xref: /freebsd/stand/libsa/zfs/zfsimpl.c (revision 4133f23624058951a3b66e3ad735de980a485f36)
1 /*-
2  * Copyright (c) 2007 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 /*
31  *	Stand-alone ZFS file reader.
32  */
33 
34 #include <sys/endian.h>
35 #include <sys/stat.h>
36 #include <sys/stdint.h>
37 #include <sys/list.h>
38 
39 #include "zfsimpl.h"
40 #include "zfssubr.c"
41 
42 
43 struct zfsmount {
44 	const spa_t	*spa;
45 	objset_phys_t	objset;
46 	uint64_t	rootobj;
47 };
48 static struct zfsmount zfsmount __unused;
49 
50 /*
51  * The indirect_child_t represents the vdev that we will read from, when we
52  * need to read all copies of the data (e.g. for scrub or reconstruction).
53  * For plain (non-mirror) top-level vdevs (i.e. is_vdev is not a mirror),
54  * ic_vdev is the same as is_vdev.  However, for mirror top-level vdevs,
55  * ic_vdev is a child of the mirror.
56  */
57 typedef struct indirect_child {
58 	void *ic_data;
59 	vdev_t *ic_vdev;
60 } indirect_child_t;
61 
62 /*
63  * The indirect_split_t represents one mapped segment of an i/o to the
64  * indirect vdev. For non-split (contiguously-mapped) blocks, there will be
65  * only one indirect_split_t, with is_split_offset==0 and is_size==io_size.
66  * For split blocks, there will be several of these.
67  */
68 typedef struct indirect_split {
69 	list_node_t is_node; /* link on iv_splits */
70 
71 	/*
72 	 * is_split_offset is the offset into the i/o.
73 	 * This is the sum of the previous splits' is_size's.
74 	 */
75 	uint64_t is_split_offset;
76 
77 	vdev_t *is_vdev; /* top-level vdev */
78 	uint64_t is_target_offset; /* offset on is_vdev */
79 	uint64_t is_size;
80 	int is_children; /* number of entries in is_child[] */
81 
82 	/*
83 	 * is_good_child is the child that we are currently using to
84 	 * attempt reconstruction.
85 	 */
86 	int is_good_child;
87 
88 	indirect_child_t is_child[1]; /* variable-length */
89 } indirect_split_t;
90 
91 /*
92  * The indirect_vsd_t is associated with each i/o to the indirect vdev.
93  * It is the "Vdev-Specific Data" in the zio_t's io_vsd.
94  */
95 typedef struct indirect_vsd {
96 	boolean_t iv_split_block;
97 	boolean_t iv_reconstruct;
98 
99 	list_t iv_splits; /* list of indirect_split_t's */
100 } indirect_vsd_t;
101 
102 /*
103  * List of all vdevs, chained through v_alllink.
104  */
105 static vdev_list_t zfs_vdevs;
106 
107  /*
108  * List of ZFS features supported for read
109  */
110 static const char *features_for_read[] = {
111 	"org.illumos:lz4_compress",
112 	"com.delphix:hole_birth",
113 	"com.delphix:extensible_dataset",
114 	"com.delphix:embedded_data",
115 	"org.open-zfs:large_blocks",
116 	"org.illumos:sha512",
117 	"org.illumos:skein",
118 	"org.zfsonlinux:large_dnode",
119 	"com.joyent:multi_vdev_crash_dump",
120 	"com.delphix:spacemap_histogram",
121 	"com.delphix:zpool_checkpoint",
122 	"com.delphix:spacemap_v2",
123 	"com.datto:encryption",
124 	"org.zfsonlinux:allocation_classes",
125 	"com.datto:resilver_defer",
126 	"com.delphix:device_removal",
127 	"com.delphix:obsolete_counts",
128 	NULL
129 };
130 
131 /*
132  * List of all pools, chained through spa_link.
133  */
134 static spa_list_t zfs_pools;
135 
136 static const dnode_phys_t *dnode_cache_obj;
137 static uint64_t dnode_cache_bn;
138 static char *dnode_cache_buf;
139 static char *zap_scratch;
140 static char *zfs_temp_buf, *zfs_temp_end, *zfs_temp_ptr;
141 
142 #define TEMP_SIZE	(1024 * 1024)
143 
144 static int zio_read(const spa_t *spa, const blkptr_t *bp, void *buf);
145 static int zfs_get_root(const spa_t *spa, uint64_t *objid);
146 static int zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result);
147 static int zap_lookup(const spa_t *spa, const dnode_phys_t *dnode,
148     const char *name, uint64_t integer_size, uint64_t num_integers,
149     void *value);
150 static int objset_get_dnode(const spa_t *, const objset_phys_t *, uint64_t,
151     dnode_phys_t *);
152 static int dnode_read(const spa_t *, const dnode_phys_t *, off_t, void *,
153     size_t);
154 static int vdev_indirect_read(vdev_t *, const blkptr_t *, void *, off_t,
155     size_t);
156 static int vdev_mirror_read(vdev_t *, const blkptr_t *, void *, off_t, size_t);
157 vdev_indirect_mapping_t *vdev_indirect_mapping_open(spa_t *, objset_phys_t *,
158     uint64_t);
159 vdev_indirect_mapping_entry_phys_t *
160     vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *, uint64_t,
161     uint64_t, uint64_t *);
162 
163 static void
164 zfs_init(void)
165 {
166 	STAILQ_INIT(&zfs_vdevs);
167 	STAILQ_INIT(&zfs_pools);
168 
169 	zfs_temp_buf = malloc(TEMP_SIZE);
170 	zfs_temp_end = zfs_temp_buf + TEMP_SIZE;
171 	zfs_temp_ptr = zfs_temp_buf;
172 	dnode_cache_buf = malloc(SPA_MAXBLOCKSIZE);
173 	zap_scratch = malloc(SPA_MAXBLOCKSIZE);
174 
175 	zfs_init_crc();
176 }
177 
178 static void *
179 zfs_alloc(size_t size)
180 {
181 	char *ptr;
182 
183 	if (zfs_temp_ptr + size > zfs_temp_end) {
184 		panic("ZFS: out of temporary buffer space");
185 	}
186 	ptr = zfs_temp_ptr;
187 	zfs_temp_ptr += size;
188 
189 	return (ptr);
190 }
191 
192 static void
193 zfs_free(void *ptr, size_t size)
194 {
195 
196 	zfs_temp_ptr -= size;
197 	if (zfs_temp_ptr != ptr) {
198 		panic("ZFS: zfs_alloc()/zfs_free() mismatch");
199 	}
200 }
201 
202 static int
203 xdr_int(const unsigned char **xdr, int *ip)
204 {
205 	*ip = be32dec(*xdr);
206 	(*xdr) += 4;
207 	return (0);
208 }
209 
210 static int
211 xdr_u_int(const unsigned char **xdr, u_int *ip)
212 {
213 	*ip = be32dec(*xdr);
214 	(*xdr) += 4;
215 	return (0);
216 }
217 
218 static int
219 xdr_uint64_t(const unsigned char **xdr, uint64_t *lp)
220 {
221 	u_int hi, lo;
222 
223 	xdr_u_int(xdr, &hi);
224 	xdr_u_int(xdr, &lo);
225 	*lp = (((uint64_t) hi) << 32) | lo;
226 	return (0);
227 }
228 
229 static int
230 nvlist_find(const unsigned char *nvlist, const char *name, int type,
231 	    int *elementsp, void *valuep)
232 {
233 	const unsigned char *p, *pair;
234 	int junk;
235 	int encoded_size, decoded_size;
236 
237 	p = nvlist;
238 	xdr_int(&p, &junk);
239 	xdr_int(&p, &junk);
240 
241 	pair = p;
242 	xdr_int(&p, &encoded_size);
243 	xdr_int(&p, &decoded_size);
244 	while (encoded_size && decoded_size) {
245 		int namelen, pairtype, elements;
246 		const char *pairname;
247 
248 		xdr_int(&p, &namelen);
249 		pairname = (const char*) p;
250 		p += roundup(namelen, 4);
251 		xdr_int(&p, &pairtype);
252 
253 		if (!memcmp(name, pairname, namelen) && type == pairtype) {
254 			xdr_int(&p, &elements);
255 			if (elementsp)
256 				*elementsp = elements;
257 			if (type == DATA_TYPE_UINT64) {
258 				xdr_uint64_t(&p, (uint64_t *) valuep);
259 				return (0);
260 			} else if (type == DATA_TYPE_STRING) {
261 				int len;
262 				xdr_int(&p, &len);
263 				(*(const char**) valuep) = (const char*) p;
264 				return (0);
265 			} else if (type == DATA_TYPE_NVLIST
266 				   || type == DATA_TYPE_NVLIST_ARRAY) {
267 				(*(const unsigned char**) valuep) =
268 					 (const unsigned char*) p;
269 				return (0);
270 			} else {
271 				return (EIO);
272 			}
273 		} else {
274 			/*
275 			 * Not the pair we are looking for, skip to the next one.
276 			 */
277 			p = pair + encoded_size;
278 		}
279 
280 		pair = p;
281 		xdr_int(&p, &encoded_size);
282 		xdr_int(&p, &decoded_size);
283 	}
284 
285 	return (EIO);
286 }
287 
288 static int
289 nvlist_check_features_for_read(const unsigned char *nvlist)
290 {
291 	const unsigned char *p, *pair;
292 	int junk;
293 	int encoded_size, decoded_size;
294 	int rc;
295 
296 	rc = 0;
297 
298 	p = nvlist;
299 	xdr_int(&p, &junk);
300 	xdr_int(&p, &junk);
301 
302 	pair = p;
303 	xdr_int(&p, &encoded_size);
304 	xdr_int(&p, &decoded_size);
305 	while (encoded_size && decoded_size) {
306 		int namelen, pairtype;
307 		const char *pairname;
308 		int i, found;
309 
310 		found = 0;
311 
312 		xdr_int(&p, &namelen);
313 		pairname = (const char*) p;
314 		p += roundup(namelen, 4);
315 		xdr_int(&p, &pairtype);
316 
317 		for (i = 0; features_for_read[i] != NULL; i++) {
318 			if (!memcmp(pairname, features_for_read[i], namelen)) {
319 				found = 1;
320 				break;
321 			}
322 		}
323 
324 		if (!found) {
325 			printf("ZFS: unsupported feature: %s\n", pairname);
326 			rc = EIO;
327 		}
328 
329 		p = pair + encoded_size;
330 
331 		pair = p;
332 		xdr_int(&p, &encoded_size);
333 		xdr_int(&p, &decoded_size);
334 	}
335 
336 	return (rc);
337 }
338 
339 /*
340  * Return the next nvlist in an nvlist array.
341  */
342 static const unsigned char *
343 nvlist_next(const unsigned char *nvlist)
344 {
345 	const unsigned char *p, *pair;
346 	int junk;
347 	int encoded_size, decoded_size;
348 
349 	p = nvlist;
350 	xdr_int(&p, &junk);
351 	xdr_int(&p, &junk);
352 
353 	pair = p;
354 	xdr_int(&p, &encoded_size);
355 	xdr_int(&p, &decoded_size);
356 	while (encoded_size && decoded_size) {
357 		p = pair + encoded_size;
358 
359 		pair = p;
360 		xdr_int(&p, &encoded_size);
361 		xdr_int(&p, &decoded_size);
362 	}
363 
364 	return p;
365 }
366 
367 #ifdef TEST
368 
369 static const unsigned char *
370 nvlist_print(const unsigned char *nvlist, unsigned int indent)
371 {
372 	static const char* typenames[] = {
373 		"DATA_TYPE_UNKNOWN",
374 		"DATA_TYPE_BOOLEAN",
375 		"DATA_TYPE_BYTE",
376 		"DATA_TYPE_INT16",
377 		"DATA_TYPE_UINT16",
378 		"DATA_TYPE_INT32",
379 		"DATA_TYPE_UINT32",
380 		"DATA_TYPE_INT64",
381 		"DATA_TYPE_UINT64",
382 		"DATA_TYPE_STRING",
383 		"DATA_TYPE_BYTE_ARRAY",
384 		"DATA_TYPE_INT16_ARRAY",
385 		"DATA_TYPE_UINT16_ARRAY",
386 		"DATA_TYPE_INT32_ARRAY",
387 		"DATA_TYPE_UINT32_ARRAY",
388 		"DATA_TYPE_INT64_ARRAY",
389 		"DATA_TYPE_UINT64_ARRAY",
390 		"DATA_TYPE_STRING_ARRAY",
391 		"DATA_TYPE_HRTIME",
392 		"DATA_TYPE_NVLIST",
393 		"DATA_TYPE_NVLIST_ARRAY",
394 		"DATA_TYPE_BOOLEAN_VALUE",
395 		"DATA_TYPE_INT8",
396 		"DATA_TYPE_UINT8",
397 		"DATA_TYPE_BOOLEAN_ARRAY",
398 		"DATA_TYPE_INT8_ARRAY",
399 		"DATA_TYPE_UINT8_ARRAY"
400 	};
401 
402 	unsigned int i, j;
403 	const unsigned char *p, *pair;
404 	int junk;
405 	int encoded_size, decoded_size;
406 
407 	p = nvlist;
408 	xdr_int(&p, &junk);
409 	xdr_int(&p, &junk);
410 
411 	pair = p;
412 	xdr_int(&p, &encoded_size);
413 	xdr_int(&p, &decoded_size);
414 	while (encoded_size && decoded_size) {
415 		int namelen, pairtype, elements;
416 		const char *pairname;
417 
418 		xdr_int(&p, &namelen);
419 		pairname = (const char*) p;
420 		p += roundup(namelen, 4);
421 		xdr_int(&p, &pairtype);
422 
423 		for (i = 0; i < indent; i++)
424 			printf(" ");
425 		printf("%s %s", typenames[pairtype], pairname);
426 
427 		xdr_int(&p, &elements);
428 		switch (pairtype) {
429 		case DATA_TYPE_UINT64: {
430 			uint64_t val;
431 			xdr_uint64_t(&p, &val);
432 			printf(" = 0x%jx\n", (uintmax_t)val);
433 			break;
434 		}
435 
436 		case DATA_TYPE_STRING: {
437 			int len;
438 			xdr_int(&p, &len);
439 			printf(" = \"%s\"\n", p);
440 			break;
441 		}
442 
443 		case DATA_TYPE_NVLIST:
444 			printf("\n");
445 			nvlist_print(p, indent + 1);
446 			break;
447 
448 		case DATA_TYPE_NVLIST_ARRAY:
449 			for (j = 0; j < elements; j++) {
450 				printf("[%d]\n", j);
451 				p = nvlist_print(p, indent + 1);
452 				if (j != elements - 1) {
453 					for (i = 0; i < indent; i++)
454 						printf(" ");
455 					printf("%s %s", typenames[pairtype], pairname);
456 				}
457 			}
458 			break;
459 
460 		default:
461 			printf("\n");
462 		}
463 
464 		p = pair + encoded_size;
465 
466 		pair = p;
467 		xdr_int(&p, &encoded_size);
468 		xdr_int(&p, &decoded_size);
469 	}
470 
471 	return p;
472 }
473 
474 #endif
475 
476 static int
477 vdev_read_phys(vdev_t *vdev, const blkptr_t *bp, void *buf,
478     off_t offset, size_t size)
479 {
480 	size_t psize;
481 	int rc;
482 
483 	if (!vdev->v_phys_read)
484 		return (EIO);
485 
486 	if (bp) {
487 		psize = BP_GET_PSIZE(bp);
488 	} else {
489 		psize = size;
490 	}
491 
492 	/*printf("ZFS: reading %zu bytes at 0x%jx to %p\n", psize, (uintmax_t)offset, buf);*/
493 	rc = vdev->v_phys_read(vdev, vdev->v_read_priv, offset, buf, psize);
494 	if (rc)
495 		return (rc);
496 	if (bp != NULL)
497 		return (zio_checksum_verify(vdev->spa, bp, buf));
498 
499 	return (0);
500 }
501 
502 typedef struct remap_segment {
503 	vdev_t *rs_vd;
504 	uint64_t rs_offset;
505 	uint64_t rs_asize;
506 	uint64_t rs_split_offset;
507 	list_node_t rs_node;
508 } remap_segment_t;
509 
510 static remap_segment_t *
511 rs_alloc(vdev_t *vd, uint64_t offset, uint64_t asize, uint64_t split_offset)
512 {
513 	remap_segment_t *rs = malloc(sizeof (remap_segment_t));
514 
515 	if (rs != NULL) {
516 		rs->rs_vd = vd;
517 		rs->rs_offset = offset;
518 		rs->rs_asize = asize;
519 		rs->rs_split_offset = split_offset;
520 	}
521 
522 	return (rs);
523 }
524 
525 vdev_indirect_mapping_t *
526 vdev_indirect_mapping_open(spa_t *spa, objset_phys_t *os,
527     uint64_t mapping_object)
528 {
529 	vdev_indirect_mapping_t *vim;
530 	vdev_indirect_mapping_phys_t *vim_phys;
531 	int rc;
532 
533 	vim = calloc(1, sizeof (*vim));
534 	if (vim == NULL)
535 		return (NULL);
536 
537 	vim->vim_dn = calloc(1, sizeof (*vim->vim_dn));
538 	if (vim->vim_dn == NULL) {
539 		free(vim);
540 		return (NULL);
541 	}
542 
543 	rc = objset_get_dnode(spa, os, mapping_object, vim->vim_dn);
544 	if (rc != 0) {
545 		free(vim->vim_dn);
546 		free(vim);
547 		return (NULL);
548 	}
549 
550 	vim->vim_spa = spa;
551 	vim->vim_phys = malloc(sizeof (*vim->vim_phys));
552 	if (vim->vim_phys == NULL) {
553 		free(vim->vim_dn);
554 		free(vim);
555 		return (NULL);
556 	}
557 
558 	vim_phys = (vdev_indirect_mapping_phys_t *)DN_BONUS(vim->vim_dn);
559 	*vim->vim_phys = *vim_phys;
560 
561 	vim->vim_objset = os;
562 	vim->vim_object = mapping_object;
563 	vim->vim_entries = NULL;
564 
565 	vim->vim_havecounts =
566 	    (vim->vim_dn->dn_bonuslen > VDEV_INDIRECT_MAPPING_SIZE_V0);
567 	return (vim);
568 }
569 
570 /*
571  * Compare an offset with an indirect mapping entry; there are three
572  * possible scenarios:
573  *
574  *     1. The offset is "less than" the mapping entry; meaning the
575  *        offset is less than the source offset of the mapping entry. In
576  *        this case, there is no overlap between the offset and the
577  *        mapping entry and -1 will be returned.
