1 /*- 2 * Copyright (c) 2007 Doug Rabson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 /* 31 * Stand-alone ZFS file reader. 32 */ 33 34 #include <sys/endian.h> 35 #include <sys/stat.h> 36 #include <sys/stdint.h> 37 #include <sys/list.h> 38 39 #include "zfsimpl.h" 40 #include "zfssubr.c" 41 42 43 struct zfsmount { 44 const spa_t *spa; 45 objset_phys_t objset; 46 uint64_t rootobj; 47 }; 48 static struct zfsmount zfsmount __unused; 49 50 /* 51 * The indirect_child_t represents the vdev that we will read from, when we 52 * need to read all copies of the data (e.g. for scrub or reconstruction). 53 * For plain (non-mirror) top-level vdevs (i.e. is_vdev is not a mirror), 54 * ic_vdev is the same as is_vdev. However, for mirror top-level vdevs, 55 * ic_vdev is a child of the mirror. 56 */ 57 typedef struct indirect_child { 58 void *ic_data; 59 vdev_t *ic_vdev; 60 } indirect_child_t; 61 62 /* 63 * The indirect_split_t represents one mapped segment of an i/o to the 64 * indirect vdev. For non-split (contiguously-mapped) blocks, there will be 65 * only one indirect_split_t, with is_split_offset==0 and is_size==io_size. 66 * For split blocks, there will be several of these. 67 */ 68 typedef struct indirect_split { 69 list_node_t is_node; /* link on iv_splits */ 70 71 /* 72 * is_split_offset is the offset into the i/o. 73 * This is the sum of the previous splits' is_size's. 74 */ 75 uint64_t is_split_offset; 76 77 vdev_t *is_vdev; /* top-level vdev */ 78 uint64_t is_target_offset; /* offset on is_vdev */ 79 uint64_t is_size; 80 int is_children; /* number of entries in is_child[] */ 81 82 /* 83 * is_good_child is the child that we are currently using to 84 * attempt reconstruction. 85 */ 86 int is_good_child; 87 88 indirect_child_t is_child[1]; /* variable-length */ 89 } indirect_split_t; 90 91 /* 92 * The indirect_vsd_t is associated with each i/o to the indirect vdev. 93 * It is the "Vdev-Specific Data" in the zio_t's io_vsd. 94 */ 95 typedef struct indirect_vsd { 96 boolean_t iv_split_block; 97 boolean_t iv_reconstruct; 98 99 list_t iv_splits; /* list of indirect_split_t's */ 100 } indirect_vsd_t; 101 102 /* 103 * List of all vdevs, chained through v_alllink. 104 */ 105 static vdev_list_t zfs_vdevs; 106 107 /* 108 * List of ZFS features supported for read 109 */ 110 static const char *features_for_read[] = { 111 "org.illumos:lz4_compress", 112 "com.delphix:hole_birth", 113 "com.delphix:extensible_dataset", 114 "com.delphix:embedded_data", 115 "org.open-zfs:large_blocks", 116 "org.illumos:sha512", 117 "org.illumos:skein", 118 "org.zfsonlinux:large_dnode", 119 "com.joyent:multi_vdev_crash_dump", 120 "com.delphix:spacemap_histogram", 121 "com.delphix:zpool_checkpoint", 122 "com.delphix:spacemap_v2", 123 "com.datto:encryption", 124 "org.zfsonlinux:allocation_classes", 125 "com.datto:resilver_defer", 126 "com.delphix:device_removal", 127 "com.delphix:obsolete_counts", 128 NULL 129 }; 130 131 /* 132 * List of all pools, chained through spa_link. 133 */ 134 static spa_list_t zfs_pools; 135 136 static const dnode_phys_t *dnode_cache_obj; 137 static uint64_t dnode_cache_bn; 138 static char *dnode_cache_buf; 139 static char *zap_scratch; 140 static char *zfs_temp_buf, *zfs_temp_end, *zfs_temp_ptr; 141 142 #define TEMP_SIZE (1024 * 1024) 143 144 static int zio_read(const spa_t *spa, const blkptr_t *bp, void *buf); 145 static int zfs_get_root(const spa_t *spa, uint64_t *objid); 146 static int zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result); 147 static int zap_lookup(const spa_t *spa, const dnode_phys_t *dnode, 148 const char *name, uint64_t integer_size, uint64_t num_integers, 149 void *value); 150 static int objset_get_dnode(const spa_t *, const objset_phys_t *, uint64_t, 151 dnode_phys_t *); 152 static int dnode_read(const spa_t *, const dnode_phys_t *, off_t, void *, 153 size_t); 154 static int vdev_indirect_read(vdev_t *, const blkptr_t *, void *, off_t, 155 size_t); 156 static int vdev_mirror_read(vdev_t *, const blkptr_t *, void *, off_t, size_t); 157 vdev_indirect_mapping_t *vdev_indirect_mapping_open(spa_t *, objset_phys_t *, 158 uint64_t); 159 vdev_indirect_mapping_entry_phys_t * 160 vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *, uint64_t, 161 uint64_t, uint64_t *); 162 163 static void 164 zfs_init(void) 165 { 166 STAILQ_INIT(&zfs_vdevs); 167 STAILQ_INIT(&zfs_pools); 168 169 zfs_temp_buf = malloc(TEMP_SIZE); 170 zfs_temp_end = zfs_temp_buf + TEMP_SIZE; 171 zfs_temp_ptr = zfs_temp_buf; 172 dnode_cache_buf = malloc(SPA_MAXBLOCKSIZE); 173 zap_scratch = malloc(SPA_MAXBLOCKSIZE); 174 175 zfs_init_crc(); 176 } 177 178 static void * 179 zfs_alloc(size_t size) 180 { 181 char *ptr; 182 183 if (zfs_temp_ptr + size > zfs_temp_end) { 184 panic("ZFS: out of temporary buffer space"); 185 } 186 ptr = zfs_temp_ptr; 187 zfs_temp_ptr += size; 188 189 return (ptr); 190 } 191 192 static void 193 zfs_free(void *ptr, size_t size) 194 { 195 196 zfs_temp_ptr -= size; 197 if (zfs_temp_ptr != ptr) { 198 panic("ZFS: zfs_alloc()/zfs_free() mismatch"); 199 } 200 } 201 202 static int 203 xdr_int(const unsigned char **xdr, int *ip) 204 { 205 *ip = be32dec(*xdr); 206 (*xdr) += 4; 207 return (0); 208 } 209 210 static int 211 xdr_u_int(const unsigned char **xdr, u_int *ip) 212 { 213 *ip = be32dec(*xdr); 214 (*xdr) += 4; 215 return (0); 216 } 217 218 static int 219 xdr_uint64_t(const unsigned char **xdr, uint64_t *lp) 220 { 221 u_int hi, lo; 222 223 xdr_u_int(xdr, &hi); 224 xdr_u_int(xdr, &lo); 225 *lp = (((uint64_t) hi) << 32) | lo; 226 return (0); 227 } 228 229 static int 230 nvlist_find(const unsigned char *nvlist, const char *name, int type, 231 int *elementsp, void *valuep) 232 { 233 const unsigned char *p, *pair; 234 int junk; 235 int encoded_size, decoded_size; 236 237 p = nvlist; 238 xdr_int(&p, &junk); 239 xdr_int(&p, &junk); 240 241 pair = p; 242 xdr_int(&p, &encoded_size); 243 xdr_int(&p, &decoded_size); 244 while (encoded_size && decoded_size) { 245 int namelen, pairtype, elements; 246 const char *pairname; 247 248 xdr_int(&p, &namelen); 249 pairname = (const char*) p; 250 p += roundup(namelen, 4); 251 xdr_int(&p, &pairtype); 252 253 if (!memcmp(name, pairname, namelen) && type == pairtype) { 254 xdr_int(&p, &elements); 255 if (elementsp) 256 *elementsp = elements; 257 if (type == DATA_TYPE_UINT64) { 258 xdr_uint64_t(&p, (uint64_t *) valuep); 259 return (0); 260 } else if (type == DATA_TYPE_STRING) { 261 int len; 262 xdr_int(&p, &len); 263 (*(const char**) valuep) = (const char*) p; 264 return (0); 265 } else if (type == DATA_TYPE_NVLIST 266 || type == DATA_TYPE_NVLIST_ARRAY) { 267 (*(const unsigned char**) valuep) = 268 (const unsigned char*) p; 269 return (0); 270 } else { 271 return (EIO); 272 } 273 } else { 274 /* 275 * Not the pair we are looking for, skip to the next one. 276 */ 277 p = pair + encoded_size; 278 } 279 280 pair = p; 281 xdr_int(&p, &encoded_size); 282 xdr_int(&p, &decoded_size); 283 } 284 285 return (EIO); 286 } 287 288 static int 289 nvlist_check_features_for_read(const unsigned char *nvlist) 290 { 291 const unsigned char *p, *pair; 292 int junk; 293 int encoded_size, decoded_size; 294 int rc; 295 296 rc = 0; 297 298 p = nvlist; 299 xdr_int(&p, &junk); 300 xdr_int(&p, &junk); 301 302 pair = p; 303 xdr_int(&p, &encoded_size); 304 xdr_int(&p, &decoded_size); 305 while (encoded_size && decoded_size) { 306 int namelen, pairtype; 307 const char *pairname; 308 int i, found; 309 310 found = 0; 311 312 xdr_int(&p, &namelen); 313 pairname = (const char*) p; 314 p += roundup(namelen, 4); 315 xdr_int(&p, &pairtype); 316 317 for (i = 0; features_for_read[i] != NULL; i++) { 318 if (!memcmp(pairname, features_for_read[i], namelen)) { 319 found = 1; 320 break; 321 } 322 } 323 324 if (!found) { 325 printf("ZFS: unsupported feature: %s\n", pairname); 326 rc = EIO; 327 } 328 329 p = pair + encoded_size; 330 331 pair = p; 332 xdr_int(&p, &encoded_size); 333 xdr_int(&p, &decoded_size); 334 } 335 336 return (rc); 337 } 338 339 /* 340 * Return the next nvlist in an nvlist array. 341 */ 342 static const unsigned char * 343 nvlist_next(const unsigned char *nvlist) 344 { 345 const unsigned char *p, *pair; 346 int junk; 347 int encoded_size, decoded_size; 348 349 p = nvlist; 350 xdr_int(&p, &junk); 351 xdr_int(&p, &junk); 352 353 pair = p; 354 xdr_int(&p, &encoded_size); 355 xdr_int(&p, &decoded_size); 356 while (encoded_size && decoded_size) { 357 p = pair + encoded_size; 358 359 pair = p; 360 xdr_int(&p, &encoded_size); 361 xdr_int(&p, &decoded_size); 362 } 363 364 return p; 365 } 366 367 #ifdef TEST 368 369 static const unsigned char * 370 nvlist_print(const unsigned char *nvlist, unsigned int indent) 371 { 372 static const char* typenames[] = { 373 "DATA_TYPE_UNKNOWN", 374 "DATA_TYPE_BOOLEAN", 375 "DATA_TYPE_BYTE", 376 "DATA_TYPE_INT16", 377 "DATA_TYPE_UINT16", 378 "DATA_TYPE_INT32", 379 "DATA_TYPE_UINT32", 380 "DATA_TYPE_INT64", 381 "DATA_TYPE_UINT64", 382 "DATA_TYPE_STRING", 383 "DATA_TYPE_BYTE_ARRAY", 384 "DATA_TYPE_INT16_ARRAY", 385 "DATA_TYPE_UINT16_ARRAY", 386 "DATA_TYPE_INT32_ARRAY", 387 "DATA_TYPE_UINT32_ARRAY", 388 "DATA_TYPE_INT64_ARRAY", 389 "DATA_TYPE_UINT64_ARRAY", 390 "DATA_TYPE_STRING_ARRAY", 391 "DATA_TYPE_HRTIME", 392 "DATA_TYPE_NVLIST", 393 "DATA_TYPE_NVLIST_ARRAY", 394 "DATA_TYPE_BOOLEAN_VALUE", 395 "DATA_TYPE_INT8", 396 "DATA_TYPE_UINT8", 397 "DATA_TYPE_BOOLEAN_ARRAY", 398 "DATA_TYPE_INT8_ARRAY", 399 "DATA_TYPE_UINT8_ARRAY" 400 }; 401 402 unsigned int i, j; 403 const unsigned char *p, *pair; 404 int junk; 405 int encoded_size, decoded_size; 406 407 p = nvlist; 408 xdr_int(&p, &junk); 409 xdr_int(&p, &junk); 410 411 pair = p; 412 xdr_int(&p, &encoded_size); 413 xdr_int(&p, &decoded_size); 414 while (encoded_size && decoded_size) { 415 int namelen, pairtype, elements; 416 const char *pairname; 417 418 xdr_int(&p, &namelen); 419 pairname = (const char*) p; 420 p += roundup(namelen, 4); 421 xdr_int(&p, &pairtype); 422 423 for (i = 0; i < indent; i++) 424 printf(" "); 425 printf("%s %s", typenames[pairtype], pairname); 426 427 xdr_int(&p, &elements); 428 switch (pairtype) { 429 case DATA_TYPE_UINT64: { 430 uint64_t val; 431 xdr_uint64_t(&p, &val); 432 printf(" = 0x%jx\n", (uintmax_t)val); 433 break; 434 } 435 436 case DATA_TYPE_STRING: { 437 int len; 438 xdr_int(&p, &len); 439 printf(" = \"%s\"\n", p); 440 break; 441 } 442 443 case DATA_TYPE_NVLIST: 444 printf("\n"); 445 nvlist_print(p, indent + 1); 446 break; 447 448 case DATA_TYPE_NVLIST_ARRAY: 449 for (j = 0; j < elements; j++) { 450 printf("[%d]\n", j); 451 p = nvlist_print(p, indent + 1); 452 if (j != elements - 1) { 453 for (i = 0; i < indent; i++) 454 printf(" "); 455 printf("%s %s", typenames[pairtype], pairname); 456 } 457 } 458 break; 459 460 default: 461 printf("\n"); 462 } 463 464 p = pair + encoded_size; 465 466 pair = p; 467 xdr_int(&p, &encoded_size); 468 xdr_int(&p, &decoded_size); 469 } 470 471 return p; 472 } 473 474 #endif 475 476 static int 477 vdev_read_phys(vdev_t *vdev, const