) != 0)
3122 				return (EIO);
3123 			len = strlen(component);
3124 			p -= len;
3125 			memcpy(p, component, len);
3126 			--p;
3127 			*p = '@';
3128 			issnap = B_FALSE;
3129 			continue;
3130 		}
3131 
3132 		child_dir_zapobj = dd->dd_child_dir_zapobj;
3133 		if (objset_get_dnode(spa, spa->spa_mos, child_dir_zapobj,
3134 		    &child_dir_zap) != 0)
3135 			return (EIO);
3136 		if (zap_rlookup(spa, &child_dir_zap, component, dir_obj) != 0)
3137 			return (EIO);
3138 
3139 		len = strlen(component);
3140 		p -= len;
3141 		memcpy(p, component, len);
3142 		--p;
3143 		*p = '/';
3144 
3145 		/* Actual loop iteration. */
3146 		dir_obj = parent_obj;
3147 	}
3148 
3149 	if (*p != '\0')
3150 		++p;
3151 	strcpy(result, p);
3152 
3153 	return (0);
3154 }
3155 
3156 static int
3157 zfs_lookup_dataset(const spa_t *spa, const char *name, uint64_t *objnum)
3158 {
3159 	char element[256];
3160 	uint64_t dir_obj, child_dir_zapobj;
3161 	dnode_phys_t child_dir_zap, snapnames_zap, dir, dataset;
3162 	dsl_dir_phys_t *dd;
3163 	dsl_dataset_phys_t *ds;
3164 	const char *p, *q;
3165 	boolean_t issnap = B_FALSE;
3166 
3167 	if (objset_get_dnode(spa, spa->spa_mos,
3168 	    DMU_POOL_DIRECTORY_OBJECT, &dir))
3169 		return (EIO);
3170 	if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET, sizeof (dir_obj),
3171 	    1, &dir_obj))
3172 		return (EIO);
3173 
3174 	p = name;
3175 	for (;;) {
3176 		if (objset_get_dnode(spa, spa->spa_mos, dir_obj, &dir))
3177 			return (EIO);
3178 		dd = (dsl_dir_phys_t *)&dir.dn_bonus;
3179 
3180 		while (*p == '/')
3181 			p++;
3182 		/* Actual loop condition #1. */
3183 		if (*p == '\0')
3184 			break;
3185 
3186 		q = strchr(p, '/');
3187 		if (q) {
3188 			memcpy(element, p, q - p);
3189 			element[q - p] = '\0';
3190 			p = q + 1;
3191 		} else {
3192 			strcpy(element, p);
3193 			p += strlen(p);
3194 		}
3195 
3196 		if (issnap == B_TRUE) {
3197 		        if (objset_get_dnode(spa, spa->spa_mos,
3198 			    dd->dd_head_dataset_obj, &dataset))
3199 		                return (EIO);
3200 			ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
3201 			if (objset_get_dnode(spa, spa->spa_mos,
3202 			    ds->ds_snapnames_zapobj, &snapnames_zap) != 0)
3203 				return (EIO);
3204 			/* Actual loop condition #2. */
3205 			if (zap_lookup(spa, &snapnames_zap, element,
3206 			    sizeof (dir_obj), 1, &dir_obj) != 0)
3207 				return (ENOENT);
3208 			*objnum = dir_obj;
3209 			return (0);
3210 		} else if ((q = strchr(element, '@')) != NULL) {
3211 			issnap = B_TRUE;
3212 			element[q - element] = '\0';
3213 			p = q + 1;
3214 		}
3215 		child_dir_zapobj = dd->dd_child_dir_zapobj;
3216 		if (objset_get_dnode(spa, spa->spa_mos, child_dir_zapobj,
3217 		    &child_dir_zap) != 0)
3218 			return (EIO);
3219 
3220 		/* Actual loop condition #2. */
3221 		if (zap_lookup(spa, &child_dir_zap, element, sizeof (dir_obj),
3222 		    1, &dir_obj) != 0)
3223 			return (ENOENT);
3224 	}
3225 
3226 	*objnum = dd->dd_head_dataset_obj;
3227 	return (0);
3228 }
3229 
3230 #ifndef BOOT2
3231 static int
3232 zfs_list_dataset(const spa_t *spa, uint64_t objnum/*, int pos, char *entry*/)
3233 {
3234 	uint64_t dir_obj, child_dir_zapobj;
3235 	dnode_phys_t child_dir_zap, dir, dataset;
3236 	dsl_dataset_phys_t *ds;
3237 	dsl_dir_phys_t *dd;
3238 
3239 	if (objset_get_dnode(spa, spa->spa_mos, objnum, &dataset)) {
3240 		printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