578  *
579  *     2. The offset is "greater than" the mapping entry; meaning the
580  *        offset is greater than the mapping entry's source offset plus
581  *        the entry's size. In this case, there is no overlap between
582  *        the offset and the mapping entry and 1 will be returned.
583  *
584  *        NOTE: If the offset is actually equal to the entry's offset
585  *        plus size, this is considered to be "greater" than the entry,
586  *        and this case applies (i.e. 1 will be returned). Thus, the
587  *        entry's "range" can be considered to be inclusive at its
588  *        start, but exclusive at its end: e.g. [src, src + size).
589  *
590  *     3. The last case to consider is if the offset actually falls
591  *        within the mapping entry's range. If this is the case, the
592  *        offset is considered to be "equal to" the mapping entry and
593  *        0 will be returned.
594  *
595  *        NOTE: If the offset is equal to the entry's source offset,
596  *        this case applies and 0 will be returned. If the offset is
597  *        equal to the entry's source plus its size, this case does
598  *        *not* apply (see "NOTE" above for scenario 2), and 1 will be
599  *        returned.
600  */
601 static int
602 dva_mapping_overlap_compare(const void *v_key, const void *v_array_elem)
603 {
604 	const uint64_t *key = v_key;
605 	const vdev_indirect_mapping_entry_phys_t *array_elem =
606 	    v_array_elem;
607 	uint64_t src_offset = DVA_MAPPING_GET_SRC_OFFSET(array_elem);
608 
609 	if (*key < src_offset) {
610 		return (-1);
611 	} else if (*key < src_offset + DVA_GET_ASIZE(&array_elem->vimep_dst)) {
612 		return (0);
613 	} else {
614 		return (1);
615 	}
616 }
617 
618 /*
619  * Return array entry.
620  */
621 static vdev_indirect_mapping_entry_phys_t *
622 vdev_indirect_mapping_entry(vdev_indirect_mapping_t *vim, uint64_t index)
623 {
624 	uint64_t size;
625 	off_t offset = 0;
626 	int rc;
627 
628 	if (vim->vim_phys->vimp_num_entries == 0)
629 		return (NULL);
630 
631 	if (vim->vim_entries == NULL) {
632 		uint64_t bsize;
633 
634 		bsize = vim->vim_dn->dn_datablkszsec << SPA_MINBLOCKSHIFT;
635 		size = vim->vim_phys->vimp_num_entries *
636 		    sizeof (*vim->vim_entries);
637 		if (size > bsize) {
638 			size = bsize / sizeof (*vim->vim_entries);
639 			size *= sizeof (*vim->vim_entries);
640 		}
641 		vim->vim_entries = malloc(size);
642 		if (vim->vim_entries == NULL)
643 			return (NULL);
644 		vim->vim_num_entries = size / sizeof (*vim->vim_entries);
645 		offset = index * sizeof (*vim->vim_entries);
646 	}
647 
648 	/* We have data in vim_entries */
649 	if (offset == 0) {
650 		if (index >= vim->vim_entry_offset &&
651 		    index <= vim->vim_entry_offset + vim->vim_num_entries) {
652 			index -= vim->vim_entry_offset;
653 			return (&vim->vim_entries[index]);
654 		}
655 		offset = index * sizeof (*vim->vim_entries);
656 	}
657 
658 	vim->vim_entry_offset = index;
659 	size = vim->vim_num_entries * sizeof (*vim->vim_entries);
660 	rc = dnode_read(vim->vim_spa, vim->vim_dn, offset, vim->vim_entries,
661 	    size);
662 	if (rc != 0) {
663 		/* Read error, invalidate vim_entries. */
664 		free(vim->vim_entries);
665 		vim->vim_entries = NULL;
666 		return (NULL);
667 	}
668 	index -= vim->vim_entry_offset;
669 	return (&vim->vim_entries[index]);
670 }
671 
672 /*
673  * Returns the mapping entry for the given offset.
674  *
675  * It's possible that the given offset will not be in the mapping table
676  * (i.e. no mapping entries contain this offset), in which case, the
677  * return value value depends on the "next_if_missing" parameter.
678  *
679  * If the offset is not found in the table and "next_if_missing" is
680  * B_FALSE, then NULL will always be returned. The behavior is intended
681  * to allow consumers to get the entry corresponding to the offset
682  * parameter, iff the offset overlaps with an entry in the table.
683  *
684  * If the offset is not found in the table and "next_if_missing" is
685  * B_TRUE, then the entry nearest to the given offset will be returned,
686  * such that the entry's source offset is greater than the offset
687  * passed in (i.e. the "next" mapping entry in the table is returned, if
688  * the offset is missing from the table). If there are no entries whose
689  * source offset is greater than the passed in offset, NULL is returned.
690  */
691 static vdev_indirect_mapping_entry_phys_t *
692 vdev_indirect_mapping_entry_for_offset(vdev_indirect_mapping_t *vim,
693     uint64_t offset)
694 {
695 	ASSERT(vim->vim_phys->vimp_num_entries > 0);
696 
697 	vdev_indirect_mapping_entry_phys_t *entry;
698 
699 	uint64_t last = vim->vim_phys->vimp_num_entries - 1;
700 	uint64_t base = 0;
701 
702 	/*
703 	 * We don't define these inside of the while loop because we use
704 	 * their value in the case that offset isn't in the mapping.
705 	 */
706 	uint64_t mid;
707 	int result;
708 
709 	while (last >= base) {
710 		mid = base + ((last - base) >> 1);
711 
712 		entry = vdev_indirect_mapping_entry(vim, mid);
713 		if (entry == NULL)
714 			break;
715 		result = dva_mapping_overlap_compare(&offset, entry);
716 
717 		if (result == 0) {
718 			break;
719 		} else if (result < 0) {
720 			last = mid - 1;
721 		} else {
722 			base = mid + 1;
723 		}
724 	}
725 	return (entry);
726 }
727 
728 /*
729  * Given an indirect vdev and an extent on that vdev, it duplicates the
730  * physical entries of the indirect mapping that correspond to the extent
731  * to a new array and returns a pointer to it. In addition, copied_entries
732  * is populated with the number of mapping entries that were duplicated.
733  *
734  * Finally, since we are doing an allocation, it is up to the caller to
735  * free the array allocated in this function.
736  */
737 vdev_indirect_mapping_entry_phys_t *
738 vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *vd, uint64_t offset,
739     uint64_t asize, uint64_t *copied_entries)
740 {
741 	vdev_indirect_mapping_entry_phys_t *duplicate_mappings = NULL;
742 	vdev_indirect_mapping_t *vim = vd->v_mapping;
743 	uint64_t entries = 0;
744 
745 	vdev_indirect_mapping_entry_phys_t *first_mapping =
746 	    vdev_indirect_mapping_entry_for_offset(vim, offset);
747 	ASSERT3P(first_mapping, !=, NULL);
748 
749 	vdev_indirect_mapping_entry_phys_t *m = first_mapping;
750 	while (asize > 0) {
751 		uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
752 		uint64_t inner_offset = offset - DVA_MAPPING_GET_SRC_OFFSET(m);
753 		uint64_t inner_size = MIN(asize, size - inner_offset);
754 
755 		offset += inner_size;
756 		asize -= inner_size;
757 		entries++;
758 		m++;
759 	}
760 
761 	size_t copy_length = entries * sizeof (*first_mapping);
762 	duplicate_mappings = malloc(copy_length);
763 	if (duplicate_mappings != NULL)
764 		bcopy(first_mapping, duplicate_mappings, copy_length);
765 	else
766 		entries = 0;
767 
768 	*copied_entries = entries;
769 
770 	return (duplicate_mappings);
771 }
772 
773 static vdev_t *
774 vdev_lookup_top(spa_t *spa, uint64_t vdev)
775 {
776 	vdev_t *rvd;
777 
778 	STAILQ_FOREACH(rvd, &spa->spa_vdevs, v_childlink)
779 		if (rvd->v_id == vdev)
780 			break;
781 
782 	return (rvd);
783 }
784 
785 /*
786  * This is a callback for vdev_indirect_remap() which allocates an
787  * indirect_split_t for each split segment and adds it to iv_splits.
788  */
789 static void
790 vdev_indirect_gather_splits(uint64_t split_offset, vdev_t *vd, uint64_t offset,
791     uint64_t size, void *arg)
792 {
793 	int n = 1;
794 	zio_t *zio = arg;
795 	indirect_vsd_t *iv = zio->io_vsd;
796 
797 	if (vd->v_read == vdev_indirect_read)
798 		return;
799 
800 	if (vd->v_read == vdev_mirror_read)
801 		n = vd->v_nchildren;
802 
803 	indirect_split_t *is =
804 	    malloc(offsetof(indirect_split_t, is_child[n]));
805 	if (is == NULL) {
806 		zio->io_error = ENOMEM;
807 		return;
808 	}
809 	bzero(is, offsetof(indirect_split_t, is_child[n]));
810 
811 	is->is_children = n;
812 	is->is_size = size;
813 	is->is_split_offset = split_offset;
814 	is->is_target_offset = offset;
815 	is->is_vdev = vd;
816 
817 	/*
818 	 * Note that we only consider multiple copies of the data for
819 	 * *mirror* vdevs.  We don't for "replacing" or "spare" vdevs, even
820 	 * though they use the same ops as mirror, because there's only one
821 	 * "good" copy under the replacing/spare.
822 	 */
823 	if (vd->v_read == vdev_mirror_read) {
824 		int i = 0;
825 		vdev_t *kid;
826 
827 		STAILQ_FOREACH(kid, &vd->v_children, v_childlink) {
828 			is->is_child[i++].ic_vdev = kid;
829 		}
830 	} else {
831 		is->is_child[0].ic_vdev = vd;
832 	}
833 
834 	list_insert_tail(&iv->iv_splits, is);
835 }
836 
837 static void
838 vdev_indirect_remap(vdev_t *vd, uint64_t offset, uint64_t asize, void *arg)
839 {
840 	list_t stack;
841 	spa_t *spa = vd->spa;
842 	zio_t *zio = arg;
843 	remap_segment_t *rs;
844 
845 	list_create(&stack, sizeof (remap_segment_t),
846 	    offsetof(remap_segment_t, rs_node));
847 
848 	rs = rs_alloc(vd, offset, asize, 0);
849 	if (rs == NULL) {
850 		printf("vdev_indirect_remap: out of memory.\n");
851 		zio->io_error = ENOMEM;
852 	}
853 	for ( ; rs != NULL; rs = list_remove_head(&stack)) {
854 		vdev_t *v = rs->rs_vd;
855 		uint64_t num_entries = 0;
856 		/* vdev_indirect_mapping_t *vim = v->v_mapping; */
857 		vdev_indirect_mapping_entry_phys_t *mapping =
858 		    vdev_indirect_mapping_duplicate_adjacent_entries(v,
859 		    rs->rs_offset, rs->rs_asize, &num_entries);
860 
861 		if (num_entries == 0)
862 			zio->io_error = ENOMEM;
863 
864 		for (uint64_t i = 0; i < num_entries; i++) {
865 			vdev_indirect_mapping_entry_phys_t *m = &mapping[i];
866 			uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
867 			uint64_t dst_offset = DVA_GET_OFFSET(&m->vimep_dst);
868 			uint64_t dst_vdev = DVA_GET_VDEV(&m->vimep_dst);
869 			uint64_t inner_offset = rs->rs_offset -
870 			    DVA_MAPPING_GET_SRC_OFFSET(m);
871 			uint64_t inner_size =
872 			    MIN(rs->rs_asize, size - inner_offset);
873 			vdev_t *dst_v = vdev_lookup_top(spa, dst_vdev);
874 
875 			if (dst_v->v_read == vdev_indirect_read) {
876 				remap_segment_t *o;
877 
878 				o = rs_alloc(dst_v, dst_offset + inner_offset,
879 				    inner_size, rs->rs_split_offset);
880 				if (o == NULL) {
881 					printf("vdev_indirect_remap: "
882 					    "out of memory.\n");
883 					zio->io_error = ENOMEM;
884 					break;
885 				}
886 
887 				list_insert_head(&stack, o);
888 			}
889 			vdev_indirect_gather_splits(rs->rs_split_offset, dst_v,
890 			    dst_offset + inner_offset,
891 			    inner_size, arg);
892 
893 			/*
894 			 * vdev_indirect_gather_splits can have memory
895 			 * allocation error, we can not recover from it.
