1 /*- 2 * Copyright (c) 2007 Doug Rabson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 /* 31 * Stand-alone ZFS file reader. 32 */ 33 34 #include <sys/endian.h> 35 #include <sys/stat.h> 36 #include <sys/stdint.h> 37 #include <sys/list.h> 38 #include <machine/_inttypes.h> 39 40 #include "zfsimpl.h" 41 #include "zfssubr.c" 42 43 44 struct zfsmount { 45 const spa_t *spa; 46 objset_phys_t objset; 47 uint64_t rootobj; 48 }; 49 static struct zfsmount zfsmount __unused; 50 51 /* 52 * The indirect_child_t represents the vdev that we will read from, when we 53 * need to read all copies of the data (e.g. for scrub or reconstruction). 54 * For plain (non-mirror) top-level vdevs (i.e. is_vdev is not a mirror), 55 * ic_vdev is the same as is_vdev. However, for mirror top-level vdevs, 56 * ic_vdev is a child of the mirror. 57 */ 58 typedef struct indirect_child { 59 void *ic_data; 60 vdev_t *ic_vdev; 61 } indirect_child_t; 62 63 /* 64 * The indirect_split_t represents one mapped segment of an i/o to the 65 * indirect vdev. For non-split (contiguously-mapped) blocks, there will be 66 * only one indirect_split_t, with is_split_offset==0 and is_size==io_size. 67 * For split blocks, there will be several of these. 68 */ 69 typedef struct indirect_split { 70 list_node_t is_node; /* link on iv_splits */ 71 72 /* 73 * is_split_offset is the offset into the i/o. 74 * This is the sum of the previous splits' is_size's. 75 */ 76 uint64_t is_split_offset; 77 78 vdev_t *is_vdev; /* top-level vdev */ 79 uint64_t is_target_offset; /* offset on is_vdev */ 80 uint64_t is_size; 81 int is_children; /* number of entries in is_child[] */ 82 83 /* 84 * is_good_child is the child that we are currently using to 85 * attempt reconstruction. 86 */ 87 int is_good_child; 88 89 indirect_child_t is_child[1]; /* variable-length */ 90 } indirect_split_t; 91 92 /* 93 * The indirect_vsd_t is associated with each i/o to the indirect vdev. 94 * It is the "Vdev-Specific Data" in the zio_t's io_vsd. 95 */ 96 typedef struct indirect_vsd { 97 boolean_t iv_split_block; 98 boolean_t iv_reconstruct; 99 100 list_t iv_splits; /* list of indirect_split_t's */ 101 } indirect_vsd_t; 102 103 /* 104 * List of all vdevs, chained through v_alllink. 105 */ 106 static vdev_list_t zfs_vdevs; 107 108 /* 109 * List of ZFS features supported for read 110 */ 111 static const char *features_for_read[] = { 112 "org.illumos:lz4_compress", 113 "com.delphix:hole_birth", 114 "com.delphix:extensible_dataset", 115 "com.delphix:embedded_data", 116 "org.open-zfs:large_blocks", 117 "org.illumos:sha512", 118 "org.illumos:skein", 119 "org.zfsonlinux:large_dnode", 120 "com.joyent:multi_vdev_crash_dump", 121 "com.delphix:spacemap_histogram", 122 "com.delphix:zpool_checkpoint", 123 "com.delphix:spacemap_v2", 124 "com.datto:encryption", 125 "org.zfsonlinux:allocation_classes", 126 "com.datto:resilver_defer", 127 "com.delphix:device_removal", 128 "com.delphix:obsolete_counts", 129 "com.intel:allocation_classes", 130 NULL 131 }; 132 133 /* 134 * List of all pools, chained through spa_link. 135 */ 136 static spa_list_t zfs_pools; 137 138 static const dnode_phys_t *dnode_cache_obj; 139 static uint64_t dnode_cache_bn; 140 static char *dnode_cache_buf; 141 142 static int zio_read(const spa_t *spa, const blkptr_t *bp, void *buf); 143 static int zfs_get_root(const spa_t *spa, uint64_t *objid); 144 static int zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result); 145 static int zap_lookup(const spa_t *spa, const dnode_phys_t *dnode, 146 const char *name, uint64_t integer_size, uint64_t num_integers, 147 void *value); 148 static int objset_get_dnode(const spa_t *, const objset_phys_t *, uint64_t, 149 dnode_phys_t *); 150 static int dnode_read(const spa_t *, const dnode_phys_t *, off_t, void *, 151 size_t); 152 static int vdev_indirect_read(vdev_t *, const blkptr_t *, void *, off_t, 153 size_t); 154 static int vdev_mirror_read(vdev_t *, const blkptr_t *, void *, off_t, size_t); 155 vdev_indirect_mapping_t *vdev_indirect_mapping_open(spa_t *, objset_phys_t *, 156 uint64_t); 157 vdev_indirect_mapping_entry_phys_t * 158 vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *, uint64_t, 159 uint64_t, uint64_t *); 160 161 static void 162 zfs_init(void) 163 { 164 STAILQ_INIT(&zfs_vdevs); 165 STAILQ_INIT(&zfs_pools); 166 167 dnode_cache_buf = malloc(SPA_MAXBLOCKSIZE); 168 169 zfs_init_crc(); 170 } 171 172 static int 173 nvlist_check_features_for_read(nvlist_t *nvl) 174 { 175 nvlist_t *features = NULL; 176 nvs_data_t *data; 177 nvp_header_t *nvp; 178 nv_string_t *nvp_name; 179 int rc; 180 181 rc = nvlist_find(nvl, ZPOOL_CONFIG_FEATURES_FOR_READ, 182 DATA_TYPE_NVLIST, NULL, &features, NULL); 183 if (rc != 0) 184 return (rc); 185 186 data = (nvs_data_t *)features->nv_data; 187 nvp = &data->nvl_pair; /* first pair in nvlist */ 188 189 while (nvp->encoded_size != 0 && nvp->decoded_size != 0) { 190 int i, found; 191 192 nvp_name = (nv_string_t *)((uintptr_t)nvp + sizeof(*nvp)); 193 found = 0; 194 195 for (i = 0; features_for_read[i] != NULL; i++) { 196 if (memcmp(nvp_name->nv_data, features_for_read[i], 197 nvp_name->nv_size) == 0) { 198 found = 1; 199 break; 200 } 201 } 202 203 if (!found) { 204 printf("ZFS: unsupported feature: %.*s\n", 205 nvp_name->nv_size, nvp_name->nv_data); 206 rc = EIO; 207 } 208 nvp = (nvp_header_t *)((uint8_t *)nvp + nvp->encoded_size); 209 } 210 nvlist_destroy(features); 211 212 return (rc); 213 } 214 215 static int 216 vdev_read_phys(vdev_t *vdev, const blkptr_t *bp, void *buf, 217 off_t offset, size_t size) 218 { 219 size_t psize; 220 int rc; 221 222 if (!vdev->v_phys_read) 223 return (EIO); 224 225 if (bp) { 226 psize = BP_GET_PSIZE(bp); 227 } else { 228 psize = size; 229 } 230 231 rc = vdev->v_phys_read(vdev, vdev->v_read_priv, offset, buf, psize); 232 if (rc == 0) { 233 if (bp != NULL) 234 rc = zio_checksum_verify(vdev->v_spa, bp, buf); 235 } 236 237 return (rc); 238 } 239 240 typedef struct remap_segment { 241 vdev_t *rs_vd; 242 uint64_t rs_offset; 243 uint64_t rs_asize; 244 uint64_t rs_split_offset; 245 list_node_t rs_node; 246 } remap_segment_t; 247 248 static remap_segment_t * 249 rs_alloc(vdev_t *vd, uint64_t offset, uint64_t asize, uint64_t split_offset) 250 { 251 remap_segment_t *rs = malloc(sizeof (remap_segment_t)); 252 253 if (rs != NULL) { 254 rs->rs_vd = vd; 255 rs->rs_offset = offset; 256 rs->rs_asize = asize; 257 rs->rs_split_offset = split_offset; 258 } 259 260 return (rs); 261 } 262 263 vdev_indirect_mapping_t * 264 vdev_indirect_mapping_open(spa_t *spa, objset_phys_t *os, 265 uint64_t mapping_object) 266 { 267 vdev_indirect_mapping_t *vim; 268 vdev_indirect_mapping_phys_t *vim_phys; 269 int rc; 270 271 vim = calloc(1, sizeof (*vim)); 272 if (vim == NULL) 273 return (NULL); 274 275 vim->vim_dn = calloc(1, sizeof (*vim->vim_dn)); 276 if (vim->vim_dn == NULL) { 277 free(vim); 278 return (NULL); 279 } 280 281 rc = objset_get_dnode(spa, os, mapping_object, vim->vim_dn); 282 if (rc != 0) { 283 free(vim->vim_dn); 284 free(vim); 285 return (NULL); 286 } 287 288 vim->vim_spa = spa; 289 vim->vim_phys = malloc(sizeof (*vim->vim_phys)); 290 if (vim->vim_phys == NULL) { 291 free(vim->vim_dn); 292 free(vim); 293 return (NULL); 294 } 295 296 vim_phys = (vdev_indirect_mapping_phys_t *)DN_BONUS(vim->vim_dn); 297 *vim->vim_phys = *vim_phys; 298 299 vim->vim_objset = os; 300 vim->vim_object = mapping_object; 301 vim->vim_entries = NULL; 302 303 vim->vim_havecounts = 304 (vim->vim_dn->dn_bonuslen > VDEV_INDIRECT_MAPPING_SIZE_V0); 305 306 return (vim); 307 } 308 309 /* 310 * Compare an offset with an indirect mapping entry; there are three 311 * possible scenarios: 312 * 313 * 1. The offset is "less than" the mapping entry; meaning the 314 * offset is less than the source offset of the mapping entry. In 315 * this case, there is no overlap between the offset and the 316 * mapping entry and -1 will be returned. 