3241 		return (EIO);
3242 	}
3243 	ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
3244 	dir_obj = ds->ds_dir_obj;
3245 
3246 	if (objset_get_dnode(spa, spa->spa_mos, dir_obj, &dir)) {
3247 		printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj);
3248 		return (EIO);
3249 	}
3250 	dd = (dsl_dir_phys_t *)&dir.dn_bonus;
3251 
3252 	child_dir_zapobj = dd->dd_child_dir_zapobj;
3253 	if (objset_get_dnode(spa, spa->spa_mos, child_dir_zapobj,
3254 	    &child_dir_zap) != 0) {
3255 		printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj);
3256 		return (EIO);
3257 	}
3258 
3259 	return (zap_list(spa, &child_dir_zap) != 0);
3260 }
3261 
3262 int
3263 zfs_callback_dataset(const spa_t *spa, uint64_t objnum,
3264     int (*callback)(const char *, uint64_t))
3265 {
3266 	uint64_t dir_obj, child_dir_zapobj;
3267 	dnode_phys_t child_dir_zap, dir, dataset;
3268 	dsl_dataset_phys_t *ds;
3269 	dsl_dir_phys_t *dd;
3270 	zap_phys_t *zap;
3271 	size_t size;
3272 	int err;
3273 
3274 	err = objset_get_dnode(spa, spa->spa_mos, objnum, &dataset);
3275 	if (err != 0) {
3276 		printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
3277 		return (err);
3278 	}
3279 	ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
3280 	dir_obj = ds->ds_dir_obj;
3281 
3282 	err = objset_get_dnode(spa, spa->spa_mos, dir_obj, &dir);
3283 	if (err != 0) {
3284 		printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj);
3285 		return (err);
3286 	}
3287 	dd = (dsl_dir_phys_t *)&dir.dn_bonus;
3288 
3289 	child_dir_zapobj = dd->dd_child_dir_zapobj;
3290 	err = objset_get_dnode(spa, spa->spa_mos, child_dir_zapobj,
3291 	    &child_dir_zap);
3292 	if (err != 0) {
3293 		printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj);
3294 		return (err);
3295 	}
3296 
3297 	size = child_dir_zap.dn_datablkszsec << SPA_MINBLOCKSHIFT;
3298 	zap = malloc(size);
3299 	if (zap != NULL) {
3300 		err = dnode_read(spa, &child_dir_zap, 0, zap, size);
3301 		if (err != 0)
3302 			goto done;
3303 
3304 		if (zap->zap_block_type == ZBT_MICRO)
3305 			err = mzap_list((const mzap_phys_t *)zap, size,
3306 			    callback);
3307 		else
3308 			err = fzap_list(spa, &child_dir_zap, zap, callback);
3309 	} else {
3310 		err = ENOMEM;
3311 	}
3312 done:
3313 	free(zap);
3314 	return (err);
3315 }
3316 #endif
3317 
3318 /*
3319  * Find the object set given the object number of its dataset object
3320  * and return its details in *objset
3321  */
3322 static int
3323 zfs_mount_dataset(const spa_t *spa, uint64_t objnum, objset_phys_t *objset)
3324 {
3325 	dnode_phys_t dataset;
3326 	dsl_dataset_phys_t *ds;
3327 
3328 	if (objset_get_dnode(spa, spa->spa_mos, objnum, &dataset)) {
3329 		printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
3330 		return (EIO);
3331 	}
3332 
3333 	ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
3334 	if (zio_read(spa, &ds->ds_bp, objset)) {
3335 		printf("ZFS: can't read object set for dataset %ju\n",
3336 		    (uintmax_t)objnum);
3337 		return (EIO);
3338 	}
3339 
3340 	return (0);
3341 }
3342 
3343 /*
3344  * Find the object set pointed to by the BOOTFS property or the root
3345  * dataset if there is none and return its details in *objset
3346  */
3347 static int
3348 zfs_get_root(const spa_t *spa, uint64_t *objid)
3349 {
3350 	dnode_phys_t dir, propdir;
3351 	uint64_t props, bootfs, root;
3352 
3353 	*objid = 0;
3354 
3355 	/*
3356 	 * Start with the MOS directory object.
