1 /*- 2 * Copyright (c) 2007 Doug Rabson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 /* 31 * Stand-alone ZFS file reader. 32 */ 33 34 #include <sys/endian.h> 35 #include <sys/stat.h> 36 #include <sys/stdint.h> 37 #include <sys/list.h> 38 #include <machine/_inttypes.h> 39 40 #include "zfsimpl.h" 41 #include "zfssubr.c" 42 43 44 struct zfsmount { 45 const spa_t *spa; 46 objset_phys_t objset; 47 uint64_t rootobj; 48 }; 49 static struct zfsmount zfsmount __unused; 50 51 /* 52 * The indirect_child_t represents the vdev that we will read from, when we 53 * need to read all copies of the data (e.g. for scrub or reconstruction). 54 * For plain (non-mirror) top-level vdevs (i.e. is_vdev is not a mirror), 55 * ic_vdev is the same as is_vdev. However, for mirror top-level vdevs, 56 * ic_vdev is a child of the mirror. 57 */ 58 typedef struct indirect_child { 59 void *ic_data; 60 vdev_t *ic_vdev; 61 } indirect_child_t; 62 63 /* 64 * The indirect_split_t represents one mapped segment of an i/o to the 65 * indirect vdev. For non-split (contiguously-mapped) blocks, there will be 66 * only one indirect_split_t, with is_split_offset==0 and is_size==io_size. 67 * For split blocks, there will be several of these. 68 */ 69 typedef struct indirect_split { 70 list_node_t is_node; /* link on iv_splits */ 71 72 /* 73 * is_split_offset is the offset into the i/o. 74 * This is the sum of the previous splits' is_size's. 75 */ 76 uint64_t is_split_offset; 77 78 vdev_t *is_vdev; /* top-level vdev */ 79 uint64_t is_target_offset; /* offset on is_vdev */ 80 uint64_t is_size; 81 int is_children; /* number of entries in is_child[] */ 82 83 /* 84 * is_good_child is the child that we are currently using to 85 * attempt reconstruction. 86 */ 87 int is_good_child; 88 89 indirect_child_t is_child[1]; /* variable-length */ 90 } indirect_split_t; 91 92 /* 93 * The indirect_vsd_t is associated with each i/o to the indirect vdev. 94 * It is the "Vdev-Specific Data" in the zio_t's io_vsd. 95 */ 96 typedef struct indirect_vsd { 97 boolean_t iv_split_block; 98 boolean_t iv_reconstruct; 99 100 list_t iv_splits; /* list of indirect_split_t's */ 101 } indirect_vsd_t; 102 103 /* 104 * List of all vdevs, chained through v_alllink. 105 */ 106 static vdev_list_t zfs_vdevs; 107 108 /* 109 * List of ZFS features supported for read 110 */ 111 static const char *features_for_read[] = { 112 "org.illumos:lz4_compress", 113 "com.delphix:hole_birth", 114 "com.delphix:extensible_dataset", 115 "com.delphix:embedded_data", 116 "org.open-zfs:large_blocks", 117 "org.illumos:sha512", 118 "org.illumos:skein", 119 "org.zfsonlinux:large_dnode", 120 "com.joyent:multi_vdev_crash_dump", 121 "com.delphix:spacemap_histogram", 122 "com.delphix:zpool_checkpoint", 123 "com.delphix:spacemap_v2", 124 "com.datto:encryption", 125 "org.zfsonlinux:allocation_classes", 126 "com.datto:resilver_defer", 127 "com.delphix:device_removal", 128 "com.delphix:obsolete_counts", 129 "com.intel:allocation_classes", 130 NULL 131 }; 132 133 /* 134 * List of all pools, chained through spa_link. 135 */ 136 static spa_list_t zfs_pools; 137 138 static const dnode_phys_t *dnode_cache_obj; 139 static uint64_t dnode_cache_bn; 140 static char *dnode_cache_buf; 141 142 static int zio_read(const spa_t *spa, const blkptr_t *bp, void *buf); 143 static int zfs_get_root(const spa_t *spa, uint64_t *objid); 144 static int zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result); 145 static int zap_lookup(const spa_t *spa, const dnode_phys_t *dnode, 146 const char *name, uint64_t integer_size, uint64_t num_integers, 147 void *value); 148 static int objset_get_dnode(const spa_t *, const objset_phys_t *, uint64_t, 149 dnode_phys_t *); 150 static int dnode_read(const spa_t *, const dnode_phys_t *, off_t, void *, 151 size_t); 152 static int vdev_indirect_read(vdev_t *, const blkptr_t *, void *, off_t, 153 size_t); 154 static int vdev_mirror_read(vdev_t *, const blkptr_t *, void *, off_t, size_t); 155 vdev_indirect_mapping_t *vdev_indirect_mapping_open(spa_t *, objset_phys_t *, 156 uint64_t); 157 vdev_indirect_mapping_entry_phys_t * 158 vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *, uint64_t, 159 uint64_t, uint64_t *); 160 161 static void 162 zfs_init(void) 163 { 164 STAILQ_INIT(&zfs_vdevs); 165 STAILQ_INIT(&zfs_pools); 166 167 dnode_cache_buf = malloc(SPA_MAXBLOCKSIZE); 168 169 zfs_init_crc(); 170 } 171 172 static int 173 xdr_int(const unsigned char **xdr, int *ip) 174 { 175 *ip = be32dec(*xdr); 176 (*xdr) += 4; 177 return (0); 178 } 179 180 static int 181 xdr_u_int(const unsigned char **xdr, u_int *ip) 182 { 183 *ip = be32dec(*xdr); 184 (*xdr) += 4; 185 return (0); 186 } 187 188 static int 189 xdr_uint64_t(const unsigned char **xdr, uint64_t *lp) 190 { 191 u_int hi, lo; 192 193 xdr_u_int(xdr, &hi); 194 xdr_u_int(xdr, &lo); 195 *lp = (((uint64_t)hi) << 32) | lo; 196 return (0); 197 } 198 199 static int 200 nvlist_find(const unsigned char *nvlist, const char *name, int type, 201 int *elementsp, void *valuep) 202 { 203 const unsigned char *p, *pair; 204 int junk; 205 int encoded_size, decoded_size; 206 207 p = nvlist; 208 xdr_int(&p, &junk); 209 xdr_int(&p, &junk); 210 211 pair = p; 212 xdr_int(&p, &encoded_size); 213 xdr_int(&p, &decoded_size); 214 while (encoded_size && decoded_size) { 215 int namelen, pairtype, elements; 216 const char *pairname; 217 218 xdr_int(&p, &namelen); 219 pairname = (const char *)p; 220 p += roundup(namelen, 4); 221 xdr_int(&p, &pairtype); 222 223 if (memcmp(name, pairname, namelen) == 0 && type == pairtype) { 224 xdr_int(&p, &elements); 225 if (elementsp) 226 *elementsp = elements; 227 if (type == DATA_TYPE_UINT64) { 228 xdr_uint64_t(&p, (uint64_t *)valuep); 229 return (0); 230 } else if (type == DATA_TYPE_STRING) { 231 int len; 232 xdr_int(&p, &len); 233 (*(const char **)valuep) = (const char *)p; 234 return (0); 235 } else if (type == DATA_TYPE_NVLIST || 236 type == DATA_TYPE_NVLIST_ARRAY) { 237 (*(const unsigned char **)valuep) = 238 (const unsigned char *)p; 239 return (0); 240 } else { 241 return (EIO); 242 } 243 } else { 244 /* 245 * Not the pair we are looking for, skip to the 246 * next one. 247 */ 248 p = pair + encoded_size; 249 } 250 251 pair = p; 252 xdr_int(&p, &encoded_size); 253 xdr_int(&p, &decoded_size); 254 } 255 256 return (EIO); 257 } 258 259 static int 260 nvlist_check_features_for_read(const unsigned char *nvlist) 261 { 262 const unsigned char *p, *pair; 263 int junk; 264 int encoded_size, decoded_size; 265 int rc; 266 267 rc = 0; 268 269 p = nvlist; 270 xdr_int(&p, &junk); 271 xdr_int(&p, &junk); 272 273 pair = p; 274 xdr_int(&p, &encoded_size); 275 xdr_int(&p, &decoded_size); 276 while (encoded_size && decoded_size) { 277 int namelen, pairtype; 278 const char *pairname; 279 int i, found; 280 281 found = 0; 282 283 xdr_int(&p, &namelen); 284 pairname = (const char *)p; 285 p += roundup(namelen, 4); 286 xdr_int(&p, &pairtype); 287 288 for (i = 0; features_for_read[i] != NULL; i++) { 289 if (memcmp(pairname, features_for_read[i], 290 namelen) == 0) { 291 found = 1; 292 break; 293 } 294 } 295 296 if (!found) { 297 printf("ZFS: unsupported feature: %s\n", pairname); 298 rc = EIO; 299 } 300 301 p = pair + encoded_size; 302 303 pair = p; 304 xdr_int(&p, &encoded_size); 305 xdr_int(&p, &decoded_size); 306 } 307 308 return (rc); 309 } 310 311 /* 312 * Return the next nvlist in an nvlist array. 313 */ 314 static const unsigned char * 315 nvlist_next(const unsigned char *nvlist) 316 { 317 const unsigned char *p, *pair; 318 int junk; 319 int encoded_size, decoded_size; 320 321 p = nvlist; 322 xdr_int(&p, &junk); 323 xdr_int(&p, &junk); 324 325 pair = p; 326 xdr_int(&p, &encoded_size); 327 xdr_int(&p, &decoded_size); 328 while (encoded_size && decoded_size) { 329 p = pair + encoded_size; 330 331 pair = p; 332 xdr_int(&p, &encoded_size); 333 xdr_int(&p, &decoded_size); 334 } 335 336 return (p); 337 } 338 339 #ifdef TEST 340 341 static const unsigned char * 342 nvlist_print(const unsigned char *nvlist, unsigned int indent) 343 { 344 static const char *typenames[] = { 345 "DATA_TYPE_UNKNOWN", 346 "DATA_TYPE_BOOLEAN", 347 "DATA_TYPE_BYTE", 348 "DATA_TYPE_INT16", 349 "DATA_TYPE_UINT16", 350 "DATA_TYPE_INT32", 351 "DATA_TYPE_UINT32", 352 "DATA_TYPE_INT64", 353 "DATA_TYPE_UINT64", 354 "DATA_TYPE_STRING", 355 "DATA_TYPE_BYTE_ARRAY", 356 "DATA_TYPE_INT16_ARRAY", 357 "DATA_TYPE_UINT16_ARRAY", 358 "DATA_TYPE_INT32_ARRAY", 359 "DATA_TYPE_UINT32_ARRAY", 360 "DATA_TYPE_INT64_ARRAY", 361 "DATA_TYPE_UINT64_ARRAY", 362 "DATA_TYPE_STRING_ARRAY", 363 "DATA_TYPE_HRTIME", 364 "DATA_TYPE_NVLIST", 365 "DATA_TYPE_NVLIST_ARRAY", 366 "DATA_TYPE_BOOLEAN_VALUE", 367 "DATA_TYPE_INT8", 368 "DATA_TYPE_UINT8", 369 "DATA_TYPE_BOOLEAN_ARRAY", 370 "DATA_TYPE_INT8_ARRAY", 371 "DATA_TYPE_UINT8_ARRAY" 372 }; 373 374 unsigned int i, j; 375 const unsigned char *p, *pair; 376 int junk; 377 int encoded_size, decoded_size; 378 379 p = nvlist; 380 xdr_int(&p, &junk); 381 xdr_int(&p, &junk); 382 383 pair = p; 384 xdr_int(&p, &encoded_size); 385 xdr_int(&p, &decoded_size); 386 while (encoded_size && decoded_size) { 387 int namelen, pairtype, elements; 388 const char *pairname; 389 390 xdr_int(&p, &namelen); 391 pairname = (const char *)p; 392 p += roundup(namelen, 4); 393 xdr_int(&p, &pairtype); 394 395 for (i = 0; i < indent; i++) 396 printf(" "); 397 printf("%s %s", typenames[pairtype], pairname); 398 399 xdr_int(&p, &elements); 400 switch (pairtype) { 401 case DATA_TYPE_UINT64: { 402 uint64_t val; 403 xdr_uint64_t(&p, &val); 404 printf(" = 0x%jx\n", (uintmax_t)val); 405 break; 406 } 407 408 case DATA_TYPE_STRING: { 409 int len; 410 xdr_int(&p, &len); 411 printf(" = \"%s\"\n", p); 412 break; 413 } 414 415 case DATA_TYPE_NVLIST: 416 printf("\n"); 417 nvlist_print(p, indent + 1); 418 break; 419 420 case DATA_TYPE_NVLIST_ARRAY: 421 for (j = 0; j < elements; j++) { 422 printf("[%d]\n", j); 423 p = nvlist_print(p, indent + 1); 424 if (j != elements - 1) { 425 for (i = 0; i < indent; i++) 426 printf(" "); 427 printf("%s %s", typenames[pairtype], 428 pairname); 429 } 430 } 431 break; 432 433 default: 434 printf("\n"); 435 } 436 437 p = pair + encoded_size; 438 439 pair = p; 440 xdr_int(&p, &encoded_size); 441 xdr_int(&p, &decoded_size); 442 } 443 444 return (p); 445 } 446 447 #endif 448 449 static int 450 vdev_read_phys(vdev_t *vdev, const blkptr_t *bp, void *buf, 451 off_t offset, size_t size) 452 { 453 size_t psize; 454 int rc; 455 456 if (!vdev->v_phys_read) 457 return (EIO); 458 459 if (bp) { 460 psize = BP_GET_PSIZE(bp); 461 } else { 462 psize = size; 463 } 464 465 rc = vdev->v_phys_read(vdev, vdev->v_read_priv, offset, buf, psize); 466 if (rc == 0) { 467 if (bp != NULL) 468 rc = zio_checksum_verify(vdev->v_spa, bp, buf); 469 } 470 471 return (rc); 472 } 473 474 typedef struct remap_segment { 475 vdev_t *rs_vd; 476 uint64_t rs_offset; 477 uint64_t rs_asize; 478 uint64_t rs_split_offset; 479 list_node_t rs_node; 480 } remap_segment_t; 481 482 static remap_segment_t * 483 rs_alloc(vdev_t *vd, uint64_t offset, uint64_t asize, uint64_t split_offset) 484 { 485 remap_segment_t *rs = malloc(sizeof (remap_segment_t)); 486 487 if (rs != NULL) { 488 rs->rs_vd = vd; 489 rs->rs_offset = offset; 490 rs->rs_asize = asize; 491 rs->rs_split_offset = split_offset; 492 } 493 494 return (rs); 495 } 496 497 vdev_indirect_mapping_t * 498 vdev_indirect_mapping_open(spa_t *spa, objset_phys_t *os, 499 uint64_t mapping_object) 500 { 501 vdev_indirect_mapping_t *vim; 502 vdev_indirect_mapping_phys_t *vim_phys; 503 int rc; 504 505 vim = calloc(1, sizeof (*vim)); 506 if (vim == NULL) 507 return (NULL); 508 509 vim->vim_dn = calloc(1, sizeof (*vim->vim_dn)); 510 if (vim->vim_dn == NULL) { 511 free(vim); 512 return (NULL); 513 } 514 515 rc = objset_get_dnode(spa, os, mapping_object, vim->vim_dn); 516 if (rc != 0) { 517 free(vim->vim_dn); 518 free(vim); 519 return (NULL); 520 } 521 522 vim->vim_spa = spa; 523 vim->vim_phys = malloc(sizeof (*vim->vim_phys)); 524 if (vim->vim_phys == NULL) { 525 free(vim->vim_dn); 526 free(vim); 527 return (NULL); 528 } 529 530 vim_phys = (vdev_indirect_mapping_phys_t *)DN_BONUS(vim->vim_dn); 531 *vim->vim_phys = *vim_phys; 532 533 vim->vim_objset = os; 534 vim->vim_object = mapping_object; 535 vim->vim_entries = NULL; 536 537 vim->vim_havecounts = 538 (vim->vim_dn->dn_bonuslen > VDEV_INDIRECT_MAPPING_SIZE_V0); 539 540 return (vim); 541 } 542 543 /* 544 * Compare an offset with an indirect mapping entry; there are three 545 * possible scenarios: 546 * 547 * 1. The offset is "less than" the mapping entry; meaning the 548 * offset is less than the source offset of the mapping entry. In 549 * this case, there is no overlap between the offset and the 550 * mapping entry and -1 will be returned. 