317 * 318 * 2. The offset is "greater than" the mapping entry; meaning the 319 * offset is greater than the mapping entry's source offset plus 320 * the entry's size. In this case, there is no overlap between 321 * the offset and the mapping entry and 1 will be returned. 322 * 323 * NOTE: If the offset is actually equal to the entry's offset 324 * plus size, this is considered to be "greater" than the entry, 325 * and this case applies (i.e. 1 will be returned). Thus, the 326 * entry's "range" can be considered to be inclusive at its 327 * start, but exclusive at its end: e.g. [src, src + size). 328 * 329 * 3. The last case to consider is if the offset actually falls 330 * within the mapping entry's range. If this is the case, the 331 * offset is considered to be "equal to" the mapping entry and 332 * 0 will be returned. 333 * 334 * NOTE: If the offset is equal to the entry's source offset, 335 * this case applies and 0 will be returned. If the offset is 336 * equal to the entry's source plus its size, this case does 337 * *not* apply (see "NOTE" above for scenario 2), and 1 will be 338 * returned. 339 */ 340 static int 341 dva_mapping_overlap_compare(const void *v_key, const void *v_array_elem) 342 { 343 const uint64_t *key = v_key; 344 const vdev_indirect_mapping_entry_phys_t *array_elem = 345 v_array_elem; 346 uint64_t src_offset = DVA_MAPPING_GET_SRC_OFFSET(array_elem); 347 348 if (*key < src_offset) { 349 return (-1); 350 } else if (*key < src_offset + DVA_GET_ASIZE(&array_elem->vimep_dst)) { 351 return (0); 352 } else { 353 return (1); 354 } 355 } 356 357 /* 358 * Return array entry. 359 */ 360 static vdev_indirect_mapping_entry_phys_t * 361 vdev_indirect_mapping_entry(vdev_indirect_mapping_t *vim, uint64_t index) 362 { 363 uint64_t size; 364 off_t offset = 0; 365 int rc; 366 367 if (vim->vim_phys->vimp_num_entries == 0) 368 return (NULL); 369 370 if (vim->vim_entries == NULL) { 371 uint64_t bsize; 372 373 bsize = vim->vim_dn->dn_datablkszsec << SPA_MINBLOCKSHIFT; 374 size = vim->vim_phys->vimp_num_entries * 375 sizeof (*vim->vim_entries); 376 if (size > bsize) { 377 size = bsize / sizeof (*vim->vim_entries); 378 size *= sizeof (*vim->vim_entries); 379 } 380 vim->vim_entries = malloc(size); 381 if (vim->vim_entries == NULL) 382 return (NULL); 383 vim->vim_num_entries = size / sizeof (*vim->vim_entries); 384 offset = index * sizeof (*vim->vim_entries); 385 } 386 387 /* We have data in vim_entries */ 388 if (offset == 0) { 389 if (index >= vim->vim_entry_offset && 390 index <= vim->vim_entry_offset + vim->vim_num_entries) { 391 index -= vim->vim_entry_offset; 392 return (&vim->vim_entries[index]); 393 } 394 offset = index * sizeof (*vim->vim_entries); 395 } 396 397 vim->vim_entry_offset = index; 398 size = vim->vim_num_entries * sizeof (*vim->vim_entries); 399 rc = dnode_read(vim->vim_spa, vim->vim_dn, offset, vim->vim_entries, 400 size); 401 if (rc != 0) { 402 /* Read error, invalidate vim_entries. */ 403 free(vim->vim_entries); 404 vim->vim_entries = NULL; 405 return (NULL); 406 } 407 index -= vim->vim_entry_offset; 408 return (&vim->vim_entries[index]); 409 } 410 411 /* 412 * Returns the mapping entry for the given offset. 413 * 414 * It's possible that the given offset will not be in the mapping table 415 * (i.e. no mapping entries contain this offset), in which case, the 416 * return value value depends on the "next_if_missing" parameter. 417 * 418 * If the offset is not found in the table and "next_if_missing" is 419 * B_FALSE, then NULL will always be returned. The behavior is intended 420 * to allow consumers to get the entry corresponding to the offset 421 * parameter, iff the offset overlaps with an entry in the table. 422 * 423 * If the offset is not found in the table and "next_if_missing" is 424 * B_TRUE, then the entry nearest to the given offset will be returned, 425 * such that the entry's source offset is greater than the offset 426 * passed in (i.e. the "next" mapping entry in the table is returned, if 427 * the offset is missing from the table). If there are no entries whose 428 * source offset is greater than the passed in offset, NULL is returned. 429 */ 430 static vdev_indirect_mapping_entry_phys_t * 431 vdev_indirect_mapping_entry_for_offset(vdev_indirect_mapping_t *vim, 432 uint64_t offset) 433 { 434 ASSERT(vim->vim_phys->vimp_num_entries > 0); 435 436 vdev_indirect_mapping_entry_phys_t *entry; 437 438 uint64_t last = vim->vim_phys->vimp_num_entries - 1; 439 uint64_t base = 0; 440 441 /* 442 * We don't define these inside of the while loop because we use 443 * their value in the case that offset isn't in the mapping. 444 */ 445 uint64_t mid; 446 int result; 447 448 while (last >= base) { 449 mid = base + ((last - base) >> 1); 450 451 entry = vdev_indirect_mapping_entry(vim, mid); 452 if (entry == NULL) 453 break; 454 result = dva_mapping_overlap_compare(&offset, entry); 455 456 if (result == 0) { 457 break; 458 } else if (result < 0) { 459 last = mid - 1; 460 } else { 461 base = mid + 1; 462 } 463 } 464 return (entry); 465 } 466 467 /* 468 * Given an indirect vdev and an extent on that vdev, it duplicates the 469 * physical entries of the indirect mapping that correspond to the extent 470 * to a new array and returns a pointer to it. In addition, copied_entries 471 * is populated with the number of mapping entries that were duplicated. 472 * 473 * Finally, since we are doing an allocation, it is up to the caller to 474 * free the array allocated in this function. 475 */ 476 vdev_indirect_mapping_entry_phys_t * 477 vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *vd, uint64_t offset, 478 uint64_t asize, uint64_t *copied_entries) 479 { 480 vdev_indirect_mapping_entry_phys_t *duplicate_mappings = NULL; 481 vdev_indirect_mapping_t *vim = vd->v_mapping; 482 uint64_t entries = 0; 483 484 vdev_indirect_mapping_entry_phys_t *first_mapping = 485 vdev_indirect_mapping_entry_for_offset(vim, offset); 486 ASSERT3P(first_mapping, !=, NULL); 487 488 vdev_indirect_mapping_entry_phys_t *m = first_mapping; 489 while (asize > 0) { 490 uint64_t size = DVA_GET_ASIZE(&m->vimep_dst); 491 uint64_t inner_offset = offset - DVA_MAPPING_GET_SRC_OFFSET(m); 492 uint64_t inner_size = MIN(asize, size - inner_offset); 493 494 offset += inner_size; 495 asize -= inner_size; 496 entries++; 497 m++; 498 } 499 500 size_t copy_length = entries * sizeof (*first_mapping); 501 duplicate_mappings = malloc(copy_length); 502 if (duplicate_mappings != NULL) 503 bcopy(first_mapping, duplicate_mappings, copy_length); 504 else 505 entries = 0; 506 507 *copied_entries = entries; 508 509 return (duplicate_mappings); 510 } 511 512 static vdev_t * 513 vdev_lookup_top(spa_t *spa, uint64_t vdev) 514 { 515 vdev_t *rvd; 516 vdev_list_t *vlist; 517 518 vlist = &spa->spa_root_vdev->v_children; 519 STAILQ_FOREACH(rvd, vlist, v_childlink) 520 if (rvd->v_id == vdev) 521 break; 522 523 return (rvd); 524 } 525 526 /* 527 * This is a callback for vdev_indirect_remap() which allocates an 528 * indirect_split_t for each split segment and adds it to iv_splits. 