3357 	 */
3358 	if (objset_get_dnode(spa, spa->spa_mos,
3359 	    DMU_POOL_DIRECTORY_OBJECT, &dir)) {
3360 		printf("ZFS: can't read MOS object directory\n");
3361 		return (EIO);
3362 	}
3363 
3364 	/*
3365 	 * Lookup the pool_props and see if we can find a bootfs.
3366 	 */
3367 	if (zap_lookup(spa, &dir, DMU_POOL_PROPS,
3368 	    sizeof(props), 1, &props) == 0 &&
3369 	    objset_get_dnode(spa, spa->spa_mos, props, &propdir) == 0 &&
3370 	    zap_lookup(spa, &propdir, "bootfs",
3371 	    sizeof(bootfs), 1, &bootfs) == 0 && bootfs != 0) {
3372 		*objid = bootfs;
3373 		return (0);
3374 	}
3375 	/*
3376 	 * Lookup the root dataset directory
3377 	 */
3378 	if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET,
3379 	    sizeof(root), 1, &root) ||
3380 	    objset_get_dnode(spa, spa->spa_mos, root, &dir)) {
3381 		printf("ZFS: can't find root dsl_dir\n");
3382 		return (EIO);
3383 	}
3384 
3385 	/*
3386 	 * Use the information from the dataset directory's bonus buffer
3387 	 * to find the dataset object and from that the object set itself.
3388 	 */
3389 	dsl_dir_phys_t *dd = (dsl_dir_phys_t *)&dir.dn_bonus;
3390 	*objid = dd->dd_head_dataset_obj;
3391 	return (0);
3392 }
3393 
3394 static int
3395 zfs_mount_impl(const spa_t *spa, uint64_t rootobj, struct zfsmount *mount)
3396 {
3397 
3398 	mount->spa = spa;
3399 
3400 	/*
3401 	 * Find the root object set if not explicitly provided
3402 	 */
3403 	if (rootobj == 0 && zfs_get_root(spa, &rootobj)) {
3404 		printf("ZFS: can't find root filesystem\n");
3405 		return (EIO);
3406 	}
3407 
3408 	if (zfs_mount_dataset(spa, rootobj, &mount->objset)) {
3409 		printf("ZFS: can't open root filesystem\n");
3410 		return (EIO);
3411 	}
3412 
3413 	mount->rootobj = rootobj;
3414 
3415 	return (0);
3416 }
3417 
3418 /*
3419  * callback function for feature name checks.
3420  */
3421 static int
3422 check_feature(const char *name, uint64_t value)
3423 {
3424 	int i;
3425 
3426 	if (value == 0)
3427 		return (0);
3428 	if (name[0] == '\0')
3429 		return (0);
3430 
3431 	for (i = 0; features_for_read[i] != NULL; i++) {
3432 		if (strcmp(name, features_for_read[i]) == 0)
3433 			return (0);
3434 	}
3435 	printf("ZFS: unsupported feature: %s\n", name);
3436 	return (EIO);
3437 }
3438 
3439 /*
3440  * Checks whether the MOS features that are active are supported.
3441  */
3442 static int
3443 check_mos_features(const spa_t *spa)
3444 {
3445 	dnode_phys_t dir;
3446 	zap_phys_t *zap;
3447 	uint64_t objnum;
3448 	size_t size;
3449 	int rc;
3450 
3451 	if ((rc = objset_get_dnode(spa, spa->spa_mos, DMU_OT_OBJECT_DIRECTORY,
3452 	    &dir)) != 0)
3453 		return (rc);
3454 	if ((rc = zap_lookup(spa, &dir, DMU_POOL_FEATURES_FOR_READ,
3455 	    sizeof (objnum), 1, &objnum)) != 0) {
3456 		/*
3457 		 * It is older pool without features. As we have already
3458 		 * tested the label, just return without raising the error.