551 * 552 * 2. The offset is "greater than" the mapping entry; meaning the 553 * offset is greater than the mapping entry's source offset plus 554 * the entry's size. In this case, there is no overlap between 555 * the offset and the mapping entry and 1 will be returned. 556 * 557 * NOTE: If the offset is actually equal to the entry's offset 558 * plus size, this is considered to be "greater" than the entry, 559 * and this case applies (i.e. 1 will be returned). Thus, the 560 * entry's "range" can be considered to be inclusive at its 561 * start, but exclusive at its end: e.g. [src, src + size). 562 * 563 * 3. The last case to consider is if the offset actually falls 564 * within the mapping entry's range. If this is the case, the 565 * offset is considered to be "equal to" the mapping entry and 566 * 0 will be returned. 567 * 568 * NOTE: If the offset is equal to the entry's source offset, 569 * this case applies and 0 will be returned. If the offset is 570 * equal to the entry's source plus its size, this case does 571 * *not* apply (see "NOTE" above for scenario 2), and 1 will be 572 * returned. 573 */ 574 static int 575 dva_mapping_overlap_compare(const void *v_key, const void *v_array_elem) 576 { 577 const uint64_t *key = v_key; 578 const vdev_indirect_mapping_entry_phys_t *array_elem = 579 v_array_elem; 580 uint64_t src_offset = DVA_MAPPING_GET_SRC_OFFSET(array_elem); 581 582 if (*key < src_offset) { 583 return (-1); 584 } else if (*key < src_offset + DVA_GET_ASIZE(&array_elem->vimep_dst)) { 585 return (0); 586 } else { 587 return (1); 588 } 589 } 590 591 /* 592 * Return array entry. 593 */ 594 static vdev_indirect_mapping_entry_phys_t * 595 vdev_indirect_mapping_entry(vdev_indirect_mapping_t *vim, uint64_t index) 596 { 597 uint64_t size; 598 off_t offset = 0; 599 int rc; 600 601 if (vim->vim_phys->vimp_num_entries == 0) 602 return (NULL); 603 604 if (vim->vim_entries == NULL) { 605 uint64_t bsize; 606 607 bsize = vim->vim_dn->dn_datablkszsec << SPA_MINBLOCKSHIFT; 608 size = vim->vim_phys->vimp_num_entries * 609 sizeof (*vim->vim_entries); 610 if (size > bsize) { 611 size = bsize / sizeof (*vim->vim_entries); 612 size *= sizeof (*vim->vim_entries); 613 } 614 vim->vim_entries = malloc(size); 615 if (vim->vim_entries == NULL) 616 return (NULL); 617 vim->vim_num_entries = size / sizeof (*vim->vim_entries); 618 offset = index * sizeof (*vim->vim_entries); 619 } 620 621 /* We have data in vim_entries */ 622 if (offset == 0) { 623 if (index >= vim->vim_entry_offset && 624 index <= vim->vim_entry_offset + vim->vim_num_entries) { 625 index -= vim->vim_entry_offset; 626 return (&vim->vim_entries[index]); 627 } 628 offset = index * sizeof (*vim->vim_entries); 629 } 630 631 vim->vim_entry_offset = index; 632 size = vim->vim_num_entries * sizeof (*vim->vim_entries); 633 rc = dnode_read(vim->vim_spa, vim->vim_dn, offset, vim->vim_entries, 634 size); 635 if (rc != 0) { 636 /* Read error, invalidate vim_entries. */ 637 free(vim->vim_entries); 638 vim->vim_entries = NULL; 639 return (NULL); 640 } 641 index -= vim->vim_entry_offset; 642 return (&vim->vim_entries[index]); 643 } 644 645 /* 646 * Returns the mapping entry for the given offset. 647 * 648 * It's possible that the given offset will not be in the mapping table 649 * (i.e. no mapping entries contain this offset), in which case, the 650 * return value value depends on the "next_if_missing" parameter. 651 * 652 * If the offset is not found in the table and "next_if_missing" is 653 * B_FALSE, then NULL will always be returned. The behavior is intended 654 * to allow consumers to get the entry corresponding to the offset 655 * parameter, iff the offset overlaps with an entry in the table. 656 * 657 * If the offset is not found in the table and "next_if_missing" is 658 * B_TRUE, then the entry nearest to the given offset will be returned, 659 * such that the entry's source offset is greater than the offset 660 * passed in (i.e. the "next" mapping entry in the table is returned, if 661 * the offset is missing from the table). If there are no entries whose 662 * source offset is greater than the passed in offset, NULL is returned. 663 */ 664 static vdev_indirect_mapping_entry_phys_t * 665 vdev_indirect_mapping_entry_for_offset(vdev_indirect_mapping_t *vim, 666 uint64_t offset) 667 { 668 ASSERT(vim->vim_phys->vimp_num_entries > 0); 669 670 vdev_indirect_mapping_entry_phys_t *entry; 671 672 uint64_t last = vim->vim_phys->vimp_num_entries - 1; 673 uint64_t base = 0; 674 675 /* 676 * We don't define these inside of the while loop because we use 677 * their value in the case that offset isn't in the mapping. 678 */ 679 uint64_t mid; 680 int result; 681 682 while (last >= base) { 683 mid = base + ((last - base) >> 1); 684 685 entry = vdev_indirect_mapping_entry(vim, mid); 686 if (entry == NULL) 687 break; 688 result = dva_mapping_overlap_compare(&offset, entry); 689 690 if (result == 0) { 691 break; 692 } else if (result < 0) { 693 last = mid - 1; 694 } else { 695 base = mid + 1; 696 } 697 } 698 return (entry); 699 } 700 701 /* 702 * Given an indirect vdev and an extent on that vdev, it duplicates the 703 * physical entries of the indirect mapping that correspond to the extent 704 * to a new array and returns a pointer to it. In addition, copied_entries 705 * is populated with the number of mapping entries that were duplicated. 706 * 707 * Finally, since we are doing an allocation, it is up to the caller to 708 * free the array allocated in this function. 709 */ 710 vdev_indirect_mapping_entry_phys_t * 711 vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *vd, uint64_t offset, 712 uint64_t asize, uint64_t *copied_entries) 713 { 714 vdev_indirect_mapping_entry_phys_t *duplicate_mappings = NULL; 715 vdev_indirect_mapping_t *vim = vd->v_mapping; 716 uint64_t entries = 0; 717 718 vdev_indirect_mapping_entry_phys_t *first_mapping = 719 vdev_indirect_mapping_entry_for_offset(vim, offset); 720 ASSERT3P(first_mapping, !=, NULL); 721 722 vdev_indirect_mapping_entry_phys_t *m = first_mapping; 723 while (asize > 0) { 724 uint64_t size = DVA_GET_ASIZE(&m->vimep_dst); 725 uint64_t inner_offset = offset - DVA_MAPPING_GET_SRC_OFFSET(m); 726 uint64_t inner_size = MIN(asize, size - inner_offset); 727 728 offset += inner_size; 729 asize -= inner_size; 730 entries++; 731 m++; 732 } 733 734 size_t copy_length = entries * sizeof (*first_mapping); 735 duplicate_mappings = malloc(copy_length); 736 if (duplicate_mappings != NULL) 737 bcopy(first_mapping, duplicate_mappings, copy_length); 738 else 739 entries = 0; 740 741 *copied_entries = entries; 742 743 return (duplicate_mappings); 744 } 745 746 static vdev_t * 747 vdev_lookup_top(spa_t *spa, uint64_t vdev) 748 { 749 vdev_t *rvd; 750 vdev_list_t *vlist; 751 752 vlist = &spa->spa_root_vdev->v_children; 753 STAILQ_FOREACH(rvd, vlist, v_childlink) 754 if (rvd->v_id == vdev) 755 break; 756 757 return (rvd); 758 } 759 760 /* 761 * This is a callback for vdev_indirect_remap() which allocates an 762 * indirect_split_t for each split segment and adds it to iv_splits. 763 */ 764 static void 765 vdev_indirect_gather_splits(uint64_t split_offset, vdev_t *vd, uint64_t offset, 766 uint64_t size, void *arg) 767 { 768 int n = 1; 769 zio_t *zio = arg; 770 indirect_vsd_t *iv = zio->io_vsd; 771 772 if (vd->v_read == vdev_indirect_read) 773 return; 774 775 if (vd->v_read == vdev_mirror_read) 776 n = vd->v_nchildren; 777 778 indirect_split_t *is = 779 malloc(offsetof(indirect_split_t, is_child[n])); 780 if (is == NULL) { 781 zio->io_error = ENOMEM; 782 return; 783 } 784 bzero(is, offsetof(indirect_split_t, is_child[n])); 785 786 is->is_children = n; 787 is->is_size = size; 788 is->is_split_offset = split_offset; 789 is->is_target_offset = offset; 790 is->is_vdev = vd; 791 792 /* 793 * Note that we only consider multiple copies of the data for 794 * *mirror* vdevs. We don't for "replacing" or "spare" vdevs, even 795 * though they use the same ops as mirror, because there's only one 796 * "good" copy under the replacing/spare. 797 */ 798 if (vd->v_read == vdev_mirror_read) { 799 int i = 0; 800 vdev_t *kid; 801 802 STAILQ_FOREACH(kid, &vd->v_children, v_childlink) { 803 is->is_child[i++].ic_vdev = kid; 804 } 805 } else { 806 is->is_child[0].ic_vdev = vd; 807 } 808 809 list_insert_tail(&iv->iv_splits, is); 810 } 811 812 static void 813 vdev_indirect_remap(vdev_t *vd, uint64_t offset, uint64_t asize, void *arg) 814 { 815 list_t stack; 816 spa_t *spa = vd->v_spa; 817 zio_t *zio = arg; 818 remap_segment_t *rs; 819 820 list_create(&stack, sizeof (remap_segment_t), 821 offsetof(remap_segment_t, rs_node)); 822 823 rs = rs_alloc(vd, offset, asize, 0); 824 if (rs == NULL) { 825 printf("vdev_indirect_remap: out of memory.\n"); 826 zio->io_error = ENOMEM; 827 } 828 for (; rs != NULL; rs = list_remove_head(&stack)) { 829 vdev_t *v = rs->rs_vd; 830 uint64_t num_entries = 0; 831 /* vdev_indirect_mapping_t *vim = v->v_mapping; */ 832 vdev_indirect_mapping_entry_phys_t *mapping = 833 vdev_indirect_mapping_duplicate_adjacent_entries(v, 834 rs->rs_offset, rs->rs_asize, &num_entries); 835 836 if (num_entries == 0) 837 zio->io_error = ENOMEM; 838 839 for (uint64_t i = 0; i < num_entries; i++) { 840 vdev_indirect_mapping_entry_phys_t *m = &mapping[i]; 841 uint64_t size = DVA_GET_ASIZE(&m->vimep_dst); 842 uint64_t dst_offset = DVA_GET_OFFSET(&m->vimep_dst); 843 uint64_t dst_vdev = DVA_GET_VDEV(&m->vimep_dst); 844 uint64_t inner_offset = rs->rs_offset - 845 DVA_MAPPING_GET_SRC_OFFSET(m); 846 uint64_t inner_size = 847 MIN(rs->rs_asize, size - inner_offset); 848 vdev_t *dst_v = vdev_lookup_top(spa, dst_vdev); 849 850 if (dst_v->v_read == vdev_indirect_read) { 851 remap_segment_t *o; 852 853 o = rs_alloc(dst_v, dst_offset + inner_offset, 854 inner_size, rs->rs_split_offset); 855 if (o == NULL) { 856 printf("vdev_indirect_remap: " 857 "out of memory.