blkptr_t *bp, void *buf, 478 off_t offset, size_t size) 479 { 480 size_t psize; 481 int rc; 482 483 if (!vdev->v_phys_read) 484 return (EIO); 485 486 if (bp) { 487 psize = BP_GET_PSIZE(bp); 488 } else { 489 psize = size; 490 } 491 492 /*printf("ZFS: reading %zu bytes at 0x%jx to %p\n", psize, (uintmax_t)offset, buf);*/ 493 rc = vdev->v_phys_read(vdev, vdev->v_read_priv, offset, buf, psize); 494 if (rc) 495 return (rc); 496 if (bp != NULL) 497 return (zio_checksum_verify(vdev->spa, bp, buf)); 498 499 return (0); 500 } 501 502 typedef struct remap_segment { 503 vdev_t *rs_vd; 504 uint64_t rs_offset; 505 uint64_t rs_asize; 506 uint64_t rs_split_offset; 507 list_node_t rs_node; 508 } remap_segment_t; 509 510 static remap_segment_t * 511 rs_alloc(vdev_t *vd, uint64_t offset, uint64_t asize, uint64_t split_offset) 512 { 513 remap_segment_t *rs = malloc(sizeof (remap_segment_t)); 514 515 if (rs != NULL) { 516 rs->rs_vd = vd; 517 rs->rs_offset = offset; 518 rs->rs_asize = asize; 519 rs->rs_split_offset = split_offset; 520 } 521 522 return (rs); 523 } 524 525 vdev_indirect_mapping_t * 526 vdev_indirect_mapping_open(spa_t *spa, objset_phys_t *os, 527 uint64_t mapping_object) 528 { 529 vdev_indirect_mapping_t *vim; 530 vdev_indirect_mapping_phys_t *vim_phys; 531 int rc; 532 533 vim = calloc(1, sizeof (*vim)); 534 if (vim == NULL) 535 return (NULL); 536 537 vim->vim_dn = calloc(1, sizeof (*vim->vim_dn)); 538 if (vim->vim_dn == NULL) { 539 free(vim); 540 return (NULL); 541 } 542 543 rc = objset_get_dnode(spa, os, mapping_object, vim->vim_dn); 544 if (rc != 0) { 545 free(vim->vim_dn); 546 free(vim); 547 return (NULL); 548 } 549 550 vim->vim_spa = spa; 551 vim->vim_phys = malloc(sizeof (*vim->vim_phys)); 552 if (vim->vim_phys == NULL) { 553 free(vim->vim_dn); 554 free(vim); 555 return (NULL); 556 } 557 558 vim_phys = (vdev_indirect_mapping_phys_t *)DN_BONUS(vim->vim_dn); 559 *vim->vim_phys = *vim_phys; 560 561 vim->vim_objset = os; 562 vim->vim_object = mapping_object; 563 vim->vim_entries = NULL; 564 565 vim->vim_havecounts = 566 (vim->vim_dn->dn_bonuslen > VDEV_INDIRECT_MAPPING_SIZE_V0); 567 return (vim); 568 } 569 570 /* 571 * Compare an offset with an indirect mapping entry; there are three 572 * possible scenarios: 573 * 574 * 1. The offset is "less than" the mapping entry; meaning the 575 * offset is less than the source offset of the mapping entry. In 576 * this case, there is no overlap between the offset and the 577 * mapping entry and -1 will be returned. 578 * 579 * 2. The offset is "greater than" the mapping entry; meaning the 580 * offset is greater than the mapping entry's source offset plus 581 * the entry's size. In this case, there is no overlap between 582 * the offset and the mapping entry and 1 will be returned. 583 * 584 * NOTE: If the offset is actually equal to the entry's offset 585 * plus size, this is considered to be "greater" than the entry, 586 * and this case applies (i.e. 1 will be returned). Thus, the 587 * entry's "range" can be considered to be inclusive at its 588 * start, but exclusive at its end: e.g. [src, src + size). 589 * 590 * 3. The last case to consider is if the offset actually falls 591 * within the mapping entry's range. If this is the case, the 592 * offset is considered to be "equal to" the mapping entry and 593 * 0 will be returned. 594 * 595 * NOTE: If the offset is equal to the entry's source offset, 596 * this case applies and 0 will be returned. If the offset is 597 * equal to the entry's source plus its size, this case does 598 * *not* apply (see "NOTE" above for scenario 2), and 1 will be 599 * returned. 600 */ 601 static int 602 dva_mapping_overlap_compare(const void *v_key, const void *v_array_elem) 603 { 604 const uint64_t *key = v_key; 605 const vdev_indirect_mapping_entry_phys_t *array_elem = 606 v_array_elem; 607 uint64_t src_offset = DVA_MAPPING_GET_SRC_OFFSET(array_elem); 608 609 if (*key < src_offset) { 610 return (-1); 611 } else if (*key < src_offset + DVA_GET_ASIZE(&array_elem->vimep_dst)) { 612 return (0); 613 } else { 614 return (1); 615 } 616 } 617 618 /* 619 * Return array entry. 620 */ 621 static vdev_indirect_mapping_entry_phys_t * 622 vdev_indirect_mapping_entry(vdev_indirect_mapping_t *vim, uint64_t index) 623 { 624 uint64_t size; 625 off_t offset = 0; 626 int rc; 627 628 if (vim->vim_phys->vimp_num_entries == 0) 629 return (NULL); 630 631 if (vim->vim_entries == NULL) { 632 uint64_t bsize; 633 634 bsize = vim->vim_dn->dn_datablkszsec << SPA_MINBLOCKSHIFT; 635 size = vim->vim_phys->vimp_num_entries * 636 sizeof (*vim->vim_entries); 637 if (size > bsize) { 638 size = bsize / sizeof (*vim->vim_entries); 639 size *= sizeof (*vim->vim_entries); 640 } 641 vim->vim_entries = malloc(size); 642 if (vim->vim_entries == NULL) 643 return (NULL); 644 vim->vim_num_entries = size / sizeof (*vim->vim_entries); 645 offset = index * sizeof (*vim->vim_entries); 646 } 647 648 /* We have data in vim_entries */ 649 if (offset == 0) { 650 if (index >= vim->vim_entry_offset && 651 index <= vim->vim_entry_offset + vim->vim_num_entries) { 652 index -= vim->vim_entry_offset; 653 return (&vim->vim_entries[index]); 654 } 655 offset = index * sizeof (*vim->vim_entries); 656 } 657 658 vim->vim_entry_offset = index; 659 size = vim->vim_num_entries * sizeof (*vim->vim_entries); 660 rc = dnode_read(vim->vim_spa, vim->vim_dn, offset, vim->vim_entries, 661 size); 662 if (rc != 0) { 663 /* Read error, invalidate vim_entries. */ 664 free(vim->vim_entries); 665 vim->vim_entries = NULL; 666 return (NULL); 667 } 668 index -= vim->vim_entry_offset; 669 return (&vim->vim_entries[index]); 670 } 671 672 /* 673 * Returns the mapping entry for the given offset. 674 * 675 * It's possible that the given offset will not be in the mapping table 676 * (i.e. no mapping entries contain this offset), in which case, the 677 * return value value depends on the "next_if_missing" parameter. 678 * 679 * If the offset is not found in the table and "next_if_missing" is 680 * B_FALSE, then NULL will always be returned. The behavior is intended 681 * to allow consumers to get the entry corresponding to the offset 682 * parameter, iff the offset overlaps with an entry in the table. 683 * 684 * If the offset is not found in the table and "next_if_missing" is 685 * B_TRUE, then the entry nearest to the given offset will be returned, 686 * such that the entry's source offset is greater than the offset 687 * passed in (i.e. the "next" mapping entry in the table is returned, if 688 * the offset is missing from the table). If there are no entries whose 689 * source offset is greater than the passed in offset, NULL is returned. 690 */ 691 static vdev_indirect_mapping_entry_phys_t * 692 vdev_indirect_mapping_entry_for_offset(vdev_indirect_mapping_t *vim, 693 uint64_t offset) 694 { 695 ASSERT(vim->vim_phys->vimp_num_entries > 0); 696 697 vdev_indirect_mapping_entry_phys_t *entry; 698 699 uint64_t last = vim->vim_phys->vimp_num_entries - 1; 700 uint64_t base = 0; 701 702 /* 703 * We don't define these inside of the while loop because we use 704 * their value in the case that offset isn't in the mapping. 705 */ 706 uint64_t mid; 707 int result; 708 709 while (last >= base) { 710 mid = base + ((last - base) >> 1); 711 712 entry = vdev_indirect_mapping_entry(vim, mid); 713 if (entry == NULL) 714 break; 715 result = dva_mapping_overlap_compare(&offset, entry); 716 717 if (result == 0) { 718 break; 719 } else if (result < 0) { 720 last = mid - 1; 721 } else { 722 base = mid + 1; 723 } 724 } 725 return (entry); 726 } 727 728 /* 729 * Given an indirect vdev and an extent on that vdev, it duplicates the 730 * physical entries of the indirect mapping that correspond to the extent 731 * to a new array and returns a pointer to it. In addition, copied_entries 732 * is populated with the number of mapping entries that were duplicated. 733 * 734 * Finally, since we are doing an allocation, it is up to the caller to 735 * free the array allocated in this function. 736 */ 737 vdev_indirect_mapping_entry_phys_t * 738 vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *vd, uint64_t offset, 739 uint64_t asize, uint64_t *copied_entries) 740 { 741 vdev_indirect_mapping_entry_phys_t *duplicate_mappings = NULL; 742 vdev_indirect_mapping_t *vim = vd->v_mapping; 743 uint64_t entries = 0; 744 745 vdev_indirect_mapping_entry_phys_t *first_mapping = 746 vdev_indirect_mapping_entry_for_offset(vim, offset); 747 ASSERT3P(first_mapping, !=, NULL); 748 749 vdev_indirect_mapping_entry_phys_t *m = first_mapping; 750 while (asize > 0) { 751 uint64_t size = DVA_GET_ASIZE(&m->vimep_dst); 752 uint64_t inner_offset = offset - DVA_MAPPING_GET_SRC_OFFSET(m); 753 uint64_t inner_size = MIN(asize, size - inner_offset); 754 755 offset += inner_size; 756 asize -= inner_size; 757 entries++; 758 m++; 759 } 760 761 size_t copy_length = entries * sizeof (*first_mapping); 762 duplicate_mappings = malloc(copy_length); 763 if (duplicate_mappings != NULL) 764 bcopy(first_mapping, duplicate_mappings, copy_length); 765 else 766 entries = 0; 767 768 *copied_entries = entries; 769 770 return (duplicate_mappings); 771 } 772 773 static vdev_t * 774 vdev_lookup_top(spa_t *spa, uint64_t vdev) 775 { 776 vdev_t *rvd; 777 778 STAILQ_FOREACH(rvd, &spa->spa_vdevs, v_childlink) 779 if (rvd->v_id == vdev) 780 break; 781 782 return (rvd); 783 } 784 785 /* 786 * This is a callback for vdev_indirect_remap() which allocates an 787 * indirect_split_t for each split segment and adds it to iv_splits. 788 */ 789 static void 790 vdev_indirect_gather_splits(uint64_t split_offset, vdev_t *vd, uint64_t offset, 791 uint64_t size, void *arg) 792 { 793 int n = 1; 794 zio_t *zio = arg; 795 indirect_vsd_t *iv = zio->io_vsd; 796 797 if (vd->v_read == vdev_indirect_read) 798 return; 799 800 if (vd->v_read == vdev_mirror_read) 801 n = vd->v_nchildren; 802 803 indirect_split_t *is = 804 malloc(offsetof(indirect_split_t, is_child[n])); 805 if (is == NULL) { 806 zio->io_error = ENOMEM; 807 return; 808 } 809 bzero(is, offsetof(indirect_split_t, is_child[n])); 810 811 is->is_children = n; 812 is->is_size = size; 813 is->is_split_offset = split_offset; 814 is->is_target_offset = offset; 815 is->is_vdev = vd; 816 817 /* 818 * Note that we only consider multiple copies of the data for 819 * *mirror* vdevs. We don't for "replacing" or "spare" vdevs, even 820 * though they use the same ops as mirror, because there's only one 821 * "good" copy under the replacing/spare. 822 */ 823 if (vd->v_read == vdev_mirror_read) { 824 int i = 0; 825 vdev_t *kid; 826 827 STAILQ_FOREACH(kid, &vd->v_children, v_childlink) { 828 is->is_child[i++].ic_vdev = kid; 829 } 830 } else { 831 is->is_child[0].ic_vdev = vd; 832 } 833 834 list_insert_tail(&iv->iv_splits, is); 835 } 836 837 static void 838 vdev_indirect_remap(vdev_t *vd, uint64_t offset, uint64_t asize, void *arg) 839 { 840 list_t stack; 841 spa_t *spa = vd->spa; 842 zio_t *zio = arg; 843 remap_segment_t *rs; 844 845 list_create(&stack, sizeof (remap_segment_t), 846 offsetof(remap_segment_t, rs_node)); 847 848 rs = rs_alloc(vd, offset, asize, 0); 849 if (rs == NULL) { 850 printf("vdev_indirect_remap: out of memory.