896 			 */
897 			if (zio->io_error != 0)
898 				break;
899 
900 			rs->rs_offset += inner_size;
901 			rs->rs_asize -= inner_size;
902 			rs->rs_split_offset += inner_size;
903 		}
904 
905 		free(mapping);
906 		free(rs);
907 		if (zio->io_error != 0)
908 			break;
909 	}
910 
911 	list_destroy(&stack);
912 }
913 
914 static void
915 vdev_indirect_map_free(zio_t *zio)
916 {
917 	indirect_vsd_t *iv = zio->io_vsd;
918 	indirect_split_t *is;
919 
920 	while ((is = list_head(&iv->iv_splits)) != NULL) {
921 		for (int c = 0; c < is->is_children; c++) {
922 			indirect_child_t *ic = &is->is_child[c];
923 			free(ic->ic_data);
924 		}
925 		list_remove(&iv->iv_splits, is);
926 		free(is);
927 	}
928 	free(iv);
929 }
930 
931 static int
932 vdev_indirect_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
933     off_t offset, size_t bytes)
934 {
935 	zio_t zio = { 0 };
936 	spa_t *spa = vdev->spa;
937 	indirect_vsd_t *iv = malloc(sizeof (*iv));
938 	indirect_split_t *first;
939 	int rc = EIO;
940 
941 	if (iv == NULL)
942 		return (ENOMEM);
943 	bzero(iv, sizeof (*iv));
944 
945 	list_create(&iv->iv_splits,
946 	    sizeof (indirect_split_t), offsetof(indirect_split_t, is_node));
947 
948 	zio.io_spa = spa;
949 	zio.io_bp = (blkptr_t *)bp;
950 	zio.io_data = buf;
951 	zio.io_size = bytes;
952 	zio.io_offset = offset;
953 	zio.io_vd = vdev;
954 	zio.io_vsd = iv;
955 
956 	if (vdev->v_mapping == NULL) {
957 		vdev_indirect_config_t *vic;
958 
959 		vic = &vdev->vdev_indirect_config;
960 		vdev->v_mapping = vdev_indirect_mapping_open(spa,
961 		    &spa->spa_mos, vic->vic_mapping_object);
962 	}
963 
964 	vdev_indirect_remap(vdev, offset, bytes, &zio);
965 	if (zio.io_error != 0)
966 		return (zio.io_error);
967 
968 	first = list_head(&iv->iv_splits);
969 	if (first->is_size == zio.io_size) {
970 		/*
971 		 * This is not a split block; we are pointing to the entire
972 		 * data, which will checksum the same as the original data.
973 		 * Pass the BP down so that the child i/o can verify the
974 		 * checksum, and try a different location if available
975 		 * (e.g. on a mirror).
976 		 *
977 		 * While this special case could be handled the same as the
978 		 * general (split block) case, doing it this way ensures
979 		 * that the vast majority of blocks on indirect vdevs
980 		 * (which are not split) are handled identically to blocks
981 		 * on non-indirect vdevs.  This allows us to be less strict
982 		 * about performance in the general (but rare) case.
983 		 */
984 		rc = first->is_vdev->v_read(first->is_vdev, zio.io_bp,
985 		    zio.io_data, first->is_target_offset, bytes);
986 	} else {
987 		iv->iv_split_block = B_TRUE;
988 		/*
989 		 * Read one copy of each split segment, from the
990 		 * top-level vdev.  Since we don't know the
991 		 * checksum of each split individually, the child
992 		 * zio can't ensure that we get the right data.
993 		 * E.g. if it's a mirror, it will just read from a
994 		 * random (healthy) leaf vdev.  We have to verify
995 		 * the checksum in vdev_indirect_io_done().
996 		 */
997 		for (indirect_split_t *is = list_head(&iv->iv_splits);
998 		    is != NULL; is = list_next(&iv->iv_splits, is)) {
999 			char *ptr = zio.io_data;
1000 
1001 			rc = is->is_vdev->v_read(is->is_vdev, zio.io_bp,
1002 			    ptr + is->is_split_offset, is->is_target_offset,
1003 			    is->is_size);
1004 		}
1005 		if (zio_checksum_verify(spa, zio.io_bp, zio.io_data))
1006 			rc = ECKSUM;
1007 		else
1008 			rc = 0;
1009 	}
1010 
1011 	vdev_indirect_map_free(&zio);
1012 	if (rc == 0)
1013 		rc = zio.io_error;
1014 
1015 	return (rc);
1016 }
1017 
1018 static int
1019 vdev_disk_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
1020     off_t offset, size_t bytes)
1021 {
1022 
1023 	return (vdev_read_phys(vdev, bp, buf,
1024 		offset + VDEV_LABEL_START_SIZE, bytes));
1025 }
1026 
1027 
1028 static int
1029 vdev_mirror_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
1030     off_t offset, size_t bytes)
1031 {
1032 	vdev_t *kid;
1033 	int rc;
1034 
1035 	rc = EIO;
1036 	STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1037 		if (kid->v_state != VDEV_STATE_HEALTHY)
1038 			continue;
1039 		rc = kid->v_read(kid, bp, buf, offset, bytes);
1040 		if (!rc)
1041 			return (0);
1042 	}
1043 
1044 	return (rc);
1045 }
1046 
1047 static int
1048 vdev_replacing_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
1049     off_t offset, size_t bytes)
1050 {
1051 	vdev_t *kid;
1052 
1053 	/*
1054 	 * Here we should have two kids:
1055 	 * First one which is the one we are replacing and we can trust
1056 	 * only this one to have valid data, but it might not be present.
1057 	 * Second one is that one we are replacing with. It is most likely
1058 	 * healthy, but we can't trust it has needed data, so we won't use it.
1059 	 */
1060 	kid = STAILQ_FIRST(&vdev->v_children);
1061 	if (kid == NULL)
1062 		return (EIO);
1063 	if (kid->v_state != VDEV_STATE_HEALTHY)
1064 		return (EIO);
1065 	return (kid->v_read(kid, bp, buf, offset, bytes));
1066 }
1067 
1068 static vdev_t *
1069 vdev_find(uint64_t guid)
1070 {
1071 	vdev_t *vdev;
1072 
1073 	STAILQ_FOREACH(vdev, &zfs_vdevs, v_alllink)
1074 		if (vdev->v_guid == guid)
1075 			return (vdev);
1076 
1077 	return (0);
1078 }
1079 
1080 static vdev_t *
1081 vdev_create(uint64_t guid, vdev_read_t *_read)
1082 {
1083 	vdev_t *vdev;
1084 	vdev_indirect_config_t *vic;
1085 
1086 	vdev = malloc(sizeof(vdev_t));
1087 	memset(vdev, 0, sizeof(vdev_t));
1088 	STAILQ_INIT(&vdev->v_children);
1089 	vdev->v_guid = guid;
1090 	vdev->v_state = VDEV_STATE_OFFLINE;
1091 	vdev->v_read = _read;
1092 
1093 	vic = &vdev->vdev_indirect_config;
1094 	vic->vic_prev_indirect_vdev = UINT64_MAX;
1095 	STAILQ_INSERT_TAIL(&zfs_vdevs, vdev, v_alllink);
1096 
1097 	return (vdev);
1098 }
1099 
1100 static int
1101 vdev_init_from_nvlist(const unsigned char *nvlist, vdev_t *pvdev,
1102     vdev_t **vdevp, int is_newer)
1103 {
1104 	int rc;
1105 	uint64_t guid, id, ashift, asize, nparity;
1106 	const char *type;
1107 	const char *path;
1108 	vdev_t *vdev, *kid;
1109 	const unsigned char *kids;
1110 	int nkids, i, is_new;
1111 	uint64_t is_offline, is_faulted, is_degraded, is_removed, isnt_present;
1112 	uint64_t is_log;
1113 
1114 	if (nvlist_find(nvlist, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64,
1115 	    NULL, &guid)
1116 	    || nvlist_find(nvlist, ZPOOL_CONFIG_ID, DATA_TYPE_UINT64, NULL, &id)
1117 	    || nvlist_find(nvlist, ZPOOL_CONFIG_TYPE, DATA_TYPE_STRING,
1118 	    NULL, &type)) {
1119 		printf("ZFS: can't find vdev details\n");
1120 		return (ENOENT);
1121 	}
1122 
1123 	if (strcmp(type, VDEV_TYPE_MIRROR)
1124 	    && strcmp(type, VDEV_TYPE_DISK)
1125 #ifdef ZFS_TEST
1126 	    && strcmp(type, VDEV_TYPE_FILE)
1127 #endif
1128 	    && strcmp(type, VDEV_TYPE_RAIDZ)
1129 	    && strcmp(type, VDEV_TYPE_INDIRECT)
1130 	    && strcmp(type, VDEV_TYPE_REPLACING)) {
1131 		printf("ZFS: can only boot from disk, mirror, raidz1, raidz2 and raidz3 vdevs\n");
1132 		return (EIO);
1133 	}
1134 
1135 	is_offline = is_removed = is_faulted = is_degraded = isnt_present = 0;
1136 	is_log = 0;
1137 
1138 	nvlist_find(nvlist, ZPOOL_CONFIG_OFFLINE, DATA_TYPE_UINT64, NULL,
1139 	    &is_offline);
1140 	nvlist_find(nvlist, ZPOOL_CONFIG_REMOVED, DATA_TYPE_UINT64, NULL,
1141 	    &is_removed);
1142 	nvlist_find(nvlist, ZPOOL_CONFIG_FAULTED, DATA_TYPE_UINT64, NULL,
1143 	    &is_faulted);
1144 	nvlist_find(nvlist, ZPOOL_CONFIG_DEGRADED, DATA_TYPE_UINT64, NULL,
1145 	    &is_degraded);
1146 	nvlist_find(nvlist, ZPOOL_CONFIG_NOT_PRESENT, DATA_TYPE_UINT64, NULL,
1147 	    &isnt_present);
1148 	nvlist_find(nvlist, ZPOOL_CONFIG_IS_LOG, DATA_TYPE_UINT64, NULL,
1149 	    &is_log);
1150 
1151 	vdev = vdev_find(guid);
1152 	if (!vdev) {
1153 		is_new = 1;
1154 
1155 		if (!strcmp(type, VDEV_TYPE_MIRROR))
1156 			vdev = vdev_create(guid, vdev_mirror_read);
1157 		else if (!strcmp(type, VDEV_TYPE_RAIDZ))
1158 			vdev = vdev_create(guid, vdev_raidz_read);
1159 		else if (!strcmp(type, VDEV_TYPE_REPLACING))
1160 			vdev = vdev_create(guid, vdev_replacing_read);
1161 		else if (!strcmp(type, VDEV_TYPE_INDIRECT)) {
1162 			vdev_indirect_config_t *vic;
1163 
1164 			vdev = vdev_create(guid, vdev_indirect_read);
1165 			vdev->v_state = VDEV_STATE_HEALTHY;
1166 			vic = &vdev->vdev_indirect_config;
1167 
1168 			nvlist_find(nvlist,
1169 			    ZPOOL_CONFIG_INDIRECT_OBJECT, DATA_TYPE_UINT64,
1170 			    NULL, &vic->vic_mapping_object);
1171 			nvlist_find(nvlist,
1172 			    ZPOOL_CONFIG_INDIRECT_BIRTHS, DATA_TYPE_UINT64,
1173 			    NULL, &vic->vic_births_object);
1174 			nvlist_find(nvlist,
1175 			    ZPOOL_CONFIG_PREV_INDIRECT_VDEV, DATA_TYPE_UINT64,
1176 			    NULL, &vic->vic_prev_indirect_vdev);
1177 		} else
1178 			vdev = vdev_create(guid, vdev_disk_read);
1179 
1180 		vdev->v_id = id;
1181 		vdev->v_top = pvdev != NULL ? pvdev : vdev;
1182 		if (nvlist_find(nvlist, ZPOOL_CONFIG_ASHIFT,
1183 			DATA_TYPE_UINT64, NULL, &ashift) == 0) {
1184 			vdev->v_ashift = ashift;
1185 		} else {
1186 			vdev->v_ashift = 0;
1187 		}
1188 		if (nvlist_find(nvlist, ZPOOL_CONFIG_ASIZE,
1189 		    DATA_TYPE_UINT64, NULL, &asize) == 0) {
1190 			vdev->v_psize = asize +
1191 			    VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
1192 		}
1193 		if (nvlist_find(nvlist, ZPOOL_CONFIG_NPARITY,
1194 			DATA_TYPE_UINT64, NULL, &nparity) == 0) {
1195 			vdev->v_nparity = nparity;
1196 		} else {
1197 			vdev->v_nparity = 0;
1198 		}
1199 		if (nvlist_find(nvlist, ZPOOL_CONFIG_PATH,
1200 				DATA_TYPE_STRING, NULL, &path) == 0) {
1201 			if (strncmp(path, "/dev/", 5) == 0)
1202 				path += 5;
1203 			vdev->v_name = strdup(path);
1204 		} else {
1205 			char *name;
1206 
1207 			if (!strcmp(type, "raidz")) {
1208 				if (vdev->v_nparity < 1 ||
1209 				    vdev->v_nparity > 3) {
1210 					printf("ZFS: can only boot from disk, "
1211 					    "mirror, raidz1, raidz2 and raidz3 "
1212 					    "vdevs\n");
1213 					return (EIO);
1214 				}
1215 				asprintf(&name, "%s%d-%jd", type,
1216 				    vdev->v_nparity, id);
1217 			} else {
1218 				asprintf(&name, "%s-%jd", type, id);
1219 			}
1220 			if (name == NULL)
1221 				return (ENOMEM);
1222 			vdev->v_name = name;
1223 		}
1224 		vdev->v_islog = is_log == 1;
1225 	} else {
1226 		is_new = 0;
1227 	}
1228 
1229 	if (is_new || is_newer) {
1230 		/*
1231 		 * This is either new vdev or we've already seen this vdev,
1232 		 * but from an older vdev label, so let's refresh its state
1233 		 * from the newer label.
1234 		 */
1235 		if (is_offline)
1236 			vdev->v_state = VDEV_STATE_OFFLINE;
1237 		else if (is_removed)
1238 			vdev->v_state = VDEV_STATE_REMOVED;
1239 		else if (is_faulted)
1240 			vdev->v_state = VDEV_STATE_FAULTED;
1241 		else if (is_degraded)
1242 			vdev->v_state = VDEV_STATE_DEGRADED;
1243 		else if (isnt_present)
1244 			vdev->v_state = VDEV_STATE_CANT_OPEN;
1245 	}
1246 
1247 	rc = nvlist_find(nvlist, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY,
1248 	    &nkids, &kids);
1249 	/*
1250 	 * Its ok if we don't have any kids.