529 */ 530 static void 531 vdev_indirect_gather_splits(uint64_t split_offset, vdev_t *vd, uint64_t offset, 532 uint64_t size, void *arg) 533 { 534 int n = 1; 535 zio_t *zio = arg; 536 indirect_vsd_t *iv = zio->io_vsd; 537 538 if (vd->v_read == vdev_indirect_read) 539 return; 540 541 if (vd->v_read == vdev_mirror_read) 542 n = vd->v_nchildren; 543 544 indirect_split_t *is = 545 malloc(offsetof(indirect_split_t, is_child[n])); 546 if (is == NULL) { 547 zio->io_error = ENOMEM; 548 return; 549 } 550 bzero(is, offsetof(indirect_split_t, is_child[n])); 551 552 is->is_children = n; 553 is->is_size = size; 554 is->is_split_offset = split_offset; 555 is->is_target_offset = offset; 556 is->is_vdev = vd; 557 558 /* 559 * Note that we only consider multiple copies of the data for 560 * *mirror* vdevs. We don't for "replacing" or "spare" vdevs, even 561 * though they use the same ops as mirror, because there's only one 562 * "good" copy under the replacing/spare. 563 */ 564 if (vd->v_read == vdev_mirror_read) { 565 int i = 0; 566 vdev_t *kid; 567 568 STAILQ_FOREACH(kid, &vd->v_children, v_childlink) { 569 is->is_child[i++].ic_vdev = kid; 570 } 571 } else { 572 is->is_child[0].ic_vdev = vd; 573 } 574 575 list_insert_tail(&iv->iv_splits, is); 576 } 577 578 static void 579 vdev_indirect_remap(vdev_t *vd, uint64_t offset, uint64_t asize, void *arg) 580 { 581 list_t stack; 582 spa_t *spa = vd->v_spa; 583 zio_t *zio = arg; 584 remap_segment_t *rs; 585 586 list_create(&stack, sizeof (remap_segment_t), 587 offsetof(remap_segment_t, rs_node)); 588 589 rs = rs_alloc(vd, offset, asize, 0); 590 if (rs == NULL) { 591 printf("vdev_indirect_remap: out of memory.\n"); 592 zio->io_error = ENOMEM; 593 } 594 for (; rs != NULL; rs = list_remove_head(&stack)) { 595 vdev_t *v = rs->rs_vd; 596 uint64_t num_entries = 0; 597 /* vdev_indirect_mapping_t *vim = v->v_mapping; */ 598 vdev_indirect_mapping_entry_phys_t *mapping = 599 vdev_indirect_mapping_duplicate_adjacent_entries(v, 600 rs->rs_offset, rs->rs_asize, &num_entries); 601 602 if (num_entries == 0) 603 zio->io_error = ENOMEM; 604 605 for (uint64_t i = 0; i < num_entries; i++) { 606 vdev_indirect_mapping_entry_phys_t *m = &mapping[i]; 607 uint64_t size = DVA_GET_ASIZE(&m->vimep_dst); 608 uint64_t dst_offset = DVA_GET_OFFSET(&m->vimep_dst); 609 uint64_t dst_vdev = DVA_GET_VDEV(&m->vimep_dst); 610 uint64_t inner_offset = rs->rs_offset - 611 DVA_MAPPING_GET_SRC_OFFSET(m); 612 uint64_t inner_size = 613 MIN(rs->rs_asize, size - inner_offset); 614 vdev_t *dst_v = vdev_lookup_top(spa, dst_vdev); 615 616 if (dst_v->v_read == vdev_indirect_read) { 617 remap_segment_t *o; 618 619 o = rs_alloc(dst_v, dst_offset + inner_offset, 620 inner_size, rs->rs_split_offset); 621 if (o == NULL) { 622 printf("vdev_indirect_remap: " 623 "out of memory.\n"); 624 zio->io_error = ENOMEM; 625 break; 626 } 627 628 list_insert_head(&stack, o); 629 } 630 vdev_indirect_gather_splits(rs->rs_split_offset, dst_v, 631 dst_offset + inner_offset, 632 inner_size, arg); 633 634 /* 635 * vdev_indirect_gather_splits can have memory 636 * allocation error, we can not recover from it. 637 */ 638 if (zio->io_error != 0) 639 break; 640 rs->rs_offset += inner_size; 641 rs->rs_asize -= inner_size; 642 rs->rs_split_offset += inner_size; 643 } 644 645 free(mapping); 646 free(rs); 647 if (zio->io_error != 0) 648 break; 649 } 650 651 list_destroy(&stack); 652 } 653 654 static void 655 vdev_indirect_map_free(zio_t *zio) 656 { 657 indirect_vsd_t *iv = zio->io_vsd; 658 indirect_split_t *is; 659 660 while ((is = list_head(&iv->iv_splits)) != NULL) { 661 for (int c = 0; c < is->is_children; c++) { 662 indirect_child_t *ic = &is->is_child[c]; 663 free(ic->ic_data); 664 } 665 list_remove(&iv->iv_splits, is); 666 free(is); 667 } 668 free(iv); 669 } 670 671 static int 672 vdev_indirect_read(vdev_t *vdev, const blkptr_t *bp, void *buf, 673 off_t offset, size_t bytes) 674 { 675 zio_t zio; 676 spa_t *spa = vdev->v_spa; 677 indirect_vsd_t *iv; 678 indirect_split_t *first; 679 int rc = EIO; 680 681 iv = calloc(1, sizeof(*iv)); 682 if (iv == NULL) 683 return (ENOMEM); 684 685 list_create(&iv->iv_splits, 686 sizeof (indirect_split_t), offsetof(indirect_split_t, is_node)); 687 688 bzero(&zio, sizeof(zio)); 689 zio.io_spa = spa; 690 zio.io_bp = (blkptr_t *)bp; 691 zio.io_data = buf; 692 zio.io_size = bytes; 693 zio.io_offset = offset; 694 zio.io_vd = vdev; 695 zio.io_vsd = iv; 696 697 if (vdev->v_mapping == NULL) { 698 vdev_indirect_config_t *vic; 699 700 vic = &vdev->vdev_indirect_config; 701 vdev->v_mapping = vdev_indirect_mapping_open(spa, 702 &spa->spa_mos, vic->vic_mapping_object); 703 } 704 705 vdev_indirect_remap(vdev, offset, bytes, &zio); 706 if (zio.io_error != 0) 707 return (zio.io_error); 708 709 first = list_head(&iv->iv_splits); 710 if (first->is_size == zio.io_size) { 711 /* 712 * This is not a split block; we are pointing to the entire 713 * data, which will checksum the same as the original data. 714 * Pass the BP down so that the child i/o can verify the 715 * checksum, and try a different location if available 716 * (e.g. on a mirror). 717 * 718 * While this special case could be handled the same as the 719 * general (split block) case, doing it this way ensures 720 * that the vast majority of blocks on indirect vdevs 721 * (which are not split) are handled identically to blocks 722 * on non-indirect vdevs. This allows us to be less strict 723 * about performance in the general (but rare) case. 724 */ 725 rc = first->is_vdev->v_read(first->is_vdev, zio.io_bp, 726 zio.io_data, first->is_target_offset, bytes); 727 } else { 728 iv->iv_split_block = B_TRUE; 729 /* 730 * Read one copy of each split segment, from the 731 * top-level vdev. Since we don't know the 732 * checksum of each split individually, the child 733 * zio can't ensure that we get the right data. 734 * E.g. if it's a mirror, it will just read from a 735 * random (healthy) leaf vdev. We have to verify 736 * the checksum in vdev_indirect_io_done(). 737 */ 738 for (indirect_split_t *is = list_head(&iv->iv_splits); 739 is != NULL; is = list_next(&iv->iv_splits, is)) { 740 char *ptr = zio.io_data; 741 742 rc = is->is_vdev->v_read(is->is_vdev, zio.io_bp, 743 ptr + is->is_split_offset, is->is_target_offset, 744 is->is_size); 745 } 746 if (zio_checksum_verify(spa, zio.io_bp, zio.io_data)) 747 rc = ECKSUM; 748 else 749 rc = 0; 750 } 751 752 vdev_indirect_map_free(&zio); 753 if (rc == 0) 754 rc = zio.io_error; 755 756 return (rc); 757 } 758 759 static int 760 vdev_disk_read(vdev_t *vdev, const blkptr_t *bp, void *buf, 761 off_t offset, size_t bytes) 762 { 763 764 return (vdev_read_phys(vdev, bp, buf, 765 offset + VDEV_LABEL_START_SIZE, bytes)); 766 } 767 768 static int 769 vdev_missing_read(vdev_t *vdev __unused, const blkptr_t *bp __unused, 770 void *buf __unused, off_t offset __unused, size_t bytes __unused) 771 { 772 773 return (ENOTSUP); 774 } 775 776 static int 777 vdev_mirror_read(vdev_t *vdev, const blkptr_t *bp, void *buf, 778 off_t offset, size_t bytes) 779 { 780 vdev_t *kid; 781 int rc; 782 783 rc = EIO; 784 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) { 785 if (kid->v_state != VDEV_STATE_HEALTHY) 786 continue; 787 rc = kid->v_read(kid, bp, buf, offset, bytes); 788 if (!rc) 789 return (0); 790 } 791 792 return (rc); 793 } 794 795 static int 796 vdev_replacing_read(vdev_t *vdev, const blkptr_t *bp, void *buf, 797 off_t offset, size_t bytes) 798 { 799 vdev_t *kid; 800 801 /* 802 * Here we should have two kids: 803 * First one which is the one we are replacing and we can trust 804 * only this one to have valid data, but it might not be present. 