\n"); 858 zio->io_error = ENOMEM; 859 break; 860 } 861 862 list_insert_head(&stack, o); 863 } 864 vdev_indirect_gather_splits(rs->rs_split_offset, dst_v, 865 dst_offset + inner_offset, 866 inner_size, arg); 867 868 /* 869 * vdev_indirect_gather_splits can have memory 870 * allocation error, we can not recover from it. 871 */ 872 if (zio->io_error != 0) 873 break; 874 rs->rs_offset += inner_size; 875 rs->rs_asize -= inner_size; 876 rs->rs_split_offset += inner_size; 877 } 878 879 free(mapping); 880 free(rs); 881 if (zio->io_error != 0) 882 break; 883 } 884 885 list_destroy(&stack); 886 } 887 888 static void 889 vdev_indirect_map_free(zio_t *zio) 890 { 891 indirect_vsd_t *iv = zio->io_vsd; 892 indirect_split_t *is; 893 894 while ((is = list_head(&iv->iv_splits)) != NULL) { 895 for (int c = 0; c < is->is_children; c++) { 896 indirect_child_t *ic = &is->is_child[c]; 897 free(ic->ic_data); 898 } 899 list_remove(&iv->iv_splits, is); 900 free(is); 901 } 902 free(iv); 903 } 904 905 static int 906 vdev_indirect_read(vdev_t *vdev, const blkptr_t *bp, void *buf, 907 off_t offset, size_t bytes) 908 { 909 zio_t zio; 910 spa_t *spa = vdev->v_spa; 911 indirect_vsd_t *iv; 912 indirect_split_t *first; 913 int rc = EIO; 914 915 iv = calloc(1, sizeof(*iv)); 916 if (iv == NULL) 917 return (ENOMEM); 918 919 list_create(&iv->iv_splits, 920 sizeof (indirect_split_t), offsetof(indirect_split_t, is_node)); 921 922 bzero(&zio, sizeof(zio)); 923 zio.io_spa = spa; 924 zio.io_bp = (blkptr_t *)bp; 925 zio.io_data = buf; 926 zio.io_size = bytes; 927 zio.io_offset = offset; 928 zio.io_vd = vdev; 929 zio.io_vsd = iv; 930 931 if (vdev->v_mapping == NULL) { 932 vdev_indirect_config_t *vic; 933 934 vic = &vdev->vdev_indirect_config; 935 vdev->v_mapping = vdev_indirect_mapping_open(spa, 936 &spa->spa_mos, vic->vic_mapping_object); 937 } 938 939 vdev_indirect_remap(vdev, offset, bytes, &zio); 940 if (zio.io_error != 0) 941 return (zio.io_error); 942 943 first = list_head(&iv->iv_splits); 944 if (first->is_size == zio.io_size) { 945 /* 946 * This is not a split block; we are pointing to the entire 947 * data, which will checksum the same as the original data. 948 * Pass the BP down so that the child i/o can verify the 949 * checksum, and try a different location if available 950 * (e.g. on a mirror). 951 * 952 * While this special case could be handled the same as the 953 * general (split block) case, doing it this way ensures 954 * that the vast majority of blocks on indirect vdevs 955 * (which are not split) are handled identically to blocks 956 * on non-indirect vdevs. This allows us to be less strict 957 * about performance in the general (but rare) case. 958 */ 959 rc = first->is_vdev->v_read(first->is_vdev, zio.io_bp, 960 zio.io_data, first->is_target_offset, bytes); 961 } else { 962 iv->iv_split_block = B_TRUE; 963 /* 964 * Read one copy of each split segment, from the 965 * top-level vdev. Since we don't know the 966 * checksum of each split individually, the child 967 * zio can't ensure that we get the right data. 968 * E.g. if it's a mirror, it will just read from a 969 * random (healthy) leaf vdev. We have to verify 970 * the checksum in vdev_indirect_io_done(). 971 */ 972 for (indirect_split_t *is = list_head(&iv->iv_splits); 973 is != NULL; is = list_next(&iv->iv_splits, is)) { 974 char *ptr = zio.io_data; 975 976 rc = is->is_vdev->v_read(is->is_vdev, zio.io_bp, 977 ptr + is->is_split_offset, is->is_target_offset, 978 is->is_size); 979 } 980 if (zio_checksum_verify(spa, zio.io_bp, zio.io_data)) 981 rc = ECKSUM; 982 else 983 rc = 0; 984 } 985 986 vdev_indirect_map_free(&zio); 987 if (rc == 0) 988 rc = zio.io_error; 989 990 return (rc); 991 } 992 993 static int 994 vdev_disk_read(vdev_t *vdev, const blkptr_t *bp, void *buf, 995 off_t offset, size_t bytes) 996 { 997 998 return (vdev_read_phys(vdev, bp, buf, 999 offset + VDEV_LABEL_START_SIZE, bytes)); 1000 } 1001 1002 1003 static int 1004 vdev_mirror_read(vdev_t *vdev, const blkptr_t *bp, void *buf, 1005 off_t offset, size_t bytes) 1006 { 1007 vdev_t *kid; 1008 int rc; 1009 1010 rc = EIO; 1011 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) { 1012 if (kid->v_state != VDEV_STATE_HEALTHY) 1013 continue; 1014 rc = kid->v_read(kid, bp, buf, offset, bytes); 1015 if (!rc) 1016 return (0); 1017 } 1018 1019 return (rc); 1020 } 1021 1022 static int 1023 vdev_replacing_read(vdev_t *vdev, const blkptr_t *bp, void *buf, 1024 off_t offset, size_t bytes) 1025 { 1026 vdev_t *kid; 1027 1028 /* 1029 * Here we should have two kids: 1030 * First one which is the one we are replacing and we can trust 1031 * only this one to have valid data, but it might not be present. 1032 * Second one is that one we are replacing with. It is most likely 1033 * healthy, but we can't trust it has needed data, so we won't use it. 1034 */ 1035 kid = STAILQ_FIRST(&vdev->v_children); 1036 if (kid == NULL) 1037 return (EIO); 1038 if (kid->v_state != VDEV_STATE_HEALTHY) 1039 return (EIO); 1040 return (kid->v_read(kid, bp, buf, offset, bytes)); 1041 } 1042 1043 static vdev_t * 1044 vdev_find(uint64_t guid) 1045 { 1046 vdev_t *vdev; 1047 1048 STAILQ_FOREACH(vdev, &zfs_vdevs, v_alllink) 1049 if (vdev->v_guid == guid) 1050 return (vdev); 1051 1052 return (0); 1053 } 1054 1055 static vdev_t * 1056 vdev_create(uint64_t guid, vdev_read_t *_read) 1057 { 1058 vdev_t *vdev; 1059 vdev_indirect_config_t *vic; 1060 1061 vdev = calloc(1, sizeof(vdev_t)); 1062 if (vdev != NULL) { 1063 STAILQ_INIT(&vdev->v_children); 1064 vdev->v_guid = guid; 1065 vdev->v_read = _read; 1066 1067 /* 1068 * root vdev has no read function, we use this fact to 1069 * skip setting up data we do not need for root vdev. 1070 * We only point root vdev from spa. 1071 */ 1072 if (_read != NULL) { 1073 vic = &vdev->vdev_indirect_config; 1074 vic->vic_prev_indirect_vdev = UINT64_MAX; 1075 STAILQ_INSERT_TAIL(&zfs_vdevs, vdev, v_alllink); 1076 } 1077 } 1078 1079 return (vdev); 1080 } 1081 1082 static void 1083 vdev_set_initial_state(vdev_t *vdev, const unsigned char *nvlist) 1084 { 1085 uint64_t is_offline, is_faulted, is_degraded, is_removed, isnt_present; 1086 uint64_t is_log; 1087 1088 is_offline = is_removed = is_faulted = is_degraded = isnt_present = 0; 1089 is_log = 0; 1090 (void) nvlist_find(nvlist, ZPOOL_CONFIG_OFFLINE, DATA_TYPE_UINT64, NULL, 1091 &is_offline); 1092 (void) nvlist_find(nvlist, ZPOOL_CONFIG_REMOVED, DATA_TYPE_UINT64, NULL, 1093 &is_removed); 1094 (void) nvlist_find(nvlist, ZPOOL_CONFIG_FAULTED, DATA_TYPE_UINT64, NULL, 1095 &is_faulted); 1096 (void) nvlist_find(nvlist, ZPOOL_CONFIG_DEGRADED, DATA_TYPE_UINT64, 1097 NULL, &is_degraded); 1098 (void) nvlist_find(nvlist, ZPOOL_CONFIG_NOT_PRESENT, DATA_TYPE_UINT64, 1099 NULL, &isnt_present); 1100 (void) nvlist_find(nvlist, ZPOOL_CONFIG_IS_LOG, DATA_TYPE_UINT64, NULL, 1101 &is_log); 1102 1103 if (is_offline != 0) 1104 vdev->v_state = VDEV_STATE_OFFLINE; 1105 else if (is_removed != 0) 1106 vdev->v_state = VDEV_STATE_REMOVED; 1107 else if (is_faulted != 0) 1108 vdev->v_state = VDEV_STATE_FAULTED; 1109 else if (is_degraded != 0) 1110 vdev->v_state = VDEV_STATE_DEGRADED; 1111 else if (isnt_present != 0) 1112 vdev->v_state = VDEV_STATE_CANT_OPEN; 1113 1114 vdev->v_islog = is_log != 0; 1115 } 1116 1117 static int 1118 vdev_init(uint64_t guid, const unsigned char *nvlist, vdev_t **vdevp) 1119 { 1120 uint64_t id, ashift, asize, nparity; 1121 const char *path; 1122 const char *type; 1123 vdev_t *vdev; 1124 1125 if (nvlist_find(nvlist, ZPOOL_CONFIG_ID, DATA_TYPE_UINT64, NULL, &id) || 1126 nvlist_find(nvlist, ZPOOL_CONFIG_TYPE, DATA_TYPE_STRING, 1127 NULL, &type)) { 1128 return (ENOENT); 1129 } 1130 1131 if (strcmp(type, VDEV_TYPE_MIRROR) != 0 && 1132 strcmp(type, VDEV_TYPE_DISK) != 0 && 1133 #ifdef ZFS_TEST 1134 strcmp(type, VDEV_TYPE_FILE) != 0 && 1135 #endif 1136 strcmp(type, VDEV_TYPE_RAIDZ) != 0 && 1137 strcmp(type, VDEV_TYPE_INDIRECT) != 0 && 1138 strcmp(type, VDEV_TYPE_REPLACING) != 0) { 1139 printf("ZFS: can only boot from disk, mirror, raidz1, " 1140 "raidz2 and raidz3 vdevs\n"); 1141 return (EIO); 1142 } 1143 1144 if (strcmp(type, VDEV_TYPE_MIRROR) == 0) 1145 vdev = vdev_create(guid, vdev_mirror_read); 1146 else if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) 1147 vdev = vdev_create(guid, vdev_raidz_read); 1148 else if (strcmp(type, VDEV_TYPE_REPLACING) == 0) 1149 vdev = vdev_create(guid, vdev_replacing_read); 1150 else if (strcmp(type, VDEV_TYPE_INDIRECT) == 0) { 1151 vdev_indirect_config_t *vic; 1152 1153 vdev = vdev_create(guid, vdev_indirect_read); 1154 if (vdev != NULL) { 1155 vdev->v_state = VDEV_STATE_HEALTHY; 1156 vic = &vdev->vdev_indirect_config; 1157 1158 nvlist_find(nvlist, 1159 ZPOOL_CONFIG_INDIRECT_OBJECT, 1160 DATA_TYPE_UINT64, 1161 NULL, &vic->vic_mapping_object); 1162 nvlist_find(nvlist, 1163 ZPOOL_CONFIG_INDIRECT_BIRTHS, 1164 DATA_TYPE_UINT64, 1165 NULL, &vic->vic_births_object); 1166 nvlist_find(nvlist, 1167 ZPOOL_CONFIG_PREV_INDIRECT_VDEV, 1168 DATA_TYPE_UINT64, 1169 NULL, &vic->vic_prev_indirect_vdev); 1170 } 1171 } else { 1172 vdev = vdev_create(guid, vdev_disk_read); 1173 } 1174 1175 if (vdev == NULL) 1176 return (ENOMEM); 1177 1178 vdev_set_initial_state(vdev, nvlist); 1179 vdev->v_id = id; 1180 if (nvlist_find(nvlist, ZPOOL_CONFIG_ASHIFT, 1181 DATA_TYPE_UINT64, NULL, &ashift) == 0) 1182 vdev->v_ashift = ashift; 1183 1184 if (nvlist_find(nvlist, ZPOOL_CONFIG_ASIZE, 1185 DATA_TYPE_UINT64, NULL, &asize) == 0) { 1186 vdev->v_psize = asize + 1187 VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; 1188 } 1189 1190 if (nvlist_find(nvlist, ZPOOL_CONFIG_NPARITY, 1191 DATA_TYPE_UINT64, NULL, &nparity) == 0) 1192 vdev->v_nparity = nparity; 1193 1194 if (nvlist_find(nvlist, ZPOOL_CONFIG_PATH, 1195 DATA_TYPE_STRING, NULL, &path) == 0) { 1196 if (strncmp(path, "/dev/", 5) == 0) 1197 path += 5; 1198 vdev->v_name = strdup(path); 1199 } else { 1200 char *name; 1201 1202 name = NULL; 1203 if (strcmp(type, "raidz") == 0) { 1204 if (vdev->v_nparity < 1 || 1205 vdev->v_nparity > 3) { 1206 printf("ZFS: invalid raidz parity: %d\n", 1207 vdev->v_nparity); 1208 return (EIO); 1209 } 1210 (void) asprintf(&name, "%s%d-%" PRIu64, type, 1211 vdev->v_nparity, id); 1212 } else { 1213 (void) asprintf(&name, "%s-%" PRIu64, type, id); 1214 } 1215 vdev->v_name = name; 1216 } 1217 *vdevp = vdev; 1218 return (0); 1219 } 1220 1221 /* 1222 * Find slot for vdev. We return either NULL to signal to use 1223 * STAILQ_INSERT_HEAD, or we return link element to be used with 1224 * STAILQ_INSERT_AFTER. 1225 */ 1226 static vdev_t * 1227 vdev_find_previous(vdev_t *top_vdev, vdev_t *vdev) 1228 { 1229 vdev_t *v, *previous; 1230 1231 if (STAILQ_EMPTY(&top_vdev->v_children)) 1232 return (NULL); 1233 1234 previous = NULL; 1235 STAILQ_FOREACH(v, &top_vdev->v_children, v_childlink) { 1236 if (v->v_id > vdev->v_id) 1237 return (previous); 1238 1239 if (v->v_id == vdev->v_id) 1240 return (v); 1241 1242 if (v->v_id < vdev->v_id) 1243 previous = v; 1244 } 1245 return (previous); 1246 } 1247 1248 static size_t 1249 vdev_child_count(vdev_t *vdev) 1250 { 1251 vdev_t *v; 1252 size_t count; 1253 1254 count = 0; 1255 STAILQ_FOREACH(v, &vdev->v_children, v_childlink) { 1256 count++; 1257 } 1258 return (count); 1259 } 1260 1261 /* 1262 * Insert vdev into top_vdev children list. List is ordered by v_id. 1263 */ 1264 static void 1265 vdev_insert(vdev_t *top_vdev, vdev_t *vdev) 1266 { 1267 vdev_t *previous; 1268 size_t count; 1269 1270 /* 1271 * The top level vdev can appear in random order, depending how 1272 * the firmware is presenting the disk devices. 1273 * However, we will insert vdev to create list ordered by v_id, 1274 * so we can use either STAILQ_INSERT_HEAD or STAILQ_INSERT_AFTER 1275 * as STAILQ does not have insert before. 1276 */ 1277 previous = vdev_find_previous(top_vdev, vdev); 1278 1279 if (previous == NULL) { 1280 STAILQ_INSERT_HEAD(&top_vdev->v_children, vdev, v_childlink); 1281 } else if (previous->v_id == vdev->v_id) { 1282 /* 1283 * This vdev was configured from label config, 1284 * do not insert duplicate. 