1251 	 */
1252 	if (rc == 0) {
1253 		vdev->v_nchildren = nkids;
1254 		for (i = 0; i < nkids; i++) {
1255 			rc = vdev_init_from_nvlist(kids, vdev, &kid, is_newer);
1256 			if (rc)
1257 				return (rc);
1258 			if (is_new)
1259 				STAILQ_INSERT_TAIL(&vdev->v_children, kid,
1260 						   v_childlink);
1261 			kids = nvlist_next(kids);
1262 		}
1263 	} else {
1264 		vdev->v_nchildren = 0;
1265 	}
1266 
1267 	if (vdevp)
1268 		*vdevp = vdev;
1269 	return (0);
1270 }
1271 
1272 static void
1273 vdev_set_state(vdev_t *vdev)
1274 {
1275 	vdev_t *kid;
1276 	int good_kids;
1277 	int bad_kids;
1278 
1279 	/*
1280 	 * A mirror or raidz is healthy if all its kids are healthy. A
1281 	 * mirror is degraded if any of its kids is healthy; a raidz
1282 	 * is degraded if at most nparity kids are offline.
1283 	 */
1284 	if (STAILQ_FIRST(&vdev->v_children)) {
1285 		good_kids = 0;
1286 		bad_kids = 0;
1287 		STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1288 			if (kid->v_state == VDEV_STATE_HEALTHY)
1289 				good_kids++;
1290 			else
1291 				bad_kids++;
1292 		}
1293 		if (bad_kids == 0) {
1294 			vdev->v_state = VDEV_STATE_HEALTHY;
1295 		} else {
1296 			if (vdev->v_read == vdev_mirror_read) {
1297 				if (good_kids) {
1298 					vdev->v_state = VDEV_STATE_DEGRADED;
1299 				} else {
1300 					vdev->v_state = VDEV_STATE_OFFLINE;
1301 				}
1302 			} else if (vdev->v_read == vdev_raidz_read) {
1303 				if (bad_kids > vdev->v_nparity) {
1304 					vdev->v_state = VDEV_STATE_OFFLINE;
1305 				} else {
1306 					vdev->v_state = VDEV_STATE_DEGRADED;
1307 				}
1308 			}
1309 		}
1310 	}
1311 }
1312 
1313 static spa_t *
1314 spa_find_by_guid(uint64_t guid)
1315 {
1316 	spa_t *spa;
1317 
1318 	STAILQ_FOREACH(spa, &zfs_pools, spa_link)
1319 		if (spa->spa_guid == guid)
1320 			return (spa);
1321 
1322 	return (0);
1323 }
1324 
1325 static spa_t *
1326 spa_find_by_name(const char *name)
1327 {
1328 	spa_t *spa;
1329 
1330 	STAILQ_FOREACH(spa, &zfs_pools, spa_link)
1331 		if (!strcmp(spa->spa_name, name))
1332 			return (spa);
1333 
1334 	return (0);
1335 }
1336 
1337 #ifdef BOOT2
1338 static spa_t *
1339 spa_get_primary(void)
1340 {
1341 
1342 	return (STAILQ_FIRST(&zfs_pools));
1343 }
1344 
1345 static vdev_t *
1346 spa_get_primary_vdev(const spa_t *spa)
1347 {
1348 	vdev_t *vdev;
1349 	vdev_t *kid;
1350 
1351 	if (spa == NULL)
1352 		spa = spa_get_primary();
1353 	if (spa == NULL)
1354 		return (NULL);
1355 	vdev = STAILQ_FIRST(&spa->spa_vdevs);
1356 	if (vdev == NULL)
1357 		return (NULL);
1358 	for (kid = STAILQ_FIRST(&vdev->v_children); kid != NULL;
1359 	     kid = STAILQ_FIRST(&vdev->v_children))
1360 		vdev = kid;
1361 	return (vdev);
1362 }
1363 #endif
1364 
1365 static spa_t *
1366 spa_create(uint64_t guid, const char *name)
1367 {
1368 	spa_t *spa;
1369 
1370 	if ((spa = calloc(1, sizeof(spa_t))) == NULL)
1371 		return (NULL);
1372 	if ((spa->spa_name = strdup(name)) == NULL) {
1373 		free(spa);
1374 		return (NULL);
1375 	}
1376 	STAILQ_INIT(&spa->spa_vdevs);
1377 	spa->spa_guid = guid;
1378 	STAILQ_INSERT_TAIL(&zfs_pools, spa, spa_link);
1379 
1380 	return (spa);
1381 }
1382 
1383 static const char *
1384 state_name(vdev_state_t state)
1385 {
1386 	static const char* names[] = {
1387 		"UNKNOWN",
1388 		"CLOSED",
1389 		"OFFLINE",
1390 		"REMOVED",
1391 		"CANT_OPEN",
1392 		"FAULTED",
1393 		"DEGRADED",
1394 		"ONLINE"
1395 	};
1396 	return names[state];
1397 }
1398 
1399 #ifdef BOOT2
1400 
1401 #define pager_printf printf
1402 
1403 #else
1404 
1405 static int
1406 pager_printf(const char *fmt, ...)
1407 {
1408 	char line[80];
1409 	va_list args;
1410 
1411 	va_start(args, fmt);
1412 	vsprintf(line, fmt, args);
1413 	va_end(args);
1414 
1415 	return (pager_output(line));
1416 }
1417 
1418 #endif
1419 
1420 #define STATUS_FORMAT	"        %s %s\n"
1421 
1422 static int
1423 print_state(int indent, const char *name, vdev_state_t state)
1424 {
1425 	char buf[512];
1426 	int i;
1427 
1428 	buf[0] = 0;
1429 	for (i = 0; i < indent; i++)
1430 		strcat(buf, "  ");
1431 	strcat(buf, name);
1432 
1433 	return (pager_printf(STATUS_FORMAT, buf, state_name(state)));
1434 }
1435 
1436 static int
1437 vdev_status(vdev_t *vdev, int indent)
1438 {
1439 	vdev_t *kid;
1440 	int ret;
1441 
1442 	if (vdev->v_islog) {
1443 		(void)pager_output("        logs\n");
1444 		indent++;
1445 	}
1446 
1447 	ret = print_state(indent, vdev->v_name, vdev->v_state);
1448 	if (ret != 0)
1449 		return (ret);
1450 
1451 	STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1452 		ret = vdev_status(kid, indent + 1);
1453 		if (ret != 0)
1454 			return (ret);
1455 	}
1456 	return (ret);
1457 }
1458 
1459 static int
1460 spa_status(spa_t *spa)
1461 {
1462 	static char bootfs[ZFS_MAXNAMELEN];
1463 	uint64_t rootid;
1464 	vdev_t *vdev;
1465 	int good_kids, bad_kids, degraded_kids, ret;
1466 	vdev_state_t state;
1467 
1468 	ret = pager_printf("  pool: %s\n", spa->spa_name);
1469 	if (ret != 0)
1470 		return (ret);
1471 
1472 	if (zfs_get_root(spa, &rootid) == 0 &&
1473 	    zfs_rlookup(spa, rootid, bootfs) == 0) {
1474 		if (bootfs[0] == '\0')
1475 			ret = pager_printf("bootfs: %s\n", spa->spa_name);
1476 		else
1477 			ret = pager_printf("bootfs: %s/%s\n", spa->spa_name,
1478 			    bootfs);
1479 		if (ret != 0)
1480 			return (ret);
1481 	}
1482 	ret = pager_printf("config:\n\n");
1483 	if (ret != 0)
1484 		return (ret);
1485 	ret = pager_printf(STATUS_FORMAT, "NAME", "STATE");
1486 	if (ret != 0)
1487 		return (ret);
1488 
1489 	good_kids = 0;
1490 	degraded_kids = 0;
1491 	bad_kids = 0;
1492 	STAILQ_FOREACH(vdev, &spa->spa_vdevs, v_childlink) {
1493 		if (vdev->v_state == VDEV_STATE_HEALTHY)
1494 			good_kids++;
1495 		else if (vdev->v_state == VDEV_STATE_DEGRADED)
1496 			degraded_kids++;
1497 		else
1498 			bad_kids++;
1499 	}
1500 
1501 	state = VDEV_STATE_CLOSED;
1502 	if (good_kids > 0 && (degraded_kids + bad_kids) == 0)
1503 		state = VDEV_STATE_HEALTHY;
1504 	else if ((good_kids + degraded_kids) > 0)
1505 		state = VDEV_STATE_DEGRADED;
1506 
1507 	ret = print_state(0, spa->spa_name, state);
1508 	if (ret != 0)
1509 		return (ret);
1510 	STAILQ_FOREACH(vdev, &spa->spa_vdevs, v_childlink) {
1511 		ret = vdev_status(vdev, 1);
1512 		if (ret != 0)
1513 			return (ret);
1514 	}
1515 	return (ret);
1516 }
1517 
1518 static int
1519 spa_all_status(void)
1520 {
1521 	spa_t *spa;
1522 	int first = 1, ret = 0;
1523 
1524 	STAILQ_FOREACH(spa, &zfs_pools, spa_link) {
1525 		if (!first) {
1526 			ret = pager_printf("\n");
1527 			if (ret != 0)
1528 				return (ret);
1529 		}
1530 		first = 0;
1531 		ret = spa_status(spa);
1532 		if (ret != 0)
1533 			return (ret);
1534 	}
1535 	return (ret);
1536 }
1537 
1538 static uint64_t
1539 vdev_label_offset(uint64_t psize, int l, uint64_t offset)
1540 {
1541 	uint64_t label_offset;
1542 
1543 	if (l < VDEV_LABELS / 2)
1544 		label_offset = 0;
1545 	else
1546 		label_offset = psize - VDEV_LABELS * sizeof (vdev_label_t);
1547 
1548 	return (offset + l * sizeof (vdev_label_t) + label_offset);
1549 }
1550 
1551 static int
1552 vdev_uberblock_compare(const uberblock_t *ub1, const uberblock_t *ub2)
1553 {
1554 	unsigned int seq1 = 0;
1555 	unsigned int seq2 = 0;
1556 	int cmp = AVL_CMP(ub1->ub_txg, ub2->ub_txg);
1557 
1558 	if (cmp != 0)
1559 		return (cmp);
1560 
1561 	cmp = AVL_CMP(ub1->ub_timestamp, ub2->ub_timestamp);
1562 	if (cmp != 0)
1563 		return (cmp);
1564 
1565 	if (MMP_VALID(ub1) && MMP_SEQ_VALID(ub1))
1566 		seq1 = MMP_SEQ(ub1);
1567 
1568 	if (MMP_VALID(ub2) && MMP_SEQ_VALID(ub2))
1569 		seq2 = MMP_SEQ(ub2);
1570 
1571 	return (AVL_CMP(seq1, seq2));
1572 }
1573 
1574 static int
1575 uberblock_verify(uberblock_t *ub)
1576 {
1577 	if (ub->ub_magic == BSWAP_64((uint64_t)UBERBLOCK_MAGIC)) {
1578 		byteswap_uint64_array(ub, sizeof (uberblock_t));
1579 	}
1580 
1581 	if (ub->ub_magic != UBERBLOCK_MAGIC ||
1582 	    !SPA_VERSION_IS_SUPPORTED(ub->ub_version))
1583 		return (EINVAL);
1584 
1585 	return (0);
1586 }
1587 
1588 static int
1589 vdev_label_read(vdev_t *vd, int l, void *buf, uint64_t offset,
1590     size_t size)
1591 {
1592 	blkptr_t bp;
1593 	off_t off;
1594 
1595 	off = vdev_label_offset(vd->v_psize, l, offset);
1596 
1597 	BP_ZERO(&bp);
1598 	BP_SET_LSIZE(&bp, size);
1599 	BP_SET_PSIZE(&bp, size);
1600 	BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_LABEL);
1601 	BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF);
1602 	DVA_SET_OFFSET(BP_IDENTITY(&bp), off);
1603 	ZIO_SET_CHECKSUM(&bp.blk_cksum, off, 0, 0, 0);
1604 
1605 	return (vdev_read_phys(vd, &bp, buf, off, size));
1606 }
1607 
1608 static unsigned char *
1609 vdev_label_read_config(vdev_t *vd, uint64_t txg)
1610 {
1611 	vdev_phys_t *label;
1612 	uint64_t best_txg = 0;
1613 	uint64_t label_txg = 0;
1614 	uint64_t asize;
1615 	unsigned char *nvl;
1616 	size_t nvl_size;
1617 	int error;
1618 
1619 	label = malloc(sizeof (vdev_phys_t));
1620 	if (label == NULL)
1621 		return (NULL);
1622 
1623 	nvl_size = VDEV_PHYS_SIZE - sizeof (zio_eck_t) - 4;
1624 	nvl = malloc(nvl_size);
1625 	if (nvl == NULL) {
1626 		free(label);
1627 		return (NULL);
1628 	}
1629 
1630 	for (int l = 0; l < VDEV_LABELS; l++) {
1631 		const unsigned char *nvlist;
1632 
1633 		if (vdev_label_read(vd, l, label,
1634 		    offsetof(vdev_label_t, vl_vdev_phys),
1635 		    sizeof (vdev_phys_t)))
1636 			continue;
1637 
1638 		if (label->vp_nvlist[0] != NV_ENCODE_XDR)
1639 			continue;
1640 
1641 		nvlist = (const unsigned char *) label->vp_nvlist + 4;
1642 		error = nvlist_find(nvlist, ZPOOL_CONFIG_POOL_TXG,
1643 		    DATA_TYPE_UINT64, NULL, &label_txg);
1644 		if (error != 0 || label_txg == 0) {
1645 			memcpy(nvl, nvlist, nvl_size);
1646 			return (nvl);
1647 		}
1648 
1649 		if (label_txg <= txg && label_txg > best_txg) {
1650 			best_txg = label_txg;
1651 			memcpy(nvl, nvlist, nvl_size);
1652 
1653 			/*
1654 			 * Use asize from pool config. We need this
1655 			 * because we can get bad value from BIOS.
1656 			 */
1657 			if (nvlist_find(nvlist, ZPOOL_CONFIG_ASIZE,
1658 			    DATA_TYPE_UINT64, NULL, &asize) == 0) {
1659 				vd->v_psize = asize +
1660 				    VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
1661 			}
1662 		}
1663 	}
1664 
1665 	if (best_txg == 0) {
1666 		free(nvl);
1667 		nvl = NULL;
1668 	}
1669 	return (nvl);
1670 }
1671 
1672 static void
1673 vdev_uberblock_load(vdev_t *vd, uberblock_t *ub)
1674 {
1675 	uberblock_t *buf;
1676 
1677 	buf = malloc(VDEV_UBERBLOCK_SIZE(vd));
1678 	if (buf == NULL)
1679 		return;
1680 
1681 	for (int l = 0; l < VDEV_LABELS; l++) {
1682 		for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
1683 			if (vdev_label_read(vd, l, buf,
1684 			    VDEV_UBERBLOCK_OFFSET(vd, n),
1685 			    VDEV_UBERBLOCK_SIZE(vd)))
1686 				continue;
1687 			if (uberblock_verify(buf) != 0)
1688 				continue;
1689 
1690 			if (vdev_uberblock_compare(buf, ub) > 0)
1691 				*ub = *buf;
1692 		}
1693 	}
1694 	free(buf);
1695 }
1696 
1697 static int
1698 vdev_probe(vdev_phys_read_t *_read, void *read_priv, spa_t **spap)
1699 {
1700 	vdev_t vtmp;
1701 	spa_t *spa;
1702 	vdev_t *vdev, *top_vdev, *pool_vdev;
1703 	unsigned char *nvlist;
1704 	uint64_t val;
1705 	uint64_t guid;
1706 	uint64_t pool_txg, pool_guid;
1707 	const char *pool_name;
1708 	const unsigned char *vdevs;
1709 	const unsigned char *features;
1710 	int rc, is_newer;
1711 
1712 	/*
1713 	 * Load the vdev label and figure out which
1714 	 * uberblock is most current.