805 * Second one is that one we are replacing with. It is most likely 806 * healthy, but we can't trust it has needed data, so we won't use it. 807 */ 808 kid = STAILQ_FIRST(&vdev->v_children); 809 if (kid == NULL) 810 return (EIO); 811 if (kid->v_state != VDEV_STATE_HEALTHY) 812 return (EIO); 813 return (kid->v_read(kid, bp, buf, offset, bytes)); 814 } 815 816 static vdev_t * 817 vdev_find(uint64_t guid) 818 { 819 vdev_t *vdev; 820 821 STAILQ_FOREACH(vdev, &zfs_vdevs, v_alllink) 822 if (vdev->v_guid == guid) 823 return (vdev); 824 825 return (0); 826 } 827 828 static vdev_t * 829 vdev_create(uint64_t guid, vdev_read_t *_read) 830 { 831 vdev_t *vdev; 832 vdev_indirect_config_t *vic; 833 834 vdev = calloc(1, sizeof(vdev_t)); 835 if (vdev != NULL) { 836 STAILQ_INIT(&vdev->v_children); 837 vdev->v_guid = guid; 838 vdev->v_read = _read; 839 840 /* 841 * root vdev has no read function, we use this fact to 842 * skip setting up data we do not need for root vdev. 843 * We only point root vdev from spa. 844 */ 845 if (_read != NULL) { 846 vic = &vdev->vdev_indirect_config; 847 vic->vic_prev_indirect_vdev = UINT64_MAX; 848 STAILQ_INSERT_TAIL(&zfs_vdevs, vdev, v_alllink); 849 } 850 } 851 852 return (vdev); 853 } 854 855 static void 856 vdev_set_initial_state(vdev_t *vdev, const nvlist_t *nvlist) 857 { 858 uint64_t is_offline, is_faulted, is_degraded, is_removed, isnt_present; 859 uint64_t is_log; 860 861 is_offline = is_removed = is_faulted = is_degraded = isnt_present = 0; 862 is_log = 0; 863 (void) nvlist_find(nvlist, ZPOOL_CONFIG_OFFLINE, DATA_TYPE_UINT64, NULL, 864 &is_offline, NULL); 865 (void) nvlist_find(nvlist, ZPOOL_CONFIG_REMOVED, DATA_TYPE_UINT64, NULL, 866 &is_removed, NULL); 867 (void) nvlist_find(nvlist, ZPOOL_CONFIG_FAULTED, DATA_TYPE_UINT64, NULL, 868 &is_faulted, NULL); 869 (void) nvlist_find(nvlist, ZPOOL_CONFIG_DEGRADED, DATA_TYPE_UINT64, 870 NULL, &is_degraded, NULL); 871 (void) nvlist_find(nvlist, ZPOOL_CONFIG_NOT_PRESENT, DATA_TYPE_UINT64, 872 NULL, &isnt_present, NULL); 873 (void) nvlist_find(nvlist, ZPOOL_CONFIG_IS_LOG, DATA_TYPE_UINT64, NULL, 874 &is_log, NULL); 875 876 if (is_offline != 0) 877 vdev->v_state = VDEV_STATE_OFFLINE; 878 else if (is_removed != 0) 879 vdev->v_state = VDEV_STATE_REMOVED; 880 else if (is_faulted != 0) 881 vdev->v_state = VDEV_STATE_FAULTED; 882 else if (is_degraded != 0) 883 vdev->v_state = VDEV_STATE_DEGRADED; 884 else if (isnt_present != 0) 885 vdev->v_state = VDEV_STATE_CANT_OPEN; 886 887 vdev->v_islog = is_log != 0; 888 } 889 890 static int 891 vdev_init(uint64_t guid, const nvlist_t *nvlist, vdev_t **vdevp) 892 { 893 uint64_t id, ashift, asize, nparity; 894 const char *path; 895 const char *type; 896 int len, pathlen; 897 char *name; 898 vdev_t *vdev; 899 900 if (nvlist_find(nvlist, ZPOOL_CONFIG_ID, DATA_TYPE_UINT64, NULL, &id, 901 NULL) || 902 nvlist_find(nvlist, ZPOOL_CONFIG_TYPE, DATA_TYPE_STRING, NULL, 903 &type, &len)) { 904 return (ENOENT); 905 } 906 907 if (memcmp(type, VDEV_TYPE_MIRROR, len) != 0 && 908 memcmp(type, VDEV_TYPE_DISK, len) != 0 && 909 #ifdef ZFS_TEST 910 memcmp(type, VDEV_TYPE_FILE, len) != 0 && 911 #endif 912 memcmp(type, VDEV_TYPE_RAIDZ, len) != 0 && 913 memcmp(type, VDEV_TYPE_INDIRECT, len) != 0 && 914 memcmp(type, VDEV_TYPE_REPLACING, len) != 0 && 915 memcmp(type, VDEV_TYPE_HOLE, len) != 0) { 916 printf("ZFS: can only boot from disk, mirror, raidz1, " 917 "raidz2 and raidz3 vdevs, got: %.*s\n", len, type); 918 return (EIO); 919 } 920 921 if (memcmp(type, VDEV_TYPE_MIRROR, len) == 0) 922 vdev = vdev_create(guid, vdev_mirror_read); 923 else if (memcmp(type, VDEV_TYPE_RAIDZ, len) == 0) 924 vdev = vdev_create(guid, vdev_raidz_read); 925 else if (memcmp(type, VDEV_TYPE_REPLACING, len) == 0) 926 vdev = vdev_create(guid, vdev_replacing_read); 927 else if (memcmp(type, VDEV_TYPE_INDIRECT, len) == 0) { 928 vdev_indirect_config_t *vic; 929 930 vdev = vdev_create(guid, vdev_indirect_read); 931 if (vdev != NULL) { 932 vdev->v_state = VDEV_STATE_HEALTHY; 933 vic = &vdev->vdev_indirect_config; 934 935 nvlist_find(nvlist, 936 ZPOOL_CONFIG_INDIRECT_OBJECT, 937 DATA_TYPE_UINT64, 938 NULL, &vic->vic_mapping_object, NULL); 939 nvlist_find(nvlist, 940 ZPOOL_CONFIG_INDIRECT_BIRTHS, 941 DATA_TYPE_UINT64, 942 NULL, &vic->vic_births_object, NULL); 943 nvlist_find(nvlist, 944 ZPOOL_CONFIG_PREV_INDIRECT_VDEV, 945 DATA_TYPE_UINT64, 946 NULL, &vic->vic_prev_indirect_vdev, NULL); 947 } 948 } else if (memcmp(type, VDEV_TYPE_HOLE, len) == 0) { 949 vdev = vdev_create(guid, vdev_missing_read); 950 } else { 951 vdev = vdev_create(guid, vdev_disk_read); 952 } 953 954 if (vdev == NULL) 955 return (ENOMEM); 956 957 vdev_set_initial_state(vdev, nvlist); 958 vdev->v_id = id; 959 if (nvlist_find(nvlist, ZPOOL_CONFIG_ASHIFT, 960 DATA_TYPE_UINT64, NULL, &ashift, NULL) == 0) 961 vdev->v_ashift = ashift; 962 963 if (nvlist_find(nvlist, ZPOOL_CONFIG_ASIZE, 964 DATA_TYPE_UINT64, NULL, &asize, NULL) == 0) { 965 vdev->v_psize = asize + 966 VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; 967 } 968 969 if (nvlist_find(nvlist, ZPOOL_CONFIG_NPARITY, 970 DATA_TYPE_UINT64, NULL, &nparity, NULL) == 0) 971 vdev->v_nparity = nparity; 972 973 if (nvlist_find(nvlist, ZPOOL_CONFIG_PATH, 974 DATA_TYPE_STRING, NULL, &path, &pathlen) == 0) { 975 char prefix[] = "/dev/"; 976 977 len = strlen(prefix); 978 if (len < pathlen && memcmp(path, prefix, len) == 0) { 979 path += len; 980 pathlen -= len; 981 } 982 name = malloc(pathlen + 1); 983 bcopy(path, name, pathlen); 984 name[pathlen] = '\0'; 985 vdev->v_name = name; 986 } else { 987 name = NULL; 988 if (memcmp(type, VDEV_TYPE_RAIDZ, len) == 0) { 989 if (vdev->v_nparity < 1 || 990 vdev->v_nparity > 3) { 991 printf("ZFS: invalid raidz parity: %d\n", 992 vdev->v_nparity); 993 return (EIO); 994 } 995 (void) asprintf(&name, "%.*s%d-%" PRIu64, len, type, 996 vdev->v_nparity, id); 997 } else { 998 (void) asprintf(&name, "%.*s-%" PRIu64, len, type, id); 999 } 1000 vdev->v_name = name; 1001 } 1002 *vdevp = vdev; 1003 return (0); 1004 } 1005 1006 /* 1007 * Find slot for vdev. We return either NULL to signal to use 1008 * STAILQ_INSERT_HEAD, or we return link element to be used with 1009 * STAILQ_INSERT_AFTER. 1010 */ 1011 static vdev_t * 1012 vdev_find_previous(vdev_t *top_vdev, vdev_t *vdev) 1013 { 1014 vdev_t *v, *previous; 1015 1016 if (STAILQ_EMPTY(&top_vdev->v_children)) 1017 return (NULL); 1018 1019 previous = NULL; 1020 STAILQ_FOREACH(v, &top_vdev->v_children, v_childlink) { 1021 if (v->v_id > vdev->v_id) 1022 return (previous); 1023 1024 if (v->v_id == vdev->v_id) 1025 return (v); 1026 1027 if (v->v_id < vdev->v_id) 1028 previous = v; 1029 } 1030 return (previous); 1031 } 1032 1033 static size_t 1034 vdev_child_count(vdev_t *vdev) 1035 { 1036 vdev_t *v; 1037 size_t count; 1038 1039 count = 0; 1040 STAILQ_FOREACH(v, &vdev->v_children, v_childlink) { 1041 count++; 1042 } 1043 return (count); 1044 } 1045 1046 /* 1047 * Insert vdev into top_vdev children list. List is ordered by v_id. 1048 */ 1049 static void 1050 vdev_insert(vdev_t *top_vdev, vdev_t *vdev) 1051 { 1052 vdev_t *previous; 1053 size_t count; 1054 1055 /* 1056 * The top level vdev can appear in random order, depending how 1057 * the firmware is presenting the disk devices. 1058 * However, we will insert vdev to create list ordered by v_id, 1059 * so we can use either STAILQ_INSERT_HEAD or STAILQ_INSERT_AFTER 1060 * as STAILQ does not have insert before. 1061 */ 1062 previous = vdev_find_previous(top_vdev, vdev); 1063 1064 if (previous == NULL) { 1065 STAILQ_INSERT_HEAD(&top_vdev->v_children, vdev, v_childlink); 1066 } else if (previous->v_id == vdev->v_id) { 1067 /* 1068 * This vdev was configured from label config, 1069 * do not insert duplicate. 