1285 */ 1286 return; 1287 } else { 1288 STAILQ_INSERT_AFTER(&top_vdev->v_children, previous, vdev, 1289 v_childlink); 1290 } 1291 1292 count = vdev_child_count(top_vdev); 1293 if (top_vdev->v_nchildren < count) 1294 top_vdev->v_nchildren = count; 1295 } 1296 1297 static int 1298 vdev_from_nvlist(spa_t *spa, uint64_t top_guid, const unsigned char *nvlist) 1299 { 1300 vdev_t *top_vdev, *vdev; 1301 const unsigned char *kids; 1302 int rc, nkids; 1303 1304 /* Get top vdev. */ 1305 top_vdev = vdev_find(top_guid); 1306 if (top_vdev == NULL) { 1307 rc = vdev_init(top_guid, nvlist, &top_vdev); 1308 if (rc != 0) 1309 return (rc); 1310 top_vdev->v_spa = spa; 1311 top_vdev->v_top = top_vdev; 1312 vdev_insert(spa->spa_root_vdev, top_vdev); 1313 } 1314 1315 /* Add children if there are any. */ 1316 rc = nvlist_find(nvlist, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY, 1317 &nkids, &kids); 1318 if (rc == 0) { 1319 for (int i = 0; i < nkids; i++) { 1320 uint64_t guid; 1321 1322 rc = nvlist_find(kids, ZPOOL_CONFIG_GUID, 1323 DATA_TYPE_UINT64, NULL, &guid); 1324 if (rc != 0) 1325 return (rc); 1326 rc = vdev_init(guid, kids, &vdev); 1327 if (rc != 0) 1328 return (rc); 1329 1330 vdev->v_spa = spa; 1331 vdev->v_top = top_vdev; 1332 vdev_insert(top_vdev, vdev); 1333 1334 kids = nvlist_next(kids); 1335 } 1336 } else { 1337 /* 1338 * When there are no children, nvlist_find() does return 1339 * error, reset it because leaf devices have no children. 1340 */ 1341 rc = 0; 1342 } 1343 1344 return (rc); 1345 } 1346 1347 static int 1348 vdev_init_from_label(spa_t *spa, const unsigned char *nvlist) 1349 { 1350 uint64_t pool_guid, top_guid; 1351 const unsigned char *vdevs; 1352 1353 if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64, 1354 NULL, &pool_guid) || 1355 nvlist_find(nvlist, ZPOOL_CONFIG_TOP_GUID, DATA_TYPE_UINT64, 1356 NULL, &top_guid) || 1357 nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST, 1358 NULL, &vdevs)) { 1359 printf("ZFS: can't find vdev details\n"); 1360 return (ENOENT); 1361 } 1362 1363 return (vdev_from_nvlist(spa, top_guid, vdevs)); 1364 } 1365 1366 static void 1367 vdev_set_state(vdev_t *vdev) 1368 { 1369 vdev_t *kid; 1370 int good_kids; 1371 int bad_kids; 1372 1373 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) { 1374 vdev_set_state(kid); 1375 } 1376 1377 /* 1378 * A mirror or raidz is healthy if all its kids are healthy. A 1379 * mirror is degraded if any of its kids is healthy; a raidz 1380 * is degraded if at most nparity kids are offline. 1381 */ 1382 if (STAILQ_FIRST(&vdev->v_children)) { 1383 good_kids = 0; 1384 bad_kids = 0; 1385 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) { 1386 if (kid->v_state == VDEV_STATE_HEALTHY) 1387 good_kids++; 1388 else 1389 bad_kids++; 1390 } 1391 if (bad_kids == 0) { 1392 vdev->v_state = VDEV_STATE_HEALTHY; 1393 } else { 1394 if (vdev->v_read == vdev_mirror_read) { 1395 if (good_kids) { 1396 vdev->v_state = VDEV_STATE_DEGRADED; 1397 } else { 1398 vdev->v_state = VDEV_STATE_OFFLINE; 1399 } 1400 } else if (vdev->v_read == vdev_raidz_read) { 1401 if (bad_kids > vdev->v_nparity) { 1402 vdev->v_state = VDEV_STATE_OFFLINE; 1403 } else { 1404 vdev->v_state = VDEV_STATE_DEGRADED; 1405 } 1406 } 1407 } 1408 } 1409 } 1410 1411 static int 1412 vdev_update_from_nvlist(uint64_t top_guid, const unsigned char *nvlist) 1413 { 1414 vdev_t *vdev; 1415 const unsigned char *kids; 1416 int rc, nkids; 1417 1418 /* Update top vdev. */ 1419 vdev = vdev_find(top_guid); 1420 if (vdev != NULL) 1421 vdev_set_initial_state(vdev, nvlist); 1422 1423 /* Update children if there are any. */ 1424 rc = nvlist_find(nvlist, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY, 1425 &nkids, &kids); 1426 if (rc == 0) { 1427 for (int i = 0; i < nkids; i++) { 1428 uint64_t guid; 1429 1430 rc = nvlist_find(kids, ZPOOL_CONFIG_GUID, 1431 DATA_TYPE_UINT64, NULL, &guid); 1432 if (rc != 0) 1433 break; 1434 1435 vdev = vdev_find(guid); 1436 if (vdev != NULL) 1437 vdev_set_initial_state(vdev, kids); 1438 1439 kids = nvlist_next(kids); 1440 } 1441 } else { 1442 rc = 0; 1443 } 1444 1445 return (rc); 1446 } 1447 1448 static int 1449 vdev_init_from_nvlist(spa_t *spa, const unsigned char *nvlist) 1450 { 1451 uint64_t pool_guid, vdev_children; 1452 const unsigned char *vdevs, *kids; 1453 int rc, nkids; 1454 1455 if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64, 1456 NULL, &pool_guid) || 1457 nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_CHILDREN, DATA_TYPE_UINT64, 1458 NULL, &vdev_children) || 1459 nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST, 1460 NULL, &vdevs)) { 1461 printf("ZFS: can't find vdev details\n"); 1462 return (ENOENT); 1463 } 1464 1465 /* Wrong guid?! */ 1466 if (spa->spa_guid != pool_guid) 1467 return (EINVAL); 1468 1469 spa->spa_root_vdev->v_nchildren = vdev_children; 1470 1471 rc = nvlist_find(vdevs, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY, 1472 &nkids, &kids); 1473 1474 /* 1475 * MOS config has at least one child for root vdev. 1476 */ 1477 if (rc != 0) 1478 return (rc); 1479 1480 for (int i = 0; i < nkids; i++) { 1481 uint64_t guid; 1482 vdev_t *vdev; 1483 1484 rc = nvlist_find(kids, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64, 1485 NULL, &guid); 1486 if (rc != 0) 1487 break; 1488 vdev = vdev_find(guid); 1489 /* 1490 * Top level vdev is missing, create it. 1491 */ 1492 if (vdev == NULL) 1493 rc = vdev_from_nvlist(spa, guid, kids); 1494 else 1495 rc = vdev_update_from_nvlist(guid, kids); 1496 if (rc != 0) 1497 break; 1498 kids = nvlist_next(kids); 1499 } 1500 1501 /* 1502 * Re-evaluate top-level vdev state. 1503 */ 1504 vdev_set_state(spa->spa_root_vdev); 1505 1506 return (rc); 1507 } 1508 1509 static spa_t * 1510 spa_find_by_guid(uint64_t guid) 1511 { 1512 spa_t *spa; 1513 1514 STAILQ_FOREACH(spa, &zfs_pools, spa_link) 1515 if (spa->spa_guid == guid) 1516 return (spa); 1517 1518 return (NULL); 1519 } 1520 1521 static spa_t * 1522 spa_find_by_name(const char *name) 1523 { 1524 spa_t *spa; 1525 1526 STAILQ_FOREACH(spa, &zfs_pools, spa_link) 1527 if (strcmp(spa->spa_name, name) == 0) 1528 return (spa); 1529 1530 return (NULL); 1531 } 1532 1533 #ifdef BOOT2 1534 static spa_t * 1535 spa_get_primary(void) 1536 { 1537 1538 return (STAILQ_FIRST(&zfs_pools)); 1539 } 1540 1541 static vdev_t * 1542 spa_get_primary_vdev(const spa_t *spa) 1543 { 1544 vdev_t *vdev; 1545 vdev_t *kid; 1546 1547 if (spa == NULL) 1548 spa = spa_get_primary(); 1549 if (spa == NULL) 1550 return (NULL); 1551 vdev = spa->spa_root_vdev; 1552 if (vdev == NULL) 1553 return (NULL); 1554 for (kid = STAILQ_FIRST(&vdev->v_children); kid != NULL; 1555 kid = STAILQ_FIRST(&vdev->v_children)) 1556 vdev = kid; 1557 return (vdev); 1558 } 1559 #endif 1560 1561 static spa_t * 1562 spa_create(uint64_t guid, const char *name) 1563 { 1564 spa_t *spa; 1565 1566 if ((spa = calloc(1, sizeof(spa_t))) == NULL) 1567 return (NULL); 1568 if ((spa->spa_name = strdup(name)) == NULL) { 1569 free(spa); 1570 return (NULL); 1571 } 1572 spa->spa_guid = guid; 1573 spa->spa_root_vdev = vdev_create(guid, NULL); 1574 if (spa->spa_root_vdev == NULL) { 1575 free(spa->spa_name); 1576 free(spa); 1577 return (NULL); 1578 } 1579 spa->spa_root_vdev->v_name = strdup("root"); 1580 STAILQ_INSERT_TAIL(&zfs_pools, spa, spa_link); 1581 1582 return (spa); 1583 } 1584 1585 static const char * 1586 state_name(vdev_state_t state) 1587 { 1588 static const char *names[] = { 1589 "UNKNOWN", 1590 "CLOSED", 1591 "OFFLINE", 1592 "REMOVED", 1593 "CANT_OPEN", 1594 "FAULTED", 1595 "DEGRADED", 1596 "ONLINE" 1597 }; 1598 return (names[state]); 1599 } 1600 1601 #ifdef BOOT2 1602 1603 #define pager_printf printf 1604 1605 #else 1606 1607 static int 1608 pager_printf(const char *fmt, ...) 1609 { 1610 char line[80]; 1611 va_list args; 1612 1613 va_start(args, fmt); 1614 vsnprintf(line, sizeof(line), fmt, args); 1615 va_end(args); 1616 return (pager_output(line)); 1617 } 1618 1619 #endif 1620 1621 #define STATUS_FORMAT " %s %s\n" 1622 1623 static int 1624 print_state(int indent, const char *name, vdev_state_t state) 1625 { 1626 int i; 1627 char buf[512]; 1628 1629 buf[0] = 0; 1630 for (i = 0; i < indent; i++) 1631 strcat(buf, " "); 1632 strcat(buf, name); 1633 return (pager_printf(STATUS_FORMAT, buf, state_name(state))); 1634 } 1635 1636 static int 1637 vdev_status(vdev_t *vdev, int indent) 1638 { 1639 vdev_t *kid; 1640 int ret; 1641 1642 if (vdev->v_islog) { 1643 (void) pager_output(" logs\n"); 1644 indent++; 1645 } 1646 1647 ret = print_state(indent, vdev->v_name, vdev->v_state); 1648 if (ret != 0) 1649 return (ret); 1650 1651 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) { 1652 ret = vdev_status(kid, indent + 1); 1653 if (ret != 0) 1654 return (ret); 1655 } 1656 return (ret); 1657 } 1658 1659 static int 1660 spa_status(spa_t *spa) 1661 { 1662 static char bootfs[ZFS_MAXNAMELEN]; 1663 uint64_t rootid; 1664 vdev_list_t *vlist; 1665 vdev_t *vdev; 1666 int good_kids, bad_kids, degraded_kids, ret; 1667 vdev_state_t state; 1668 1669 ret = pager_printf(" pool: %s\n", spa->spa_name); 1670 if (ret != 0) 1671 return (ret); 1672 1673 if (zfs_get_root(spa, &rootid) == 0 && 1674 zfs_rlookup(spa, rootid, bootfs) == 0) { 1675 if (bootfs[0] == '\0') 1676 ret = pager_printf("bootfs: %s\n", spa->spa_name); 1677 else 1678 ret = pager_printf("bootfs: %s/%s\n", spa->spa_name, 1679 bootfs); 1680 if (ret != 0) 1681 return (ret); 1682 } 1683 ret = pager_printf("config:\n\n"); 1684 if (ret != 0) 1685 return (ret); 1686 ret = pager_printf(STATUS_FORMAT, "NAME", "STATE"); 1687 if (ret != 0) 1688 return (ret); 1689 1690 good_kids = 0; 1691 degraded_kids = 0; 1692 bad_kids = 0; 1693 vlist = &spa->spa_root_vdev->v_children; 1694 STAILQ_FOREACH(vdev, vlist, v_childlink) { 1695 if (vdev->v_state == VDEV_STATE_HEALTHY) 1696 good_kids++; 1697 else if (vdev->v_state == VDEV_STATE_DEGRADED) 1698 degraded_kids++; 1699 else 1700 bad_kids++; 1701 } 1702 1703 state = VDEV_STATE_CLOSED; 1704 if (good_kids > 0 && (degraded_kids + bad_kids) == 0) 1705 state = VDEV_STATE_HEALTHY; 1706 else if ((good_kids + degraded_kids) > 0) 1707 state = VDEV_STATE_DEGRADED; 1708 1709 ret = print_state(0, spa->spa_name, state); 1710 if (ret != 0) 1711 return (ret); 1712 1713 STAILQ_FOREACH(vdev, vlist, v_childlink) { 1714 ret = vdev_status(vdev, 1); 1715 if (ret != 0) 1716 return (ret); 1717 } 1718 return (ret); 1719 } 1720 1721 static int 1722 spa_all_status(void) 1723 { 1724 spa_t *spa; 1725 int first = 1, ret = 0; 1726 1727 STAILQ_FOREACH(spa, &zfs_pools, spa_link) { 1728 if (!first) { 1729 ret = pager_printf("\n"); 1730 if (ret != 0) 1731 return (ret); 1732 } 1733 first = 0; 1734 ret = spa_status(spa); 1735 if (ret != 0) 1736 return (ret); 1737 } 1738 return (ret); 1739 } 1740 1741 static uint64_t 1742 vdev_label_offset(uint64_t psize, int l, uint64_t offset) 1743 { 1744 uint64_t label_offset; 1745 1746 if (l < VDEV_LABELS / 2) 1747 label_offset = 0; 1748 else 1749 label_offset = psize - VDEV_LABELS * sizeof (vdev_label_t); 1750 1751 return (offset + l * sizeof (vdev_label_t) + label_offset); 1752 } 1753 1754 static int 1755 vdev_uberblock_compare(const uberblock_t *ub1, const uberblock_t *ub2) 1756 { 1757 unsigned int seq1 = 0; 1758 unsigned int seq2 = 0; 1759 int cmp = AVL_CMP(ub1->ub_txg, ub2->ub_txg); 1760 1761 if (cmp != 0) 1762 return (cmp); 1763 1764 cmp = AVL_CMP(ub1->ub_timestamp, ub2->ub_timestamp); 1765 if (cmp != 0) 1766 return (cmp); 1767 1768 if (MMP_VALID(ub1) && MMP_SEQ_VALID(ub1)) 1769 seq1 = MMP_SEQ(ub1); 1770 1771 if (MMP_VALID(ub2) && MMP_SEQ_VALID(ub2)) 1772 seq2 = MMP_SEQ(ub2); 1773 1774 return (AVL_CMP(seq1, seq2)); 1775 } 1776 1777 static int 1778 uberblock_verify(uberblock_t *ub) 1779 { 1780 if (ub->ub_magic == BSWAP_64((uint64_t)UBERBLOCK_MAGIC)) { 1781 byteswap_uint64_array(ub, sizeof (uberblock_t)); 1782 } 1783 1784 if (ub->ub_magic != UBERBLOCK_MAGIC || 1785 !SPA_VERSION_IS_SUPPORTED(ub->ub_version)) 1786 return (EINVAL); 1787 1788 return (0); 1789 } 1790 1791 static int 1792 vdev_label_read(vdev_t *vd, int l, void *buf, uint64_t offset, 1793 size_t size) 1794 { 1795 blkptr_t bp; 1796 off_t off; 1797 1798 off = vdev_label_offset(vd->v_psize, l, offset); 1799 1800 BP_ZERO(&bp); 1801 BP_SET_LSIZE(&bp, size); 1802 BP_SET_PSIZE(&bp, size); 1803 BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_LABEL); 1804 BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF); 