\n"); 851 zio->io_error = ENOMEM; 852 } 853 for ( ; rs != NULL; rs = list_remove_head(&stack)) { 854 vdev_t *v = rs->rs_vd; 855 uint64_t num_entries = 0; 856 /* vdev_indirect_mapping_t *vim = v->v_mapping; */ 857 vdev_indirect_mapping_entry_phys_t *mapping = 858 vdev_indirect_mapping_duplicate_adjacent_entries(v, 859 rs->rs_offset, rs->rs_asize, &num_entries); 860 861 if (num_entries == 0) 862 zio->io_error = ENOMEM; 863 864 for (uint64_t i = 0; i < num_entries; i++) { 865 vdev_indirect_mapping_entry_phys_t *m = &mapping[i]; 866 uint64_t size = DVA_GET_ASIZE(&m->vimep_dst); 867 uint64_t dst_offset = DVA_GET_OFFSET(&m->vimep_dst); 868 uint64_t dst_vdev = DVA_GET_VDEV(&m->vimep_dst); 869 uint64_t inner_offset = rs->rs_offset - 870 DVA_MAPPING_GET_SRC_OFFSET(m); 871 uint64_t inner_size = 872 MIN(rs->rs_asize, size - inner_offset); 873 vdev_t *dst_v = vdev_lookup_top(spa, dst_vdev); 874 875 if (dst_v->v_read == vdev_indirect_read) { 876 remap_segment_t *o; 877 878 o = rs_alloc(dst_v, dst_offset + inner_offset, 879 inner_size, rs->rs_split_offset); 880 if (o == NULL) { 881 printf("vdev_indirect_remap: " 882 "out of memory.\n"); 883 zio->io_error = ENOMEM; 884 break; 885 } 886 887 list_insert_head(&stack, o); 888 } 889 vdev_indirect_gather_splits(rs->rs_split_offset, dst_v, 890 dst_offset + inner_offset, 891 inner_size, arg); 892 893 /* 894 * vdev_indirect_gather_splits can have memory 895 * allocation error, we can not recover from it. 896 */ 897 if (zio->io_error != 0) 898 break; 899 900 rs->rs_offset += inner_size; 901 rs->rs_asize -= inner_size; 902 rs->rs_split_offset += inner_size; 903 } 904 905 free(mapping); 906 free(rs); 907 if (zio->io_error != 0) 908 break; 909 } 910 911 list_destroy(&stack); 912 } 913 914 static void 915 vdev_indirect_map_free(zio_t *zio) 916 { 917 indirect_vsd_t *iv = zio->io_vsd; 918 indirect_split_t *is; 919 920 while ((is = list_head(&iv->iv_splits)) != NULL) { 921 for (int c = 0; c < is->is_children; c++) { 922 indirect_child_t *ic = &is->is_child[c]; 923 free(ic->ic_data); 924 } 925 list_remove(&iv->iv_splits, is); 926 free(is); 927 } 928 free(iv); 929 } 930 931 static int 932 vdev_indirect_read(vdev_t *vdev, const blkptr_t *bp, void *buf, 933 off_t offset, size_t bytes) 934 { 935 zio_t zio = { 0 }; 936 spa_t *spa = vdev->spa; 937 indirect_vsd_t *iv = malloc(sizeof (*iv)); 938 indirect_split_t *first; 939 int rc = EIO; 940 941 if (iv == NULL) 942 return (ENOMEM); 943 bzero(iv, sizeof (*iv)); 944 945 list_create(&iv->iv_splits, 946 sizeof (indirect_split_t), offsetof(indirect_split_t, is_node)); 947 948 zio.io_spa = spa; 949 zio.io_bp = (blkptr_t *)bp; 950 zio.io_data = buf; 951 zio.io_size = bytes; 952 zio.io_offset = offset; 953 zio.io_vd = vdev; 954 zio.io_vsd = iv; 955 956 if (vdev->v_mapping == NULL) { 957 vdev_indirect_config_t *vic; 958 959 vic = &vdev->vdev_indirect_config; 960 vdev->v_mapping = vdev_indirect_mapping_open(spa, 961 &spa->spa_mos, vic->vic_mapping_object); 962 } 963 964 vdev_indirect_remap(vdev, offset, bytes, &zio); 965 if (zio.io_error != 0) 966 return (zio.io_error); 967 968 first = list_head(&iv->iv_splits); 969 if (first->is_size == zio.io_size) { 970 /* 971 * This is not a split block; we are pointing to the entire 972 * data, which will checksum the same as the original data. 973 * Pass the BP down so that the child i/o can verify the 974 * checksum, and try a different location if available 975 * (e.g. on a mirror). 976 * 977 * While this special case could be handled the same as the 978 * general (split block) case, doing it this way ensures 979 * that the vast majority of blocks on indirect vdevs 980 * (which are not split) are handled identically to blocks 981 * on non-indirect vdevs. This allows us to be less strict 982 * about performance in the general (but rare) case. 983 */ 984 rc = first->is_vdev->v_read(first->is_vdev, zio.io_bp, 985 zio.io_data, first->is_target_offset, bytes); 986 } else { 987 iv->iv_split_block = B_TRUE; 988 /* 989 * Read one copy of each split segment, from the 990 * top-level vdev. Since we don't know the 991 * checksum of each split individually, the child 992 * zio can't ensure that we get the right data. 993 * E.g. if it's a mirror, it will just read from a 994 * random (healthy) leaf vdev. We have to verify 995 * the checksum in vdev_indirect_io_done(). 996 */ 997 for (indirect_split_t *is = list_head(&iv->iv_splits); 998 is != NULL; is = list_next(&iv->iv_splits, is)) { 999 char *ptr = zio.io_data; 1000 1001 rc = is->is_vdev->v_read(is->is_vdev, zio.io_bp, 1002 ptr + is->is_split_offset, is->is_target_offset, 1003 is->is_size); 1004 } 1005 if (zio_checksum_verify(spa, zio.io_bp, zio.io_data)) 1006 rc = ECKSUM; 1007 else 1008 rc = 0; 1009 } 1010 1011 vdev_indirect_map_free(&zio); 1012 if (rc == 0) 1013 rc = zio.io_error; 1014 1015 return (rc); 1016 } 1017 1018 static int 1019 vdev_disk_read(vdev_t *vdev, const blkptr_t *bp, void *buf, 1020 off_t offset, size_t bytes) 1021 { 1022 1023 return (vdev_read_phys(vdev, bp, buf, 1024 offset + VDEV_LABEL_START_SIZE, bytes)); 1025 } 1026 1027 1028 static int 1029 vdev_mirror_read(vdev_t *vdev, const blkptr_t *bp, void *buf, 1030 off_t offset, size_t bytes) 1031 { 1032 vdev_t *kid; 1033 int rc; 1034 1035 rc = EIO; 1036 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) { 1037 if (kid->v_state != VDEV_STATE_HEALTHY) 1038 continue; 1039 rc = kid->v_read(kid, bp, buf, offset, bytes); 1040 if (!rc) 1041 return (0); 1042 } 1043 1044 return (rc); 1045 } 1046 1047 static int 1048 vdev_replacing_read(vdev_t *vdev, const blkptr_t *bp, void *buf, 1049 off_t offset, size_t bytes) 1050 { 1051 vdev_t *kid; 1052 1053 /* 1054 * Here we should have two kids: 1055 * First one which is the one we are replacing and we can trust 1056 * only this one to have valid data, but it might not be present. 1057 * Second one is that one we are replacing with. It is most likely 1058 * healthy, but we can't trust it has needed data, so we won't use it. 1059 */ 1060 kid = STAILQ_FIRST(&vdev->v_children); 1061 if (kid == NULL) 1062 return (EIO); 1063 if (kid->v_state != VDEV_STATE_HEALTHY) 1064 return (EIO); 1065 return (kid->v_read(kid, bp, buf, offset, bytes)); 1066 } 1067 1068 static vdev_t * 1069 vdev_find(uint64_t guid) 1070 { 1071 vdev_t *vdev; 1072 1073 STAILQ_FOREACH(vdev, &zfs_vdevs, v_alllink) 1074 if (vdev->v_guid == guid) 1075 return (vdev); 1076 1077 return (0); 1078 } 1079 1080 static vdev_t * 1081 vdev_create(uint64_t guid, vdev_read_t *_read) 1082 { 1083 vdev_t *vdev; 1084 vdev_indirect_config_t *vic; 1085 1086 vdev = malloc(sizeof(vdev_t)); 1087 memset(vdev, 0, sizeof(vdev_t)); 1088 STAILQ_INIT(&vdev->v_children); 1089 vdev->v_guid = guid; 1090 vdev->v_state = VDEV_STATE_OFFLINE; 1091 vdev->v_read = _read; 1092 1093 vic = &vdev->vdev_indirect_config; 1094 vic->vic_prev_indirect_vdev = UINT64_MAX; 1095 STAILQ_INSERT_TAIL(&zfs_vdevs, vdev, v_alllink); 1096 1097 return (vdev); 1098 } 1099 1100 static int 1101 vdev_init_from_nvlist(const unsigned char *nvlist, vdev_t *pvdev, 1102 vdev_t **vdevp, int is_newer) 1103 { 1104 int rc; 1105 uint64_t guid, id, ashift, asize, nparity; 1106 const char *type; 1107 const char *path; 1108 vdev_t *vdev, *kid; 1109 const unsigned char *kids; 1110 int nkids, i, is_new; 1111 uint64_t is_offline, is_faulted, is_degraded, is_removed, isnt_present; 1112 uint64_t is_log; 1113 1114 if (nvlist_find(nvlist, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64, 1115 NULL, &guid) 1116 || nvlist_find(nvlist, ZPOOL_CONFIG_ID, DATA_TYPE_UINT64, NULL, &id) 1117 || nvlist_find(nvlist, ZPOOL_CONFIG_TYPE, DATA_TYPE_STRING, 1118 NULL, &type)) { 1119 printf("ZFS: can't find vdev details\n"); 1120 return (ENOENT); 1121 } 1122 1123 if (strcmp(type, VDEV_TYPE_MIRROR) 1124 && strcmp(type, VDEV_TYPE_DISK) 1125 #ifdef ZFS_TEST 1126 && strcmp(type, VDEV_TYPE_FILE) 1127 #endif 1128 && strcmp(type, VDEV_TYPE_RAIDZ) 1129 && strcmp(type, VDEV_TYPE_INDIRECT) 1130 && strcmp(type, VDEV_TYPE_REPLACING)) { 1131 printf("ZFS: can only boot from disk, mirror, raidz1, raidz2 and raidz3 vdevs\n"); 1132 return (EIO); 1133 } 1134 1135 is_offline = is_removed = is_faulted = is_degraded = isnt_present = 0; 1136 is_log = 0; 1137 1138 nvlist_find(nvlist, ZPOOL_CONFIG_OFFLINE, DATA_TYPE_UINT64, NULL, 1139 &is_offline); 1140 nvlist_find(nvlist, ZPOOL_CONFIG_REMOVED, DATA_TYPE_UINT64, NULL, 1141 &is_removed); 1142 nvlist_find(nvlist, ZPOOL_CONFIG_FAULTED, DATA_TYPE_UINT64, NULL, 1143 &is_faulted); 1144 nvlist_find(nvlist, ZPOOL_CONFIG_DEGRADED, DATA_TYPE_UINT64, NULL, 1145 &is_degraded); 1146 nvlist_find(nvlist, ZPOOL_CONFIG_NOT_PRESENT, DATA_TYPE_UINT64, NULL, 1147 &isnt_present); 1148 nvlist_find(nvlist, ZPOOL_CONFIG_IS_LOG, DATA_TYPE_UINT64, NULL, 1149 &is_log); 1150 1151 vdev = vdev_find(guid); 1152 if (!vdev) { 1153 is_new = 1; 1154 1155 if (!strcmp(type, VDEV_TYPE_MIRROR)) 1156 vdev = vdev_create(guid, vdev_mirror_read); 1157 else if (!strcmp(type, VDEV_TYPE_RAIDZ)) 1158 vdev = vdev_create(guid, vdev_raidz_read); 1159 else if (!strcmp(type, VDEV_TYPE_REPLACING)) 1160 vdev = vdev_create(guid, vdev_replacing_read); 1161 else if (!strcmp(type, VDEV_TYPE_INDIRECT)) { 1162 vdev_indirect_config_t *vic; 1163 1164 vdev = vdev_create(guid, vdev_indirect_read); 1165 vdev->v_state = VDEV_STATE_HEALTHY; 1166 vic = &vdev->vdev_indirect_config; 1167 1168 nvlist_find(nvlist, 1169 ZPOOL_CONFIG_INDIRECT_OBJECT, DATA_TYPE_UINT64, 1170 NULL, &vic->vic_mapping_object); 1171 nvlist_find(nvlist, 1172 ZPOOL_CONFIG_INDIRECT_BIRTHS, DATA_TYPE_UINT64, 1173 NULL, &vic->vic_births_object); 1174 nvlist_find(nvlist, 1175 ZPOOL_CONFIG_PREV_INDIRECT_VDEV, DATA_TYPE_UINT64, 1176 NULL, &vic->vic_prev_indirect_vdev); 1177 } else 1178 vdev = vdev_create(guid, vdev_disk_read); 1179 1180 vdev->v_id = id; 1181 vdev->v_top = pvdev != NULL ? pvdev : vdev; 1182 if (nvlist_find(nvlist, ZPOOL_CONFIG_ASHIFT, 1183 DATA_TYPE_UINT64, NULL, &ashift) == 0) { 1184 vdev->v_ashift = ashift; 1185 } else { 1186 vdev->v_ashift = 0; 1187 } 1188 if (nvlist_find(nvlist, ZPOOL_CONFIG_ASIZE, 1189 DATA_TYPE_UINT64, NULL, &asize) == 0) { 1190 vdev->v_psize = asize + 1191 VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; 1192 } 1193 if (nvlist_find(nvlist, ZPOOL_CONFIG_NPARITY, 1194 DATA_TYPE_UINT64, NULL, &nparity) == 0) { 1195 vdev->v_nparity = nparity; 1196 } else { 1197 vdev->v_nparity = 0; 1198 } 1199 if (nvlist_find(nvlist, ZPOOL_CONFIG_PATH, 1200 DATA_TYPE_STRING, NULL, &path) == 0) { 1201 if (strncmp(path, "/dev/", 5) == 0) 1202 path += 5; 1203 vdev->v_name = strdup(path); 1204 } else { 1205 char *name; 1206 1207 if (!strcmp(type, "raidz")) { 1208 if (vdev->v_nparity < 1 || 1209 vdev->v_nparity > 3) { 1210 printf("ZFS: can only boot from disk, " 1211 "mirror, raidz1, raidz2 and raidz3 " 1212 "vdevs\n"); 1213 return (EIO); 1214 } 1215 asprintf(&name, "%s%d-%jd", type, 1216 vdev->v_nparity, id); 1217 } else { 1218 asprintf(&name, "%s-%jd", type, id); 1219 } 1220 if (name == NULL) 1221 return (ENOMEM); 1222 vdev->v_name = name; 1223 } 1224 vdev->v_islog = is_log == 1; 1225 } else { 1226 is_new = 0; 1227 } 1228 1229 if (is_new || is_newer) { 1230 /* 1231 * This is either new vdev or we've already seen this vdev, 1232 * but from an older vdev label, so let's refresh its state 1233 * from the newer label. 