1715 	 */
1716 	memset(&vtmp, 0, sizeof(vtmp));
1717 	vtmp.v_phys_read = _read;
1718 	vtmp.v_read_priv = read_priv;
1719 	vtmp.v_psize = P2ALIGN(ldi_get_size(read_priv),
1720 	    (uint64_t)sizeof (vdev_label_t));
1721 
1722 	/* Test for minimum device size. */
1723 	if (vtmp.v_psize < SPA_MINDEVSIZE)
1724 		return (EIO);
1725 
1726 	nvlist = vdev_label_read_config(&vtmp, UINT64_MAX);
1727 	if (nvlist == NULL)
1728 		return (EIO);
1729 
1730 	if (nvlist_find(nvlist, ZPOOL_CONFIG_VERSION, DATA_TYPE_UINT64,
1731 	    NULL, &val) != 0) {
1732 		free(nvlist);
1733 		return (EIO);
1734 	}
1735 
1736 	if (!SPA_VERSION_IS_SUPPORTED(val)) {
1737 		printf("ZFS: unsupported ZFS version %u (should be %u)\n",
1738 		    (unsigned) val, (unsigned) SPA_VERSION);
1739 		free(nvlist);
1740 		return (EIO);
1741 	}
1742 
1743 	/* Check ZFS features for read */
1744 	if (nvlist_find(nvlist, ZPOOL_CONFIG_FEATURES_FOR_READ,
1745 	    DATA_TYPE_NVLIST, NULL, &features) == 0 &&
1746 	    nvlist_check_features_for_read(features) != 0) {
1747 		free(nvlist);
1748 		return (EIO);
1749 	}
1750 
1751 	if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_STATE, DATA_TYPE_UINT64,
1752 	    NULL, &val) != 0) {
1753 		free(nvlist);
1754 		return (EIO);
1755 	}
1756 
1757 	if (val == POOL_STATE_DESTROYED) {
1758 		/* We don't boot only from destroyed pools. */
1759 		free(nvlist);
1760 		return (EIO);
1761 	}
1762 
1763 	if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_TXG, DATA_TYPE_UINT64,
1764 	    NULL, &pool_txg) != 0 ||
1765 	    nvlist_find(nvlist, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64,
1766 	    NULL, &pool_guid) != 0 ||
1767 	    nvlist_find(nvlist, ZPOOL_CONFIG_POOL_NAME, DATA_TYPE_STRING,
1768 	    NULL, &pool_name) != 0) {
1769 		/*
1770 		 * Cache and spare devices end up here - just ignore
1771 		 * them.
1772 		 */
1773 		free(nvlist);
1774 		return (EIO);
1775 	}
1776 
1777 	/*
1778 	 * Create the pool if this is the first time we've seen it.
1779 	 */
1780 	spa = spa_find_by_guid(pool_guid);
1781 	if (spa == NULL) {
1782 		spa = spa_create(pool_guid, pool_name);
1783 		if (spa == NULL) {
1784 			free(nvlist);
1785 			return (ENOMEM);
1786 		}
1787 	}
1788 	if (pool_txg > spa->spa_txg) {
1789 		spa->spa_txg = pool_txg;
1790 		is_newer = 1;
1791 	} else {
1792 		is_newer = 0;
1793 	}
1794 
1795 	/*
1796 	 * Get the vdev tree and create our in-core copy of it.
1797 	 * If we already have a vdev with this guid, this must
1798 	 * be some kind of alias (overlapping slices, dangerously dedicated
1799 	 * disks etc).
1800 	 */
1801 	if (nvlist_find(nvlist, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64,
1802 	    NULL, &guid) != 0) {
1803 		free(nvlist);
1804 		return (EIO);
1805 	}
1806 	vdev = vdev_find(guid);
1807 	/* Has this vdev already been inited? */
1808 	if (vdev && vdev->v_phys_read) {
1809 		free(nvlist);
1810 		return (EIO);
1811 	}
1812 
1813 	if (nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST,
1814 	    NULL, &vdevs)) {
1815 		free(nvlist);
1816 		return (EIO);
1817 	}
1818 
1819 	rc = vdev_init_from_nvlist(vdevs, NULL, &top_vdev, is_newer);
1820 	free(nvlist);
1821 	if (rc != 0)
1822 		return (rc);
1823 
1824 	/*
1825 	 * Add the toplevel vdev to the pool if its not already there.
1826 	 */
1827 	STAILQ_FOREACH(pool_vdev, &spa->spa_vdevs, v_childlink)
1828 		if (top_vdev == pool_vdev)
1829 			break;
1830 
1831 	if (!pool_vdev && top_vdev) {
1832 		top_vdev->spa = spa;
1833 		STAILQ_INSERT_TAIL(&spa->spa_vdevs, top_vdev, v_childlink);
1834 	}
1835 
1836 	/*
1837 	 * We should already have created an incomplete vdev for this
1838 	 * vdev. Find it and initialise it with our read proc.
1839 	 */
1840 	vdev = vdev_find(guid);
1841 	if (vdev) {
1842 		vdev->v_phys_read = _read;
1843 		vdev->v_read_priv = read_priv;
1844 		vdev->v_state = VDEV_STATE_HEALTHY;
1845 		vdev->v_psize = vtmp.v_psize;
1846 	} else {
1847 		printf("ZFS: inconsistent nvlist contents\n");
1848 		return (EIO);
1849 	}
1850 
1851 	if (vdev->v_islog)
1852 		spa->spa_with_log = vdev->v_islog;
1853 
1854 	/*
1855 	 * Re-evaluate top-level vdev state.
1856 	 */
1857 	vdev_set_state(top_vdev);
1858 
1859 	/*
1860 	 * Ok, we are happy with the pool so far. Lets find
1861 	 * the best uberblock and then we can actually access
1862 	 * the contents of the pool.
1863 	 */
1864 	vdev_uberblock_load(vdev, &spa->spa_uberblock);
1865 
1866 	vdev->spa = spa;
1867 	if (spap != NULL)
1868 		*spap = spa;
1869 	return (0);
1870 }
1871 
1872 static int
1873 ilog2(int n)
1874 {
1875 	int v;
1876 
1877 	for (v = 0; v < 32; v++)
1878 		if (n == (1 << v))
1879 			return v;
1880 	return -1;
1881 }
1882 
1883 static int
1884 zio_read_gang(const spa_t *spa, const blkptr_t *bp, void *buf)
1885 {
1886 	blkptr_t gbh_bp;
1887 	zio_gbh_phys_t zio_gb;
1888 	char *pbuf;
1889 	int i;
1890 
1891 	/* Artificial BP for gang block header. */
1892 	gbh_bp = *bp;
1893 	BP_SET_PSIZE(&gbh_bp, SPA_GANGBLOCKSIZE);
1894 	BP_SET_LSIZE(&gbh_bp, SPA_GANGBLOCKSIZE);
1895 	BP_SET_CHECKSUM(&gbh_bp, ZIO_CHECKSUM_GANG_HEADER);
1896 	BP_SET_COMPRESS(&gbh_bp, ZIO_COMPRESS_OFF);
1897 	for (i = 0; i < SPA_DVAS_PER_BP; i++)
1898 		DVA_SET_GANG(&gbh_bp.blk_dva[i], 0);
1899 
1900 	/* Read gang header block using the artificial BP. */
1901 	if (zio_read(spa, &gbh_bp, &zio_gb))
1902 		return (EIO);
1903 
1904 	pbuf = buf;
1905 	for (i = 0; i < SPA_GBH_NBLKPTRS; i++) {
1906 		blkptr_t *gbp = &zio_gb.zg_blkptr[i];
1907 
1908 		if (BP_IS_HOLE(gbp))
1909 			continue;
1910 		if (zio_read(spa, gbp, pbuf))
1911 			return (EIO);
1912 		pbuf += BP_GET_PSIZE(gbp);
1913 	}
1914 
1915 	if (zio_checksum_verify(spa, bp, buf))
1916 		return (EIO);
1917 	return (0);
1918 }
1919 
1920 static int
1921 zio_read(const spa_t *spa, const blkptr_t *bp, void *buf)
1922 {
1923 	int cpfunc = BP_GET_COMPRESS(bp);
1924 	uint64_t align, size;
1925 	void *pbuf;
1926 	int i, error;
1927 
1928 	/*
1929 	 * Process data embedded in block pointer
1930 	 */
1931 	if (BP_IS_EMBEDDED(bp)) {
1932 		ASSERT(BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
1933 
1934 		size = BPE_GET_PSIZE(bp);
1935 		ASSERT(size <= BPE_PAYLOAD_SIZE);
1936 
1937 		if (cpfunc != ZIO_COMPRESS_OFF)
1938 			pbuf = zfs_alloc(size);
1939 		else
1940 			pbuf = buf;
1941 
1942 		decode_embedded_bp_compressed(bp, pbuf);
1943 		error = 0;
1944 
1945 		if (cpfunc != ZIO_COMPRESS_OFF) {
1946 			error = zio_decompress_data(cpfunc, pbuf,
1947 			    size, buf, BP_GET_LSIZE(bp));
1948 			zfs_free(pbuf, size);
1949 		}
1950 		if (error != 0)
1951 			printf("ZFS: i/o error - unable to decompress block pointer data, error %d\n",
1952 			    error);
1953 		return (error);
1954 	}
1955 
1956 	error = EIO;
1957 
1958 	for (i = 0; i < SPA_DVAS_PER_BP; i++) {
1959 		const dva_t *dva = &bp->blk_dva[i];
1960 		vdev_t *vdev;
1961 		int vdevid;
1962 		off_t offset;
1963 
1964 		if (!dva->dva_word[0] && !dva->dva_word[1])
1965 			continue;
1966 
1967 		vdevid = DVA_GET_VDEV(dva);
1968 		offset = DVA_GET_OFFSET(dva);
1969 		STAILQ_FOREACH(vdev, &spa->spa_vdevs, v_childlink) {
1970 			if (vdev->v_id == vdevid)
1971 				break;
1972 		}
1973 		if (!vdev || !vdev->v_read)
1974 			continue;
1975 
1976 		size = BP_GET_PSIZE(bp);
1977 		if (vdev->v_read == vdev_raidz_read) {
1978 			align = 1ULL << vdev->v_top->v_ashift;
1979 			if (P2PHASE(size, align) != 0)
1980 				size = P2ROUNDUP(size, align);
1981 		}
1982 		if (size != BP_GET_PSIZE(bp) || cpfunc != ZIO_COMPRESS_OFF)
1983 			pbuf = zfs_alloc(size);
1984 		else
1985 			pbuf = buf;
1986 
1987 		if (DVA_GET_GANG(dva))
1988 			error = zio_read_gang(spa, bp, pbuf);
1989 		else
1990 			error = vdev->v_read(vdev, bp, pbuf, offset, size);
1991 		if (error == 0) {
1992 			if (cpfunc != ZIO_COMPRESS_OFF)
1993 				error = zio_decompress_data(cpfunc, pbuf,
1994 				    BP_GET_PSIZE(bp), buf, BP_GET_LSIZE(bp));
1995 			else if (size != BP_GET_PSIZE(bp))
1996 				bcopy(pbuf, buf, BP_GET_PSIZE(bp));
1997 		}
1998 		if (buf != pbuf)
1999 			zfs_free(pbuf, size);
2000 		if (error == 0)
2001 			break;
2002 	}
2003 	if (error != 0)
2004 		printf("ZFS: i/o error - all block copies unavailable\n");
2005 	return (error);
2006 }
2007 
2008 static int
2009 dnode_read(const spa_t *spa, const dnode_phys_t *dnode, off_t offset, void *buf, size_t buflen)
2010 {
2011 	int ibshift = dnode->dn_indblkshift - SPA_BLKPTRSHIFT;
2012 	int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2013 	int nlevels = dnode->dn_nlevels;
2014 	int i, rc;
2015 
2016 	if (bsize > SPA_MAXBLOCKSIZE) {
2017 		printf("ZFS: I/O error - blocks larger than %llu are not "
2018 		    "supported\n", SPA_MAXBLOCKSIZE);
2019 		return (EIO);
2020 	}
2021 
2022 	/*
2023 	 * Note: bsize may not be a power of two here so we need to do an
2024 	 * actual divide rather than a bitshift.
2025 	 */
2026 	while (buflen > 0) {
2027 		uint64_t bn = offset / bsize;
2028 		int boff = offset % bsize;
2029 		int ibn;
2030 		const blkptr_t *indbp;
2031 		blkptr_t bp;
2032 
2033 		if (bn > dnode->dn_maxblkid)
2034 			return (EIO);
2035 
2036 		if (dnode == dnode_cache_obj && bn == dnode_cache_bn)
2037 			goto cached;
2038 
2039 		indbp = dnode->dn_blkptr;
2040 		for (i = 0; i < nlevels; i++) {
2041 			/*
2042 			 * Copy the bp from the indirect array so that
2043 			 * we can re-use the scratch buffer for multi-level
2044 			 * objects.
2045 			 */
2046 			ibn = bn >> ((nlevels - i - 1) * ibshift);
2047 			ibn &= ((1 << ibshift) - 1);
2048 			bp = indbp[ibn];
2049 			if (BP_IS_HOLE(&bp)) {
2050 				memset(dnode_cache_buf, 0, bsize);
2051 				break;
2052 			}
2053 			rc = zio_read(spa, &bp, dnode_cache_buf);
2054 			if (rc)
2055 				return (rc);
2056 			indbp = (const blkptr_t *) dnode_cache_buf;
2057 		}
2058 		dnode_cache_obj = dnode;
2059 		dnode_cache_bn = bn;
2060 	cached:
2061 
2062 		/*
2063 		 * The buffer contains our data block. Copy what we
2064 		 * need from it and loop.
2065 		 */
2066 		i = bsize - boff;
2067 		if (i > buflen) i = buflen;
2068 		memcpy(buf, &dnode_cache_buf[boff], i);
2069 		buf = ((char*) buf) + i;
2070 		offset += i;
2071 		buflen -= i;
2072 	}
2073 
2074 	return (0);
2075 }
2076 
2077 /*
2078  * Lookup a value in a microzap directory. Assumes that the zap
2079  * scratch buffer contains the directory contents.
2080  */
2081 static int
2082 mzap_lookup(const dnode_phys_t *dnode, const char *name, uint64_t *value)
2083 {
2084 	const mzap_phys_t *mz;
2085 	const mzap_ent_phys_t *mze;
2086 	size_t size;
2087 	int chunks, i;
2088 
2089 	/*
2090 	 * Microzap objects use exactly one block. Read the whole
2091 	 * thing.