1805 DVA_SET_OFFSET(BP_IDENTITY(&bp), off); 1806 ZIO_SET_CHECKSUM(&bp.blk_cksum, off, 0, 0, 0); 1807 1808 return (vdev_read_phys(vd, &bp, buf, off, size)); 1809 } 1810 1811 static unsigned char * 1812 vdev_label_read_config(vdev_t *vd, uint64_t txg) 1813 { 1814 vdev_phys_t *label; 1815 uint64_t best_txg = 0; 1816 uint64_t label_txg = 0; 1817 uint64_t asize; 1818 unsigned char *nvl; 1819 size_t nvl_size; 1820 int error; 1821 1822 label = malloc(sizeof (vdev_phys_t)); 1823 if (label == NULL) 1824 return (NULL); 1825 1826 nvl_size = VDEV_PHYS_SIZE - sizeof (zio_eck_t) - 4; 1827 nvl = malloc(nvl_size); 1828 if (nvl == NULL) 1829 goto done; 1830 1831 for (int l = 0; l < VDEV_LABELS; l++) { 1832 const unsigned char *nvlist; 1833 1834 if (vdev_label_read(vd, l, label, 1835 offsetof(vdev_label_t, vl_vdev_phys), 1836 sizeof (vdev_phys_t))) 1837 continue; 1838 1839 if (label->vp_nvlist[0] != NV_ENCODE_XDR) 1840 continue; 1841 1842 nvlist = (const unsigned char *) label->vp_nvlist + 4; 1843 error = nvlist_find(nvlist, ZPOOL_CONFIG_POOL_TXG, 1844 DATA_TYPE_UINT64, NULL, &label_txg); 1845 if (error != 0 || label_txg == 0) { 1846 memcpy(nvl, nvlist, nvl_size); 1847 goto done; 1848 } 1849 1850 if (label_txg <= txg && label_txg > best_txg) { 1851 best_txg = label_txg; 1852 memcpy(nvl, nvlist, nvl_size); 1853 1854 /* 1855 * Use asize from pool config. We need this 1856 * because we can get bad value from BIOS. 1857 */ 1858 if (nvlist_find(nvlist, ZPOOL_CONFIG_ASIZE, 1859 DATA_TYPE_UINT64, NULL, &asize) == 0) { 1860 vd->v_psize = asize + 1861 VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; 1862 } 1863 } 1864 } 1865 1866 if (best_txg == 0) { 1867 free(nvl); 1868 nvl = NULL; 1869 } 1870 done: 1871 free(label); 1872 return (nvl); 1873 } 1874 1875 static void 1876 vdev_uberblock_load(vdev_t *vd, uberblock_t *ub) 1877 { 1878 uberblock_t *buf; 1879 1880 buf = malloc(VDEV_UBERBLOCK_SIZE(vd)); 1881 if (buf == NULL) 1882 return; 1883 1884 for (int l = 0; l < VDEV_LABELS; l++) { 1885 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) { 1886 if (vdev_label_read(vd, l, buf, 1887 VDEV_UBERBLOCK_OFFSET(vd, n), 1888 VDEV_UBERBLOCK_SIZE(vd))) 1889 continue; 1890 if (uberblock_verify(buf) != 0) 1891 continue; 1892 1893 if (vdev_uberblock_compare(buf, ub) > 0) 1894 *ub = *buf; 1895 } 1896 } 1897 free(buf); 1898 } 1899 1900 static int 1901 vdev_probe(vdev_phys_read_t *_read, void *read_priv, spa_t **spap) 1902 { 1903 vdev_t vtmp; 1904 spa_t *spa; 1905 vdev_t *vdev; 1906 unsigned char *nvlist; 1907 uint64_t val; 1908 uint64_t guid, vdev_children; 1909 uint64_t pool_txg, pool_guid; 1910 const char *pool_name; 1911 const unsigned char *features; 1912 int rc; 1913 1914 /* 1915 * Load the vdev label and figure out which 1916 * uberblock is most current. 1917 */ 1918 memset(&vtmp, 0, sizeof(vtmp)); 1919 vtmp.v_phys_read = _read; 1920 vtmp.v_read_priv = read_priv; 1921 vtmp.v_psize = P2ALIGN(ldi_get_size(read_priv), 1922 (uint64_t)sizeof (vdev_label_t)); 1923 1924 /* Test for minimum device size. */ 1925 if (vtmp.v_psize < SPA_MINDEVSIZE) 1926 return (EIO); 1927 1928 nvlist = vdev_label_read_config(&vtmp, UINT64_MAX); 1929 if (nvlist == NULL) 1930 return (EIO); 1931 1932 if (nvlist_find(nvlist, ZPOOL_CONFIG_VERSION, DATA_TYPE_UINT64, 1933 NULL, &val) != 0) { 1934 free(nvlist); 1935 return (EIO); 1936 } 1937 1938 if (!SPA_VERSION_IS_SUPPORTED(val)) { 1939 printf("ZFS: unsupported ZFS version %u (should be %u)\n", 1940 (unsigned)val, (unsigned)SPA_VERSION); 1941 free(nvlist); 1942 return (EIO); 1943 } 1944 1945 /* Check ZFS features for read */ 1946 if (nvlist_find(nvlist, ZPOOL_CONFIG_FEATURES_FOR_READ, 1947 DATA_TYPE_NVLIST, NULL, &features) == 0 && 1948 nvlist_check_features_for_read(features) != 0) { 1949 free(nvlist); 1950 return (EIO); 1951 } 1952 1953 if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_STATE, DATA_TYPE_UINT64, 1954 NULL, &val) != 0) { 1955 free(nvlist); 1956 return (EIO); 1957 } 1958 1959 if (val == POOL_STATE_DESTROYED) { 1960 /* We don't boot only from destroyed pools. */ 1961 free(nvlist); 1962 return (EIO); 1963 } 1964 1965 if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_TXG, DATA_TYPE_UINT64, 1966 NULL, &pool_txg) != 0 || 1967 nvlist_find(nvlist, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64, 1968 NULL, &pool_guid) != 0 || 1969 nvlist_find(nvlist, ZPOOL_CONFIG_POOL_NAME, DATA_TYPE_STRING, 1970 NULL, &pool_name) != 0) { 1971 /* 1972 * Cache and spare devices end up here - just ignore 1973 * them. 1974 */ 1975 free(nvlist); 1976 return (EIO); 1977 } 1978 1979 /* 1980 * Create the pool if this is the first time we've seen it. 1981 */ 1982 spa = spa_find_by_guid(pool_guid); 1983 if (spa == NULL) { 1984 nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_CHILDREN, 1985 DATA_TYPE_UINT64, NULL, &vdev_children); 1986 spa = spa_create(pool_guid, pool_name); 1987 if (spa == NULL) { 1988 free(nvlist); 1989 return (ENOMEM); 1990 } 1991 spa->spa_root_vdev->v_nchildren = vdev_children; 1992 } 1993 if (pool_txg > spa->spa_txg) 1994 spa->spa_txg = pool_txg; 1995 1996 /* 1997 * Get the vdev tree and create our in-core copy of it. 1998 * If we already have a vdev with this guid, this must 1999 * be some kind of alias (overlapping slices, dangerously dedicated 2000 * disks etc). 2001 */ 2002 if (nvlist_find(nvlist, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64, 2003 NULL, &guid) != 0) { 2004 free(nvlist); 2005 return (EIO); 2006 } 2007 vdev = vdev_find(guid); 2008 /* Has this vdev already been inited? */ 2009 if (vdev && vdev->v_phys_read) { 2010 free(nvlist); 2011 return (EIO); 2012 } 2013 2014 rc = vdev_init_from_label(spa, nvlist); 2015 free(nvlist); 2016 if (rc != 0) 2017 return (rc); 2018 2019 /* 2020 * We should already have created an incomplete vdev for this 2021 * vdev. Find it and initialise it with our read proc. 2022 */ 2023 vdev = vdev_find(guid); 2024 if (vdev != NULL) { 2025 vdev->v_phys_read = _read; 2026 vdev->v_read_priv = read_priv; 2027 vdev->v_psize = vtmp.v_psize; 2028 /* 2029 * If no other state is set, mark vdev healthy. 2030 */ 2031 if (vdev->v_state == VDEV_STATE_UNKNOWN) 2032 vdev->v_state = VDEV_STATE_HEALTHY; 2033 } else { 2034 printf("ZFS: inconsistent nvlist contents\n"); 2035 return (EIO); 2036 } 2037 2038 if (vdev->v_islog) 2039 spa->spa_with_log = vdev->v_islog; 2040 2041 /* 2042 * Re-evaluate top-level vdev state. 2043 */ 2044 vdev_set_state(vdev->v_top); 2045 2046 /* 2047 * Ok, we are happy with the pool so far. Lets find 2048 * the best uberblock and then we can actually access 2049 * the contents of the pool. 2050 */ 2051 vdev_uberblock_load(vdev, &spa->spa_uberblock); 2052 2053 if (spap != NULL) 2054 *spap = spa; 2055 return (0); 2056 } 2057 2058 static int 2059 ilog2(int n) 2060 { 2061 int v; 2062 2063 for (v = 0; v < 32; v++) 2064 if (n == (1 << v)) 2065 return (v); 2066 return (-1); 2067 } 2068 2069 static int 2070 zio_read_gang(const spa_t *spa, const blkptr_t *bp, void *buf) 2071 { 2072 blkptr_t gbh_bp; 2073 zio_gbh_phys_t zio_gb; 2074 char *pbuf; 2075 int i; 2076 2077 /* Artificial BP for gang block header. */ 2078 gbh_bp = *bp; 2079 BP_SET_PSIZE(&gbh_bp, SPA_GANGBLOCKSIZE); 2080 BP_SET_LSIZE(&gbh_bp, SPA_GANGBLOCKSIZE); 2081 BP_SET_CHECKSUM(&gbh_bp, ZIO_CHECKSUM_GANG_HEADER); 2082 BP_SET_COMPRESS(&gbh_bp, ZIO_COMPRESS_OFF); 2083 for (i = 0; i < SPA_DVAS_PER_BP; i++) 2084 DVA_SET_GANG(&gbh_bp.blk_dva[i], 0); 2085 2086 /* Read gang header block using the artificial BP. */ 2087 if (zio_read(spa, &gbh_bp, &zio_gb)) 2088 return (EIO); 2089 2090 pbuf = buf; 2091 for (i = 0; i < SPA_GBH_NBLKPTRS; i++) { 2092 blkptr_t *gbp = &zio_gb.zg_blkptr[i]; 2093 2094 if (BP_IS_HOLE(gbp)) 2095 continue; 2096 if (zio_read(spa, gbp, pbuf)) 2097 return (EIO); 2098 pbuf += BP_GET_PSIZE(gbp); 2099 } 2100 2101 if (zio_checksum_verify(spa, bp, buf)) 2102 return (EIO); 2103 return (0); 2104 } 2105 2106 static int 2107 zio_read(const spa_t *spa, const blkptr_t *bp, void *buf) 2108 { 2109 int cpfunc = BP_GET_COMPRESS(bp); 2110 uint64_t align, size; 2111 void *pbuf; 2112 int i, error; 2113 2114 /* 2115 * Process data embedded in block pointer 2116 */ 2117 if (BP_IS_EMBEDDED(bp)) { 2118 ASSERT(BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA); 2119 2120 size = BPE_GET_PSIZE(bp); 2121 ASSERT(size <= BPE_PAYLOAD_SIZE); 2122 2123 if (cpfunc != ZIO_COMPRESS_OFF) 2124 pbuf = malloc(size); 2125 else 2126 pbuf = buf; 2127 2128 if (pbuf == NULL) 2129 return (ENOMEM); 2130 2131 decode_embedded_bp_compressed(bp, pbuf); 2132 error = 0; 2133 2134 if (cpfunc != ZIO_COMPRESS_OFF) { 2135 error = zio_decompress_data(cpfunc, pbuf, 2136 size, buf, BP_GET_LSIZE(bp)); 2137 free(pbuf); 2138 } 2139 if (error != 0) 2140 printf("ZFS: i/o error - unable to decompress " 2141 "block pointer data, error %d\n", error); 2142 return (error); 2143 } 2144 2145 error = EIO; 2146 2147 for (i = 0; i < SPA_DVAS_PER_BP; i++) { 2148 const dva_t *dva = &bp->blk_dva[i]; 2149 vdev_t *vdev; 2150 vdev_list_t *vlist; 2151 uint64_t vdevid; 2152 off_t offset; 2153 2154 if (!dva->dva_word[0] && !dva->dva_word[1]) 2155 continue; 2156 2157 vdevid = DVA_GET_VDEV(dva); 2158 offset = DVA_GET_OFFSET(dva); 2159 vlist = &spa->spa_root_vdev->v_children; 2160 STAILQ_FOREACH(vdev, vlist, v_childlink) { 2161 if (vdev->v_id == vdevid) 2162 break; 2163 } 2164 if (!vdev || !vdev->v_read) 2165 continue; 2166 2167 size = BP_GET_PSIZE(bp); 2168 if (vdev->v_read == vdev_raidz_read) { 2169 align = 1ULL << vdev->v_ashift; 2170 if (P2PHASE(size, align) != 0) 2171 size = P2ROUNDUP(size, align); 2172 } 2173 if (size != BP_GET_PSIZE(bp) || cpfunc != ZIO_COMPRESS_OFF) 2174 pbuf = malloc(size); 2175 else 2176 pbuf = buf; 2177 2178 if (pbuf == NULL) { 2179 error = ENOMEM; 2180 break; 2181 } 2182 2183 if (DVA_GET_GANG(dva)) 2184 error = zio_read_gang(spa, bp, pbuf); 2185 else 2186 error = vdev->v_read(vdev, bp, pbuf, offset, size); 2187 if (error == 0) { 2188 if (cpfunc != ZIO_COMPRESS_OFF) 2189 error = zio_decompress_data(cpfunc, pbuf, 2190 BP_GET_PSIZE(bp), buf, BP_GET_LSIZE(bp)); 2191 else if (size != BP_GET_PSIZE(bp)) 2192 bcopy(pbuf, buf, BP_GET_PSIZE(bp)); 2193 } 2194 if (buf != pbuf) 2195 free(pbuf); 2196 if (error == 0) 2197 break; 2198 } 2199 if (error != 0) 2200 printf("ZFS: i/o error - all block copies unavailable\n"); 2201 2202 return (error); 2203 } 2204 2205 static int 2206 dnode_read(const spa_t *spa, const dnode_phys_t *dnode, off_t offset, 2207 void *buf, size_t buflen) 2208 { 2209 int ibshift = dnode->dn_indblkshift - SPA_BLKPTRSHIFT; 2210 int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2211 int nlevels = dnode->dn_nlevels; 2212 int i, rc; 2213 2214 if (bsize > SPA_MAXBLOCKSIZE) { 2215 printf("ZFS: I/O error - blocks larger than %llu are not " 2216 "supported\n", SPA_MAXBLOCKSIZE); 2217 return (EIO); 2218 } 2219 2220 /* 2221 * Note: bsize may not be a power of two here so we need to do an 2222 * actual divide rather than a bitshift. 2223 */ 2224 while (buflen > 0) { 2225 uint64_t bn = offset / bsize; 2226 int boff = offset % bsize; 2227 int ibn; 2228 const blkptr_t *indbp; 2229 blkptr_t bp; 2230 2231 if (bn > dnode->dn_maxblkid) 2232 return (EIO); 2233 2234 if (dnode == dnode_cache_obj && bn == dnode_cache_bn) 2235 goto cached; 2236 2237 indbp = dnode->dn_blkptr; 2238 for (i = 0; i < nlevels; i++) { 2239 /* 2240 * Copy the bp from the indirect array so that 2241 * we can re-use the scratch buffer for multi-level 2242 * objects. 