1070 */ 1071 return; 1072 } else { 1073 STAILQ_INSERT_AFTER(&top_vdev->v_children, previous, vdev, 1074 v_childlink); 1075 } 1076 1077 count = vdev_child_count(top_vdev); 1078 if (top_vdev->v_nchildren < count) 1079 top_vdev->v_nchildren = count; 1080 } 1081 1082 static int 1083 vdev_from_nvlist(spa_t *spa, uint64_t top_guid, const nvlist_t *nvlist) 1084 { 1085 vdev_t *top_vdev, *vdev; 1086 nvlist_t *kids = NULL; 1087 int rc, nkids; 1088 1089 /* Get top vdev. */ 1090 top_vdev = vdev_find(top_guid); 1091 if (top_vdev == NULL) { 1092 rc = vdev_init(top_guid, nvlist, &top_vdev); 1093 if (rc != 0) 1094 return (rc); 1095 top_vdev->v_spa = spa; 1096 top_vdev->v_top = top_vdev; 1097 vdev_insert(spa->spa_root_vdev, top_vdev); 1098 } 1099 1100 /* Add children if there are any. */ 1101 rc = nvlist_find(nvlist, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY, 1102 &nkids, &kids, NULL); 1103 if (rc == 0) { 1104 for (int i = 0; i < nkids; i++) { 1105 uint64_t guid; 1106 1107 rc = nvlist_find(kids, ZPOOL_CONFIG_GUID, 1108 DATA_TYPE_UINT64, NULL, &guid, NULL); 1109 if (rc != 0) { 1110 nvlist_destroy(kids); 1111 return (rc); 1112 } 1113 rc = vdev_init(guid, kids, &vdev); 1114 if (rc != 0) { 1115 nvlist_destroy(kids); 1116 return (rc); 1117 } 1118 1119 vdev->v_spa = spa; 1120 vdev->v_top = top_vdev; 1121 vdev_insert(top_vdev, vdev); 1122 1123 rc = nvlist_next(kids); 1124 if (rc != 0) { 1125 nvlist_destroy(kids); 1126 return (rc); 1127 } 1128 } 1129 } else { 1130 /* 1131 * When there are no children, nvlist_find() does return 1132 * error, reset it because leaf devices have no children. 1133 */ 1134 rc = 0; 1135 } 1136 nvlist_destroy(kids); 1137 1138 return (rc); 1139 } 1140 1141 static int 1142 vdev_init_from_label(spa_t *spa, const nvlist_t *nvlist) 1143 { 1144 uint64_t pool_guid, top_guid; 1145 nvlist_t *vdevs; 1146 int rc; 1147 1148 if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64, 1149 NULL, &pool_guid, NULL) || 1150 nvlist_find(nvlist, ZPOOL_CONFIG_TOP_GUID, DATA_TYPE_UINT64, 1151 NULL, &top_guid, NULL) || 1152 nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST, 1153 NULL, &vdevs, NULL)) { 1154 printf("ZFS: can't find vdev details\n"); 1155 return (ENOENT); 1156 } 1157 1158 rc = vdev_from_nvlist(spa, top_guid, vdevs); 1159 nvlist_destroy(vdevs); 1160 return (rc); 1161 } 1162 1163 static void 1164 vdev_set_state(vdev_t *vdev) 1165 { 1166 vdev_t *kid; 1167 int good_kids; 1168 int bad_kids; 1169 1170 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) { 1171 vdev_set_state(kid); 1172 } 1173 1174 /* 1175 * A mirror or raidz is healthy if all its kids are healthy. A 1176 * mirror is degraded if any of its kids is healthy; a raidz 1177 * is degraded if at most nparity kids are offline. 1178 */ 1179 if (STAILQ_FIRST(&vdev->v_children)) { 1180 good_kids = 0; 1181 bad_kids = 0; 1182 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) { 1183 if (kid->v_state == VDEV_STATE_HEALTHY) 1184 good_kids++; 1185 else 1186 bad_kids++; 1187 } 1188 if (bad_kids == 0) { 1189 vdev->v_state = VDEV_STATE_HEALTHY; 1190 } else { 1191 if (vdev->v_read == vdev_mirror_read) { 1192 if (good_kids) { 1193 vdev->v_state = VDEV_STATE_DEGRADED; 1194 } else { 1195 vdev->v_state = VDEV_STATE_OFFLINE; 1196 } 1197 } else if (vdev->v_read == vdev_raidz_read) { 1198 if (bad_kids > vdev->v_nparity) { 1199 vdev->v_state = VDEV_STATE_OFFLINE; 1200 } else { 1201 vdev->v_state = VDEV_STATE_DEGRADED; 1202 } 1203 } 1204 } 1205 } 1206 } 1207 1208 static int 1209 vdev_update_from_nvlist(uint64_t top_guid, const nvlist_t *nvlist) 1210 { 1211 vdev_t *vdev; 1212 nvlist_t *kids = NULL; 1213 int rc, nkids; 1214 1215 /* Update top vdev. */ 1216 vdev = vdev_find(top_guid); 1217 if (vdev != NULL) 1218 vdev_set_initial_state(vdev, nvlist); 1219 1220 /* Update children if there are any. */ 1221 rc = nvlist_find(nvlist, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY, 1222 &nkids, &kids, NULL); 1223 if (rc == 0) { 1224 for (int i = 0; i < nkids; i++) { 1225 uint64_t guid; 1226 1227 rc = nvlist_find(kids, ZPOOL_CONFIG_GUID, 1228 DATA_TYPE_UINT64, NULL, &guid, NULL); 1229 if (rc != 0) 1230 break; 1231 1232 vdev = vdev_find(guid); 1233 if (vdev != NULL) 1234 vdev_set_initial_state(vdev, kids); 1235 1236 rc = nvlist_next(kids); 1237 if (rc != 0) 1238 break; 1239 } 1240 } else { 1241 rc = 0; 1242 } 1243 nvlist_destroy(kids); 1244 1245 return (rc); 1246 } 1247 1248 static int 1249 vdev_init_from_nvlist(spa_t *spa, const nvlist_t *nvlist) 1250 { 1251 uint64_t pool_guid, vdev_children; 1252 nvlist_t *vdevs = NULL, *kids = NULL; 1253 int rc, nkids; 1254 1255 if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64, 1256 NULL, &pool_guid, NULL) || 1257 nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_CHILDREN, DATA_TYPE_UINT64, 1258 NULL, &vdev_children, NULL) || 1259 nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST, 1260 NULL, &vdevs, NULL)) { 1261 printf("ZFS: can't find vdev details\n"); 1262 return (ENOENT); 1263 } 1264 1265 /* Wrong guid?! */ 1266 if (spa->spa_guid != pool_guid) { 1267 nvlist_destroy(vdevs); 1268 return (EINVAL); 1269 } 1270 1271 spa->spa_root_vdev->v_nchildren = vdev_children; 1272 1273 rc = nvlist_find(vdevs, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY, 1274 &nkids, &kids, NULL); 1275 nvlist_destroy(vdevs); 1276 1277 /* 1278 * MOS config has at least one child for root vdev. 1279 */ 1280 if (rc != 0) 1281 return (rc); 1282 1283 for (int i = 0; i < nkids; i++) { 1284 uint64_t guid; 1285 vdev_t *vdev; 1286 1287 rc = nvlist_find(kids, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64, 1288 NULL, &guid, NULL); 1289 if (rc != 0) 1290 break; 1291 vdev = vdev_find(guid); 1292 /* 1293 * Top level vdev is missing, create it. 1294 */ 1295 if (vdev == NULL) 1296 rc = vdev_from_nvlist(spa, guid, kids); 1297 else 1298 rc = vdev_update_from_nvlist(guid, kids); 1299 if (rc != 0) 1300 break; 1301 rc = nvlist_next(kids); 1302 if (rc != 0) 1303 break; 1304 } 1305 nvlist_destroy(kids); 1306 1307 /* 1308 * Re-evaluate top-level vdev state. 1309 */ 1310 vdev_set_state(spa->spa_root_vdev); 1311 1312 return (rc); 1313 } 1314 1315 static spa_t * 1316 spa_find_by_guid(uint64_t guid) 1317 { 1318 spa_t *spa; 1319 1320 STAILQ_FOREACH(spa, &zfs_pools, spa_link) 1321 if (spa->spa_guid == guid) 1322 return (spa); 1323 1324 return (NULL); 1325 } 1326 1327 static spa_t * 1328 spa_find_by_name(const char *name) 1329 { 1330 spa_t *spa; 1331 1332 STAILQ_FOREACH(spa, &zfs_pools, spa_link) 1333 if (strcmp(spa->spa_name, name) == 0) 1334 return (spa); 1335 1336 return (NULL); 1337 } 1338 1339 static spa_t * 1340 spa_create(uint64_t guid, const char *name) 1341 { 1342 spa_t *spa; 1343 1344 if ((spa = calloc(1, sizeof(spa_t))) == NULL) 1345 return (NULL); 1346 if ((spa->spa_name = strdup(name)) == NULL) { 1347 free(spa); 1348 return (NULL); 1349 } 1350 spa->spa_guid = guid; 1351 spa->spa_root_vdev = vdev_create(guid, NULL); 1352 if (spa->spa_root_vdev == NULL) { 1353 free(spa->spa_name); 1354 free(spa); 1355 return (NULL); 1356 } 1357 spa->spa_root_vdev->v_name = strdup("root"); 1358 STAILQ_INSERT_TAIL(&zfs_pools, spa, spa_link); 1359 1360 return (spa); 1361 } 1362 1363 static const char * 1364 state_name(vdev_state_t state) 1365 { 1366 static const char *names[] = { 1367 "UNKNOWN", 1368 "CLOSED", 1369 "OFFLINE", 1370 "REMOVED", 1371 "CANT_OPEN", 1372 "FAULTED", 1373 "DEGRADED", 1374 "ONLINE" 1375 }; 1376 return (names[state]); 1377 } 1378 1379 #ifdef BOOT2 1380 1381 #define pager_printf printf 1382 1383 #else 1384 1385 static int 1386 pager_printf(const char *fmt, ...) 