3459 		 */
3460 		return (0);
3461 	}
3462 
3463 	if ((rc = objset_get_dnode(spa, spa->spa_mos, objnum, &dir)) != 0)
3464 		return (rc);
3465 
3466 	if (dir.dn_type != DMU_OTN_ZAP_METADATA)
3467 		return (EIO);
3468 
3469 	size = dir.dn_datablkszsec << SPA_MINBLOCKSHIFT;
3470 	zap = malloc(size);
3471 	if (zap == NULL)
3472 		return (ENOMEM);
3473 
3474 	if (dnode_read(spa, &dir, 0, zap, size)) {
3475 		free(zap);
3476 		return (EIO);
3477 	}
3478 
3479 	if (zap->zap_block_type == ZBT_MICRO)
3480 		rc = mzap_list((const mzap_phys_t *)zap, size, check_feature);
3481 	else
3482 		rc = fzap_list(spa, &dir, zap, check_feature);
3483 
3484 	free(zap);
3485 	return (rc);
3486 }
3487 
3488 static int
3489 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
3490 {
3491 	dnode_phys_t dir;
3492 	size_t size;
3493 	int rc;
3494 	char *nv;
3495 
3496 	*value = NULL;
3497 	if ((rc = objset_get_dnode(spa, spa->spa_mos, obj, &dir)) != 0)
3498 		return (rc);
3499 	if (dir.dn_type != DMU_OT_PACKED_NVLIST &&
3500 	    dir.dn_bonustype != DMU_OT_PACKED_NVLIST_SIZE) {
3501 		return (EIO);
3502 	}
3503 
3504 	if (dir.dn_bonuslen != sizeof (uint64_t))
3505 		return (EIO);
3506 
3507 	size = *(uint64_t *)DN_BONUS(&dir);
3508 	nv = malloc(size);
3509 	if (nv == NULL)
3510 		return (ENOMEM);
3511 
3512 	rc = dnode_read(spa, &dir, 0, nv, size);
3513 	if (rc != 0) {
3514 		free(nv);
3515 		nv = NULL;
3516 		return (rc);
3517 	}
3518 	*value = nvlist_import(nv, size);
3519 	free(nv);
3520 	return (rc);
3521 }
3522 
3523 static int
3524 zfs_spa_init(spa_t *spa)
3525 {
3526 	struct uberblock checkpoint;
3527 	dnode_phys_t dir;
3528 	uint64_t config_object;
3529 	nvlist_t *nvlist;
3530 	int rc;
3531 
3532 	if (zio_read(spa, &spa->spa_uberblock->ub_rootbp, spa->spa_mos)) {
3533 		printf("ZFS: can't read MOS of pool %s\n", spa->spa_name);
3534 		return (EIO);
3535 	}
3536 	if (spa->spa_mos->os_type != DMU_OST_META) {
3537 		printf("ZFS: corrupted MOS of pool %s\n", spa->spa_name);
3538 		return (EIO);
3539 	}
3540 
3541 	if (objset_get_dnode(spa, &spa->spa_mos_master,
3542 	    DMU_POOL_DIRECTORY_OBJECT, &dir)) {
3543 		printf("ZFS: failed to read pool %s directory object\n",
3544 		    spa->spa_name);
3545 		return (EIO);
3546 	}
3547 	/* this is allowed to fail, older pools do not have salt */
3548 	rc = zap_lookup(spa, &dir, DMU_POOL_CHECKSUM_SALT, 1,
3549 	    sizeof (spa->spa_cksum_salt.zcs_bytes),
3550 	    spa->spa_cksum_salt.zcs_bytes);
3551 
3552 	rc = check_mos_features(spa);
3553 	if (rc != 0) {