2243 */ 2244 ibn = bn >> ((nlevels - i - 1) * ibshift); 2245 ibn &= ((1 << ibshift) - 1); 2246 bp = indbp[ibn]; 2247 if (BP_IS_HOLE(&bp)) { 2248 memset(dnode_cache_buf, 0, bsize); 2249 break; 2250 } 2251 rc = zio_read(spa, &bp, dnode_cache_buf); 2252 if (rc) 2253 return (rc); 2254 indbp = (const blkptr_t *) dnode_cache_buf; 2255 } 2256 dnode_cache_obj = dnode; 2257 dnode_cache_bn = bn; 2258 cached: 2259 2260 /* 2261 * The buffer contains our data block. Copy what we 2262 * need from it and loop. 2263 */ 2264 i = bsize - boff; 2265 if (i > buflen) i = buflen; 2266 memcpy(buf, &dnode_cache_buf[boff], i); 2267 buf = ((char *)buf) + i; 2268 offset += i; 2269 buflen -= i; 2270 } 2271 2272 return (0); 2273 } 2274 2275 /* 2276 * Lookup a value in a microzap directory. 2277 */ 2278 static int 2279 mzap_lookup(const mzap_phys_t *mz, size_t size, const char *name, 2280 uint64_t *value) 2281 { 2282 const mzap_ent_phys_t *mze; 2283 int chunks, i; 2284 2285 /* 2286 * Microzap objects use exactly one block. Read the whole 2287 * thing. 2288 */ 2289 chunks = size / MZAP_ENT_LEN - 1; 2290 for (i = 0; i < chunks; i++) { 2291 mze = &mz->mz_chunk[i]; 2292 if (strcmp(mze->mze_name, name) == 0) { 2293 *value = mze->mze_value; 2294 return (0); 2295 } 2296 } 2297 2298 return (ENOENT); 2299 } 2300 2301 /* 2302 * Compare a name with a zap leaf entry. Return non-zero if the name 2303 * matches. 2304 */ 2305 static int 2306 fzap_name_equal(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, 2307 const char *name) 2308 { 2309 size_t namelen; 2310 const zap_leaf_chunk_t *nc; 2311 const char *p; 2312 2313 namelen = zc->l_entry.le_name_numints; 2314 2315 nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk); 2316 p = name; 2317 while (namelen > 0) { 2318 size_t len; 2319 2320 len = namelen; 2321 if (len > ZAP_LEAF_ARRAY_BYTES) 2322 len = ZAP_LEAF_ARRAY_BYTES; 2323 if (memcmp(p, nc->l_array.la_array, len)) 2324 return (0); 2325 p += len; 2326 namelen -= len; 2327 nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next); 2328 } 2329 2330 return (1); 2331 } 2332 2333 /* 2334 * Extract a uint64_t value from a zap leaf entry. 2335 */ 2336 static uint64_t 2337 fzap_leaf_value(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc) 2338 { 2339 const zap_leaf_chunk_t *vc; 2340 int i; 2341 uint64_t value; 2342 const uint8_t *p; 2343 2344 vc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_value_chunk); 2345 for (i = 0, value = 0, p = vc->l_array.la_array; i < 8; i++) { 2346 value = (value << 8) | p[i]; 2347 } 2348 2349 return (value); 2350 } 2351 2352 static void 2353 stv(int len, void *addr, uint64_t value) 2354 { 2355 switch (len) { 2356 case 1: 2357 *(uint8_t *)addr = value; 2358 return; 2359 case 2: 2360 *(uint16_t *)addr = value; 2361 return; 2362 case 4: 2363 *(uint32_t *)addr = value; 2364 return; 2365 case 8: 2366 *(uint64_t *)addr = value; 2367 return; 2368 } 2369 } 2370 2371 /* 2372 * Extract a array from a zap leaf entry. 2373 */ 2374 static void 2375 fzap_leaf_array(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, 2376 uint64_t integer_size, uint64_t num_integers, void *buf) 2377 { 2378 uint64_t array_int_len = zc->l_entry.le_value_intlen; 2379 uint64_t value = 0; 2380 uint64_t *u64 = buf; 2381 char *p = buf; 2382 int len = MIN(zc->l_entry.le_value_numints, num_integers); 2383 int chunk = zc->l_entry.le_value_chunk; 2384 int byten = 0; 2385 2386 if (integer_size == 8 && len == 1) { 2387 *u64 = fzap_leaf_value(zl, zc); 2388 return; 2389 } 2390 2391 while (len > 0) { 2392 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(zl, chunk).l_array; 2393 int i; 2394 2395 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(zl)); 2396 for (i = 0; i < ZAP_LEAF_ARRAY_BYTES && len > 0; i++) { 2397 value = (value << 8) | la->la_array[i]; 2398 byten++; 2399 if (byten == array_int_len) { 2400 stv(integer_size, p, value); 2401 byten = 0; 2402 len--; 2403 if (len == 0) 2404 return; 2405 p += integer_size; 2406 } 2407 } 2408 chunk = la->la_next; 2409 } 2410 } 2411 2412 static int 2413 fzap_check_size(uint64_t integer_size, uint64_t num_integers) 2414 { 2415 2416 switch (integer_size) { 2417 case 1: 2418 case 2: 2419 case 4: 2420 case 8: 2421 break; 2422 default: 2423 return (EINVAL); 2424 } 2425 2426 if (integer_size * num_integers > ZAP_MAXVALUELEN) 2427 return (E2BIG); 2428 2429 return (0); 2430 } 2431 2432 static void 2433 zap_leaf_free(zap_leaf_t *leaf) 2434 { 2435 free(leaf->l_phys); 2436 free(leaf); 2437 } 2438 2439 static int 2440 zap_get_leaf_byblk(fat_zap_t *zap, uint64_t blk, zap_leaf_t **lp) 2441 { 2442 int bs = FZAP_BLOCK_SHIFT(zap); 2443 int err; 2444 2445 *lp = malloc(sizeof(**lp)); 2446 if (*lp == NULL) 2447 return (ENOMEM); 2448 2449 (*lp)->l_bs = bs; 2450 (*lp)->l_phys = malloc(1 << bs); 2451 2452 if ((*lp)->l_phys == NULL) { 2453 free(*lp); 2454 return (ENOMEM); 2455 } 2456 err = dnode_read(zap->zap_spa, zap->zap_dnode, blk << bs, (*lp)->l_phys, 2457 1 << bs); 2458 if (err != 0) { 2459 zap_leaf_free(*lp); 2460 } 2461 return (err); 2462 } 2463 2464 static int 2465 zap_table_load(fat_zap_t *zap, zap_table_phys_t *tbl, uint64_t idx, 2466 uint64_t *valp) 2467 { 2468 int bs = FZAP_BLOCK_SHIFT(zap); 2469 uint64_t blk = idx >> (bs - 3); 2470 uint64_t off = idx & ((1 << (bs - 3)) - 1); 2471 uint64_t *buf; 2472 int rc; 2473 2474 buf = malloc(1 << zap->zap_block_shift); 2475 if (buf == NULL) 2476 return (ENOMEM); 2477 rc = dnode_read(zap->zap_spa, zap->zap_dnode, (tbl->zt_blk + blk) << bs, 2478 buf, 1 << zap->zap_block_shift); 2479 if (rc == 0) 2480 *valp = buf[off]; 2481 free(buf); 2482 return (rc); 2483 } 2484 2485 static int 2486 zap_idx_to_blk(fat_zap_t *zap, uint64_t idx, uint64_t *valp) 2487 { 2488 if (zap->zap_phys->zap_ptrtbl.zt_numblks == 0) { 2489 *valp = ZAP_EMBEDDED_PTRTBL_ENT(zap, idx); 2490 return (0); 2491 } else { 2492 return (zap_table_load(zap, &zap->zap_phys->zap_ptrtbl, 2493 idx, valp)); 2494 } 2495 } 2496 2497 #define ZAP_HASH_IDX(hash, n) (((n) == 0) ? 0 : ((hash) >> (64 - (n)))) 2498 static int 2499 zap_deref_leaf(fat_zap_t *zap, uint64_t h, zap_leaf_t **lp) 2500 { 2501 uint64_t idx, blk; 2502 int err; 2503 2504 idx = ZAP_HASH_IDX(h, zap->zap_phys->zap_ptrtbl.zt_shift); 2505 err = zap_idx_to_blk(zap, idx, &blk); 2506 if (err != 0) 2507 return (err); 2508 return (zap_get_leaf_byblk(zap, blk, lp)); 2509 } 2510 2511 #define CHAIN_END 0xffff /* end of the chunk chain */ 2512 #define LEAF_HASH(l, h) \ 2513 ((ZAP_LEAF_HASH_NUMENTRIES(l)-1) & \ 2514 ((h) >> \ 2515 (64 - ZAP_LEAF_HASH_SHIFT(l) - (l)->l_phys->l_hdr.lh_prefix_len))) 2516 #define LEAF_HASH_ENTPTR(l, h) (&(l)->l_phys->l_hash[LEAF_HASH(l, h)]) 2517 2518 static int 2519 zap_leaf_lookup(zap_leaf_t *zl, uint64_t hash, const char *name, 2520 uint64_t integer_size, uint64_t num_integers, void *value) 2521 { 2522 int rc; 2523 uint16_t *chunkp; 2524 struct zap_leaf_entry *le; 2525 2526 /* 2527 * Make sure this chunk matches our hash. 2528 */ 2529 if (zl->l_phys->l_hdr.lh_prefix_len > 0 && 2530 zl->l_phys->l_hdr.lh_prefix != 2531 hash >> (64 - zl->l_phys->l_hdr.lh_prefix_len)) 2532 return (EIO); 2533 2534 rc = ENOENT; 2535 for (chunkp = LEAF_HASH_ENTPTR(zl, hash); 2536 *chunkp != CHAIN_END; chunkp = &le->le_next) { 2537 zap_leaf_chunk_t *zc; 2538 uint16_t chunk = *chunkp; 2539 2540 le = ZAP_LEAF_ENTRY(zl, chunk); 2541 if (le->le_hash != hash) 2542 continue; 2543 zc = &ZAP_LEAF_CHUNK(zl, chunk); 2544 if (fzap_name_equal(zl, zc, name)) { 2545 if (zc->l_entry.le_value_intlen > integer_size) { 2546 rc = EINVAL; 2547 } else { 2548 fzap_leaf_array(zl, zc, integer_size, 2549 num_integers, value); 2550 rc = 0; 2551 } 2552 break; 2553 } 2554 } 2555 return (rc); 2556 } 2557 2558 /* 2559 * Lookup a value in a fatzap directory. 2560 */ 2561 static int 2562 fzap_lookup(const spa_t *spa, const dnode_phys_t *dnode, zap_phys_t *zh, 2563 const char *name, uint64_t integer_size, uint64_t num_integers, 2564 void *value) 2565 { 2566 int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2567 fat_zap_t z; 2568 zap_leaf_t *zl; 2569 uint64_t hash; 2570 int rc; 2571 2572 if (zh->zap_magic != ZAP_MAGIC) 2573 return (EIO); 2574 2575 if ((rc = fzap_check_size(integer_size, num_integers)) != 0) 2576 return (rc); 2577 2578 z.zap_block_shift = ilog2(bsize); 2579 z.zap_phys = zh; 2580 z.zap_spa = spa; 2581 z.zap_dnode = dnode; 2582 2583 hash = zap_hash(zh->zap_salt, name); 2584 rc = zap_deref_leaf(&z, hash, &zl); 2585 if (rc != 0) 2586 return (rc); 2587 2588 rc = zap_leaf_lookup(zl, hash, name, integer_size, num_integers, value); 2589 2590 zap_leaf_free(zl); 2591 return (rc); 2592 } 2593 2594 /* 2595 * Lookup a name in a zap object and return its value as a uint64_t. 2596 */ 2597 static int 2598 zap_lookup(const spa_t *spa, const dnode_phys_t *dnode, const char *name, 2599 uint64_t integer_size, uint64_t num_integers, void *value) 2600 { 2601 int rc; 2602 zap_phys_t *zap; 2603 size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2604 2605 zap = malloc(size); 2606 if (zap == NULL) 2607 return (ENOMEM); 2608 2609 rc = dnode_read(spa, dnode, 0, zap, size); 2610 if (rc) 2611 goto done; 2612 2613 switch (zap->zap_block_type) { 2614 case ZBT_MICRO: 2615 rc = mzap_lookup((const mzap_phys_t *)zap, size, name, value); 2616 break; 2617 case ZBT_HEADER: 2618 rc = fzap_lookup(spa, dnode, zap, name, integer_size, 2619 num_integers, value); 2620 break; 2621 default: 2622 printf("ZFS: invalid zap_type=%" PRIx64 "\n", 2623 zap->zap_block_type); 2624 rc = EIO; 2625 } 2626 done: 2627 free(zap); 2628 return (rc); 2629 } 2630 2631 /* 2632 * List a microzap directory. 2633 */ 2634 static int 2635 mzap_list(const mzap_phys_t *mz, size_t size, 2636 int (*callback)(const char *, uint64_t)) 2637 { 2638 const mzap_ent_phys_t *mze; 2639 int chunks, i, rc; 2640 2641 /* 2642 * Microzap objects use exactly one block. Read the whole 2643 * thing. 2644 */ 2645 rc = 0; 2646 chunks = size / MZAP_ENT_LEN - 1; 2647 for (i = 0; i < chunks; i++) { 2648 mze = &mz->mz_chunk[i]; 2649 if (mze->mze_name[0]) { 2650 rc = callback(mze->mze_name, mze->mze_value); 2651 if (rc != 0) 2652 break; 2653 } 2654 } 2655 2656 return (rc); 2657 } 2658 2659 /* 2660 * List a fatzap directory. 2661 */ 2662 static int 2663 fzap_list(const spa_t *spa, const dnode_phys_t *dnode, zap_phys_t *zh, 2664 int (*callback)(const char *, uint64_t)) 2665 { 2666 int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2667 fat_zap_t z; 2668 uint64_t i; 2669 int j, rc; 2670 2671 if (zh->zap_magic != ZAP_MAGIC) 2672 return (EIO); 2673 2674 z.zap_block_shift = ilog2(bsize); 2675 z.zap_phys = zh; 2676 2677 /* 2678 * This assumes that the leaf blocks start at block 1. The 2679 * documentation isn't exactly clear on this. 2680 */ 2681 zap_leaf_t zl; 2682 zl.l_bs = z.zap_block_shift; 2683 zl.l_phys = malloc(bsize); 2684 if (zl.l_phys == NULL) 2685 return (ENOMEM); 2686 2687 for (i = 0; i < zh->zap_num_leafs; i++) { 2688 off_t off = ((off_t)(i + 1)) << zl.l_bs; 2689 char name[256], *p; 2690 uint64_t value; 2691 2692 if (dnode_read(spa, dnode, off, zl.l_phys, bsize)) { 2693 free(zl.l_phys); 2694 return (EIO); 2695 } 2696 2697 for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) { 2698 zap_leaf_chunk_t *zc, *nc; 2699 int namelen; 2700 2701 zc = &ZAP_LEAF_CHUNK(&zl, j); 2702 if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY) 2703 continue; 2704 namelen = zc->l_entry.le_name_numints; 2705 if (namelen > sizeof(name)) 2706 namelen = sizeof(name); 2707 2708 /* 2709 * Paste the name back together. 2710 */ 2711 nc = &ZAP_LEAF_CHUNK(&zl, zc->l_entry.le_name_chunk); 2712 p = name; 2713 while (namelen > 0) { 2714 int len; 2715 len = namelen; 2716 if (len > ZAP_LEAF_ARRAY_BYTES) 2717 len = ZAP_LEAF_ARRAY_BYTES; 2718 memcpy(p, nc->l_array.la_array, len); 2719 p += len; 2720 namelen -= len; 2721 nc = &ZAP_LEAF_CHUNK(&zl, nc->l_array.la_next); 2722 } 2723 2724 /* 2725 * Assume the first eight bytes of the value are 2726 * a uint64_t. 2727 */ 2728 value = fzap_leaf_value(&zl, zc); 2729 2730 /* printf("%s 0x%jx\n", name, (uintmax_t)value); */ 2731 rc = callback((const char *)name, value); 2732 if (rc != 0) { 2733 free(zl.l_phys); 2734 return (rc); 2735 } 2736 } 2737 } 2738 2739 free(zl.l_phys); 2740 return (0); 2741 } 2742 2743 static int zfs_printf(const char *name, uint64_t value __unused) 2744 { 2745 2746 printf("%s\n", name); 2747 2748 return (0); 2749 } 2750 2751 /* 2752 * List a zap directory. 