1387 { 1388 char line[80]; 1389 va_list args; 1390 1391 va_start(args, fmt); 1392 vsnprintf(line, sizeof(line), fmt, args); 1393 va_end(args); 1394 return (pager_output(line)); 1395 } 1396 1397 #endif 1398 1399 #define STATUS_FORMAT " %s %s\n" 1400 1401 static int 1402 print_state(int indent, const char *name, vdev_state_t state) 1403 { 1404 int i; 1405 char buf[512]; 1406 1407 buf[0] = 0; 1408 for (i = 0; i < indent; i++) 1409 strcat(buf, " "); 1410 strcat(buf, name); 1411 return (pager_printf(STATUS_FORMAT, buf, state_name(state))); 1412 } 1413 1414 static int 1415 vdev_status(vdev_t *vdev, int indent) 1416 { 1417 vdev_t *kid; 1418 int ret; 1419 1420 if (vdev->v_islog) { 1421 (void) pager_output(" logs\n"); 1422 indent++; 1423 } 1424 1425 ret = print_state(indent, vdev->v_name, vdev->v_state); 1426 if (ret != 0) 1427 return (ret); 1428 1429 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) { 1430 ret = vdev_status(kid, indent + 1); 1431 if (ret != 0) 1432 return (ret); 1433 } 1434 return (ret); 1435 } 1436 1437 static int 1438 spa_status(spa_t *spa) 1439 { 1440 static char bootfs[ZFS_MAXNAMELEN]; 1441 uint64_t rootid; 1442 vdev_list_t *vlist; 1443 vdev_t *vdev; 1444 int good_kids, bad_kids, degraded_kids, ret; 1445 vdev_state_t state; 1446 1447 ret = pager_printf(" pool: %s\n", spa->spa_name); 1448 if (ret != 0) 1449 return (ret); 1450 1451 if (zfs_get_root(spa, &rootid) == 0 && 1452 zfs_rlookup(spa, rootid, bootfs) == 0) { 1453 if (bootfs[0] == '\0') 1454 ret = pager_printf("bootfs: %s\n", spa->spa_name); 1455 else 1456 ret = pager_printf("bootfs: %s/%s\n", spa->spa_name, 1457 bootfs); 1458 if (ret != 0) 1459 return (ret); 1460 } 1461 ret = pager_printf("config:\n\n"); 1462 if (ret != 0) 1463 return (ret); 1464 ret = pager_printf(STATUS_FORMAT, "NAME", "STATE"); 1465 if (ret != 0) 1466 return (ret); 1467 1468 good_kids = 0; 1469 degraded_kids = 0; 1470 bad_kids = 0; 1471 vlist = &spa->spa_root_vdev->v_children; 1472 STAILQ_FOREACH(vdev, vlist, v_childlink) { 1473 if (vdev->v_state == VDEV_STATE_HEALTHY) 1474 good_kids++; 1475 else if (vdev->v_state == VDEV_STATE_DEGRADED) 1476 degraded_kids++; 1477 else 1478 bad_kids++; 1479 } 1480 1481 state = VDEV_STATE_CLOSED; 1482 if (good_kids > 0 && (degraded_kids + bad_kids) == 0) 1483 state = VDEV_STATE_HEALTHY; 1484 else if ((good_kids + degraded_kids) > 0) 1485 state = VDEV_STATE_DEGRADED; 1486 1487 ret = print_state(0, spa->spa_name, state); 1488 if (ret != 0) 1489 return (ret); 1490 1491 STAILQ_FOREACH(vdev, vlist, v_childlink) { 1492 ret = vdev_status(vdev, 1); 1493 if (ret != 0) 1494 return (ret); 1495 } 1496 return (ret); 1497 } 1498 1499 static int 1500 spa_all_status(void) 1501 { 1502 spa_t *spa; 1503 int first = 1, ret = 0; 1504 1505 STAILQ_FOREACH(spa, &zfs_pools, spa_link) { 1506 if (!first) { 1507 ret = pager_printf("\n"); 1508 if (ret != 0) 1509 return (ret); 1510 } 1511 first = 0; 1512 ret = spa_status(spa); 1513 if (ret != 0) 1514 return (ret); 1515 } 1516 return (ret); 1517 } 1518 1519 static uint64_t 1520 vdev_label_offset(uint64_t psize, int l, uint64_t offset) 1521 { 1522 uint64_t label_offset; 1523 1524 if (l < VDEV_LABELS / 2) 1525 label_offset = 0; 1526 else 1527 label_offset = psize - VDEV_LABELS * sizeof (vdev_label_t); 1528 1529 return (offset + l * sizeof (vdev_label_t) + label_offset); 1530 } 1531 1532 static int 1533 vdev_uberblock_compare(const uberblock_t *ub1, const uberblock_t *ub2) 1534 { 1535 unsigned int seq1 = 0; 1536 unsigned int seq2 = 0; 1537 int cmp = AVL_CMP(ub1->ub_txg, ub2->ub_txg); 1538 1539 if (cmp != 0) 1540 return (cmp); 1541 1542 cmp = AVL_CMP(ub1->ub_timestamp, ub2->ub_timestamp); 1543 if (cmp != 0) 1544 return (cmp); 1545 1546 if (MMP_VALID(ub1) && MMP_SEQ_VALID(ub1)) 1547 seq1 = MMP_SEQ(ub1); 1548 1549 if (MMP_VALID(ub2) && MMP_SEQ_VALID(ub2)) 1550 seq2 = MMP_SEQ(ub2); 1551 1552 return (AVL_CMP(seq1, seq2)); 1553 } 1554 1555 static int 1556 uberblock_verify(uberblock_t *ub) 1557 { 1558 if (ub->ub_magic == BSWAP_64((uint64_t)UBERBLOCK_MAGIC)) { 1559 byteswap_uint64_array(ub, sizeof (uberblock_t)); 1560 } 1561 1562 if (ub->ub_magic != UBERBLOCK_MAGIC || 1563 !SPA_VERSION_IS_SUPPORTED(ub->ub_version)) 1564 return (EINVAL); 1565 1566 return (0); 1567 } 1568 1569 static int 1570 vdev_label_read(vdev_t *vd, int l, void *buf, uint64_t offset, 1571 size_t size) 1572 { 1573 blkptr_t bp; 1574 off_t off; 1575 1576 off = vdev_label_offset(vd->v_psize, l, offset); 1577 1578 BP_ZERO(&bp); 1579 BP_SET_LSIZE(&bp, size); 1580 BP_SET_PSIZE(&bp, size); 1581 BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_LABEL); 1582 BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF); 1583 DVA_SET_OFFSET(BP_IDENTITY(&bp), off); 1584 ZIO_SET_CHECKSUM(&bp.blk_cksum, off, 0, 0, 0); 1585 1586 return (vdev_read_phys(vd, &bp, buf, off, size)); 1587 } 1588 1589 static nvlist_t * 1590 vdev_label_read_config(vdev_t *vd, uint64_t txg) 1591 { 1592 vdev_phys_t *label; 1593 uint64_t best_txg = 0; 1594 uint64_t label_txg = 0; 1595 uint64_t asize; 1596 nvlist_t *nvl = NULL, *tmp; 1597 int error; 1598 1599 label = malloc(sizeof (vdev_phys_t)); 1600 if (label == NULL) 1601 return (NULL); 1602 1603 for (int l = 0; l < VDEV_LABELS; l++) { 1604 const unsigned char *nvlist; 1605 1606 if (vdev_label_read(vd, l, label, 1607 offsetof(vdev_label_t, vl_vdev_phys), 1608 sizeof (vdev_phys_t))) 1609 continue; 1610 1611 nvlist = (const unsigned char *) label->vp_nvlist; 1612 tmp = nvlist_import(nvlist + 4, nvlist[0], nvlist[1]); 1613 if (tmp == NULL) 1614 continue; 1615 1616 error = nvlist_find(tmp, ZPOOL_CONFIG_POOL_TXG, 1617 DATA_TYPE_UINT64, NULL, &label_txg, NULL); 1618 if (error != 0 || label_txg == 0) { 1619 nvlist_destroy(nvl); 1620 nvl = tmp; 1621 goto done; 1622 } 1623 1624 if (label_txg <= txg && label_txg > best_txg) { 1625 best_txg = label_txg; 1626 nvlist_destroy(nvl); 1627 nvl = tmp; 1628 tmp = NULL; 1629 1630 /* 1631 * Use asize from pool config. We need this 1632 * because we can get bad value from BIOS. 1633 */ 1634 if (nvlist_find(nvl, ZPOOL_CONFIG_ASIZE, 1635 DATA_TYPE_UINT64, NULL, &asize, NULL) == 0) { 1636 vd->v_psize = asize + 1637 VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; 1638 } 1639 } 1640 nvlist_destroy(tmp); 1641 } 1642 1643 if (best_txg == 0) { 1644 nvlist_destroy(nvl); 1645 nvl = NULL; 1646 } 1647 done: 1648 free(label); 1649 return (nvl); 1650 } 1651 1652 static void 1653 vdev_uberblock_load(vdev_t *vd, uberblock_t *ub) 1654 { 1655 uberblock_t *buf; 1656 1657 buf = malloc(VDEV_UBERBLOCK_SIZE(vd)); 1658 if (buf == NULL) 1659 return; 1660 1661 for (int l = 0; l < VDEV_LABELS; l++) { 1662 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) { 1663 if (vdev_label_read(vd, l, buf, 1664 VDEV_UBERBLOCK_OFFSET(vd, n), 1665 VDEV_UBERBLOCK_SIZE(vd))) 1666 continue; 1667 if (uberblock_verify(buf) != 0) 1668 continue; 1669 1670 if (vdev_uberblock_compare(buf, ub) > 0) 1671 *ub = *buf; 1672 } 1673 } 1674 free(buf); 1675 } 1676 1677 static int 1678 vdev_probe(vdev_phys_read_t *_read, void *read_priv, spa_t **spap) 1679 { 1680 vdev_t vtmp; 1681 spa_t *spa; 1682 vdev_t *vdev; 1683 nvlist_t *nvl; 1684 uint64_t val; 1685 uint64_t guid, vdev_children; 1686 uint64_t pool_txg, pool_guid; 1687 const char *pool_name; 1688 int rc, namelen; 1689 1690 /* 1691 * Load the vdev label and figure out which 1692 * uberblock is most current. 