2092 	 */
2093 	size = dnode->dn_datablkszsec * 512;
2094 
2095 	mz = (const mzap_phys_t *) zap_scratch;
2096 	chunks = size / MZAP_ENT_LEN - 1;
2097 
2098 	for (i = 0; i < chunks; i++) {
2099 		mze = &mz->mz_chunk[i];
2100 		if (!strcmp(mze->mze_name, name)) {
2101 			*value = mze->mze_value;
2102 			return (0);
2103 		}
2104 	}
2105 
2106 	return (ENOENT);
2107 }
2108 
2109 /*
2110  * Compare a name with a zap leaf entry. Return non-zero if the name
2111  * matches.
2112  */
2113 static int
2114 fzap_name_equal(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, const char *name)
2115 {
2116 	size_t namelen;
2117 	const zap_leaf_chunk_t *nc;
2118 	const char *p;
2119 
2120 	namelen = zc->l_entry.le_name_numints;
2121 
2122 	nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk);
2123 	p = name;
2124 	while (namelen > 0) {
2125 		size_t len;
2126 		len = namelen;
2127 		if (len > ZAP_LEAF_ARRAY_BYTES)
2128 			len = ZAP_LEAF_ARRAY_BYTES;
2129 		if (memcmp(p, nc->l_array.la_array, len))
2130 			return (0);
2131 		p += len;
2132 		namelen -= len;
2133 		nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next);
2134 	}
2135 
2136 	return 1;
2137 }
2138 
2139 /*
2140  * Extract a uint64_t value from a zap leaf entry.
2141  */
2142 static uint64_t
2143 fzap_leaf_value(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc)
2144 {
2145 	const zap_leaf_chunk_t *vc;
2146 	int i;
2147 	uint64_t value;
2148 	const uint8_t *p;
2149 
2150 	vc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_value_chunk);
2151 	for (i = 0, value = 0, p = vc->l_array.la_array; i < 8; i++) {
2152 		value = (value << 8) | p[i];
2153 	}
2154 
2155 	return value;
2156 }
2157 
2158 static void
2159 stv(int len, void *addr, uint64_t value)
2160 {
2161 	switch (len) {
2162 	case 1:
2163 		*(uint8_t *)addr = value;
2164 		return;
2165 	case 2:
2166 		*(uint16_t *)addr = value;
2167 		return;
2168 	case 4:
2169 		*(uint32_t *)addr = value;
2170 		return;
2171 	case 8:
2172 		*(uint64_t *)addr = value;
2173 		return;
2174 	}
2175 }
2176 
2177 /*
2178  * Extract a array from a zap leaf entry.
2179  */
2180 static void
2181 fzap_leaf_array(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc,
2182     uint64_t integer_size, uint64_t num_integers, void *buf)
2183 {
2184 	uint64_t array_int_len = zc->l_entry.le_value_intlen;
2185 	uint64_t value = 0;
2186 	uint64_t *u64 = buf;
2187 	char *p = buf;
2188 	int len = MIN(zc->l_entry.le_value_numints, num_integers);
2189 	int chunk = zc->l_entry.le_value_chunk;
2190 	int byten = 0;
2191 
2192 	if (integer_size == 8 && len == 1) {
2193 		*u64 = fzap_leaf_value(zl, zc);
2194 		return;
2195 	}
2196 
2197 	while (len > 0) {
2198 		struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(zl, chunk).l_array;
2199 		int i;
2200 
2201 		ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(zl));
2202 		for (i = 0; i < ZAP_LEAF_ARRAY_BYTES && len > 0; i++) {
2203 			value = (value << 8) | la->la_array[i];
2204 			byten++;
2205 			if (byten == array_int_len) {
2206 				stv(integer_size, p, value);
2207 				byten = 0;
2208 				len--;
2209 				if (len == 0)
2210 					return;
2211 				p += integer_size;
2212 			}
2213 		}
2214 		chunk = la->la_next;
2215 	}
2216 }
2217 
2218 /*
2219  * Lookup a value in a fatzap directory. Assumes that the zap scratch
2220  * buffer contains the directory header.
2221  */
2222 static int
2223 fzap_lookup(const spa_t *spa, const dnode_phys_t *dnode, const char *name,
2224     uint64_t integer_size, uint64_t num_integers, void *value)
2225 {
2226 	int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2227 	zap_phys_t zh = *(zap_phys_t *) zap_scratch;
2228 	fat_zap_t z;
2229 	uint64_t *ptrtbl;
2230 	uint64_t hash;
2231 	int rc;
2232 
2233 	if (zh.zap_magic != ZAP_MAGIC)
2234 		return (EIO);
2235 
2236 	z.zap_block_shift = ilog2(bsize);
2237 	z.zap_phys = (zap_phys_t *) zap_scratch;
2238 
2239 	/*
2240 	 * Figure out where the pointer table is and read it in if necessary.
2241 	 */
2242 	if (zh.zap_ptrtbl.zt_blk) {
2243 		rc = dnode_read(spa, dnode, zh.zap_ptrtbl.zt_blk * bsize,
2244 			       zap_scratch, bsize);
2245 		if (rc)
2246 			return (rc);
2247 		ptrtbl = (uint64_t *) zap_scratch;
2248 	} else {
2249 		ptrtbl = &ZAP_EMBEDDED_PTRTBL_ENT(&z, 0);
2250 	}
2251 
2252 	hash = zap_hash(zh.zap_salt, name);
2253 
2254 	zap_leaf_t zl;
2255 	zl.l_bs = z.zap_block_shift;
2256 
2257 	off_t off = ptrtbl[hash >> (64 - zh.zap_ptrtbl.zt_shift)] << zl.l_bs;
2258 	zap_leaf_chunk_t *zc;
2259 
2260 	rc = dnode_read(spa, dnode, off, zap_scratch, bsize);
2261 	if (rc)
2262 		return (rc);
2263 
2264 	zl.l_phys = (zap_leaf_phys_t *) zap_scratch;
2265 
2266 	/*
2267 	 * Make sure this chunk matches our hash.
2268 	 */
2269 	if (zl.l_phys->l_hdr.lh_prefix_len > 0
2270 	    && zl.l_phys->l_hdr.lh_prefix
2271 	    != hash >> (64 - zl.l_phys->l_hdr.lh_prefix_len))
2272 		return (ENOENT);
2273 
2274 	/*
2275 	 * Hash within the chunk to find our entry.
2276 	 */
2277 	int shift = (64 - ZAP_LEAF_HASH_SHIFT(&zl) - zl.l_phys->l_hdr.lh_prefix_len);
2278 	int h = (hash >> shift) & ((1 << ZAP_LEAF_HASH_SHIFT(&zl)) - 1);
2279 	h = zl.l_phys->l_hash[h];
2280 	if (h == 0xffff)
2281 		return (ENOENT);
2282 	zc = &ZAP_LEAF_CHUNK(&zl, h);
2283 	while (zc->l_entry.le_hash != hash) {
2284 		if (zc->l_entry.le_next == 0xffff) {
2285 			zc = NULL;
2286 			break;
2287 		}
2288 		zc = &ZAP_LEAF_CHUNK(&zl, zc->l_entry.le_next);
2289 	}
2290 	if (fzap_name_equal(&zl, zc, name)) {
2291 		if (zc->l_entry.le_value_intlen * zc->l_entry.le_value_numints >
2292 		    integer_size * num_integers)
2293 			return (E2BIG);
2294 		fzap_leaf_array(&zl, zc, integer_size, num_integers, value);
2295 		return (0);
2296 	}
2297 
2298 	return (ENOENT);
2299 }
2300 
2301 /*
2302  * Lookup a name in a zap object and return its value as a uint64_t.
2303  */
2304 static int
2305 zap_lookup(const spa_t *spa, const dnode_phys_t *dnode, const char *name,
2306     uint64_t integer_size, uint64_t num_integers, void *value)
2307 {
2308 	int rc;
2309 	uint64_t zap_type;
2310 	size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2311 
2312 	rc = dnode_read(spa, dnode, 0, zap_scratch, size);
2313 	if (rc)
2314 		return (rc);
2315 
2316 	zap_type = *(uint64_t *) zap_scratch;
2317 	if (zap_type == ZBT_MICRO)
2318 		return mzap_lookup(dnode, name, value);
2319 	else if (zap_type == ZBT_HEADER) {
2320 		return fzap_lookup(spa, dnode, name, integer_size,
2321 		    num_integers, value);
2322 	}
2323 	printf("ZFS: invalid zap_type=%d\n", (int)zap_type);
2324 	return (EIO);
2325 }
2326 
2327 /*
2328  * List a microzap directory. Assumes that the zap scratch buffer contains
2329  * the directory contents.
2330  */
2331 static int
2332 mzap_list(const dnode_phys_t *dnode, int (*callback)(const char *, uint64_t))
2333 {
2334 	const mzap_phys_t *mz;
2335 	const mzap_ent_phys_t *mze;
2336 	size_t size;
2337 	int chunks, i, rc;
2338 
2339 	/*
2340 	 * Microzap objects use exactly one block. Read the whole
2341 	 * thing.
2342 	 */
2343 	size = dnode->dn_datablkszsec * 512;
2344 	mz = (const mzap_phys_t *) zap_scratch;
2345 	chunks = size / MZAP_ENT_LEN - 1;
2346 
2347 	for (i = 0; i < chunks; i++) {
2348 		mze = &mz->mz_chunk[i];
2349 		if (mze->mze_name[0]) {
2350 			rc = callback(mze->mze_name, mze->mze_value);
2351 			if (rc != 0)
2352 				return (rc);
2353 		}
2354 	}
2355 
2356 	return (0);
2357 }
2358 
2359 /*
2360  * List a fatzap directory. Assumes that the zap scratch buffer contains
2361  * the directory header.
2362  */
2363 static int
2364 fzap_list(const spa_t *spa, const dnode_phys_t *dnode, int (*callback)(const char *, uint64_t))
2365 {
2366 	int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2367 	zap_phys_t zh = *(zap_phys_t *) zap_scratch;
2368 	fat_zap_t z;
2369 	int i, j, rc;
2370 
2371 	if (zh.zap_magic != ZAP_MAGIC)
2372 		return (EIO);
2373 
2374 	z.zap_block_shift = ilog2(bsize);
2375 	z.zap_phys = (zap_phys_t *) zap_scratch;
2376 
2377 	/*
2378 	 * This assumes that the leaf blocks start at block 1. The
2379 	 * documentation isn't exactly clear on this.
2380 	 */
2381 	zap_leaf_t zl;
2382 	zl.l_bs = z.zap_block_shift;
2383 	for (i = 0; i < zh.zap_num_leafs; i++) {
2384 		off_t off = (i + 1) << zl.l_bs;
2385 		char name[256], *p;
2386 		uint64_t value;
2387 
2388 		if (dnode_read(spa, dnode, off, zap_scratch, bsize))
2389 			return (EIO);
2390 
2391 		zl.l_phys = (zap_leaf_phys_t *) zap_scratch;
2392 
2393 		for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) {
2394 			zap_leaf_chunk_t *zc, *nc;
2395 			int namelen;
2396 
2397 			zc = &ZAP_LEAF_CHUNK(&zl, j);
2398 			if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY)
2399 				continue;
2400 			namelen = zc->l_entry.le_name_numints;
2401 			if (namelen > sizeof(name))
2402 				namelen = sizeof(name);
2403 
2404 			/*
2405 			 * Paste the name back together.
2406 			 */
2407 			nc = &ZAP_LEAF_CHUNK(&zl, zc->l_entry.le_name_chunk);
2408 			p = name;
2409 			while (namelen > 0) {
2410 				int len;
2411 				len = namelen;
2412 				if (len > ZAP_LEAF_ARRAY_BYTES)
2413 					len = ZAP_LEAF_ARRAY_BYTES;
2414 				memcpy(p, nc->l_array.la_array, len);
2415 				p += len;
2416 				namelen -= len;
2417 				nc = &ZAP_LEAF_CHUNK(&zl, nc->l_array.la_next);
2418 			}
2419 
2420 			/*
2421 			 * Assume the first eight bytes of the value are
2422 			 * a uint64_t.
2423 			 */
2424 			value = fzap_leaf_value(&zl, zc);
2425 
2426 			//printf("%s 0x%jx\n", name, (uintmax_t)value);
2427 			rc = callback((const char *)name, value);
2428 			if (rc != 0)
2429 				return (rc);
2430 		}
2431 	}
2432 
2433 	return (0);
2434 }
2435 
2436 static int zfs_printf(const char *name, uint64_t value __unused)
2437 {
2438 
2439 	printf("%s\n", name);
2440 
2441 	return (0);
2442 }
2443 
2444 /*
2445  * List a zap directory.
2446  */
2447 static int
2448 zap_list(const spa_t *spa, const dnode_phys_t *dnode)
2449 {
2450 	uint64_t zap_type;
2451 	size_t size = dnode->dn_datablkszsec * 512;
2452 
2453 	if (dnode_read(spa, dnode, 0, zap_scratch, size))
2454 		return (EIO);
2455 
2456 	zap_type = *(uint64_t *) zap_scratch;
2457 	if (zap_type == ZBT_MICRO)
2458 		return mzap_list(dnode, zfs_printf);
2459 	else
2460 		return fzap_list(spa, dnode, zfs_printf);
2461 }
2462 
2463 static int
2464 objset_get_dnode(const spa_t *spa, const objset_phys_t *os, uint64_t objnum, dnode_phys_t *dnode)
2465 {
2466 	off_t offset;
2467 
2468 	offset = objnum * sizeof(dnode_phys_t);
2469 	return dnode_read(spa, &os->os_meta_dnode, offset,
2470 		dnode, sizeof(dnode_phys_t));
2471 }
2472 
2473 static int
2474 mzap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, char *name, uint64_t value)
2475 {
2476 	const mzap_phys_t *mz;
2477 	const mzap_ent_phys_t *mze;
2478 	size_t size;
2479 	int chunks, i;
2480 
2481 	/*
2482 	 * Microzap objects use exactly one block. Read the whole
2483 	 * thing.
2484 	 */
2485 	size = dnode->dn_datablkszsec * 512;
2486 
2487 	mz = (const mzap_phys_t *) zap_scratch;
2488 	chunks = size / MZAP_ENT_LEN - 1;
2489 
2490 	for (i = 0; i < chunks; i++) {
2491 		mze = &mz->mz_chunk[i];
2492 		if (value == mze->mze_value) {
2493 			strcpy(name, mze->mze_name);
2494 			return (0);
2495 		}
2496 	}
2497 
2498 	return (ENOENT);
2499 }
2500 
2501 static void
2502 fzap_name_copy(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, char *name)
2503 {
2504 	size_t namelen;
2505 	const zap_leaf_chunk_t *nc;
2506 	char *p;
2507 
2508 	namelen = zc->l_entry.le_name_numints;
2509 
2510 	nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk);
2511 	p = name;
2512 	while (namelen > 0) {
2513 		size_t len;
2514 		len = namelen;
2515 		if (len > ZAP_LEAF_ARRAY_BYTES)
2516 			len = ZAP_LEAF_ARRAY_BYTES;
2517 		memcpy(p, nc->l_array.la_array, len);
2518 		p += len;
2519 		namelen -= len;
2520 		nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next);
2521 	}
2522 
2523 	*p = '\0';
2524 }
2525 
2526 static int
2527 fzap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, char *name, uint64_t value)
2528 {
2529 	int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2530 	zap_phys_t zh = *(zap_phys_t *) zap_scratch;
2531 	fat_zap_t z;
2532 	int i, j;
2533 
2534 	if (zh.zap_magic != ZAP_MAGIC)
2535 		return (EIO);
2536 
2537 	z.zap_block_shift = ilog2(bsize);
2538 	z.zap_phys = (zap_phys_t *) zap_scratch;
2539 
2540 	/*
2541 	 * This assumes that the leaf blocks start at block 1. The
2542 	 * documentation isn't exactly clear on this.