2753 */ 2754 static int 2755 zap_list(const spa_t *spa, const dnode_phys_t *dnode) 2756 { 2757 zap_phys_t *zap; 2758 size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2759 int rc; 2760 2761 zap = malloc(size); 2762 if (zap == NULL) 2763 return (ENOMEM); 2764 2765 rc = dnode_read(spa, dnode, 0, zap, size); 2766 if (rc == 0) { 2767 if (zap->zap_block_type == ZBT_MICRO) 2768 rc = mzap_list((const mzap_phys_t *)zap, size, 2769 zfs_printf); 2770 else 2771 rc = fzap_list(spa, dnode, zap, zfs_printf); 2772 } 2773 free(zap); 2774 return (rc); 2775 } 2776 2777 static int 2778 objset_get_dnode(const spa_t *spa, const objset_phys_t *os, uint64_t objnum, 2779 dnode_phys_t *dnode) 2780 { 2781 off_t offset; 2782 2783 offset = objnum * sizeof(dnode_phys_t); 2784 return dnode_read(spa, &os->os_meta_dnode, offset, 2785 dnode, sizeof(dnode_phys_t)); 2786 } 2787 2788 /* 2789 * Lookup a name in a microzap directory. 2790 */ 2791 static int 2792 mzap_rlookup(const mzap_phys_t *mz, size_t size, char *name, uint64_t value) 2793 { 2794 const mzap_ent_phys_t *mze; 2795 int chunks, i; 2796 2797 /* 2798 * Microzap objects use exactly one block. Read the whole 2799 * thing. 2800 */ 2801 chunks = size / MZAP_ENT_LEN - 1; 2802 for (i = 0; i < chunks; i++) { 2803 mze = &mz->mz_chunk[i]; 2804 if (value == mze->mze_value) { 2805 strcpy(name, mze->mze_name); 2806 return (0); 2807 } 2808 } 2809 2810 return (ENOENT); 2811 } 2812 2813 static void 2814 fzap_name_copy(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, char *name) 2815 { 2816 size_t namelen; 2817 const zap_leaf_chunk_t *nc; 2818 char *p; 2819 2820 namelen = zc->l_entry.le_name_numints; 2821 2822 nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk); 2823 p = name; 2824 while (namelen > 0) { 2825 size_t len; 2826 len = namelen; 2827 if (len > ZAP_LEAF_ARRAY_BYTES) 2828 len = ZAP_LEAF_ARRAY_BYTES; 2829 memcpy(p, nc->l_array.la_array, len); 2830 p += len; 2831 namelen -= len; 2832 nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next); 2833 } 2834 2835 *p = '\0'; 2836 } 2837 2838 static int 2839 fzap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, zap_phys_t *zh, 2840 char *name, uint64_t value) 2841 { 2842 int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2843 fat_zap_t z; 2844 uint64_t i; 2845 int j, rc; 2846 2847 if (zh->zap_magic != ZAP_MAGIC) 2848 return (EIO); 2849 2850 z.zap_block_shift = ilog2(bsize); 2851 z.zap_phys = zh; 2852 2853 /* 2854 * This assumes that the leaf blocks start at block 1. The 2855 * documentation isn't exactly clear on this. 2856 */ 2857 zap_leaf_t zl; 2858 zl.l_bs = z.zap_block_shift; 2859 zl.l_phys = malloc(bsize); 2860 if (zl.l_phys == NULL) 2861 return (ENOMEM); 2862 2863 for (i = 0; i < zh->zap_num_leafs; i++) { 2864 off_t off = ((off_t)(i + 1)) << zl.l_bs; 2865 2866 rc = dnode_read(spa, dnode, off, zl.l_phys, bsize); 2867 if (rc != 0) 2868 goto done; 2869 2870 for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) { 2871 zap_leaf_chunk_t *zc; 2872 2873 zc = &ZAP_LEAF_CHUNK(&zl, j); 2874 if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY) 2875 continue; 2876 if (zc->l_entry.le_value_intlen != 8 || 2877 zc->l_entry.le_value_numints != 1) 2878 continue; 2879 2880 if (fzap_leaf_value(&zl, zc) == value) { 2881 fzap_name_copy(&zl, zc, name); 2882 goto done; 2883 } 2884 } 2885 } 2886 2887 rc = ENOENT; 2888 done: 2889 free(zl.l_phys); 2890 return (rc); 2891 } 2892 2893 static int 2894 zap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, char *name, 2895 uint64_t value) 2896 { 2897 zap_phys_t *zap; 2898 size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2899 int rc; 2900 2901 zap = malloc(size); 2902 if (zap == NULL) 2903 return (ENOMEM); 2904 2905 rc = dnode_read(spa, dnode, 0, zap, size); 2906 if (rc == 0) { 2907 if (zap->zap_block_type == ZBT_MICRO) 2908 rc = mzap_rlookup((const mzap_phys_t *)zap, size, 2909 name, value); 2910 else 2911 rc = fzap_rlookup(spa, dnode, zap, name, value); 2912 } 2913 free(zap); 2914 return (rc); 2915 } 2916 2917 static int 2918 zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result) 2919 { 2920 char name[256]; 2921 char component[256]; 2922 uint64_t dir_obj, parent_obj, child_dir_zapobj; 2923 dnode_phys_t child_dir_zap, dataset, dir, parent; 2924 dsl_dir_phys_t *dd; 2925 dsl_dataset_phys_t *ds; 2926 char *p; 2927 int len; 2928 2929 p = &name[sizeof(name) - 1]; 2930 *p = '\0'; 2931 2932 if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) { 2933 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum); 2934 return (EIO); 2935 } 2936 ds = (dsl_dataset_phys_t *)&dataset.dn_bonus; 2937 dir_obj = ds->ds_dir_obj; 2938 2939 for (;;) { 2940 if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir) != 0) 2941 return (EIO); 2942 dd = (dsl_dir_phys_t *)&dir.dn_bonus; 2943 2944 /* Actual loop condition. */ 2945 parent_obj = dd->dd_parent_obj; 2946 if (parent_obj == 0) 2947 break; 2948 2949 if (objset_get_dnode(spa, &spa->spa_mos, parent_obj, 2950 &parent) != 0) 2951 return (EIO); 2952 dd = (dsl_dir_phys_t *)&parent.dn_bonus; 2953 child_dir_zapobj = dd->dd_child_dir_zapobj; 2954 if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, 2955 &child_dir_zap) != 0) 2956 return (EIO); 2957 if (zap_rlookup(spa, &child_dir_zap, component, dir_obj) != 0) 2958 return (EIO); 2959 2960 len = strlen(component); 2961 p -= len; 2962 memcpy(p, component, len); 2963 --p; 2964 *p = '/'; 2965 2966 /* Actual loop iteration. */ 2967 dir_obj = parent_obj; 2968 } 2969 2970 if (*p != '\0') 2971 ++p; 2972 strcpy(result, p); 2973 2974 return (0); 2975 } 2976 2977 static int 2978 zfs_lookup_dataset(const spa_t *spa, const char *name, uint64_t *objnum) 2979 { 2980 char element[256]; 2981 uint64_t dir_obj, child_dir_zapobj; 2982 dnode_phys_t child_dir_zap, dir; 2983 dsl_dir_phys_t *dd; 2984 const char *p, *q; 2985 2986 if (objset_get_dnode(spa, &spa->spa_mos, 2987 DMU_POOL_DIRECTORY_OBJECT, &dir)) 2988 return (EIO); 2989 if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET, sizeof (dir_obj), 2990 1, &dir_obj)) 2991 return (EIO); 2992 2993 p = name; 2994 for (;;) { 2995 if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir)) 2996 return (EIO); 2997 dd = (dsl_dir_phys_t *)&dir.dn_bonus; 2998 2999 while (*p == '/') 3000 p++; 3001 /* Actual loop condition #1. */ 3002 if (*p == '\0') 3003 break; 3004 3005 q = strchr(p, '/'); 3006 if (q) { 3007 memcpy(element, p, q - p); 3008 element[q - p] = '\0'; 3009 p = q + 1; 3010 } else { 3011 strcpy(element, p); 3012 p += strlen(p); 3013 } 3014 3015 child_dir_zapobj = dd->dd_child_dir_zapobj; 3016 if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, 3017 &child_dir_zap) != 0) 3018 return (EIO); 3019 3020 /* Actual loop condition #2. */ 3021 if (zap_lookup(spa, &child_dir_zap, element, sizeof (dir_obj), 3022 1, &dir_obj) != 0) 3023 return (ENOENT); 3024 } 3025 3026 *objnum = dd->dd_head_dataset_obj; 3027 return (0); 3028 } 3029 3030 #ifndef BOOT2 3031 static int 3032 zfs_list_dataset(const spa_t *spa, uint64_t objnum/*, int pos, char *entry*/) 3033 { 3034 uint64_t dir_obj, child_dir_zapobj; 3035 dnode_phys_t child_dir_zap, dir, dataset; 3036 dsl_dataset_phys_t *ds; 3037 dsl_dir_phys_t *dd; 3038 3039 if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) { 3040 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum); 3041 return (EIO); 3042 } 3043 ds = (dsl_dataset_phys_t *)&dataset.dn_bonus; 3044 dir_obj = ds->ds_dir_obj; 3045 3046 if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir)) { 3047 printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj); 3048 return (EIO); 3049 } 3050 dd = (dsl_dir_phys_t *)&dir.dn_bonus; 3051 3052 child_dir_zapobj = dd->dd_child_dir_zapobj; 3053 if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, 3054 &child_dir_zap) != 0) { 3055 printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj); 3056 return (EIO); 3057 } 3058 3059 return (zap_list(spa, &child_dir_zap) != 0); 3060 } 3061 3062 int 3063 zfs_callback_dataset(const spa_t *spa, uint64_t objnum, 3064 int (*callback)(const char *, uint64_t)) 3065 { 3066 uint64_t dir_obj, child_dir_zapobj; 3067 dnode_phys_t child_dir_zap, dir, dataset; 3068 dsl_dataset_phys_t *ds; 3069 dsl_dir_phys_t *dd; 3070 zap_phys_t *zap; 3071 size_t size; 3072 int err; 3073 3074 err = objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset); 3075 if (err != 0) { 3076 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum); 3077 return (err); 3078 } 3079 ds = (dsl_dataset_phys_t *)&dataset.dn_bonus; 3080 dir_obj = ds->ds_dir_obj; 3081 3082 err = objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir); 3083 if (err != 0) { 3084 printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj); 3085 return (err); 3086 } 3087 dd = (dsl_dir_phys_t *)&dir.dn_bonus; 3088 3089 child_dir_zapobj = dd->dd_child_dir_zapobj; 3090 err = objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, 3091 &child_dir_zap); 3092 if (err != 0) { 3093 printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj); 3094 return (err); 3095 } 3096 3097 size = child_dir_zap.dn_datablkszsec << SPA_MINBLOCKSHIFT; 3098 zap = malloc(size); 3099 if (zap != NULL) { 3100 err = dnode_read(spa, &child_dir_zap, 0, zap, size); 3101 if (err != 0) 3102 goto done; 3103 3104 if (zap->zap_block_type == ZBT_MICRO) 3105 err = mzap_list((const mzap_phys_t *)zap, size, 3106 callback); 3107 else 3108 err = fzap_list(spa, &child_dir_zap, zap, callback); 3109 } else { 3110 err = ENOMEM; 3111 } 3112 done: 3113 free(zap); 3114 return (err); 3115 } 3116 #endif 3117 3118 /* 3119 * Find the object set given the object number of its dataset object 3120 * and return its details in *objset 3121 */ 3122 static int 3123 zfs_mount_dataset(const spa_t *spa, uint64_t objnum, objset_phys_t *objset) 3124 { 3125 dnode_phys_t dataset; 3126 dsl_dataset_phys_t *ds; 3127 3128 if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) { 3129 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum); 3130 return (EIO); 3131 } 3132 3133 ds = (dsl_dataset_phys_t *)&dataset.dn_bonus; 3134 if (zio_read(spa, &ds->ds_bp, objset)) { 3135 printf("ZFS: can't read object set for dataset %ju\n", 3136 (uintmax_t)objnum); 3137 return (EIO); 3138 } 3139 3140 return (0); 3141 } 3142 3143 /* 3144 * Find the object set pointed to by the BOOTFS property or the root 3145 * dataset if there is none and return its details in *objset 3146 */ 3147 static int 3148 zfs_get_root(const spa_t *spa, uint64_t *objid) 3149 { 3150 dnode_phys_t dir, propdir; 3151 uint64_t props, bootfs, root; 3152 3153 *objid = 0; 3154 3155 /* 3156 * Start with the MOS directory object. 3157 */ 3158 if (objset_get_dnode(spa, &spa->spa_mos, 3159 DMU_POOL_DIRECTORY_OBJECT, &dir)) { 3160 printf("ZFS: can't read MOS object directory\n"); 3161 return (EIO); 3162 } 3163 3164 /* 3165 * Lookup the pool_props and see if we can find a bootfs. 3166 */ 3167 if (zap_lookup(spa, &dir, DMU_POOL_PROPS, 3168 sizeof(props), 1, &props) == 0 && 3169 objset_get_dnode(spa, &spa->spa_mos, props, &propdir) == 0 && 3170 zap_lookup(spa, &propdir, "bootfs", 3171 sizeof(bootfs), 1, &bootfs) == 0 && bootfs != 0) { 3172 *objid = bootfs; 3173 return (0); 3174 } 3175 /* 3176 * Lookup the root dataset directory 3177 */ 3178 if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET, 3179 sizeof(root), 1, &root) || 3180 objset_get_dnode(spa, &spa->spa_mos, root, &dir)) { 3181 printf("ZFS: can't find root dsl_dir\n"); 3182 return (EIO); 3183 } 3184 3185 /* 3186 * Use the information from the dataset directory's bonus buffer 3187 * to find the dataset object and from that the object set itself. 