1693 */ 1694 memset(&vtmp, 0, sizeof(vtmp)); 1695 vtmp.v_phys_read = _read; 1696 vtmp.v_read_priv = read_priv; 1697 vtmp.v_psize = P2ALIGN(ldi_get_size(read_priv), 1698 (uint64_t)sizeof (vdev_label_t)); 1699 1700 /* Test for minimum device size. */ 1701 if (vtmp.v_psize < SPA_MINDEVSIZE) 1702 return (EIO); 1703 1704 nvl = vdev_label_read_config(&vtmp, UINT64_MAX); 1705 if (nvl == NULL) 1706 return (EIO); 1707 1708 if (nvlist_find(nvl, ZPOOL_CONFIG_VERSION, DATA_TYPE_UINT64, 1709 NULL, &val, NULL) != 0) { 1710 nvlist_destroy(nvl); 1711 return (EIO); 1712 } 1713 1714 if (!SPA_VERSION_IS_SUPPORTED(val)) { 1715 printf("ZFS: unsupported ZFS version %u (should be %u)\n", 1716 (unsigned)val, (unsigned)SPA_VERSION); 1717 nvlist_destroy(nvl); 1718 return (EIO); 1719 } 1720 1721 /* Check ZFS features for read */ 1722 rc = nvlist_check_features_for_read(nvl); 1723 if (rc != 0) { 1724 nvlist_destroy(nvl); 1725 return (EIO); 1726 } 1727 1728 if (nvlist_find(nvl, ZPOOL_CONFIG_POOL_STATE, DATA_TYPE_UINT64, 1729 NULL, &val, NULL) != 0) { 1730 nvlist_destroy(nvl); 1731 return (EIO); 1732 } 1733 1734 if (val == POOL_STATE_DESTROYED) { 1735 /* We don't boot only from destroyed pools. */ 1736 nvlist_destroy(nvl); 1737 return (EIO); 1738 } 1739 1740 if (nvlist_find(nvl, ZPOOL_CONFIG_POOL_TXG, DATA_TYPE_UINT64, 1741 NULL, &pool_txg, NULL) != 0 || 1742 nvlist_find(nvl, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64, 1743 NULL, &pool_guid, NULL) != 0 || 1744 nvlist_find(nvl, ZPOOL_CONFIG_POOL_NAME, DATA_TYPE_STRING, 1745 NULL, &pool_name, &namelen) != 0) { 1746 /* 1747 * Cache and spare devices end up here - just ignore 1748 * them. 1749 */ 1750 nvlist_destroy(nvl); 1751 return (EIO); 1752 } 1753 1754 /* 1755 * Create the pool if this is the first time we've seen it. 1756 */ 1757 spa = spa_find_by_guid(pool_guid); 1758 if (spa == NULL) { 1759 char *name; 1760 1761 nvlist_find(nvl, ZPOOL_CONFIG_VDEV_CHILDREN, 1762 DATA_TYPE_UINT64, NULL, &vdev_children, NULL); 1763 name = malloc(namelen + 1); 1764 if (name == NULL) { 1765 nvlist_destroy(nvl); 1766 return (ENOMEM); 1767 } 1768 bcopy(pool_name, name, namelen); 1769 name[namelen] = '\0'; 1770 spa = spa_create(pool_guid, name); 1771 free(name); 1772 if (spa == NULL) { 1773 nvlist_destroy(nvl); 1774 return (ENOMEM); 1775 } 1776 spa->spa_root_vdev->v_nchildren = vdev_children; 1777 } 1778 if (pool_txg > spa->spa_txg) 1779 spa->spa_txg = pool_txg; 1780 1781 /* 1782 * Get the vdev tree and create our in-core copy of it. 1783 * If we already have a vdev with this guid, this must 1784 * be some kind of alias (overlapping slices, dangerously dedicated 1785 * disks etc). 1786 */ 1787 if (nvlist_find(nvl, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64, 1788 NULL, &guid, NULL) != 0) { 1789 nvlist_destroy(nvl); 1790 return (EIO); 1791 } 1792 vdev = vdev_find(guid); 1793 /* Has this vdev already been inited? */ 1794 if (vdev && vdev->v_phys_read) { 1795 nvlist_destroy(nvl); 1796 return (EIO); 1797 } 1798 1799 rc = vdev_init_from_label(spa, nvl); 1800 nvlist_destroy(nvl); 1801 if (rc != 0) 1802 return (rc); 1803 1804 /* 1805 * We should already have created an incomplete vdev for this 1806 * vdev. Find it and initialise it with our read proc. 1807 */ 1808 vdev = vdev_find(guid); 1809 if (vdev != NULL) { 1810 vdev->v_phys_read = _read; 1811 vdev->v_read_priv = read_priv; 1812 vdev->v_psize = vtmp.v_psize; 1813 /* 1814 * If no other state is set, mark vdev healthy. 1815 */ 1816 if (vdev->v_state == VDEV_STATE_UNKNOWN) 1817 vdev->v_state = VDEV_STATE_HEALTHY; 1818 } else { 1819 printf("ZFS: inconsistent nvlist contents\n"); 1820 return (EIO); 1821 } 1822 1823 if (vdev->v_islog) 1824 spa->spa_with_log = vdev->v_islog; 1825 1826 /* 1827 * Re-evaluate top-level vdev state. 1828 */ 1829 vdev_set_state(vdev->v_top); 1830 1831 /* 1832 * Ok, we are happy with the pool so far. Lets find 1833 * the best uberblock and then we can actually access 1834 * the contents of the pool. 1835 */ 1836 vdev_uberblock_load(vdev, &spa->spa_uberblock); 1837 1838 if (spap != NULL) 1839 *spap = spa; 1840 return (0); 1841 } 1842 1843 static int 1844 ilog2(int n) 1845 { 1846 int v; 1847 1848 for (v = 0; v < 32; v++) 1849 if (n == (1 << v)) 1850 return (v); 1851 return (-1); 1852 } 1853 1854 static int 1855 zio_read_gang(const spa_t *spa, const blkptr_t *bp, void *buf) 1856 { 1857 blkptr_t gbh_bp; 1858 zio_gbh_phys_t zio_gb; 1859 char *pbuf; 1860 int i; 1861 1862 /* Artificial BP for gang block header. */ 1863 gbh_bp = *bp; 1864 BP_SET_PSIZE(&gbh_bp, SPA_GANGBLOCKSIZE); 1865 BP_SET_LSIZE(&gbh_bp, SPA_GANGBLOCKSIZE); 1866 BP_SET_CHECKSUM(&gbh_bp, ZIO_CHECKSUM_GANG_HEADER); 1867 BP_SET_COMPRESS(&gbh_bp, ZIO_COMPRESS_OFF); 1868 for (i = 0; i < SPA_DVAS_PER_BP; i++) 1869 DVA_SET_GANG(&gbh_bp.blk_dva[i], 0); 1870 1871 /* Read gang header block using the artificial BP. */ 1872 if (zio_read(spa, &gbh_bp, &zio_gb)) 1873 return (EIO); 1874 1875 pbuf = buf; 1876 for (i = 0; i < SPA_GBH_NBLKPTRS; i++) { 1877 blkptr_t *gbp = &zio_gb.zg_blkptr[i]; 1878 1879 if (BP_IS_HOLE(gbp)) 1880 continue; 1881 if (zio_read(spa, gbp, pbuf)) 1882 return (EIO); 1883 pbuf += BP_GET_PSIZE(gbp); 1884 } 1885 1886 if (zio_checksum_verify(spa, bp, buf)) 1887 return (EIO); 1888 return (0); 1889 } 1890 1891 static int 1892 zio_read(const spa_t *spa, const blkptr_t *bp, void *buf) 1893 { 1894 int cpfunc = BP_GET_COMPRESS(bp); 1895 uint64_t align, size; 1896 void *pbuf; 1897 int i, error; 1898 1899 /* 1900 * Process data embedded in block pointer 1901 */ 1902 if (BP_IS_EMBEDDED(bp)) { 1903 ASSERT(BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA); 1904 1905 size = BPE_GET_PSIZE(bp); 1906 ASSERT(size <= BPE_PAYLOAD_SIZE); 1907 1908 if (cpfunc != ZIO_COMPRESS_OFF) 1909 pbuf = malloc(size); 1910 else 1911 pbuf = buf; 1912 1913 if (pbuf == NULL) 1914 return (ENOMEM); 1915 1916 decode_embedded_bp_compressed(bp, pbuf); 1917 error = 0; 1918 1919 if (cpfunc != ZIO_COMPRESS_OFF) { 1920 error = zio_decompress_data(cpfunc, pbuf, 1921 size, buf, BP_GET_LSIZE(bp)); 1922 free(pbuf); 1923 } 1924 if (error != 0) 1925 printf("ZFS: i/o error - unable to decompress " 1926 "block pointer data, error %d\n", error); 1927 return (error); 1928 } 1929 1930 error = EIO; 1931 1932 for (i = 0; i < SPA_DVAS_PER_BP; i++) { 1933 const dva_t *dva = &bp->blk_dva[i]; 1934 vdev_t *vdev; 1935 vdev_list_t *vlist; 1936 uint64_t vdevid; 1937 off_t offset; 1938 1939 if (!dva->dva_word[0] && !dva->dva_word[1]) 1940 continue; 1941 1942 vdevid = DVA_GET_VDEV(dva); 1943 offset = DVA_GET_OFFSET(dva); 1944 vlist = &spa->spa_root_vdev->v_children; 1945 STAILQ_FOREACH(vdev, vlist, v_childlink) { 1946 if (vdev->v_id == vdevid) 1947 break; 1948 } 1949 if (!vdev || !vdev->v_read) 1950 continue; 1951 1952 size = BP_GET_PSIZE(bp); 1953 if (vdev->v_read == vdev_raidz_read) { 1954 align = 1ULL << vdev->v_ashift; 1955 if (P2PHASE(size, align) != 0) 1956 size = P2ROUNDUP(size, align); 1957 } 1958 if (size != BP_GET_PSIZE(bp) || cpfunc != ZIO_COMPRESS_OFF) 1959 pbuf = malloc(size); 1960 else 1961 pbuf = buf; 1962 1963 if (pbuf == NULL) { 1964 error = ENOMEM; 1965 break; 1966 } 1967 1968 if (DVA_GET_GANG(dva)) 1969 error = zio_read_gang(spa, bp, pbuf); 1970 else 1971 error = vdev->v_read(vdev, bp, pbuf, offset, size); 1972 if (error == 0) { 1973 if (cpfunc != ZIO_COMPRESS_OFF) 1974 error = zio_decompress_data(cpfunc, pbuf, 1975 BP_GET_PSIZE(bp), buf, BP_GET_LSIZE(bp)); 1976 else if (size != BP_GET_PSIZE(bp)) 1977 bcopy(pbuf, buf, BP_GET_PSIZE(bp)); 1978 } else { 1979 printf("zio_read error: %d\n", error); 1980 } 1981 if (buf != pbuf) 1982 free(pbuf); 1983 if (error == 0) 1984 break; 1985 } 1986 if (error != 0) 1987 printf("ZFS: i/o error - all block copies unavailable\n"); 1988 1989 return (error); 1990 } 1991 1992 static int 1993 dnode_read(const spa_t *spa, const dnode_phys_t *dnode, off_t offset, 1994 void *buf, size_t buflen) 1995 { 1996 int ibshift = dnode->dn_indblkshift - SPA_BLKPTRSHIFT; 1997 int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 1998 int nlevels = dnode->dn_nlevels; 1999 int i, rc; 2000 2001 if (bsize > SPA_MAXBLOCKSIZE) { 2002 printf("ZFS: I/O error - blocks larger than %llu are not " 2003 "supported\n", SPA_MAXBLOCKSIZE); 2004 return (EIO); 2005 } 2006 2007 /* 2008 * Note: bsize may not be a power of two here so we need to do an 2009 * actual divide rather than a bitshift. 