1234 */ 1235 if (is_offline) 1236 vdev->v_state = VDEV_STATE_OFFLINE; 1237 else if (is_removed) 1238 vdev->v_state = VDEV_STATE_REMOVED; 1239 else if (is_faulted) 1240 vdev->v_state = VDEV_STATE_FAULTED; 1241 else if (is_degraded) 1242 vdev->v_state = VDEV_STATE_DEGRADED; 1243 else if (isnt_present) 1244 vdev->v_state = VDEV_STATE_CANT_OPEN; 1245 } 1246 1247 rc = nvlist_find(nvlist, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY, 1248 &nkids, &kids); 1249 /* 1250 * Its ok if we don't have any kids. 1251 */ 1252 if (rc == 0) { 1253 vdev->v_nchildren = nkids; 1254 for (i = 0; i < nkids; i++) { 1255 rc = vdev_init_from_nvlist(kids, vdev, &kid, is_newer); 1256 if (rc) 1257 return (rc); 1258 if (is_new) 1259 STAILQ_INSERT_TAIL(&vdev->v_children, kid, 1260 v_childlink); 1261 kids = nvlist_next(kids); 1262 } 1263 } else { 1264 vdev->v_nchildren = 0; 1265 } 1266 1267 if (vdevp) 1268 *vdevp = vdev; 1269 return (0); 1270 } 1271 1272 static void 1273 vdev_set_state(vdev_t *vdev) 1274 { 1275 vdev_t *kid; 1276 int good_kids; 1277 int bad_kids; 1278 1279 /* 1280 * A mirror or raidz is healthy if all its kids are healthy. A 1281 * mirror is degraded if any of its kids is healthy; a raidz 1282 * is degraded if at most nparity kids are offline. 1283 */ 1284 if (STAILQ_FIRST(&vdev->v_children)) { 1285 good_kids = 0; 1286 bad_kids = 0; 1287 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) { 1288 if (kid->v_state == VDEV_STATE_HEALTHY) 1289 good_kids++; 1290 else 1291 bad_kids++; 1292 } 1293 if (bad_kids == 0) { 1294 vdev->v_state = VDEV_STATE_HEALTHY; 1295 } else { 1296 if (vdev->v_read == vdev_mirror_read) { 1297 if (good_kids) { 1298 vdev->v_state = VDEV_STATE_DEGRADED; 1299 } else { 1300 vdev->v_state = VDEV_STATE_OFFLINE; 1301 } 1302 } else if (vdev->v_read == vdev_raidz_read) { 1303 if (bad_kids > vdev->v_nparity) { 1304 vdev->v_state = VDEV_STATE_OFFLINE; 1305 } else { 1306 vdev->v_state = VDEV_STATE_DEGRADED; 1307 } 1308 } 1309 } 1310 } 1311 } 1312 1313 static spa_t * 1314 spa_find_by_guid(uint64_t guid) 1315 { 1316 spa_t *spa; 1317 1318 STAILQ_FOREACH(spa, &zfs_pools, spa_link) 1319 if (spa->spa_guid == guid) 1320 return (spa); 1321 1322 return (0); 1323 } 1324 1325 static spa_t * 1326 spa_find_by_name(const char *name) 1327 { 1328 spa_t *spa; 1329 1330 STAILQ_FOREACH(spa, &zfs_pools, spa_link) 1331 if (!strcmp(spa->spa_name, name)) 1332 return (spa); 1333 1334 return (0); 1335 } 1336 1337 #ifdef BOOT2 1338 static spa_t * 1339 spa_get_primary(void) 1340 { 1341 1342 return (STAILQ_FIRST(&zfs_pools)); 1343 } 1344 1345 static vdev_t * 1346 spa_get_primary_vdev(const spa_t *spa) 1347 { 1348 vdev_t *vdev; 1349 vdev_t *kid; 1350 1351 if (spa == NULL) 1352 spa = spa_get_primary(); 1353 if (spa == NULL) 1354 return (NULL); 1355 vdev = STAILQ_FIRST(&spa->spa_vdevs); 1356 if (vdev == NULL) 1357 return (NULL); 1358 for (kid = STAILQ_FIRST(&vdev->v_children); kid != NULL; 1359 kid = STAILQ_FIRST(&vdev->v_children)) 1360 vdev = kid; 1361 return (vdev); 1362 } 1363 #endif 1364 1365 static spa_t * 1366 spa_create(uint64_t guid, const char *name) 1367 { 1368 spa_t *spa; 1369 1370 if ((spa = calloc(1, sizeof(spa_t))) == NULL) 1371 return (NULL); 1372 if ((spa->spa_name = strdup(name)) == NULL) { 1373 free(spa); 1374 return (NULL); 1375 } 1376 STAILQ_INIT(&spa->spa_vdevs); 1377 spa->spa_guid = guid; 1378 STAILQ_INSERT_TAIL(&zfs_pools, spa, spa_link); 1379 1380 return (spa); 1381 } 1382 1383 static const char * 1384 state_name(vdev_state_t state) 1385 { 1386 static const char* names[] = { 1387 "UNKNOWN", 1388 "CLOSED", 1389 "OFFLINE", 1390 "REMOVED", 1391 "CANT_OPEN", 1392 "FAULTED", 1393 "DEGRADED", 1394 "ONLINE" 1395 }; 1396 return names[state]; 1397 } 1398 1399 #ifdef BOOT2 1400 1401 #define pager_printf printf 1402 1403 #else 1404 1405 static int 1406 pager_printf(const char *fmt, ...) 1407 { 1408 char line[80]; 1409 va_list args; 1410 1411 va_start(args, fmt); 1412 vsprintf(line, fmt, args); 1413 va_end(args); 1414 1415 return (pager_output(line)); 1416 } 1417 1418 #endif 1419 1420 #define STATUS_FORMAT " %s %s\n" 1421 1422 static int 1423 print_state(int indent, const char *name, vdev_state_t state) 1424 { 1425 char buf[512]; 1426 int i; 1427 1428 buf[0] = 0; 1429 for (i = 0; i < indent; i++) 1430 strcat(buf, " "); 1431 strcat(buf, name); 1432 1433 return (pager_printf(STATUS_FORMAT, buf, state_name(state))); 1434 } 1435 1436 static int 1437 vdev_status(vdev_t *vdev, int indent) 1438 { 1439 vdev_t *kid; 1440 int ret; 1441 1442 if (vdev->v_islog) { 1443 (void)pager_output(" logs\n"); 1444 indent++; 1445 } 1446 1447 ret = print_state(indent, vdev->v_name, vdev->v_state); 1448 if (ret != 0) 1449 return (ret); 1450 1451 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) { 1452 ret = vdev_status(kid, indent + 1); 1453 if (ret != 0) 1454 return (ret); 1455 } 1456 return (ret); 1457 } 1458 1459 static int 1460 spa_status(spa_t *spa) 1461 { 1462 static char bootfs[ZFS_MAXNAMELEN]; 1463 uint64_t rootid; 1464 vdev_t *vdev; 1465 int good_kids, bad_kids, degraded_kids, ret; 1466 vdev_state_t state; 1467 1468 ret = pager_printf(" pool: %s\n", spa->spa_name); 1469 if (ret != 0) 1470 return (ret); 1471 1472 if (zfs_get_root(spa, &rootid) == 0 && 1473 zfs_rlookup(spa, rootid, bootfs) == 0) { 1474 if (bootfs[0] == '\0') 1475 ret = pager_printf("bootfs: %s\n", spa->spa_name); 1476 else 1477 ret = pager_printf("bootfs: %s/%s\n", spa->spa_name, 1478 bootfs); 1479 if (ret != 0) 1480 return (ret); 1481 } 1482 ret = pager_printf("config:\n\n"); 1483 if (ret != 0) 1484 return (ret); 1485 ret = pager_printf(STATUS_FORMAT, "NAME", "STATE"); 1486 if (ret != 0) 1487 return (ret); 1488 1489 good_kids = 0; 1490 degraded_kids = 0; 1491 bad_kids = 0; 1492 STAILQ_FOREACH(vdev, &spa->spa_vdevs, v_childlink) { 1493 if (vdev->v_state == VDEV_STATE_HEALTHY) 1494 good_kids++; 1495 else if (vdev->v_state == VDEV_STATE_DEGRADED) 1496 degraded_kids++; 1497 else 1498 bad_kids++; 1499 } 1500 1501 state = VDEV_STATE_CLOSED; 1502 if (good_kids > 0 && (degraded_kids + bad_kids) == 0) 1503 state = VDEV_STATE_HEALTHY; 1504 else if ((good_kids + degraded_kids) > 0) 1505 state = VDEV_STATE_DEGRADED; 1506 1507 ret = print_state(0, spa->spa_name, state); 1508 if (ret != 0) 1509 return (ret); 1510 STAILQ_FOREACH(vdev, &spa->spa_vdevs, v_childlink) { 1511 ret = vdev_status(vdev, 1); 1512 if (ret != 0) 1513 return (ret); 1514 } 1515 return (ret); 1516 } 1517 1518 static int 1519 spa_all_status(void) 1520 { 1521 spa_t *spa; 1522 int first = 1, ret = 0; 1523 1524 STAILQ_FOREACH(spa, &zfs_pools, spa_link) { 1525 if (!first) { 1526 ret = pager_printf("\n"); 1527 if (ret != 0) 1528 return (ret); 1529 } 1530 first = 0; 1531 ret = spa_status(spa); 1532 if (ret != 0) 1533 return (ret); 1534 } 1535 return (ret); 1536 } 1537 1538 static uint64_t 1539 vdev_label_offset(uint64_t psize, int l, uint64_t offset) 1540 { 1541 uint64_t label_offset; 1542 1543 if (l < VDEV_LABELS / 2) 1544 label_offset = 0; 1545 else 1546 label_offset = psize - VDEV_LABELS * sizeof (vdev_label_t); 1547 1548 return (offset + l * sizeof (vdev_label_t) + label_offset); 1549 } 1550 1551 static int 1552 vdev_uberblock_compare(const uberblock_t *ub1, const uberblock_t *ub2) 1553 { 1554 unsigned int seq1 = 0; 1555 unsigned int seq2 = 0; 1556 int cmp = AVL_CMP(ub1->ub_txg, ub2->ub_txg); 1557 1558 if (cmp != 0) 1559 return (cmp); 1560 1561 cmp = AVL_CMP(ub1->ub_timestamp, ub2->ub_timestamp); 1562 if (cmp != 0) 1563 return (cmp); 1564 1565 if (MMP_VALID(ub1) && MMP_SEQ_VALID(ub1)) 1566 seq1 = MMP_SEQ(ub1); 1567 1568 if (MMP_VALID(ub2) && MMP_SEQ_VALID(ub2)) 1569 seq2 = MMP_SEQ(ub2); 1570 1571 return (AVL_CMP(seq1, seq2)); 1572 } 1573 1574 static int 1575 uberblock_verify(uberblock_t *ub) 1576 { 1577 if (ub->ub_magic == BSWAP_64((uint64_t)UBERBLOCK_MAGIC)) { 1578 byteswap_uint64_array(ub, sizeof (uberblock_t)); 1579 } 1580 1581 if (ub->ub_magic != UBERBLOCK_MAGIC || 1582 !SPA_VERSION_IS_SUPPORTED(ub->ub_version)) 1583 return (EINVAL); 1584 1585 return (0); 1586 } 1587 1588 static int 1589 vdev_label_read(vdev_t *vd, int l, void *buf, uint64_t offset, 1590 size_t size) 1591 { 1592 blkptr_t bp; 1593 off_t off; 1594 1595 off = vdev_label_offset(vd->v_psize, l, offset); 1596 1597 BP_ZERO(&bp); 1598 BP_SET_LSIZE(&bp, size); 1599 BP_SET_PSIZE(&bp, size); 1600 BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_LABEL); 1601 BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF); 1602 DVA_SET_OFFSET(BP_IDENTITY(&bp), off); 1603 ZIO_SET_CHECKSUM(&bp.blk_cksum, off, 0, 0, 0); 1604 1605 return (vdev_read_phys(vd, &bp, buf, off, size)); 1606 } 1607 1608 static unsigned char * 1609 vdev_label_read_config(vdev_t *vd, uint64_t txg) 1610 { 1611 vdev_phys_t *label; 1612 uint64_t best_txg = 0; 1613 uint64_t label_txg = 0; 1614 uint64_t asize; 1615 unsigned char *nvl; 1616 size_t nvl_size; 1617 int error; 1618 1619 label = malloc(sizeof (vdev_phys_t)); 1620 if (label == NULL) 1621 return (NULL); 1622 1623 nvl_size = VDEV_PHYS_SIZE - sizeof (zio_eck_t) - 4; 1624 nvl = malloc(nvl_size); 1625 if (nvl == NULL) { 1626 free(label); 1627 return (NULL); 1628 } 1629 1630 for (int l = 0; l < VDEV_LABELS; l++) { 1631 const unsigned char *nvlist; 1632 1633 if (vdev_label_read(vd, l, label, 1634 offsetof(vdev_label_t, vl_vdev_phys), 1635 sizeof (vdev_phys_t))) 1636 continue; 1637 1638 if (label->vp_nvlist[0] != NV_ENCODE_XDR) 1639 continue; 1640 1641 nvlist = (const unsigned char *) label->vp_nvlist + 4; 1642 error = nvlist_find(nvlist, ZPOOL_CONFIG_POOL_TXG, 1643 DATA_TYPE_UINT64, NULL, &label_txg); 1644 if (error != 0 || label_txg == 0) { 1645 memcpy(nvl, nvlist, nvl_size); 1646 return (nvl); 1647 } 1648 1649 if (label_txg <= txg && label_txg > best_txg) { 1650 best_txg = label_txg; 1651 memcpy(nvl, nvlist, nvl_size); 1652 1653 /* 1654 * Use asize from pool config. We need this 1655 * because we can get bad value from BIOS. 1656 */ 1657 if (nvlist_find(nvlist, ZPOOL_CONFIG_ASIZE, 1658 DATA_TYPE_UINT64, NULL, &asize) == 0) { 1659 vd->v_psize = asize + 1660 VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; 1661 } 1662 } 1663 } 1664 1665 if (best_txg == 0) { 1666 free(nvl); 1667 nvl = NULL; 1668 } 1669 return (nvl); 1670 } 1671 1672 static void 1673 vdev_uberblock_load(vdev_t *vd, uberblock_t *ub) 1674 { 1675 uberblock_t *buf; 1676 1677 buf = malloc(VDEV_UBERBLOCK_SIZE(vd)); 1678 if (buf == NULL) 1679 return; 1680 1681 for (int l = 0; l < VDEV_LABELS; l++) { 1682 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) { 1683 if (vdev_label_read(vd, l, buf, 1684 VDEV_UBERBLOCK_OFFSET(vd, n), 1685 VDEV_UBERBLOCK_SIZE(vd))) 1686 continue; 1687 if (uberblock_verify(buf) != 0) 1688 continue; 1689 1690 if (vdev_uberblock_compare(buf, ub) > 0) 1691 *ub = *buf; 1692 } 1693 } 1694 free(buf); 1695 } 1696 1697 static int 1698 vdev_probe(vdev_phys_read_t *_read, void *read_priv, spa_t **spap) 1699 { 1700 vdev_t vtmp; 1701 spa_t *spa; 1702 vdev_t *vdev, *top_vdev, *pool_vdev; 1703 unsigned char *nvlist; 1704 uint64_t val; 1705 uint64_t guid; 1706 uint64_t pool_txg, pool_guid; 1707 const char *pool_name; 1708 const unsigned char *vdevs; 1709 const unsigned char *features; 1710 int rc, is_newer; 1711 1712 /* 1713 * Load the vdev label and figure out which 1714 * uberblock is most current. 