3188 */ 3189 dsl_dir_phys_t *dd = (dsl_dir_phys_t *)&dir.dn_bonus; 3190 *objid = dd->dd_head_dataset_obj; 3191 return (0); 3192 } 3193 3194 static int 3195 zfs_mount(const spa_t *spa, uint64_t rootobj, struct zfsmount *mount) 3196 { 3197 3198 mount->spa = spa; 3199 3200 /* 3201 * Find the root object set if not explicitly provided 3202 */ 3203 if (rootobj == 0 && zfs_get_root(spa, &rootobj)) { 3204 printf("ZFS: can't find root filesystem\n"); 3205 return (EIO); 3206 } 3207 3208 if (zfs_mount_dataset(spa, rootobj, &mount->objset)) { 3209 printf("ZFS: can't open root filesystem\n"); 3210 return (EIO); 3211 } 3212 3213 mount->rootobj = rootobj; 3214 3215 return (0); 3216 } 3217 3218 /* 3219 * callback function for feature name checks. 3220 */ 3221 static int 3222 check_feature(const char *name, uint64_t value) 3223 { 3224 int i; 3225 3226 if (value == 0) 3227 return (0); 3228 if (name[0] == '\0') 3229 return (0); 3230 3231 for (i = 0; features_for_read[i] != NULL; i++) { 3232 if (strcmp(name, features_for_read[i]) == 0) 3233 return (0); 3234 } 3235 printf("ZFS: unsupported feature: %s\n", name); 3236 return (EIO); 3237 } 3238 3239 /* 3240 * Checks whether the MOS features that are active are supported. 3241 */ 3242 static int 3243 check_mos_features(const spa_t *spa) 3244 { 3245 dnode_phys_t dir; 3246 zap_phys_t *zap; 3247 uint64_t objnum; 3248 size_t size; 3249 int rc; 3250 3251 if ((rc = objset_get_dnode(spa, &spa->spa_mos, DMU_OT_OBJECT_DIRECTORY, 3252 &dir)) != 0) 3253 return (rc); 3254 if ((rc = zap_lookup(spa, &dir, DMU_POOL_FEATURES_FOR_READ, 3255 sizeof (objnum), 1, &objnum)) != 0) { 3256 /* 3257 * It is older pool without features. As we have already 3258 * tested the label, just return without raising the error. 3259 */ 3260 return (0); 3261 } 3262 3263 if ((rc = objset_get_dnode(spa, &spa->spa_mos, objnum, &dir)) != 0) 3264 return (rc); 3265 3266 if (dir.dn_type != DMU_OTN_ZAP_METADATA) 3267 return (EIO); 3268 3269 size = dir.dn_datablkszsec << SPA_MINBLOCKSHIFT; 3270 zap = malloc(size); 3271 if (zap == NULL) 3272 return (ENOMEM); 3273 3274 if (dnode_read(spa, &dir, 0, zap, size)) { 3275 free(zap); 3276 return (EIO); 3277 } 3278 3279 if (zap->zap_block_type == ZBT_MICRO) 3280 rc = mzap_list((const mzap_phys_t *)zap, size, check_feature); 3281 else 3282 rc = fzap_list(spa, &dir, zap, check_feature); 3283 3284 free(zap); 3285 return (rc); 3286 } 3287 3288 static int 3289 load_nvlist(spa_t *spa, uint64_t obj, unsigned char **value) 3290 { 3291 dnode_phys_t dir; 3292 size_t size; 3293 int rc; 3294 unsigned char *nv; 3295 3296 *value = NULL; 3297 if ((rc = objset_get_dnode(spa, &spa->spa_mos, obj, &dir)) != 0) 3298 return (rc); 3299 if (dir.dn_type != DMU_OT_PACKED_NVLIST && 3300 dir.dn_bonustype != DMU_OT_PACKED_NVLIST_SIZE) { 3301 return (EIO); 3302 } 3303 3304 if (dir.dn_bonuslen != sizeof (uint64_t)) 3305 return (EIO); 3306 3307 size = *(uint64_t *)DN_BONUS(&dir); 3308 nv = malloc(size); 3309 if (nv == NULL) 3310 return (ENOMEM); 3311 3312 rc = dnode_read(spa, &dir, 0, nv, size); 3313 if (rc != 0) { 3314 free(nv); 3315 nv = NULL; 3316 return (rc); 3317 } 3318 *value = nv; 3319 return (rc); 3320 } 3321 3322 static int 3323 zfs_spa_init(spa_t *spa) 3324 { 3325 dnode_phys_t dir; 3326 uint64_t config_object; 3327 unsigned char *nvlist; 3328 int rc; 3329 3330 if (zio_read(spa, &spa->spa_uberblock.ub_rootbp, &spa->spa_mos)) { 3331 printf("ZFS: can't read MOS of pool %s\n", spa->spa_name); 3332 return (EIO); 3333 } 3334 if (spa->spa_mos.os_type != DMU_OST_META) { 3335 printf("ZFS: corrupted MOS of pool %s\n", spa->spa_name); 3336 return (EIO); 3337 } 3338 3339 if (objset_get_dnode(spa, &spa->spa_mos, DMU_POOL_DIRECTORY_OBJECT, 3340 &dir)) { 3341 printf("ZFS: failed to read pool %s directory object\n", 3342 spa->spa_name); 3343 return (EIO); 3344 } 3345 /* this is allowed to fail, older pools do not have salt */ 3346 rc = zap_lookup(spa, &dir, DMU_POOL_CHECKSUM_SALT, 1, 3347 sizeof (spa->spa_cksum_salt.zcs_bytes), 3348 spa->spa_cksum_salt.zcs_bytes); 3349 3350 rc = check_mos_features(spa); 3351 if (rc != 0) { 3352 printf("ZFS: pool %s is not supported\n", spa->spa_name); 3353 return (rc); 3354 } 3355 3356 rc = zap_lookup(spa, &dir, DMU_POOL_CONFIG, 3357 sizeof (config_object), 1, &config_object); 3358 if (rc != 0) { 3359 printf("ZFS: can not read MOS %s\n", DMU_POOL_CONFIG); 3360 return (EIO); 3361 } 3362 rc = load_nvlist(spa, config_object, &nvlist); 3363 if (rc != 0) 3364 return (rc); 3365 3366 /* 3367 * Update vdevs from MOS config. Note, we do skip encoding bytes 3368 * here. See also vdev_label_read_config(). 3369 */ 3370 rc = vdev_init_from_nvlist(spa, nvlist + 4); 3371 free(nvlist); 3372 return (rc); 3373 } 3374 3375 static int 3376 zfs_dnode_stat(const spa_t *spa, dnode_phys_t *dn, struct stat *sb) 3377 { 3378 3379 if (dn->dn_bonustype != DMU_OT_SA) { 3380 znode_phys_t *zp = (znode_phys_t *)dn->dn_bonus; 3381 3382 sb->st_mode = zp->zp_mode; 3383 sb->st_uid = zp->zp_uid; 3384 sb->st_gid = zp->zp_gid; 3385 sb->st_size = zp->zp_size; 3386 } else { 3387 sa_hdr_phys_t *sahdrp; 3388 int hdrsize; 3389 size_t size = 0; 3390 void *buf = NULL; 3391 3392 if (dn->dn_bonuslen != 0) 3393 sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn); 3394 else { 3395 if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0) { 3396 blkptr_t *bp = DN_SPILL_BLKPTR(dn); 3397 int error; 3398 3399 size = BP_GET_LSIZE(bp); 3400 buf = malloc(size); 3401 if (buf == NULL) 3402 error = ENOMEM; 3403 else 3404 error = zio_read(spa, bp, buf); 3405 3406 if (error != 0) { 3407 free(buf); 3408 return (error); 3409 } 3410 sahdrp = buf; 3411 } else { 3412 return (EIO); 3413 } 3414 } 3415 hdrsize = SA_HDR_SIZE(sahdrp); 3416 sb->st_mode = *(uint64_t *)((char *)sahdrp + hdrsize + 3417 SA_MODE_OFFSET); 3418 sb->st_uid = *(uint64_t *)((char *)sahdrp + hdrsize + 3419 SA_UID_OFFSET); 3420 sb->st_gid = *(uint64_t *)((char *)sahdrp + hdrsize + 3421 SA_GID_OFFSET); 3422 sb->st_size = *(uint64_t *)((char *)sahdrp + hdrsize + 3423 SA_SIZE_OFFSET); 3424 free(buf); 3425 } 3426 3427 return (0); 3428 } 3429 3430 static int 3431 zfs_dnode_readlink(const spa_t *spa, dnode_phys_t *dn, char *path, size_t psize) 3432 { 3433 int rc = 0; 3434 3435 if (dn->dn_bonustype == DMU_OT_SA) { 3436 sa_hdr_phys_t *sahdrp = NULL; 3437 size_t size = 0; 3438 void *buf = NULL; 3439 int hdrsize; 3440 char *p; 3441 3442 if (dn->dn_bonuslen != 0) { 3443 sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn); 3444 } else { 3445 blkptr_t *bp; 3446 3447 if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) == 0) 3448 return (EIO); 3449 bp = DN_SPILL_BLKPTR(dn); 3450 3451 size = BP_GET_LSIZE(bp); 3452 buf = malloc(size); 3453 if (buf == NULL) 3454 rc = ENOMEM; 3455 else 3456 rc = zio_read(spa, bp, buf); 3457 if (rc != 0) { 3458 free(buf); 3459 return (rc); 3460 } 3461 sahdrp = buf; 3462 } 3463 hdrsize = SA_HDR_SIZE(sahdrp); 3464 p = (char *)((uintptr_t)sahdrp + hdrsize + SA_SYMLINK_OFFSET); 3465 memcpy(path, p, psize); 3466 free(buf); 3467 return (0); 3468 } 3469 /* 3470 * Second test is purely to silence bogus compiler 3471 * warning about accessing past the end of dn_bonus. 3472 */ 3473 if (psize + sizeof(znode_phys_t) <= dn->dn_bonuslen && 3474 sizeof(znode_phys_t) <= sizeof(dn->dn_bonus)) { 3475 memcpy(path, &dn->dn_bonus[sizeof(znode_phys_t)], psize); 3476 } else { 3477 rc = dnode_read(spa, dn, 0, path, psize); 3478 } 3479 return (rc); 3480 } 3481 3482 struct obj_list { 3483 uint64_t objnum; 3484 STAILQ_ENTRY(obj_list) entry; 3485 }; 3486 3487 /* 3488 * Lookup a file and return its dnode. 3489 */ 3490 static int 3491 zfs_lookup(const struct zfsmount *mount, const char *upath, dnode_phys_t *dnode) 3492 { 3493 int rc; 3494 uint64_t objnum; 3495 const spa_t *spa; 3496 dnode_phys_t dn; 3497 const char *p, *q; 3498 char element[256]; 3499 char path[1024]; 3500 int symlinks_followed = 0; 3501 struct stat sb; 3502 struct obj_list *entry, *tentry; 3503 STAILQ_HEAD(, obj_list) on_cache = STAILQ_HEAD_INITIALIZER(on_cache); 3504 3505 spa = mount->spa; 3506 if (mount->objset.os_type != DMU_OST_ZFS) { 3507 printf("ZFS: unexpected object set type %ju\n", 3508 (uintmax_t)mount->objset.os_type); 3509 return (EIO); 3510 } 3511 3512 if ((entry = malloc(sizeof(struct obj_list))) == NULL) 3513 return (ENOMEM); 3514 3515 /* 3516 * Get the root directory dnode. 3517 */ 3518 rc = objset_get_dnode(spa, &mount->objset, MASTER_NODE_OBJ, &dn); 3519 if (rc) { 3520 free(entry); 3521 return (rc); 3522 } 3523 3524 rc = zap_lookup(spa, &dn, ZFS_ROOT_OBJ, sizeof(objnum), 1, &objnum); 3525 if (rc) { 3526 free(entry); 3527 return (rc); 3528 } 3529 entry->objnum = objnum; 3530 STAILQ_INSERT_HEAD(&on_cache, entry, entry); 3531 3532 rc = objset_get_dnode(spa, &mount->objset, objnum, &dn); 3533 if (rc != 0) 3534 goto done; 3535 3536 p = upath; 3537 while (p && *p) { 3538 rc = objset_get_dnode(spa, &mount->objset, objnum, &dn); 3539 if (rc != 0) 3540 goto done; 3541 3542 while (*p == '/') 3543 p++; 3544 if (*p == '\0') 3545 break; 3546 q = p; 3547 while (*q != '\0' && *q != '/') 3548 q++; 3549 3550 /* skip dot */ 3551 if (p + 1 == q && p[0] == '.') { 3552 p++; 3553 continue; 3554 } 3555 /* double dot */ 3556 if (p + 2 == q && p[0] == '.' && p[1] == '.') { 3557 p += 2; 3558 if (STAILQ_FIRST(&on_cache) == 3559 STAILQ_LAST(&on_cache, obj_list, entry)) { 3560 rc = ENOENT; 3561 goto done; 3562 } 3563 entry = STAILQ_FIRST(&on_cache); 3564 STAILQ_REMOVE_HEAD(&on_cache, entry); 3565 free(entry); 3566 objnum = (STAILQ_FIRST(&on_cache))->objnum; 3567 continue; 3568 } 3569 if (q - p + 1 > sizeof(element)) { 3570 rc = ENAMETOOLONG; 3571 goto done; 3572 } 3573 memcpy(element, p, q - p); 3574 element[q - p] = 0; 3575 p = q; 3576 3577 if ((rc = zfs_dnode_stat(spa, &dn, &sb)) != 0) 3578 goto done; 3579 if (!S_ISDIR(sb.st_mode)) { 3580 rc = ENOTDIR; 3581 goto done; 3582 } 3583 3584 rc = zap_lookup(spa, &dn, element, sizeof (objnum), 1, &objnum); 3585 if (rc) 3586 goto done; 3587 objnum = ZFS_DIRENT_OBJ(objnum); 3588 3589 if ((entry = malloc(sizeof(struct obj_list))) == NULL) { 3590 rc = ENOMEM; 3591 goto done; 3592 } 3593 entry->objnum = objnum; 3594 STAILQ_INSERT_HEAD(&on_cache, entry, entry); 3595 rc = objset_get_dnode(spa, &mount->objset, objnum, &dn); 3596 if (rc) 3597 goto done; 3598 3599 /* 3600 * Check for symlink. 3601 */ 3602 rc = zfs_dnode_stat(spa, &dn, &sb); 3603 if (rc) 3604 goto done; 3605 if (S_ISLNK(sb.st_mode)) { 3606 if (symlinks_followed > 10) { 3607 rc = EMLINK; 3608 goto done; 3609 } 3610 symlinks_followed++; 3611 3612 /* 3613 * Read the link value and copy the tail of our 3614 * current path onto the end. 3615 */ 3616 if (sb.st_size + strlen(p) + 1 > sizeof(path)) { 3617 rc = ENAMETOOLONG; 3618 goto done; 3619 } 3620 strcpy(&path[sb.st_size], p); 3621 3622 rc = zfs_dnode_readlink(spa, &dn, path, sb.st_size); 3623 if (rc != 0) 3624 goto done; 3625 3626 /* 3627 * Restart with the new path, starting either at 3628 * the root or at the parent depending whether or 3629 * not the link is relative. 3630 */ 3631 p = path; 3632 if (*p == '/') { 3633 while (STAILQ_FIRST(&on_cache) != 3634 STAILQ_LAST(&on_cache, obj_list, entry)) { 3635 entry = STAILQ_FIRST(&on_cache); 3636 STAILQ_REMOVE_HEAD(&on_cache, entry); 3637 free(entry); 3638 } 3639 } else { 3640 entry = STAILQ_FIRST(&on_cache); 3641 STAILQ_REMOVE_HEAD(&on_cache, entry); 3642 free(entry); 3643 } 3644 objnum = (STAILQ_FIRST(&on_cache))->objnum; 3645 } 3646 } 3647 3648 *dnode = dn; 3649 done: 3650 STAILQ_FOREACH_SAFE(entry, &on_cache, entry, tentry) 3651 free(entry); 3652 return (rc); 3653 } 3654