3554 		printf("ZFS: pool %s is not supported\n", spa->spa_name);
3555 		return (rc);
3556 	}
3557 
3558 	rc = zap_lookup(spa, &dir, DMU_POOL_CONFIG,
3559 	    sizeof (config_object), 1, &config_object);
3560 	if (rc != 0) {
3561 		printf("ZFS: can not read MOS %s\n", DMU_POOL_CONFIG);
3562 		return (EIO);
3563 	}
3564 	rc = load_nvlist(spa, config_object, &nvlist);
3565 	if (rc != 0)
3566 		return (rc);
3567 
3568 	rc = zap_lookup(spa, &dir, DMU_POOL_ZPOOL_CHECKPOINT,
3569 	    sizeof(uint64_t), sizeof(checkpoint) / sizeof(uint64_t),
3570 	    &checkpoint);
3571 	if (rc == 0 && checkpoint.ub_checkpoint_txg != 0) {
3572 		memcpy(&spa->spa_uberblock_checkpoint, &checkpoint,
3573 		    sizeof(checkpoint));
3574 		if (zio_read(spa, &spa->spa_uberblock_checkpoint.ub_rootbp,
3575 		    &spa->spa_mos_checkpoint)) {
3576 			printf("ZFS: can not read checkpoint data.\n");
3577 			return (EIO);
3578 		}
3579 	}
3580 
3581 	/*
3582 	 * Update vdevs from MOS config. Note, we do skip encoding bytes
3583 	 * here. See also vdev_label_read_config().
3584 	 */
3585 	rc = vdev_init_from_nvlist(spa, nvlist);
3586 	nvlist_destroy(nvlist);
3587 	return (rc);
3588 }
3589 
3590 static int
3591 zfs_dnode_stat(const spa_t *spa, dnode_phys_t *dn, struct stat *sb)
3592 {
3593 
3594 	if (dn->dn_bonustype != DMU_OT_SA) {
3595 		znode_phys_t *zp = (znode_phys_t *)dn->dn_bonus;
3596 
3597 		sb->st_mode = zp->zp_mode;
3598 		sb->st_uid = zp->zp_uid;
3599 		sb->st_gid = zp->zp_gid;
3600 		sb->st_size = zp->zp_size;
3601 	} else {
3602 		sa_hdr_phys_t *sahdrp;
3603 		int hdrsize;
3604 		size_t size = 0;
3605 		void *buf = NULL;
3606 
3607 		if (dn->dn_bonuslen != 0)
3608 			sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn);
3609 		else {
3610 			if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0) {
3611 				blkptr_t *bp = DN_SPILL_BLKPTR(dn);
3612 				int error;
3613 
3614 				size = BP_GET_LSIZE(bp);
3615 				buf = malloc(size);
3616 				if (buf == NULL)
3617 					error = ENOMEM;
3618 				else
3619 					error = zio_read(spa, bp, buf);
3620 
3621 				if (error != 0) {
3622 					free(buf);
3623 					return (error);
3624 				}
3625 				sahdrp = buf;
3626 			} else {
3627 				return (EIO);
3628 			}
3629 		}
3630 		hdrsize = SA_HDR_SIZE(sahdrp);
3631 		sb->st_mode = *(uint64_t *)((char *)sahdrp + hdrsize +
3632 		    SA_MODE_OFFSET);
3633 		sb->st_uid = *(uint64_t *)((char *)sahdrp + hdrsize +
3634 		    SA_UID_OFFSET);
3635 		sb->st_gid = *(uint64_t *)((char *)sahdrp + hdrsize +
3636 		    SA_GID_OFFSET);