1715 */ 1716 memset(&vtmp, 0, sizeof(vtmp)); 1717 vtmp.v_phys_read = _read; 1718 vtmp.v_read_priv = read_priv; 1719 vtmp.v_psize = P2ALIGN(ldi_get_size(read_priv), 1720 (uint64_t)sizeof (vdev_label_t)); 1721 1722 /* Test for minimum device size. */ 1723 if (vtmp.v_psize < SPA_MINDEVSIZE) 1724 return (EIO); 1725 1726 nvlist = vdev_label_read_config(&vtmp, UINT64_MAX); 1727 if (nvlist == NULL) 1728 return (EIO); 1729 1730 if (nvlist_find(nvlist, ZPOOL_CONFIG_VERSION, DATA_TYPE_UINT64, 1731 NULL, &val) != 0) { 1732 free(nvlist); 1733 return (EIO); 1734 } 1735 1736 if (!SPA_VERSION_IS_SUPPORTED(val)) { 1737 printf("ZFS: unsupported ZFS version %u (should be %u)\n", 1738 (unsigned) val, (unsigned) SPA_VERSION); 1739 free(nvlist); 1740 return (EIO); 1741 } 1742 1743 /* Check ZFS features for read */ 1744 if (nvlist_find(nvlist, ZPOOL_CONFIG_FEATURES_FOR_READ, 1745 DATA_TYPE_NVLIST, NULL, &features) == 0 && 1746 nvlist_check_features_for_read(features) != 0) { 1747 free(nvlist); 1748 return (EIO); 1749 } 1750 1751 if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_STATE, DATA_TYPE_UINT64, 1752 NULL, &val) != 0) { 1753 free(nvlist); 1754 return (EIO); 1755 } 1756 1757 if (val == POOL_STATE_DESTROYED) { 1758 /* We don't boot only from destroyed pools. */ 1759 free(nvlist); 1760 return (EIO); 1761 } 1762 1763 if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_TXG, DATA_TYPE_UINT64, 1764 NULL, &pool_txg) != 0 || 1765 nvlist_find(nvlist, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64, 1766 NULL, &pool_guid) != 0 || 1767 nvlist_find(nvlist, ZPOOL_CONFIG_POOL_NAME, DATA_TYPE_STRING, 1768 NULL, &pool_name) != 0) { 1769 /* 1770 * Cache and spare devices end up here - just ignore 1771 * them. 1772 */ 1773 free(nvlist); 1774 return (EIO); 1775 } 1776 1777 /* 1778 * Create the pool if this is the first time we've seen it. 1779 */ 1780 spa = spa_find_by_guid(pool_guid); 1781 if (spa == NULL) { 1782 spa = spa_create(pool_guid, pool_name); 1783 if (spa == NULL) { 1784 free(nvlist); 1785 return (ENOMEM); 1786 } 1787 } 1788 if (pool_txg > spa->spa_txg) { 1789 spa->spa_txg = pool_txg; 1790 is_newer = 1; 1791 } else { 1792 is_newer = 0; 1793 } 1794 1795 /* 1796 * Get the vdev tree and create our in-core copy of it. 1797 * If we already have a vdev with this guid, this must 1798 * be some kind of alias (overlapping slices, dangerously dedicated 1799 * disks etc). 1800 */ 1801 if (nvlist_find(nvlist, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64, 1802 NULL, &guid) != 0) { 1803 free(nvlist); 1804 return (EIO); 1805 } 1806 vdev = vdev_find(guid); 1807 /* Has this vdev already been inited? */ 1808 if (vdev && vdev->v_phys_read) { 1809 free(nvlist); 1810 return (EIO); 1811 } 1812 1813 if (nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST, 1814 NULL, &vdevs)) { 1815 free(nvlist); 1816 return (EIO); 1817 } 1818 1819 rc = vdev_init_from_nvlist(vdevs, NULL, &top_vdev, is_newer); 1820 free(nvlist); 1821 if (rc != 0) 1822 return (rc); 1823 1824 /* 1825 * Add the toplevel vdev to the pool if its not already there. 1826 */ 1827 STAILQ_FOREACH(pool_vdev, &spa->spa_vdevs, v_childlink) 1828 if (top_vdev == pool_vdev) 1829 break; 1830 1831 if (!pool_vdev && top_vdev) { 1832 top_vdev->spa = spa; 1833 STAILQ_INSERT_TAIL(&spa->spa_vdevs, top_vdev, v_childlink); 1834 } 1835 1836 /* 1837 * We should already have created an incomplete vdev for this 1838 * vdev. Find it and initialise it with our read proc. 1839 */ 1840 vdev = vdev_find(guid); 1841 if (vdev) { 1842 vdev->v_phys_read = _read; 1843 vdev->v_read_priv = read_priv; 1844 vdev->v_state = VDEV_STATE_HEALTHY; 1845 vdev->v_psize = vtmp.v_psize; 1846 } else { 1847 printf("ZFS: inconsistent nvlist contents\n"); 1848 return (EIO); 1849 } 1850 1851 if (vdev->v_islog) 1852 spa->spa_with_log = vdev->v_islog; 1853 1854 /* 1855 * Re-evaluate top-level vdev state. 1856 */ 1857 vdev_set_state(top_vdev); 1858 1859 /* 1860 * Ok, we are happy with the pool so far. Lets find 1861 * the best uberblock and then we can actually access 1862 * the contents of the pool. 1863 */ 1864 vdev_uberblock_load(vdev, &spa->spa_uberblock); 1865 1866 vdev->spa = spa; 1867 if (spap != NULL) 1868 *spap = spa; 1869 return (0); 1870 } 1871 1872 static int 1873 ilog2(int n) 1874 { 1875 int v; 1876 1877 for (v = 0; v < 32; v++) 1878 if (n == (1 << v)) 1879 return v; 1880 return -1; 1881 } 1882 1883 static int 1884 zio_read_gang(const spa_t *spa, const blkptr_t *bp, void *buf) 1885 { 1886 blkptr_t gbh_bp; 1887 zio_gbh_phys_t zio_gb; 1888 char *pbuf; 1889 int i; 1890 1891 /* Artificial BP for gang block header. */ 1892 gbh_bp = *bp; 1893 BP_SET_PSIZE(&gbh_bp, SPA_GANGBLOCKSIZE); 1894 BP_SET_LSIZE(&gbh_bp, SPA_GANGBLOCKSIZE); 1895 BP_SET_CHECKSUM(&gbh_bp, ZIO_CHECKSUM_GANG_HEADER); 1896 BP_SET_COMPRESS(&gbh_bp, ZIO_COMPRESS_OFF); 1897 for (i = 0; i < SPA_DVAS_PER_BP; i++) 1898 DVA_SET_GANG(&gbh_bp.blk_dva[i], 0); 1899 1900 /* Read gang header block using the artificial BP. */ 1901 if (zio_read(spa, &gbh_bp, &zio_gb)) 1902 return (EIO); 1903 1904 pbuf = buf; 1905 for (i = 0; i < SPA_GBH_NBLKPTRS; i++) { 1906 blkptr_t *gbp = &zio_gb.zg_blkptr[i]; 1907 1908 if (BP_IS_HOLE(gbp)) 1909 continue; 1910 if (zio_read(spa, gbp, pbuf)) 1911 return (EIO); 1912 pbuf += BP_GET_PSIZE(gbp); 1913 } 1914 1915 if (zio_checksum_verify(spa, bp, buf)) 1916 return (EIO); 1917 return (0); 1918 } 1919 1920 static int 1921 zio_read(const spa_t *spa, const blkptr_t *bp, void *buf) 1922 { 1923 int cpfunc = BP_GET_COMPRESS(bp); 1924 uint64_t align, size; 1925 void *pbuf; 1926 int i, error; 1927 1928 /* 1929 * Process data embedded in block pointer 1930 */ 1931 if (BP_IS_EMBEDDED(bp)) { 1932 ASSERT(BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA); 1933 1934 size = BPE_GET_PSIZE(bp); 1935 ASSERT(size <= BPE_PAYLOAD_SIZE); 1936 1937 if (cpfunc != ZIO_COMPRESS_OFF) 1938 pbuf = zfs_alloc(size); 1939 else 1940 pbuf = buf; 1941 1942 decode_embedded_bp_compressed(bp, pbuf); 1943 error = 0; 1944 1945 if (cpfunc != ZIO_COMPRESS_OFF) { 1946 error = zio_decompress_data(cpfunc, pbuf, 1947 size, buf, BP_GET_LSIZE(bp)); 1948 zfs_free(pbuf, size); 1949 } 1950 if (error != 0) 1951 printf("ZFS: i/o error - unable to decompress block pointer data, error %d\n", 1952 error); 1953 return (error); 1954 } 1955 1956 error = EIO; 1957 1958 for (i = 0; i < SPA_DVAS_PER_BP; i++) { 1959 const dva_t *dva = &bp->blk_dva[i]; 1960 vdev_t *vdev; 1961 int vdevid; 1962 off_t offset; 1963 1964 if (!dva->dva_word[0] && !dva->dva_word[1]) 1965 continue; 1966 1967 vdevid = DVA_GET_VDEV(dva); 1968 offset = DVA_GET_OFFSET(dva); 1969 STAILQ_FOREACH(vdev, &spa->spa_vdevs, v_childlink) { 1970 if (vdev->v_id == vdevid) 1971 break; 1972 } 1973 if (!vdev || !vdev->v_read) 1974 continue; 1975 1976 size = BP_GET_PSIZE(bp); 1977 if (vdev->v_read == vdev_raidz_read) { 1978 align = 1ULL << vdev->v_top->v_ashift; 1979 if (P2PHASE(size, align) != 0) 1980 size = P2ROUNDUP(size, align); 1981 } 1982 if (size != BP_GET_PSIZE(bp) || cpfunc != ZIO_COMPRESS_OFF) 1983 pbuf = zfs_alloc(size); 1984 else 1985 pbuf = buf; 1986 1987 if (DVA_GET_GANG(dva)) 1988 error = zio_read_gang(spa, bp, pbuf); 1989 else 1990 error = vdev->v_read(vdev, bp, pbuf, offset, size); 1991 if (error == 0) { 1992 if (cpfunc != ZIO_COMPRESS_OFF) 1993 error = zio_decompress_data(cpfunc, pbuf, 1994 BP_GET_PSIZE(bp), buf, BP_GET_LSIZE(bp)); 1995 else if (size != BP_GET_PSIZE(bp)) 1996 bcopy(pbuf, buf, BP_GET_PSIZE(bp)); 1997 } 1998 if (buf != pbuf) 1999 zfs_free(pbuf, size); 2000 if (error == 0) 2001 break; 2002 } 2003 if (error != 0) 2004 printf("ZFS: i/o error - all block copies unavailable\n"); 2005 return (error); 2006 } 2007 2008 static int 2009 dnode_read(const spa_t *spa, const dnode_phys_t *dnode, off_t offset, void *buf, size_t buflen) 2010 { 2011 int ibshift = dnode->dn_indblkshift - SPA_BLKPTRSHIFT; 2012 int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2013 int nlevels = dnode->dn_nlevels; 2014 int i, rc; 2015 2016 if (bsize > SPA_MAXBLOCKSIZE) { 2017 printf("ZFS: I/O error - blocks larger than %llu are not " 2018 "supported\n", SPA_MAXBLOCKSIZE); 2019 return (EIO); 2020 } 2021 2022 /* 2023 * Note: bsize may not be a power of two here so we need to do an 2024 * actual divide rather than a bitshift. 2025 */ 2026 while (buflen > 0) { 2027 uint64_t bn = offset / bsize; 2028 int boff = offset % bsize; 2029 int ibn; 2030 const blkptr_t *indbp; 2031 blkptr_t bp; 2032 2033 if (bn > dnode->dn_maxblkid) 2034 return (EIO); 2035 2036 if (dnode == dnode_cache_obj && bn == dnode_cache_bn) 2037 goto cached; 2038 2039 indbp = dnode->dn_blkptr; 2040 for (i = 0; i < nlevels; i++) { 2041 /* 2042 * Copy the bp from the indirect array so that 2043 * we can re-use the scratch buffer for multi-level 2044 * objects. 2045 */ 2046 ibn = bn >> ((nlevels - i - 1) * ibshift); 2047 ibn &= ((1 << ibshift) - 1); 2048 bp = indbp[ibn]; 2049 if (BP_IS_HOLE(&bp)) { 2050 memset(dnode_cache_buf, 0, bsize); 2051 break; 2052 } 2053 rc = zio_read(spa, &bp, dnode_cache_buf); 2054 if (rc) 2055 return (rc); 2056 indbp = (const blkptr_t *) dnode_cache_buf; 2057 } 2058 dnode_cache_obj = dnode; 2059 dnode_cache_bn = bn; 2060 cached: 2061 2062 /* 2063 * The buffer contains our data block. Copy what we 2064 * need from it and loop. 2065 */ 2066 i = bsize - boff; 2067 if (i > buflen) i = buflen; 2068 memcpy(buf, &dnode_cache_buf[boff], i); 2069 buf = ((char*) buf) + i; 2070 offset += i; 2071 buflen -= i; 2072 } 2073 2074 return (0); 2075 } 2076 2077 /* 2078 * Lookup a value in a microzap directory. Assumes that the zap 2079 * scratch buffer contains the directory contents. 2080 */ 2081 static int 2082 mzap_lookup(const dnode_phys_t *dnode, const char *name, uint64_t *value) 2083 { 2084 const mzap_phys_t *mz; 2085 const mzap_ent_phys_t *mze; 2086 size_t size; 2087 int chunks, i; 2088 2089 /* 2090 * Microzap objects use exactly one block. Read the whole 2091 * thing. 2092 */ 2093 size = dnode->dn_datablkszsec * 512; 2094 2095 mz = (const mzap_phys_t *) zap_scratch; 2096 chunks = size / MZAP_ENT_LEN - 1; 2097 2098 for (i = 0; i < chunks; i++) { 2099 mze = &mz->mz_chunk[i]; 2100 if (!strcmp(mze->mze_name, name)) { 2101 *value = mze->mze_value; 2102 return (0); 2103 } 2104 } 2105 2106 return (ENOENT); 2107 } 2108 2109 /* 2110 * Compare a name with a zap leaf entry. Return non-zero if the name 2111 * matches. 