2543 	 */
2544 	zap_leaf_t zl;
2545 	zl.l_bs = z.zap_block_shift;
2546 	for (i = 0; i < zh.zap_num_leafs; i++) {
2547 		off_t off = (i + 1) << zl.l_bs;
2548 
2549 		if (dnode_read(spa, dnode, off, zap_scratch, bsize))
2550 			return (EIO);
2551 
2552 		zl.l_phys = (zap_leaf_phys_t *) zap_scratch;
2553 
2554 		for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) {
2555 			zap_leaf_chunk_t *zc;
2556 
2557 			zc = &ZAP_LEAF_CHUNK(&zl, j);
2558 			if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY)
2559 				continue;
2560 			if (zc->l_entry.le_value_intlen != 8 ||
2561 			    zc->l_entry.le_value_numints != 1)
2562 				continue;
2563 
2564 			if (fzap_leaf_value(&zl, zc) == value) {
2565 				fzap_name_copy(&zl, zc, name);
2566 				return (0);
2567 			}
2568 		}
2569 	}
2570 
2571 	return (ENOENT);
2572 }
2573 
2574 static int
2575 zap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, char *name, uint64_t value)
2576 {
2577 	int rc;
2578 	uint64_t zap_type;
2579 	size_t size = dnode->dn_datablkszsec * 512;
2580 
2581 	rc = dnode_read(spa, dnode, 0, zap_scratch, size);
2582 	if (rc)
2583 		return (rc);
2584 
2585 	zap_type = *(uint64_t *) zap_scratch;
2586 	if (zap_type == ZBT_MICRO)
2587 		return mzap_rlookup(spa, dnode, name, value);
2588 	else
2589 		return fzap_rlookup(spa, dnode, name, value);
2590 }
2591 
2592 static int
2593 zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result)
2594 {
2595 	char name[256];
2596 	char component[256];
2597 	uint64_t dir_obj, parent_obj, child_dir_zapobj;
2598 	dnode_phys_t child_dir_zap, dataset, dir, parent;
2599 	dsl_dir_phys_t *dd;
2600 	dsl_dataset_phys_t *ds;
2601 	char *p;
2602 	int len;
2603 
2604 	p = &name[sizeof(name) - 1];
2605 	*p = '\0';
2606 
2607 	if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) {
2608 		printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
2609 		return (EIO);
2610 	}
2611 	ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
2612 	dir_obj = ds->ds_dir_obj;
2613 
2614 	for (;;) {
2615 		if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir) != 0)
2616 			return (EIO);
2617 		dd = (dsl_dir_phys_t *)&dir.dn_bonus;
2618 
2619 		/* Actual loop condition. */
2620 		parent_obj  = dd->dd_parent_obj;
2621 		if (parent_obj == 0)
2622 			break;
2623 
2624 		if (objset_get_dnode(spa, &spa->spa_mos, parent_obj, &parent) != 0)
2625 			return (EIO);
2626 		dd = (dsl_dir_phys_t *)&parent.dn_bonus;
2627 		child_dir_zapobj = dd->dd_child_dir_zapobj;
2628 		if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, &child_dir_zap) != 0)
2629 			return (EIO);
2630 		if (zap_rlookup(spa, &child_dir_zap, component, dir_obj) != 0)
2631 			return (EIO);
2632 
2633 		len = strlen(component);
2634 		p -= len;
2635 		memcpy(p, component, len);
2636 		--p;
2637 		*p = '/';
2638 
2639 		/* Actual loop iteration. */
2640 		dir_obj = parent_obj;
2641 	}
2642 
2643 	if (*p != '\0')
2644 		++p;
2645 	strcpy(result, p);
2646 
2647 	return (0);
2648 }
2649 
2650 static int
2651 zfs_lookup_dataset(const spa_t *spa, const char *name, uint64_t *objnum)
2652 {
2653 	char element[256];
2654 	uint64_t dir_obj, child_dir_zapobj;
2655 	dnode_phys_t child_dir_zap, dir;
2656 	dsl_dir_phys_t *dd;
2657 	const char *p, *q;
2658 
2659 	if (objset_get_dnode(spa, &spa->spa_mos, DMU_POOL_DIRECTORY_OBJECT, &dir))
2660 		return (EIO);
2661 	if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET, sizeof (dir_obj),
2662 	    1, &dir_obj))
2663 		return (EIO);
2664 
2665 	p = name;
2666 	for (;;) {
2667 		if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir))
2668 			return (EIO);
2669 		dd = (dsl_dir_phys_t *)&dir.dn_bonus;
2670 
2671 		while (*p == '/')
2672 			p++;
2673 		/* Actual loop condition #1. */
2674 		if (*p == '\0')
2675 			break;
2676 
2677 		q = strchr(p, '/');
2678 		if (q) {
2679 			memcpy(element, p, q - p);
2680 			element[q - p] = '\0';
2681 			p = q + 1;
2682 		} else {
2683 			strcpy(element, p);
2684 			p += strlen(p);
2685 		}
2686 
2687 		child_dir_zapobj = dd->dd_child_dir_zapobj;
2688 		if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, &child_dir_zap) != 0)
2689 			return (EIO);
2690 
2691 		/* Actual loop condition #2. */
2692 		if (zap_lookup(spa, &child_dir_zap, element, sizeof (dir_obj),
2693 		    1, &dir_obj) != 0)
2694 			return (ENOENT);
2695 	}
2696 
2697 	*objnum = dd->dd_head_dataset_obj;
2698 	return (0);
2699 }
2700 
2701 #ifndef BOOT2
2702 static int
2703 zfs_list_dataset(const spa_t *spa, uint64_t objnum/*, int pos, char *entry*/)
2704 {
2705 	uint64_t dir_obj, child_dir_zapobj;
2706 	dnode_phys_t child_dir_zap, dir, dataset;
2707 	dsl_dataset_phys_t *ds;
2708 	dsl_dir_phys_t *dd;
2709 
2710 	if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) {
2711 		printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
2712 		return (EIO);
2713 	}
2714 	ds = (dsl_dataset_phys_t *) &dataset.dn_bonus;
2715 	dir_obj = ds->ds_dir_obj;
2716 
2717 	if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir)) {
2718 		printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj);
2719 		return (EIO);
2720 	}
2721 	dd = (dsl_dir_phys_t *)&dir.dn_bonus;
2722 
2723 	child_dir_zapobj = dd->dd_child_dir_zapobj;
2724 	if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, &child_dir_zap) != 0) {
2725 		printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj);
2726 		return (EIO);
2727 	}
2728 
2729 	return (zap_list(spa, &child_dir_zap) != 0);
2730 }
2731 
2732 int
2733 zfs_callback_dataset(const spa_t *spa, uint64_t objnum, int (*callback)(const char *, uint64_t))
2734 {
2735 	uint64_t dir_obj, child_dir_zapobj, zap_type;
2736 	dnode_phys_t child_dir_zap, dir, dataset;
2737 	dsl_dataset_phys_t *ds;
2738 	dsl_dir_phys_t *dd;
2739 	int err;
2740 
2741 	err = objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset);
2742 	if (err != 0) {
2743 		printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
2744 		return (err);
2745 	}
2746 	ds = (dsl_dataset_phys_t *) &dataset.dn_bonus;
2747 	dir_obj = ds->ds_dir_obj;
2748 
2749 	err = objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir);
2750 	if (err != 0) {
2751 		printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj);
2752 		return (err);
2753 	}
2754 	dd = (dsl_dir_phys_t *)&dir.dn_bonus;
2755 
2756 	child_dir_zapobj = dd->dd_child_dir_zapobj;
2757 	err = objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, &child_dir_zap);
2758 	if (err != 0) {
2759 		printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj);
2760 		return (err);
2761 	}
2762 
2763 	err = dnode_read(spa, &child_dir_zap, 0, zap_scratch, child_dir_zap.dn_datablkszsec * 512);
2764 	if (err != 0)
2765 		return (err);
2766 
2767 	zap_type = *(uint64_t *) zap_scratch;
2768 	if (zap_type == ZBT_MICRO)
2769 		return mzap_list(&child_dir_zap, callback);
2770 	else
2771 		return fzap_list(spa, &child_dir_zap, callback);
2772 }
2773 #endif
2774 
2775 /*
2776  * Find the object set given the object number of its dataset object
2777  * and return its details in *objset
2778  */
2779 static int
2780 zfs_mount_dataset(const spa_t *spa, uint64_t objnum, objset_phys_t *objset)
2781 {
2782 	dnode_phys_t dataset;
2783 	dsl_dataset_phys_t *ds;
2784 
2785 	if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) {
2786 		printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
2787 		return (EIO);
2788 	}
2789 
2790 	ds = (dsl_dataset_phys_t *) &dataset.dn_bonus;
2791 	if (zio_read(spa, &ds->ds_bp, objset)) {
2792 		printf("ZFS: can't read object set for dataset %ju\n",
2793 		    (uintmax_t)objnum);
2794 		return (EIO);
2795 	}
2796 
2797 	return (0);
2798 }
2799 
2800 /*
2801  * Find the object set pointed to by the BOOTFS property or the root
2802  * dataset if there is none and return its details in *objset
2803  */
2804 static int
2805 zfs_get_root(const spa_t *spa, uint64_t *objid)
2806 {
2807 	dnode_phys_t dir, propdir;
2808 	uint64_t props, bootfs, root;
2809 
2810 	*objid = 0;
2811 
2812 	/*
2813 	 * Start with the MOS directory object.
2814 	 */
2815 	if (objset_get_dnode(spa, &spa->spa_mos, DMU_POOL_DIRECTORY_OBJECT, &dir)) {
2816 		printf("ZFS: can't read MOS object directory\n");
2817 		return (EIO);
2818 	}
2819 
2820 	/*
2821 	 * Lookup the pool_props and see if we can find a bootfs.
2822 	 */
2823 	if (zap_lookup(spa, &dir, DMU_POOL_PROPS, sizeof (props), 1, &props) == 0
2824 	     && objset_get_dnode(spa, &spa->spa_mos, props, &propdir) == 0
2825 	     && zap_lookup(spa, &propdir, "bootfs", sizeof (bootfs), 1, &bootfs) == 0
2826 	     && bootfs != 0)
2827 	{
2828 		*objid = bootfs;
2829 		return (0);
2830 	}
2831 	/*
2832 	 * Lookup the root dataset directory
2833 	 */
2834 	if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET, sizeof (root), 1, &root)
2835 	    || objset_get_dnode(spa, &spa->spa_mos, root, &dir)) {
2836 		printf("ZFS: can't find root dsl_dir\n");
2837 		return (EIO);
2838 	}
2839 
2840 	/*
2841 	 * Use the information from the dataset directory's bonus buffer
2842 	 * to find the dataset object and from that the object set itself.
2843 	 */
2844 	dsl_dir_phys_t *dd = (dsl_dir_phys_t *) &dir.dn_bonus;
2845 	*objid = dd->dd_head_dataset_obj;
2846 	return (0);
2847 }
2848 
2849 static int
2850 zfs_mount(const spa_t *spa, uint64_t rootobj, struct zfsmount *mount)
2851 {
2852 
2853 	mount->spa = spa;
2854 
2855 	/*
2856 	 * Find the root object set if not explicitly provided
2857 	 */
2858 	if (rootobj == 0 && zfs_get_root(spa, &rootobj)) {
2859 		printf("ZFS: can't find root filesystem\n");
2860 		return (EIO);
2861 	}
2862 
2863 	if (zfs_mount_dataset(spa, rootobj, &mount->objset)) {
2864 		printf("ZFS: can't open root filesystem\n");
2865 		return (EIO);
2866 	}
2867 
2868 	mount->rootobj = rootobj;
2869 
2870 	return (0);
2871 }
2872 
2873 /*
2874  * callback function for feature name checks.
2875  */
2876 static int
2877 check_feature(const char *name, uint64_t value)
2878 {
2879 	int i;
2880 
2881 	if (value == 0)
2882 		return (0);
2883 	if (name[0] == '\0')
2884 		return (0);
2885 
2886 	for (i = 0; features_for_read[i] != NULL; i++) {
2887 		if (strcmp(name, features_for_read[i]) == 0)
2888 			return (0);
2889 	}
2890 	printf("ZFS: unsupported feature: %s\n", name);
2891 	return (EIO);
2892 }
2893 
2894 /*
2895  * Checks whether the MOS features that are active are supported.
2896  */
2897 static int
2898 check_mos_features(const spa_t *spa)
2899 {
2900 	dnode_phys_t dir;
2901 	uint64_t objnum, zap_type;
2902 	size_t size;
2903 	int rc;
2904 
2905 	if ((rc = objset_get_dnode(spa, &spa->spa_mos, DMU_OT_OBJECT_DIRECTORY,
2906 	    &dir)) != 0)
2907 		return (rc);
2908 	if ((rc = zap_lookup(spa, &dir, DMU_POOL_FEATURES_FOR_READ,
2909 	    sizeof (objnum), 1, &objnum)) != 0) {
2910 		/*
2911 		 * It is older pool without features. As we have already
2912 		 * tested the label, just return without raising the error.