3637 		sb->st_size = *(uint64_t *)((char *)sahdrp + hdrsize +
3638 		    SA_SIZE_OFFSET);
3639 		free(buf);
3640 	}
3641 
3642 	return (0);
3643 }
3644 
3645 static int
3646 zfs_dnode_readlink(const spa_t *spa, dnode_phys_t *dn, char *path, size_t psize)
3647 {
3648 	int rc = 0;
3649 
3650 	if (dn->dn_bonustype == DMU_OT_SA) {
3651 		sa_hdr_phys_t *sahdrp = NULL;
3652 		size_t size = 0;
3653 		void *buf = NULL;
3654 		int hdrsize;
3655 		char *p;
3656 
3657 		if (dn->dn_bonuslen != 0) {
3658 			sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn);
3659 		} else {
3660 			blkptr_t *bp;
3661 
3662 			if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) == 0)
3663 				return (EIO);
3664 			bp = DN_SPILL_BLKPTR(dn);
3665 
3666 			size = BP_GET_LSIZE(bp);
3667 			buf = malloc(size);
3668 			if (buf == NULL)
3669 				rc = ENOMEM;
3670 			else
3671 				rc = zio_read(spa, bp, buf);
3672 			if (rc != 0) {
3673 				free(buf);
3674 				return (rc);
3675 			}
3676 			sahdrp = buf;
3677 		}
3678 		hdrsize = SA_HDR_SIZE(sahdrp);
3679 		p = (char *)((uintptr_t)sahdrp + hdrsize + SA_SYMLINK_OFFSET);
3680 		memcpy(path, p, psize);
3681 		free(buf);
3682 		return (0);
3683 	}
3684 	/*
3685 	 * Second test is purely to silence bogus compiler
3686 	 * warning about accessing past the end of dn_bonus.
3687 	 */
3688 	if (psize + sizeof(znode_phys_t) <= dn->dn_bonuslen &&
3689 	    sizeof(znode_phys_t) <= sizeof(dn->dn_bonus)) {
3690 		memcpy(path, &dn->dn_bonus[sizeof(znode_phys_t)], psize);
3691 	} else {
3692 		rc = dnode_read(spa, dn, 0, path, psize);
3693 	}
3694 	return (rc);
3695 }
3696 
3697 struct obj_list {
3698 	uint64_t		objnum;
3699 	STAILQ_ENTRY(obj_list)	entry;
3700 };
3701 
3702 /*
3703  * Lookup a file and return its dnode.
3704  */
3705 static int
3706 zfs_lookup(const struct zfsmount *mount, const char *upath, dnode_phys_t *dnode)
3707 {
3708 	int rc;
3709 	uint64_t objnum;
3710 	const spa_t *spa;
3711 	dnode_phys_t dn;
3712 	const char *p, *q;
3713 	char element[256];
3714 	char path[1024];
3715 	int symlinks_followed = 0;
3716 	struct stat sb;
3717 	struct obj_list *entry, *tentry;
3718 	STAILQ_HEAD(, obj_list) on_cache = STAILQ_HEAD_INITIALIZER(on_cache);
3719 
3720 	spa = mount->spa;
3721 	if (mount->objset.os_type != DMU_OST_ZFS) {
3722 		printf("ZFS: unexpected object set type %ju\n",
3723 		    (uintmax_t)mount->objset.os_type);
3724 		return (EIO);
3725 	}
3726 
3727 	if ((entry = malloc(sizeof(struct obj_list))) == NULL)
3728 		return (ENOMEM);
3729 
3730 	/*
3731 	 * Get the root directory dnode.