2112 */ 2113 static int 2114 fzap_name_equal(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, const char *name) 2115 { 2116 size_t namelen; 2117 const zap_leaf_chunk_t *nc; 2118 const char *p; 2119 2120 namelen = zc->l_entry.le_name_numints; 2121 2122 nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk); 2123 p = name; 2124 while (namelen > 0) { 2125 size_t len; 2126 len = namelen; 2127 if (len > ZAP_LEAF_ARRAY_BYTES) 2128 len = ZAP_LEAF_ARRAY_BYTES; 2129 if (memcmp(p, nc->l_array.la_array, len)) 2130 return (0); 2131 p += len; 2132 namelen -= len; 2133 nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next); 2134 } 2135 2136 return 1; 2137 } 2138 2139 /* 2140 * Extract a uint64_t value from a zap leaf entry. 2141 */ 2142 static uint64_t 2143 fzap_leaf_value(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc) 2144 { 2145 const zap_leaf_chunk_t *vc; 2146 int i; 2147 uint64_t value; 2148 const uint8_t *p; 2149 2150 vc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_value_chunk); 2151 for (i = 0, value = 0, p = vc->l_array.la_array; i < 8; i++) { 2152 value = (value << 8) | p[i]; 2153 } 2154 2155 return value; 2156 } 2157 2158 static void 2159 stv(int len, void *addr, uint64_t value) 2160 { 2161 switch (len) { 2162 case 1: 2163 *(uint8_t *)addr = value; 2164 return; 2165 case 2: 2166 *(uint16_t *)addr = value; 2167 return; 2168 case 4: 2169 *(uint32_t *)addr = value; 2170 return; 2171 case 8: 2172 *(uint64_t *)addr = value; 2173 return; 2174 } 2175 } 2176 2177 /* 2178 * Extract a array from a zap leaf entry. 2179 */ 2180 static void 2181 fzap_leaf_array(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, 2182 uint64_t integer_size, uint64_t num_integers, void *buf) 2183 { 2184 uint64_t array_int_len = zc->l_entry.le_value_intlen; 2185 uint64_t value = 0; 2186 uint64_t *u64 = buf; 2187 char *p = buf; 2188 int len = MIN(zc->l_entry.le_value_numints, num_integers); 2189 int chunk = zc->l_entry.le_value_chunk; 2190 int byten = 0; 2191 2192 if (integer_size == 8 && len == 1) { 2193 *u64 = fzap_leaf_value(zl, zc); 2194 return; 2195 } 2196 2197 while (len > 0) { 2198 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(zl, chunk).l_array; 2199 int i; 2200 2201 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(zl)); 2202 for (i = 0; i < ZAP_LEAF_ARRAY_BYTES && len > 0; i++) { 2203 value = (value << 8) | la->la_array[i]; 2204 byten++; 2205 if (byten == array_int_len) { 2206 stv(integer_size, p, value); 2207 byten = 0; 2208 len--; 2209 if (len == 0) 2210 return; 2211 p += integer_size; 2212 } 2213 } 2214 chunk = la->la_next; 2215 } 2216 } 2217 2218 /* 2219 * Lookup a value in a fatzap directory. Assumes that the zap scratch 2220 * buffer contains the directory header. 2221 */ 2222 static int 2223 fzap_lookup(const spa_t *spa, const dnode_phys_t *dnode, const char *name, 2224 uint64_t integer_size, uint64_t num_integers, void *value) 2225 { 2226 int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2227 zap_phys_t zh = *(zap_phys_t *) zap_scratch; 2228 fat_zap_t z; 2229 uint64_t *ptrtbl; 2230 uint64_t hash; 2231 int rc; 2232 2233 if (zh.zap_magic != ZAP_MAGIC) 2234 return (EIO); 2235 2236 z.zap_block_shift = ilog2(bsize); 2237 z.zap_phys = (zap_phys_t *) zap_scratch; 2238 2239 /* 2240 * Figure out where the pointer table is and read it in if necessary. 2241 */ 2242 if (zh.zap_ptrtbl.zt_blk) { 2243 rc = dnode_read(spa, dnode, zh.zap_ptrtbl.zt_blk * bsize, 2244 zap_scratch, bsize); 2245 if (rc) 2246 return (rc); 2247 ptrtbl = (uint64_t *) zap_scratch; 2248 } else { 2249 ptrtbl = &ZAP_EMBEDDED_PTRTBL_ENT(&z, 0); 2250 } 2251 2252 hash = zap_hash(zh.zap_salt, name); 2253 2254 zap_leaf_t zl; 2255 zl.l_bs = z.zap_block_shift; 2256 2257 off_t off = ptrtbl[hash >> (64 - zh.zap_ptrtbl.zt_shift)] << zl.l_bs; 2258 zap_leaf_chunk_t *zc; 2259 2260 rc = dnode_read(spa, dnode, off, zap_scratch, bsize); 2261 if (rc) 2262 return (rc); 2263 2264 zl.l_phys = (zap_leaf_phys_t *) zap_scratch; 2265 2266 /* 2267 * Make sure this chunk matches our hash. 2268 */ 2269 if (zl.l_phys->l_hdr.lh_prefix_len > 0 2270 && zl.l_phys->l_hdr.lh_prefix 2271 != hash >> (64 - zl.l_phys->l_hdr.lh_prefix_len)) 2272 return (ENOENT); 2273 2274 /* 2275 * Hash within the chunk to find our entry. 2276 */ 2277 int shift = (64 - ZAP_LEAF_HASH_SHIFT(&zl) - zl.l_phys->l_hdr.lh_prefix_len); 2278 int h = (hash >> shift) & ((1 << ZAP_LEAF_HASH_SHIFT(&zl)) - 1); 2279 h = zl.l_phys->l_hash[h]; 2280 if (h == 0xffff) 2281 return (ENOENT); 2282 zc = &ZAP_LEAF_CHUNK(&zl, h); 2283 while (zc->l_entry.le_hash != hash) { 2284 if (zc->l_entry.le_next == 0xffff) { 2285 zc = NULL; 2286 break; 2287 } 2288 zc = &ZAP_LEAF_CHUNK(&zl, zc->l_entry.le_next); 2289 } 2290 if (fzap_name_equal(&zl, zc, name)) { 2291 if (zc->l_entry.le_value_intlen * zc->l_entry.le_value_numints > 2292 integer_size * num_integers) 2293 return (E2BIG); 2294 fzap_leaf_array(&zl, zc, integer_size, num_integers, value); 2295 return (0); 2296 } 2297 2298 return (ENOENT); 2299 } 2300 2301 /* 2302 * Lookup a name in a zap object and return its value as a uint64_t. 2303 */ 2304 static int 2305 zap_lookup(const spa_t *spa, const dnode_phys_t *dnode, const char *name, 2306 uint64_t integer_size, uint64_t num_integers, void *value) 2307 { 2308 int rc; 2309 uint64_t zap_type; 2310 size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2311 2312 rc = dnode_read(spa, dnode, 0, zap_scratch, size); 2313 if (rc) 2314 return (rc); 2315 2316 zap_type = *(uint64_t *) zap_scratch; 2317 if (zap_type == ZBT_MICRO) 2318 return mzap_lookup(dnode, name, value); 2319 else if (zap_type == ZBT_HEADER) { 2320 return fzap_lookup(spa, dnode, name, integer_size, 2321 num_integers, value); 2322 } 2323 printf("ZFS: invalid zap_type=%d\n", (int)zap_type); 2324 return (EIO); 2325 } 2326 2327 /* 2328 * List a microzap directory. Assumes that the zap scratch buffer contains 2329 * the directory contents. 2330 */ 2331 static int 2332 mzap_list(const dnode_phys_t *dnode, int (*callback)(const char *, uint64_t)) 2333 { 2334 const mzap_phys_t *mz; 2335 const mzap_ent_phys_t *mze; 2336 size_t size; 2337 int chunks, i, rc; 2338 2339 /* 2340 * Microzap objects use exactly one block. Read the whole 2341 * thing. 2342 */ 2343 size = dnode->dn_datablkszsec * 512; 2344 mz = (const mzap_phys_t *) zap_scratch; 2345 chunks = size / MZAP_ENT_LEN - 1; 2346 2347 for (i = 0; i < chunks; i++) { 2348 mze = &mz->mz_chunk[i]; 2349 if (mze->mze_name[0]) { 2350 rc = callback(mze->mze_name, mze->mze_value); 2351 if (rc != 0) 2352 return (rc); 2353 } 2354 } 2355 2356 return (0); 2357 } 2358 2359 /* 2360 * List a fatzap directory. Assumes that the zap scratch buffer contains 2361 * the directory header. 2362 */ 2363 static int 2364 fzap_list(const spa_t *spa, const dnode_phys_t *dnode, int (*callback)(const char *, uint64_t)) 2365 { 2366 int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2367 zap_phys_t zh = *(zap_phys_t *) zap_scratch; 2368 fat_zap_t z; 2369 int i, j, rc; 2370 2371 if (zh.zap_magic != ZAP_MAGIC) 2372 return (EIO); 2373 2374 z.zap_block_shift = ilog2(bsize); 2375 z.zap_phys = (zap_phys_t *) zap_scratch; 2376 2377 /* 2378 * This assumes that the leaf blocks start at block 1. The 2379 * documentation isn't exactly clear on this. 2380 */ 2381 zap_leaf_t zl; 2382 zl.l_bs = z.zap_block_shift; 2383 for (i = 0; i < zh.zap_num_leafs; i++) { 2384 off_t off = (i + 1) << zl.l_bs; 2385 char name[256], *p; 2386 uint64_t value; 2387 2388 if (dnode_read(spa, dnode, off, zap_scratch, bsize)) 2389 return (EIO); 2390 2391 zl.l_phys = (zap_leaf_phys_t *) zap_scratch; 2392 2393 for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) { 2394 zap_leaf_chunk_t *zc, *nc; 2395 int namelen; 2396 2397 zc = &ZAP_LEAF_CHUNK(&zl, j); 2398 if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY) 2399 continue; 2400 namelen = zc->l_entry.le_name_numints; 2401 if (namelen > sizeof(name)) 2402 namelen = sizeof(name); 2403 2404 /* 2405 * Paste the name back together. 2406 */ 2407 nc = &ZAP_LEAF_CHUNK(&zl, zc->l_entry.le_name_chunk); 2408 p = name; 2409 while (namelen > 0) { 2410 int len; 2411 len = namelen; 2412 if (len > ZAP_LEAF_ARRAY_BYTES) 2413 len = ZAP_LEAF_ARRAY_BYTES; 2414 memcpy(p, nc->l_array.la_array, len); 2415 p += len; 2416 namelen -= len; 2417 nc = &ZAP_LEAF_CHUNK(&zl, nc->l_array.la_next); 2418 } 2419 2420 /* 2421 * Assume the first eight bytes of the value are 2422 * a uint64_t. 2423 */ 2424 value = fzap_leaf_value(&zl, zc); 2425 2426 //printf("%s 0x%jx\n", name, (uintmax_t)value); 2427 rc = callback((const char *)name, value); 2428 if (rc != 0) 2429 return (rc); 2430 } 2431 } 2432 2433 return (0); 2434 } 2435 2436 static int zfs_printf(const char *name, uint64_t value __unused) 2437 { 2438 2439 printf("%s\n", name); 2440 2441 return (0); 2442 } 2443 2444 /* 2445 * List a zap directory. 2446 */ 2447 static int 2448 zap_list(const spa_t *spa, const dnode_phys_t *dnode) 2449 { 2450 uint64_t zap_type; 2451 size_t size = dnode->dn_datablkszsec * 512; 2452 2453 if (dnode_read(spa, dnode, 0, zap_scratch, size)) 2454 return (EIO); 2455 2456 zap_type = *(uint64_t *) zap_scratch; 2457 if (zap_type == ZBT_MICRO) 2458 return mzap_list(dnode, zfs_printf); 2459 else 2460 return fzap_list(spa, dnode, zfs_printf); 2461 } 2462 2463 static int 2464 objset_get_dnode(const spa_t *spa, const objset_phys_t *os, uint64_t objnum, dnode_phys_t *dnode) 2465 { 2466 off_t offset; 2467 2468 offset = objnum * sizeof(dnode_phys_t); 2469 return dnode_read(spa, &os->os_meta_dnode, offset, 2470 dnode, sizeof(dnode_phys_t)); 2471 } 2472 2473 static int 2474 mzap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, char *name, uint64_t value) 2475 { 2476 const mzap_phys_t *mz; 2477 const mzap_ent_phys_t *mze; 2478 size_t size; 2479 int chunks, i; 2480 2481 /* 2482 * Microzap objects use exactly one block. Read the whole 2483 * thing. 