2913 		 */
2914 		return (0);
2915 	}
2916 
2917 	if ((rc = objset_get_dnode(spa, &spa->spa_mos, objnum, &dir)) != 0)
2918 		return (rc);
2919 
2920 	if (dir.dn_type != DMU_OTN_ZAP_METADATA)
2921 		return (EIO);
2922 
2923 	size = dir.dn_datablkszsec * 512;
2924 	if (dnode_read(spa, &dir, 0, zap_scratch, size))
2925 		return (EIO);
2926 
2927 	zap_type = *(uint64_t *) zap_scratch;
2928 	if (zap_type == ZBT_MICRO)
2929 		rc = mzap_list(&dir, check_feature);
2930 	else
2931 		rc = fzap_list(spa, &dir, check_feature);
2932 
2933 	return (rc);
2934 }
2935 
2936 static int
2937 load_nvlist(spa_t *spa, uint64_t obj, unsigned char **value)
2938 {
2939 	dnode_phys_t dir;
2940 	size_t size;
2941 	int rc;
2942 	unsigned char *nv;
2943 
2944 	*value = NULL;
2945 	if ((rc = objset_get_dnode(spa, &spa->spa_mos, obj, &dir)) != 0)
2946 		return (rc);
2947 	if (dir.dn_type != DMU_OT_PACKED_NVLIST &&
2948 	    dir.dn_bonustype != DMU_OT_PACKED_NVLIST_SIZE) {
2949 		return (EIO);
2950 	}
2951 
2952 	if (dir.dn_bonuslen != sizeof (uint64_t))
2953 		return (EIO);
2954 
2955 	size = *(uint64_t *)DN_BONUS(&dir);
2956 	nv = malloc(size);
2957 	if (nv == NULL)
2958 		return (ENOMEM);
2959 
2960 	rc = dnode_read(spa, &dir, 0, nv, size);
2961 	if (rc != 0) {
2962 		free(nv);
2963 		nv = NULL;
2964 		return (rc);
2965 	}
2966 	*value = nv;
2967 	return (rc);
2968 }
2969 
2970 static int
2971 zfs_spa_init(spa_t *spa)
2972 {
2973 	dnode_phys_t dir;
2974 	uint64_t config_object;
2975 	unsigned char *nvlist;
2976 	char *type;
2977 	const unsigned char *nv;
2978 	int nkids, rc;
2979 
2980 	if (zio_read(spa, &spa->spa_uberblock.ub_rootbp, &spa->spa_mos)) {
2981 		printf("ZFS: can't read MOS of pool %s\n", spa->spa_name);
2982 		return (EIO);
2983 	}
2984 	if (spa->spa_mos.os_type != DMU_OST_META) {
2985 		printf("ZFS: corrupted MOS of pool %s\n", spa->spa_name);
2986 		return (EIO);
2987 	}
2988 
2989 	if (objset_get_dnode(spa, &spa->spa_mos, DMU_POOL_DIRECTORY_OBJECT,
2990 	    &dir)) {
2991 		printf("ZFS: failed to read pool %s directory object\n",
2992 		    spa->spa_name);
2993 		return (EIO);
2994 	}
2995 	/* this is allowed to fail, older pools do not have salt */
2996 	rc = zap_lookup(spa, &dir, DMU_POOL_CHECKSUM_SALT, 1,
2997 	    sizeof (spa->spa_cksum_salt.zcs_bytes),
2998 	    spa->spa_cksum_salt.zcs_bytes);
2999 
3000 	rc = check_mos_features(spa);
3001 	if (rc != 0) {
3002 		printf("ZFS: pool %s is not supported\n", spa->spa_name);
3003 		return (rc);
3004 	}
3005 
3006 	rc = zap_lookup(spa, &dir, DMU_POOL_CONFIG,
3007 	    sizeof (config_object), 1, &config_object);
3008 	if (rc != 0) {
3009 		printf("ZFS: can not read MOS %s\n", DMU_POOL_CONFIG);
3010 		return (EIO);
3011 	}
3012 	rc = load_nvlist(spa, config_object, &nvlist);
3013 	if (rc != 0)
3014 		return (rc);
3015 
3016 	/* Update vdevs from MOS config. */
3017 	if (nvlist_find(nvlist + 4, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST,
3018 	    NULL, &nv)) {
3019 		rc = EIO;
3020 		goto done;
3021 	}
3022 
3023 	if (nvlist_find(nv, ZPOOL_CONFIG_TYPE, DATA_TYPE_STRING,
3024             NULL, &type)) {
3025 		printf("ZFS: can't find vdev details\n");
3026 		rc = ENOENT;
3027 		goto done;
3028 	}
3029 	if (strcmp(type, VDEV_TYPE_ROOT) != 0) {
3030 		rc = ENOENT;
3031 		goto done;
3032 	}
3033 
3034 	rc = nvlist_find(nv, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY,
3035             &nkids, &nv);
3036 	if (rc != 0)
3037 		goto done;
3038 
3039 	for (int i = 0; i < nkids; i++) {
3040 		vdev_t *vd, *prev, *kid = NULL;
3041 		rc = vdev_init_from_nvlist(nv, NULL, &kid, 0);
3042 		if (rc != 0) {
3043 			printf("vdev_init_from_nvlist: %d\n", rc);
3044 			break;
3045 		}
3046 		kid->spa = spa;
3047 		prev = NULL;
3048 		STAILQ_FOREACH(vd, &spa->spa_vdevs, v_childlink) {
3049 			/* Already present? */
3050 			if (kid->v_id == vd->v_id) {
3051 				kid = NULL;
3052 				break;
3053 			}
3054 			if (vd->v_id > kid->v_id) {
3055 				if (prev == NULL) {
3056 					STAILQ_INSERT_HEAD(&spa->spa_vdevs,
3057 					    kid, v_childlink);
3058 				} else {
3059 					STAILQ_INSERT_AFTER(&spa->spa_vdevs,
3060 					    prev, kid, v_childlink);
3061 				}
3062 				kid = NULL;
3063 				break;
3064 			}
3065 			prev = vd;
3066 		}
3067 		if (kid != NULL)
3068 			STAILQ_INSERT_TAIL(&spa->spa_vdevs, kid, v_childlink);
3069 		nv = nvlist_next(nv);
3070 	}
3071 	rc = 0;
3072 done:
3073 	free(nvlist);
3074 	return (rc);
3075 }
3076 
3077 static int
3078 zfs_dnode_stat(const spa_t *spa, dnode_phys_t *dn, struct stat *sb)
3079 {
3080 
3081 	if (dn->dn_bonustype != DMU_OT_SA) {
3082 		znode_phys_t *zp = (znode_phys_t *)dn->dn_bonus;
3083 
3084 		sb->st_mode = zp->zp_mode;
3085 		sb->st_uid = zp->zp_uid;
3086 		sb->st_gid = zp->zp_gid;
3087 		sb->st_size = zp->zp_size;
3088 	} else {
3089 		sa_hdr_phys_t *sahdrp;
3090 		int hdrsize;
3091 		size_t size = 0;
3092 		void *buf = NULL;
3093 
3094 		if (dn->dn_bonuslen != 0)
3095 			sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn);
3096 		else {
3097 			if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0) {
3098 				blkptr_t *bp = DN_SPILL_BLKPTR(dn);
3099 				int error;
3100 
3101 				size = BP_GET_LSIZE(bp);
3102 				buf = zfs_alloc(size);
3103 				error = zio_read(spa, bp, buf);
3104 				if (error != 0) {
3105 					zfs_free(buf, size);
3106 					return (error);
3107 				}
3108 				sahdrp = buf;
3109 			} else {
3110 				return (EIO);
3111 			}
3112 		}
3113 		hdrsize = SA_HDR_SIZE(sahdrp);
3114 		sb->st_mode = *(uint64_t *)((char *)sahdrp + hdrsize +
3115 		    SA_MODE_OFFSET);
3116 		sb->st_uid = *(uint64_t *)((char *)sahdrp + hdrsize +
3117 		    SA_UID_OFFSET);
3118 		sb->st_gid = *(uint64_t *)((char *)sahdrp + hdrsize +
3119 		    SA_GID_OFFSET);
3120 		sb->st_size = *(uint64_t *)((char *)sahdrp + hdrsize +
3121 		    SA_SIZE_OFFSET);
3122 		if (buf != NULL)
3123 			zfs_free(buf, size);
3124 	}
3125 
3126 	return (0);
3127 }
3128 
3129 static int
3130 zfs_dnode_readlink(const spa_t *spa, dnode_phys_t *dn, char *path, size_t psize)
3131 {
3132 	int rc = 0;
3133 
3134 	if (dn->dn_bonustype == DMU_OT_SA) {
3135 		sa_hdr_phys_t *sahdrp = NULL;
3136 		size_t size = 0;
3137 		void *buf = NULL;
3138 		int hdrsize;
3139 		char *p;
3140 
3141 		if (dn->dn_bonuslen != 0)
3142 			sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn);
3143 		else {
3144 			blkptr_t *bp;
3145 
3146 			if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) == 0)
3147 				return (EIO);
3148 			bp = DN_SPILL_BLKPTR(dn);
3149 
3150 			size = BP_GET_LSIZE(bp);
3151 			buf = zfs_alloc(size);
3152 			rc = zio_read(spa, bp, buf);
3153 			if (rc != 0) {
3154 				zfs_free(buf, size);
3155 				return (rc);
3156 			}
3157 			sahdrp = buf;
3158 		}
3159 		hdrsize = SA_HDR_SIZE(sahdrp);
3160 		p = (char *)((uintptr_t)sahdrp + hdrsize + SA_SYMLINK_OFFSET);
3161 		memcpy(path, p, psize);
3162 		if (buf != NULL)
3163 			zfs_free(buf, size);
3164 		return (0);
3165 	}
3166 	/*
3167 	 * Second test is purely to silence bogus compiler
3168 	 * warning about accessing past the end of dn_bonus.
3169 	 */
3170 	if (psize + sizeof(znode_phys_t) <= dn->dn_bonuslen &&
3171 	    sizeof(znode_phys_t) <= sizeof(dn->dn_bonus)) {
3172 		memcpy(path, &dn->dn_bonus[sizeof(znode_phys_t)], psize);
3173 	} else {
3174 		rc = dnode_read(spa, dn, 0, path, psize);
3175 	}
3176 	return (rc);
3177 }
3178 
3179 struct obj_list {
3180 	uint64_t		objnum;
3181 	STAILQ_ENTRY(obj_list)	entry;
3182 };
3183 
3184 /*
3185  * Lookup a file and return its dnode.
3186  */
3187 static int
3188 zfs_lookup(const struct zfsmount *mount, const char *upath, dnode_phys_t *dnode)
3189 {
3190 	int rc;
3191 	uint64_t objnum;
3192 	const spa_t *spa;
3193 	dnode_phys_t dn;
3194 	const char *p, *q;
3195 	char element[256];
3196 	char path[1024];
3197 	int symlinks_followed = 0;
3198 	struct stat sb;
3199 	struct obj_list *entry, *tentry;
3200 	STAILQ_HEAD(, obj_list) on_cache = STAILQ_HEAD_INITIALIZER(on_cache);
3201 
3202 	spa = mount->spa;
3203 	if (mount->objset.os_type != DMU_OST_ZFS) {
3204 		printf("ZFS: unexpected object set type %ju\n",
3205 		    (uintmax_t)mount->objset.os_type);
3206 		return (EIO);
3207 	}
3208 
3209 	if ((entry = malloc(sizeof(struct obj_list))) == NULL)
3210 		return (ENOMEM);
3211 
3212 	/*
3213 	 * Get the root directory dnode.
3214 	 */
3215 	rc = objset_get_dnode(spa, &mount->objset, MASTER_NODE_OBJ, &dn);
3216 	if (rc) {
3217 		free(entry);
3218 		return (rc);
3219 	}
3220 
3221 	rc = zap_lookup(spa, &dn, ZFS_ROOT_OBJ, sizeof (objnum), 1, &objnum);
3222 	if (rc) {
3223 		free(entry);
3224 		return (rc);
3225 	}
3226 	entry->objnum = objnum;
3227 	STAILQ_INSERT_HEAD(&on_cache, entry, entry);
3228 
3229 	rc = objset_get_dnode(spa, &mount->objset, objnum, &dn);
3230 	if (rc != 0)
3231 		goto done;
3232 
3233 	p = upath;
3234 	while (p && *p) {
3235 		rc = objset_get_dnode(spa, &mount->objset, objnum, &dn);
3236 		if (rc != 0)
3237 			goto done;
3238 
3239 		while (*p == '/')
3240 			p++;
3241 		if (*p == '\0')
3242 			break;
3243 		q = p;
3244 		while (*q != '\0' && *q != '/')
3245 			q++;
3246 
3247 		/* skip dot */
3248 		if (p + 1 == q && p[0] == '.') {
3249 			p++;
3250 			continue;
3251 		}
3252 		/* double dot */
3253 		if (p + 2 == q && p[0] == '.' && p[1] == '.') {
3254 			p += 2;
3255 			if (STAILQ_FIRST(&on_cache) ==
3256 			    STAILQ_LAST(&on_cache, obj_list, entry)) {
3257 				rc = ENOENT;
3258 				goto done;
3259 			}
3260 			entry = STAILQ_FIRST(&on_cache);
3261 			STAILQ_REMOVE_HEAD(&on_cache, entry);
3262 			free(entry);
3263 			objnum = (STAILQ_FIRST(&on_cache))->objnum;
3264 			continue;
3265 		}
3266 		if (q - p + 1 > sizeof(element)) {
3267 			rc = ENAMETOOLONG;
3268 			goto done;
3269 		}
3270 		memcpy(element, p, q - p);
3271 		element[q - p] = 0;
3272 		p = q;
3273 
3274 		if ((rc = zfs_dnode_stat(spa, &dn, &sb)) != 0)
3275 			goto done;
3276 		if (!S_ISDIR(sb.st_mode)) {
3277 			rc = ENOTDIR;
3278 			goto done;
3279 		}
3280 
3281 		rc = zap_lookup(spa, &dn, element, sizeof (objnum), 1, &objnum);
3282 		if (rc)
3283 			goto done;
3284 		objnum = ZFS_DIRENT_OBJ(objnum);
3285 
3286 		if ((entry = malloc(sizeof(struct obj_list))) == NULL) {
3287 			rc = ENOMEM;
3288 			goto done;
3289 		}
3290 		entry->objnum = objnum;
3291 		STAILQ_INSERT_HEAD(&on_cache, entry, entry);
3292 		rc = objset_get_dnode(spa, &mount->objset, objnum, &dn);
3293 		if (rc)
3294 			goto done;
3295 
3296 		/*
3297 		 * Check for symlink.
3298 		 */
3299 		rc = zfs_dnode_stat(spa, &dn, &sb);
3300 		if (rc)
3301 			goto done;
3302 		if (S_ISLNK(sb.st_mode)) {
3303 			if (symlinks_followed > 10) {
3304 				rc = EMLINK;
3305 				goto done;
3306 			}
3307 			symlinks_followed++;
3308 
3309 			/*
3310 			 * Read the link value and copy the tail of our
3311 			 * current path onto the end.
3312 			 */
3313 			if (sb.st_size + strlen(p) + 1 > sizeof(path)) {
3314 				rc = ENAMETOOLONG;
3315 				goto done;
3316 			}
3317 			strcpy(&path[sb.st_size], p);
3318 
3319 			rc = zfs_dnode_readlink(spa, &dn, path, sb.st_size);
3320 			if (rc != 0)
3321 				goto done;
3322 
3323 			/*
3324 			 * Restart with the new path, starting either at
3325 			 * the root or at the parent depending whether or
3326 			 * not the link is relative.
3327 			 */
3328 			p = path;
3329 			if (*p == '/') {
3330 				while (STAILQ_FIRST(&on_cache) !=
3331 				    STAILQ_LAST(&on_cache, obj_list, entry)) {
3332 					entry = STAILQ_FIRST(&on_cache);
3333 					STAILQ_REMOVE_HEAD(&on_cache, entry);
3334 					free(entry);
3335 				}
3336 			} else {
3337 				entry = STAILQ_FIRST(&on_cache);
3338 				STAILQ_REMOVE_HEAD(&on_cache, entry);
3339 				free(entry);
3340 			}
3341 			objnum = (STAILQ_FIRST(&on_cache))->objnum;
3342 		}
3343 	}
3344 
3345 	*dnode = dn;
3346 done:
3347 	STAILQ_FOREACH_SAFE(entry, &on_cache, entry, tentry)
3348 		free(entry);
3349 	return (rc);
3350 }
3351