3732 	 */
3733 	rc = objset_get_dnode(spa, &mount->objset, MASTER_NODE_OBJ, &dn);
3734 	if (rc) {
3735 		free(entry);
3736 		return (rc);
3737 	}
3738 
3739 	rc = zap_lookup(spa, &dn, ZFS_ROOT_OBJ, sizeof(objnum), 1, &objnum);
3740 	if (rc) {
3741 		free(entry);
3742 		return (rc);
3743 	}
3744 	entry->objnum = objnum;
3745 	STAILQ_INSERT_HEAD(&on_cache, entry, entry);
3746 
3747 	rc = objset_get_dnode(spa, &mount->objset, objnum, &dn);
3748 	if (rc != 0)
3749 		goto done;
3750 
3751 	p = upath;
3752 	while (p && *p) {
3753 		rc = objset_get_dnode(spa, &mount->objset, objnum, &dn);
3754 		if (rc != 0)
3755 			goto done;
3756 
3757 		while (*p == '/')
3758 			p++;
3759 		if (*p == '\0')
3760 			break;
3761 		q = p;
3762 		while (*q != '\0' && *q != '/')
3763 			q++;
3764 
3765 		/* skip dot */
3766 		if (p + 1 == q && p[0] == '.') {
3767 			p++;
3768 			continue;
3769 		}
3770 		/* double dot */
3771 		if (p + 2 == q && p[0] == '.' && p[1] == '.') {
3772 			p += 2;
3773 			if (STAILQ_FIRST(&on_cache) ==
3774 			    STAILQ_LAST(&on_cache, obj_list, entry)) {
3775 				rc = ENOENT;
3776 				goto done;
3777 			}
3778 			entry = STAILQ_FIRST(&on_cache);
3779 			STAILQ_REMOVE_HEAD(&on_cache, entry);
3780 			free(entry);
3781 			objnum = (STAILQ_FIRST(&on_cache))->objnum;
3782 			continue;
3783 		}
3784 		if (q - p + 1 > sizeof(element)) {
3785 			rc = ENAMETOOLONG;
3786 			goto done;
3787 		}
3788 		memcpy(element, p, q - p);
3789 		element[q - p] = 0;
3790 		p = q;
3791 
3792 		if ((rc = zfs_dnode_stat(spa, &dn, &sb)) != 0)
3793 			goto done;
3794 		if (!S_ISDIR(sb.st_mode)) {
3795 			rc = ENOTDIR;
3796 			goto done;
3797 		}
3798 
3799 		rc = zap_lookup(spa, &dn, element, sizeof (objnum), 1, &objnum);
3800 		if (rc)
3801 			goto done;
3802 		objnum = ZFS_DIRENT_OBJ(objnum);
3803 
3804 		if ((entry = malloc(sizeof(struct obj_list))) == NULL) {
3805 			rc = ENOMEM;
3806 			goto done;
3807 		}
3808 		entry->objnum = objnum;
3809 		STAILQ_INSERT_HEAD(&on_cache, entry, entry);
3810 		rc = objset_get_dnode(spa, &mount->objset, objnum, &dn);
3811 		if (rc)
3812 			goto done;
3813 
3814 		/*
3815 		 * Check for symlink.
3816 		 */
3817 		rc = zfs_dnode_stat(spa, &dn, &sb);
3818 		if (rc)
3819 			goto done;
3820 		if (S_ISLNK(sb.st_mode)) {
3821 			if (symlinks_followed > 10) {
3822 				rc = EMLINK;
3823 				goto done;
3824 			}
3825 			symlinks_followed++;
3826 
3827 			/*
3828 			 * Read the link value and copy the tail of our
3829 			 * current path onto the end.
3830 			 */
3831 			if (sb.st_size + strlen(p) + 1 > sizeof(path)) {
3832 				rc = ENAMETOOLONG;
3833 				goto done;
3834 			}
3835 			strcpy(&path[sb.st_size], p);
3836 
3837 			rc = zfs_dnode_readlink(spa, &dn, path, sb.st_size);
3838 			if (rc != 0)
3839 				goto done;
3840 
3841 			/*
3842 			 * Restart with the new path, starting either at
3843 			 * the root or at the parent depending whether or
3844 			 * not the link is relative.
3845 			 */
3846 			p = path;
3847 			if (*p == '/') {
3848 				while (STAILQ_FIRST(&on_cache) !=
3849 				    STAILQ_LAST(&on_cache, obj_list, entry)) {
3850 					entry = STAILQ_FIRST(&on_cache);
3851 					STAILQ_REMOVE_HEAD(&on_cache, entry);
3852 					free(entry);
3853 				}
3854 			} else {
3855 				entry = STAILQ_FIRST(&on_cache);
3856 				STAILQ_REMOVE_HEAD(&on_cache, entry);
3857 				free(entry);
3858 			}
3859 			objnum = (STAILQ_FIRST(&on_cache))->objnum;
3860 		}
3861 	}
3862 
3863 	*dnode = dn;
3864 done:
3865 	STAILQ_FOREACH_SAFE(entry, &on_cache, entry, tentry)
3866 		free(entry);
3867 	return (rc);
3868 }
3869