2484 */ 2485 size = dnode->dn_datablkszsec * 512; 2486 2487 mz = (const mzap_phys_t *) zap_scratch; 2488 chunks = size / MZAP_ENT_LEN - 1; 2489 2490 for (i = 0; i < chunks; i++) { 2491 mze = &mz->mz_chunk[i]; 2492 if (value == mze->mze_value) { 2493 strcpy(name, mze->mze_name); 2494 return (0); 2495 } 2496 } 2497 2498 return (ENOENT); 2499 } 2500 2501 static void 2502 fzap_name_copy(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, char *name) 2503 { 2504 size_t namelen; 2505 const zap_leaf_chunk_t *nc; 2506 char *p; 2507 2508 namelen = zc->l_entry.le_name_numints; 2509 2510 nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk); 2511 p = name; 2512 while (namelen > 0) { 2513 size_t len; 2514 len = namelen; 2515 if (len > ZAP_LEAF_ARRAY_BYTES) 2516 len = ZAP_LEAF_ARRAY_BYTES; 2517 memcpy(p, nc->l_array.la_array, len); 2518 p += len; 2519 namelen -= len; 2520 nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next); 2521 } 2522 2523 *p = '\0'; 2524 } 2525 2526 static int 2527 fzap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, char *name, uint64_t value) 2528 { 2529 int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2530 zap_phys_t zh = *(zap_phys_t *) zap_scratch; 2531 fat_zap_t z; 2532 int i, j; 2533 2534 if (zh.zap_magic != ZAP_MAGIC) 2535 return (EIO); 2536 2537 z.zap_block_shift = ilog2(bsize); 2538 z.zap_phys = (zap_phys_t *) zap_scratch; 2539 2540 /* 2541 * This assumes that the leaf blocks start at block 1. The 2542 * documentation isn't exactly clear on this. 2543 */ 2544 zap_leaf_t zl; 2545 zl.l_bs = z.zap_block_shift; 2546 for (i = 0; i < zh.zap_num_leafs; i++) { 2547 off_t off = (i + 1) << zl.l_bs; 2548 2549 if (dnode_read(spa, dnode, off, zap_scratch, bsize)) 2550 return (EIO); 2551 2552 zl.l_phys = (zap_leaf_phys_t *) zap_scratch; 2553 2554 for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) { 2555 zap_leaf_chunk_t *zc; 2556 2557 zc = &ZAP_LEAF_CHUNK(&zl, j); 2558 if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY) 2559 continue; 2560 if (zc->l_entry.le_value_intlen != 8 || 2561 zc->l_entry.le_value_numints != 1) 2562 continue; 2563 2564 if (fzap_leaf_value(&zl, zc) == value) { 2565 fzap_name_copy(&zl, zc, name); 2566 return (0); 2567 } 2568 } 2569 } 2570 2571 return (ENOENT); 2572 } 2573 2574 static int 2575 zap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, char *name, uint64_t value) 2576 { 2577 int rc; 2578 uint64_t zap_type; 2579 size_t size = dnode->dn_datablkszsec * 512; 2580 2581 rc = dnode_read(spa, dnode, 0, zap_scratch, size); 2582 if (rc) 2583 return (rc); 2584 2585 zap_type = *(uint64_t *) zap_scratch; 2586 if (zap_type == ZBT_MICRO) 2587 return mzap_rlookup(spa, dnode, name, value); 2588 else 2589 return fzap_rlookup(spa, dnode, name, value); 2590 } 2591 2592 static int 2593 zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result) 2594 { 2595 char name[256]; 2596 char component[256]; 2597 uint64_t dir_obj, parent_obj, child_dir_zapobj; 2598 dnode_phys_t child_dir_zap, dataset, dir, parent; 2599 dsl_dir_phys_t *dd; 2600 dsl_dataset_phys_t *ds; 2601 char *p; 2602 int len; 2603 2604 p = &name[sizeof(name) - 1]; 2605 *p = '\0'; 2606 2607 if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) { 2608 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum); 2609 return (EIO); 2610 } 2611 ds = (dsl_dataset_phys_t *)&dataset.dn_bonus; 2612 dir_obj = ds->ds_dir_obj; 2613 2614 for (;;) { 2615 if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir) != 0) 2616 return (EIO); 2617 dd = (dsl_dir_phys_t *)&dir.dn_bonus; 2618 2619 /* Actual loop condition. */ 2620 parent_obj = dd->dd_parent_obj; 2621 if (parent_obj == 0) 2622 break; 2623 2624 if (objset_get_dnode(spa, &spa->spa_mos, parent_obj, &parent) != 0) 2625 return (EIO); 2626 dd = (dsl_dir_phys_t *)&parent.dn_bonus; 2627 child_dir_zapobj = dd->dd_child_dir_zapobj; 2628 if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, &child_dir_zap) != 0) 2629 return (EIO); 2630 if (zap_rlookup(spa, &child_dir_zap, component, dir_obj) != 0) 2631 return (EIO); 2632 2633 len = strlen(component); 2634 p -= len; 2635 memcpy(p, component, len); 2636 --p; 2637 *p = '/'; 2638 2639 /* Actual loop iteration. */ 2640 dir_obj = parent_obj; 2641 } 2642 2643 if (*p != '\0') 2644 ++p; 2645 strcpy(result, p); 2646 2647 return (0); 2648 } 2649 2650 static int 2651 zfs_lookup_dataset(const spa_t *spa, const char *name, uint64_t *objnum) 2652 { 2653 char element[256]; 2654 uint64_t dir_obj, child_dir_zapobj; 2655 dnode_phys_t child_dir_zap, dir; 2656 dsl_dir_phys_t *dd; 2657 const char *p, *q; 2658 2659 if (objset_get_dnode(spa, &spa->spa_mos, DMU_POOL_DIRECTORY_OBJECT, &dir)) 2660 return (EIO); 2661 if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET, sizeof (dir_obj), 2662 1, &dir_obj)) 2663 return (EIO); 2664 2665 p = name; 2666 for (;;) { 2667 if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir)) 2668 return (EIO); 2669 dd = (dsl_dir_phys_t *)&dir.dn_bonus; 2670 2671 while (*p == '/') 2672 p++; 2673 /* Actual loop condition #1. */ 2674 if (*p == '\0') 2675 break; 2676 2677 q = strchr(p, '/'); 2678 if (q) { 2679 memcpy(element, p, q - p); 2680 element[q - p] = '\0'; 2681 p = q + 1; 2682 } else { 2683 strcpy(element, p); 2684 p += strlen(p); 2685 } 2686 2687 child_dir_zapobj = dd->dd_child_dir_zapobj; 2688 if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, &child_dir_zap) != 0) 2689 return (EIO); 2690 2691 /* Actual loop condition #2. */ 2692 if (zap_lookup(spa, &child_dir_zap, element, sizeof (dir_obj), 2693 1, &dir_obj) != 0) 2694 return (ENOENT); 2695 } 2696 2697 *objnum = dd->dd_head_dataset_obj; 2698 return (0); 2699 } 2700 2701 #ifndef BOOT2 2702 static int 2703 zfs_list_dataset(const spa_t *spa, uint64_t objnum/*, int pos, char *entry*/) 2704 { 2705 uint64_t dir_obj, child_dir_zapobj; 2706 dnode_phys_t child_dir_zap, dir, dataset; 2707 dsl_dataset_phys_t *ds; 2708 dsl_dir_phys_t *dd; 2709 2710 if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) { 2711 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum); 2712 return (EIO); 2713 } 2714 ds = (dsl_dataset_phys_t *) &dataset.dn_bonus; 2715 dir_obj = ds->ds_dir_obj; 2716 2717 if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir)) { 2718 printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj); 2719 return (EIO); 2720 } 2721 dd = (dsl_dir_phys_t *)&dir.dn_bonus; 2722 2723 child_dir_zapobj = dd->dd_child_dir_zapobj; 2724 if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, &child_dir_zap) != 0) { 2725 printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj); 2726 return (EIO); 2727 } 2728 2729 return (zap_list(spa, &child_dir_zap) != 0); 2730 } 2731 2732 int 2733 zfs_callback_dataset(const spa_t *spa, uint64_t objnum, int (*callback)(const char *, uint64_t)) 2734 { 2735 uint64_t dir_obj, child_dir_zapobj, zap_type; 2736 dnode_phys_t child_dir_zap, dir, dataset; 2737 dsl_dataset_phys_t *ds; 2738 dsl_dir_phys_t *dd; 2739 int err; 2740 2741 err = objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset); 2742 if (err != 0) { 2743 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum); 2744 return (err); 2745 } 2746 ds = (dsl_dataset_phys_t *) &dataset.dn_bonus; 2747 dir_obj = ds->ds_dir_obj; 2748 2749 err = objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir); 2750 if (err != 0) { 2751 printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj); 2752 return (err); 2753 } 2754 dd = (dsl_dir_phys_t *)&dir.dn_bonus; 2755 2756 child_dir_zapobj = dd->dd_child_dir_zapobj; 2757 err = objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, &child_dir_zap); 2758 if (err != 0) { 2759 printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj); 2760 return (err); 2761 } 2762 2763 err = dnode_read(spa, &child_dir_zap, 0, zap_scratch, child_dir_zap.dn_datablkszsec * 512); 2764 if (err != 0) 2765 return (err); 2766 2767 zap_type = *(uint64_t *) zap_scratch; 2768 if (zap_type == ZBT_MICRO) 2769 return mzap_list(&child_dir_zap, callback); 2770 else 2771 return fzap_list(spa, &child_dir_zap, callback); 2772 } 2773 #endif 2774 2775 /* 2776 * Find the object set given the object number of its dataset object 2777 * and return its details in *objset 2778 */ 2779 static int 2780 zfs_mount_dataset(const spa_t *spa, uint64_t objnum, objset_phys_t *objset) 2781 { 2782 dnode_phys_t dataset; 2783 dsl_dataset_phys_t *ds; 2784 2785 if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) { 2786 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum); 2787 return (EIO); 2788 } 2789 2790 ds = (dsl_dataset_phys_t *) &dataset.dn_bonus; 2791 if (zio_read(spa, &ds->ds_bp, objset)) { 2792 printf("ZFS: can't read object set for dataset %ju\n", 2793 (uintmax_t)objnum); 2794 return (EIO); 2795 } 2796 2797 return (0); 2798 } 2799 2800 /* 2801 * Find the object set pointed to by the BOOTFS property or the root 2802 * dataset if there is none and return its details in *objset 2803 */ 2804 static int 2805 zfs_get_root(const spa_t *spa, uint64_t *objid) 2806 { 2807 dnode_phys_t dir, propdir; 2808 uint64_t props, bootfs, root; 2809 2810 *objid = 0; 2811 2812 /* 2813 * Start with the MOS directory object. 2814 */ 2815 if (objset_get_dnode(spa, &spa->spa_mos, DMU_POOL_DIRECTORY_OBJECT, &dir)) { 2816 printf("ZFS: can't read MOS object directory\n"); 2817 return (EIO); 2818 } 2819 2820 /* 2821 * Lookup the pool_props and see if we can find a bootfs. 2822 */ 2823 if (zap_lookup(spa, &dir, DMU_POOL_PROPS, sizeof (props), 1, &props) == 0 2824 && objset_get_dnode(spa, &spa->spa_mos, props, &propdir) == 0 2825 && zap_lookup(spa, &propdir, "bootfs", sizeof (bootfs), 1, &bootfs) == 0 2826 && bootfs != 0) 2827 { 2828 *objid = bootfs; 2829 return (0); 2830 } 2831 /* 2832 * Lookup the root dataset directory 2833 */ 2834 if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET, sizeof (root), 1, &root) 2835 || objset_get_dnode(spa, &spa->spa_mos, root, &dir)) { 2836 printf("ZFS: can't find root dsl_dir\n"); 2837 return (EIO); 2838 } 2839 2840 /* 2841 * Use the information from the dataset directory's bonus buffer 2842 * to find the dataset object and from that the object set itself. 2843 */ 2844 dsl_dir_phys_t *dd = (dsl_dir_phys_t *) &dir.dn_bonus; 2845 *objid = dd->dd_head_dataset_obj; 2846 return (0); 2847 } 2848 2849 static int 2850 zfs_mount(const spa_t *spa, uint64_t rootobj, struct zfsmount *mount) 2851 { 2852 2853 mount->spa = spa; 2854 2855 /* 2856 * Find the root object set if not explicitly provided 2857 */ 2858 if (rootobj == 0 && zfs_get_root(spa, &rootobj)) { 2859 printf("ZFS: can't find root filesystem\n"); 2860 return (EIO); 2861 } 2862 2863 if (zfs_mount_dataset(spa, rootobj, &mount->objset)) { 2864 printf("ZFS: can't open root filesystem\n"); 2865 return (EIO); 2866 } 2867 2868 mount->rootobj = rootobj; 2869 2870 return (0); 2871 } 2872 2873 /* 2874 * callback function for feature name checks. 2875 */ 2876 static int 2877 check_feature(const char *name, uint64_t value) 2878 { 2879 int i; 2880 2881 if (value == 0) 2882 return (0); 2883 if (name[0] == '\0') 2884 return (0); 2885 2886 for (i = 0; features_for_read[i] != NULL; i++) { 2887 if (strcmp(name, features_for_read[i]) == 0) 2888 return (0); 2889 } 2890 printf("ZFS: unsupported feature: %s\n", name); 2891 return (EIO); 2892 } 2893 2894 /* 2895 * Checks whether the MOS features that are active are supported. 2896 */ 2897 static int 2898 check_mos_features(const spa_t *spa) 2899 { 2900 dnode_phys_t dir; 2901 uint64_t objnum, zap_type; 2902 size_t size; 2903 int rc; 2904 2905 if ((rc = objset_get_dnode(spa, &spa->spa_mos, DMU_OT_OBJECT_DIRECTORY, 2906 &dir)) != 0) 2907 return (rc); 2908 if ((rc = zap_lookup(spa, &dir, DMU_POOL_FEATURES_FOR_READ, 2909 sizeof (objnum), 1, &objnum)) != 0) { 2910 /* 2911 * It is older pool without features. As we have already 2912 * tested the label, just return without raising the error. 2913 */ 2914 return (0); 2915 } 2916 2917 if ((rc = objset_get_dnode(spa, &spa->spa_mos, objnum, &dir)) != 0) 2918 return (rc); 2919 2920 if (dir.dn_type != DMU_OTN_ZAP_METADATA) 2921 return (EIO); 2922 2923 size = dir.dn_datablkszsec * 512; 2924 if (dnode_read(spa, &dir, 0, zap_scratch, size)) 2925 return (EIO); 2926 2927 zap_type = *(uint64_t *) zap_scratch; 2928 if (zap_type == ZBT_MICRO) 2929 rc = mzap_list(&dir, check_feature); 2930 else 2931 rc = fzap_list(spa, &dir, check_feature); 2932 2933 return (rc); 2934 } 2935 2936 static int 2937 load_nvlist(spa_t *spa, uint64_t obj, unsigned char **value) 2938 { 2939 dnode_phys_t dir; 2940 size_t size; 2941 int rc; 2942 unsigned char *nv; 2943 2944 *value = NULL; 2945 if ((rc = objset_get_dnode(spa, &spa->spa_mos, obj, &dir)) != 0) 2946 return (rc); 2947 if (dir.dn_type != DMU_OT_PACKED_NVLIST && 2948 dir.dn_bonustype != DMU_OT_PACKED_NVLIST_SIZE) { 2949 return (EIO); 2950 } 2951 2952 if (dir.dn_bonuslen != sizeof (uint64_t)) 2953 return (EIO); 2954 2955 size = *(uint64_t *)DN_BONUS(&dir); 2956 nv = malloc(size); 2957 if (nv == NULL) 2958 return (ENOMEM); 2959 2960 rc = dnode_read(spa, &dir, 0, nv, size); 2961 if (rc != 0) { 2962 free(nv); 2963 nv = NULL; 2964 return (rc); 2965 } 2966 *value = nv; 2967 return (rc); 2968 } 2969 2970 static int 2971 zfs_spa_init(spa_t *spa) 2972 { 2973 dnode_phys_t dir; 2974 uint64_t config_object; 2975 unsigned char *nvlist; 2976 char *type; 2977 const unsigned char *nv; 2978 int nkids, rc; 2979 2980 if (zio_read(spa, &spa->spa_uberblock.ub_rootbp, &spa->spa_mos)) { 2981 printf("ZFS: can't read MOS of pool %s\n", spa->spa_name); 2982 return (EIO); 2983 } 2984 if (spa->spa_mos.os_type != DMU_OST_META) { 2985 printf("ZFS: corrupted MOS of pool %s\n", spa->spa_name); 2986 return (EIO); 2987 } 2988 2989 if (objset_get_dnode(spa, &spa->spa_mos, DMU_POOL_DIRECTORY_OBJECT, 2990 &dir)) { 2991 printf("ZFS: failed to read pool %s directory object\n", 2992 spa->spa_name); 2993 return (EIO); 2994 } 2995 /* this is allowed to fail, older pools do not have salt */ 2996 rc = zap_lookup(spa, &dir, DMU_POOL_CHECKSUM_SALT, 1, 2997 sizeof (spa->spa_cksum_salt.zcs_bytes), 2998 spa->spa_cksum_salt.zcs_bytes); 2999 3000 rc = check_mos_features(spa); 3001 if (rc != 0) { 3002 printf("ZFS: pool %s is not supported\n", spa->spa_name); 3003 return (rc); 3004 } 3005 3006 rc = zap_lookup(spa, &dir, DMU_POOL_CONFIG, 3007 sizeof (config_object), 1, &config_object); 3008 if (rc != 0) { 3009 printf("ZFS: can not read MOS %s\n", DMU_POOL_CONFIG); 3010 return (EIO); 3011 } 3012 rc = load_nvlist(spa, config_object, &nvlist); 3013 if (rc != 0) 3014 return (rc); 3015 3016 /* Update vdevs from MOS config. */ 3017 if (nvlist_find(nvlist + 4, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST, 3018 NULL, &nv)) { 3019 rc = EIO; 3020 goto done; 3021 } 3022 3023 if (nvlist_find(nv, ZPOOL_CONFIG_TYPE, DATA_TYPE_STRING, 3024 NULL, &type)) { 3025 printf("ZFS: can't find vdev details\n"); 3026 rc = ENOENT; 3027 goto done; 3028 } 3029 if (strcmp(type, VDEV_TYPE_ROOT) != 0) { 3030 rc = ENOENT; 3031 goto done; 3032 } 3033 3034 rc = nvlist_find(nv, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY, 3035 &nkids, &nv); 3036 if (rc != 0) 3037 goto done; 3038 3039 for (int i = 0; i < nkids; i++) { 3040 vdev_t *vd, *prev, *kid = NULL; 3041 rc = vdev_init_from_nvlist(nv, NULL, &kid, 0); 3042 if (rc != 0) { 3043 printf("vdev_init_from_nvlist: %d\n", rc); 3044 break; 3045 } 3046 kid->spa = spa; 3047 prev = NULL; 3048 STAILQ_FOREACH(vd, &spa->spa_vdevs, v_childlink) { 3049 /* Already present? */ 3050 if (kid->v_id == vd->v_id) { 3051 kid = NULL; 3052 break; 3053 } 3054 if (vd->v_id > kid->v_id) { 3055 if (prev == NULL) { 3056 STAILQ_INSERT_HEAD(&spa->spa_vdevs, 3057 kid, v_childlink); 3058 } else { 3059 STAILQ_INSERT_AFTER(&spa->spa_vdevs, 3060 prev, kid, v_childlink); 3061 } 3062 kid = NULL; 3063 break; 3064 } 3065 prev = vd; 3066 } 3067 if (kid != NULL) 3068 STAILQ_INSERT_TAIL(&spa->spa_vdevs, kid, v_childlink); 3069 nv = nvlist_next(nv); 3070 } 3071 rc = 0; 3072 done: 3073 free(nvlist); 3074 return (rc); 3075 } 3076 3077 static int 3078 zfs_dnode_stat(const spa_t *spa, dnode_phys_t *dn, struct stat *sb) 3079 { 3080 3081 if (dn->dn_bonustype != DMU_OT_SA) { 3082 znode_phys_t *zp = (znode_phys_t *)dn->dn_bonus; 3083 3084 sb->st_mode = zp->zp_mode; 3085 sb->st_uid = zp->zp_uid; 3086 sb->st_gid = zp->zp_gid; 3087 sb->st_size = zp->zp_size; 3088 } else { 3089 sa_hdr_phys_t *sahdrp; 3090 int hdrsize; 3091 size_t size = 0; 3092 void *buf = NULL; 3093 3094 if (dn->dn_bonuslen != 0) 3095 sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn); 3096 else { 3097 if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0) { 3098 blkptr_t *bp = DN_SPILL_BLKPTR(dn); 3099 int error; 3100 3101 size = BP_GET_LSIZE(bp); 3102 buf = zfs_alloc(size); 3103 error = zio_read(spa, bp, buf); 3104 if (error != 0) { 3105 zfs_free(buf, size); 3106 return (error); 3107 } 3108 sahdrp = buf; 3109 } else { 3110 return (EIO); 3111 } 3112 } 3113 hdrsize = SA_HDR_SIZE(sahdrp); 3114 sb->st_mode = *(uint64_t *)((char *)sahdrp + hdrsize + 3115 SA_MODE_OFFSET); 3116 sb->st_uid = *(uint64_t *)((char *)sahdrp + hdrsize + 3117 SA_UID_OFFSET); 3118 sb->st_gid = *(uint64_t *)((char *)sahdrp + hdrsize + 3119 SA_GID_OFFSET); 3120 sb->st_size = *(uint64_t *)((char *)sahdrp + hdrsize + 3121 SA_SIZE_OFFSET); 3122 if (buf != NULL) 3123 zfs_free(buf, size); 3124 } 3125 3126 return (0); 3127 } 3128 3129 static int 3130 zfs_dnode_readlink(const spa_t *spa, dnode_phys_t *dn, char *path, size_t psize) 3131 { 3132 int rc = 0; 3133 3134 if (dn->dn_bonustype == DMU_OT_SA) { 3135 sa_hdr_phys_t *sahdrp = NULL; 3136 size_t size = 0; 3137 void *buf = NULL; 3138 int hdrsize; 3139 char *p; 3140 3141 if (dn->dn_bonuslen != 0) 3142 sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn); 3143 else { 3144 blkptr_t *bp; 3145 3146 if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) == 0) 3147 return (EIO); 3148 bp = DN_SPILL_BLKPTR(dn); 3149 3150 size = BP_GET_LSIZE(bp); 3151 buf = zfs_alloc(size); 3152 rc = zio_read(spa, bp, buf); 3153 if (rc != 0) { 3154 zfs_free(buf, size); 3155 return (rc); 3156 } 3157 sahdrp = buf; 3158 } 3159 hdrsize = SA_HDR_SIZE(sahdrp); 3160 p = (char *)((uintptr_t)sahdrp + hdrsize + SA_SYMLINK_OFFSET); 3161 memcpy(path, p, psize); 3162 if (buf != NULL) 3163 zfs_free(buf, size); 3164 return (0); 3165 } 3166 /* 3167 * Second test is purely to silence bogus compiler 3168 * warning about accessing past the end of dn_bonus. 3169 */ 3170 if (psize + sizeof(znode_phys_t) <= dn->dn_bonuslen && 3171 sizeof(znode_phys_t) <= sizeof(dn->dn_bonus)) { 3172 memcpy(path, &dn->dn_bonus[sizeof(znode_phys_t)], psize); 3173 } else { 3174 rc = dnode_read(spa, dn, 0, path, psize); 3175 } 3176 return (rc); 3177 } 3178 3179 struct obj_list { 3180 uint64_t objnum; 3181 STAILQ_ENTRY(obj_list) entry; 3182 }; 3183 3184 /* 3185 * Lookup a file and return its dnode. 3186 */ 3187 static int 3188 zfs_lookup(const struct zfsmount *mount, const char *upath, dnode_phys_t *dnode) 3189 { 3190 int rc; 3191 uint64_t objnum; 3192 const spa_t *spa; 3193 dnode_phys_t dn; 3194 const char *p, *q; 3195 char element[256]; 3196 char path[1024]; 3197 int symlinks_followed = 0; 3198 struct stat sb; 3199 struct obj_list *entry, *tentry; 3200 STAILQ_HEAD(, obj_list) on_cache = STAILQ_HEAD_INITIALIZER(on_cache); 3201 3202 spa = mount->spa; 3203 if (mount->objset.os_type != DMU_OST_ZFS) { 3204 printf("ZFS: unexpected object set type %ju\n", 3205 (uintmax_t)mount->objset.os_type); 3206 return (EIO); 3207 } 3208 3209 if ((entry = malloc(sizeof(struct obj_list))) == NULL) 3210 return (ENOMEM); 3211 3212 /* 3213 * Get the root directory dnode. 3214 */ 3215 rc = objset_get_dnode(spa, &mount->objset, MASTER_NODE_OBJ, &dn); 3216 if (rc) { 3217 free(entry); 3218 return (rc); 3219 } 3220 3221 rc = zap_lookup(spa, &dn, ZFS_ROOT_OBJ, sizeof (objnum), 1, &objnum); 3222 if (rc) { 3223 free(entry); 3224 return (rc); 3225 } 3226 entry->objnum = objnum; 3227 STAILQ_INSERT_HEAD(&on_cache, entry, entry); 3228 3229 rc = objset_get_dnode(spa, &mount->objset, objnum, &dn); 3230 if (rc != 0) 3231 goto done; 3232 3233 p = upath; 3234 while (p && *p) { 3235 rc = objset_get_dnode(spa, &mount->objset, objnum, &dn); 3236 if (rc != 0) 3237 goto done; 3238 3239 while (*p == '/') 3240 p++; 3241 if (*p == '\0') 3242 break; 3243 q = p; 3244 while (*q != '\0' && *q != '/') 3245 q++; 3246 3247 /* skip dot */ 3248 if (p + 1 == q && p[0] == '.') { 3249 p++; 3250 continue; 3251 } 3252 /* double dot */ 3253 if (p + 2 == q && p[0] == '.' && p[1] == '.') { 3254 p += 2; 3255 if (STAILQ_FIRST(&on_cache) == 3256 STAILQ_LAST(&on_cache, obj_list, entry)) { 3257 rc = ENOENT; 3258 goto done; 3259 } 3260 entry = STAILQ_FIRST(&on_cache); 3261 STAILQ_REMOVE_HEAD(&on_cache, entry); 3262 free(entry); 3263 objnum = (STAILQ_FIRST(&on_cache))->objnum; 3264 continue; 3265 } 3266 if (q - p + 1 > sizeof(element)) { 3267 rc = ENAMETOOLONG; 3268 goto done; 3269 } 3270 memcpy(element, p, q - p); 3271 element[q - p] = 0; 3272 p = q; 3273 3274 if ((rc = zfs_dnode_stat(spa, &dn, &sb)) != 0) 3275 goto done; 3276 if (!S_ISDIR(sb.st_mode)) { 3277 rc = ENOTDIR; 3278 goto done; 3279 } 3280 3281 rc = zap_lookup(spa, &dn, element, sizeof (objnum), 1, &objnum); 3282 if (rc) 3283 goto done; 3284 objnum = ZFS_DIRENT_OBJ(objnum); 3285 3286 if ((entry = malloc(sizeof(struct obj_list))) == NULL) { 3287 rc = ENOMEM; 3288 goto done; 3289 } 3290 entry->objnum = objnum; 3291 STAILQ_INSERT_HEAD(&on_cache, entry, entry); 3292 rc = objset_get_dnode(spa, &mount->objset, objnum, &dn); 3293 if (rc) 3294 goto done; 3295 3296 /* 3297 * Check for symlink. 3298 */ 3299 rc = zfs_dnode_stat(spa, &dn, &sb); 3300 if (rc) 3301 goto done; 3302 if (S_ISLNK(sb.st_mode)) { 3303 if (symlinks_followed > 10) { 3304 rc = EMLINK; 3305 goto done; 3306 } 3307 symlinks_followed++; 3308 3309 /* 3310 * Read the link value and copy the tail of our 3311 * current path onto the end. 3312 */ 3313 if (sb.st_size + strlen(p) + 1 > sizeof(path)) { 3314 rc = ENAMETOOLONG; 3315 goto done; 3316 } 3317 strcpy(&path[sb.st_size], p); 3318 3319 rc = zfs_dnode_readlink(spa, &dn, path, sb.st_size); 3320 if (rc != 0) 3321 goto done; 3322 3323 /* 3324 * Restart with the new path, starting either at 3325 * the root or at the parent depending whether or 3326 * not the link is relative. 3327 */ 3328 p = path; 3329 if (*p == '/') { 3330 while (STAILQ_FIRST(&on_cache) != 3331 STAILQ_LAST(&on_cache, obj_list, entry)) { 3332 entry = STAILQ_FIRST(&on_cache); 3333 STAILQ_REMOVE_HEAD(&on_cache, entry); 3334 free(entry); 3335 } 3336 } else { 3337 entry = STAILQ_FIRST(&on_cache); 3338 STAILQ_REMOVE_HEAD(&on_cache, entry); 3339 free(entry); 3340 } 3341 objnum = (STAILQ_FIRST(&on_cache))->objnum; 3342 } 3343 } 3344 3345 *dnode = dn; 3346 done: 3347 STAILQ_FOREACH_SAFE(entry, &on_cache, entry, tentry) 3348 free(entry); 3349 return (rc); 3350 } 3351