2010 */ 2011 while (buflen > 0) { 2012 uint64_t bn = offset / bsize; 2013 int boff = offset % bsize; 2014 int ibn; 2015 const blkptr_t *indbp; 2016 blkptr_t bp; 2017 2018 if (bn > dnode->dn_maxblkid) 2019 return (EIO); 2020 2021 if (dnode == dnode_cache_obj && bn == dnode_cache_bn) 2022 goto cached; 2023 2024 indbp = dnode->dn_blkptr; 2025 for (i = 0; i < nlevels; i++) { 2026 /* 2027 * Copy the bp from the indirect array so that 2028 * we can re-use the scratch buffer for multi-level 2029 * objects. 2030 */ 2031 ibn = bn >> ((nlevels - i - 1) * ibshift); 2032 ibn &= ((1 << ibshift) - 1); 2033 bp = indbp[ibn]; 2034 if (BP_IS_HOLE(&bp)) { 2035 memset(dnode_cache_buf, 0, bsize); 2036 break; 2037 } 2038 rc = zio_read(spa, &bp, dnode_cache_buf); 2039 if (rc) 2040 return (rc); 2041 indbp = (const blkptr_t *) dnode_cache_buf; 2042 } 2043 dnode_cache_obj = dnode; 2044 dnode_cache_bn = bn; 2045 cached: 2046 2047 /* 2048 * The buffer contains our data block. Copy what we 2049 * need from it and loop. 2050 */ 2051 i = bsize - boff; 2052 if (i > buflen) i = buflen; 2053 memcpy(buf, &dnode_cache_buf[boff], i); 2054 buf = ((char *)buf) + i; 2055 offset += i; 2056 buflen -= i; 2057 } 2058 2059 return (0); 2060 } 2061 2062 /* 2063 * Lookup a value in a microzap directory. 2064 */ 2065 static int 2066 mzap_lookup(const mzap_phys_t *mz, size_t size, const char *name, 2067 uint64_t *value) 2068 { 2069 const mzap_ent_phys_t *mze; 2070 int chunks, i; 2071 2072 /* 2073 * Microzap objects use exactly one block. Read the whole 2074 * thing. 2075 */ 2076 chunks = size / MZAP_ENT_LEN - 1; 2077 for (i = 0; i < chunks; i++) { 2078 mze = &mz->mz_chunk[i]; 2079 if (strcmp(mze->mze_name, name) == 0) { 2080 *value = mze->mze_value; 2081 return (0); 2082 } 2083 } 2084 2085 return (ENOENT); 2086 } 2087 2088 /* 2089 * Compare a name with a zap leaf entry. Return non-zero if the name 2090 * matches. 2091 */ 2092 static int 2093 fzap_name_equal(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, 2094 const char *name) 2095 { 2096 size_t namelen; 2097 const zap_leaf_chunk_t *nc; 2098 const char *p; 2099 2100 namelen = zc->l_entry.le_name_numints; 2101 2102 nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk); 2103 p = name; 2104 while (namelen > 0) { 2105 size_t len; 2106 2107 len = namelen; 2108 if (len > ZAP_LEAF_ARRAY_BYTES) 2109 len = ZAP_LEAF_ARRAY_BYTES; 2110 if (memcmp(p, nc->l_array.la_array, len)) 2111 return (0); 2112 p += len; 2113 namelen -= len; 2114 nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next); 2115 } 2116 2117 return (1); 2118 } 2119 2120 /* 2121 * Extract a uint64_t value from a zap leaf entry. 2122 */ 2123 static uint64_t 2124 fzap_leaf_value(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc) 2125 { 2126 const zap_leaf_chunk_t *vc; 2127 int i; 2128 uint64_t value; 2129 const uint8_t *p; 2130 2131 vc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_value_chunk); 2132 for (i = 0, value = 0, p = vc->l_array.la_array; i < 8; i++) { 2133 value = (value << 8) | p[i]; 2134 } 2135 2136 return (value); 2137 } 2138 2139 static void 2140 stv(int len, void *addr, uint64_t value) 2141 { 2142 switch (len) { 2143 case 1: 2144 *(uint8_t *)addr = value; 2145 return; 2146 case 2: 2147 *(uint16_t *)addr = value; 2148 return; 2149 case 4: 2150 *(uint32_t *)addr = value; 2151 return; 2152 case 8: 2153 *(uint64_t *)addr = value; 2154 return; 2155 } 2156 } 2157 2158 /* 2159 * Extract a array from a zap leaf entry. 2160 */ 2161 static void 2162 fzap_leaf_array(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, 2163 uint64_t integer_size, uint64_t num_integers, void *buf) 2164 { 2165 uint64_t array_int_len = zc->l_entry.le_value_intlen; 2166 uint64_t value = 0; 2167 uint64_t *u64 = buf; 2168 char *p = buf; 2169 int len = MIN(zc->l_entry.le_value_numints, num_integers); 2170 int chunk = zc->l_entry.le_value_chunk; 2171 int byten = 0; 2172 2173 if (integer_size == 8 && len == 1) { 2174 *u64 = fzap_leaf_value(zl, zc); 2175 return; 2176 } 2177 2178 while (len > 0) { 2179 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(zl, chunk).l_array; 2180 int i; 2181 2182 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(zl)); 2183 for (i = 0; i < ZAP_LEAF_ARRAY_BYTES && len > 0; i++) { 2184 value = (value << 8) | la->la_array[i]; 2185 byten++; 2186 if (byten == array_int_len) { 2187 stv(integer_size, p, value); 2188 byten = 0; 2189 len--; 2190 if (len == 0) 2191 return; 2192 p += integer_size; 2193 } 2194 } 2195 chunk = la->la_next; 2196 } 2197 } 2198 2199 static int 2200 fzap_check_size(uint64_t integer_size, uint64_t num_integers) 2201 { 2202 2203 switch (integer_size) { 2204 case 1: 2205 case 2: 2206 case 4: 2207 case 8: 2208 break; 2209 default: 2210 return (EINVAL); 2211 } 2212 2213 if (integer_size * num_integers > ZAP_MAXVALUELEN) 2214 return (E2BIG); 2215 2216 return (0); 2217 } 2218 2219 static void 2220 zap_leaf_free(zap_leaf_t *leaf) 2221 { 2222 free(leaf->l_phys); 2223 free(leaf); 2224 } 2225 2226 static int 2227 zap_get_leaf_byblk(fat_zap_t *zap, uint64_t blk, zap_leaf_t **lp) 2228 { 2229 int bs = FZAP_BLOCK_SHIFT(zap); 2230 int err; 2231 2232 *lp = malloc(sizeof(**lp)); 2233 if (*lp == NULL) 2234 return (ENOMEM); 2235 2236 (*lp)->l_bs = bs; 2237 (*lp)->l_phys = malloc(1 << bs); 2238 2239 if ((*lp)->l_phys == NULL) { 2240 free(*lp); 2241 return (ENOMEM); 2242 } 2243 err = dnode_read(zap->zap_spa, zap->zap_dnode, blk << bs, (*lp)->l_phys, 2244 1 << bs); 2245 if (err != 0) { 2246 zap_leaf_free(*lp); 2247 } 2248 return (err); 2249 } 2250 2251 static int 2252 zap_table_load(fat_zap_t *zap, zap_table_phys_t *tbl, uint64_t idx, 2253 uint64_t *valp) 2254 { 2255 int bs = FZAP_BLOCK_SHIFT(zap); 2256 uint64_t blk = idx >> (bs - 3); 2257 uint64_t off = idx & ((1 << (bs - 3)) - 1); 2258 uint64_t *buf; 2259 int rc; 2260 2261 buf = malloc(1 << zap->zap_block_shift); 2262 if (buf == NULL) 2263 return (ENOMEM); 2264 rc = dnode_read(zap->zap_spa, zap->zap_dnode, (tbl->zt_blk + blk) << bs, 2265 buf, 1 << zap->zap_block_shift); 2266 if (rc == 0) 2267 *valp = buf[off]; 2268 free(buf); 2269 return (rc); 2270 } 2271 2272 static int 2273 zap_idx_to_blk(fat_zap_t *zap, uint64_t idx, uint64_t *valp) 2274 { 2275 if (zap->zap_phys->zap_ptrtbl.zt_numblks == 0) { 2276 *valp = ZAP_EMBEDDED_PTRTBL_ENT(zap, idx); 2277 return (0); 2278 } else { 2279 return (zap_table_load(zap, &zap->zap_phys->zap_ptrtbl, 2280 idx, valp)); 2281 } 2282 } 2283 2284 #define ZAP_HASH_IDX(hash, n) (((n) == 0) ? 0 : ((hash) >> (64 - (n)))) 2285 static int 2286 zap_deref_leaf(fat_zap_t *zap, uint64_t h, zap_leaf_t **lp) 2287 { 2288 uint64_t idx, blk; 2289 int err; 2290 2291 idx = ZAP_HASH_IDX(h, zap->zap_phys->zap_ptrtbl.zt_shift); 2292 err = zap_idx_to_blk(zap, idx, &blk); 2293 if (err != 0) 2294 return (err); 2295 return (zap_get_leaf_byblk(zap, blk, lp)); 2296 } 2297 2298 #define CHAIN_END 0xffff /* end of the chunk chain */ 2299 #define LEAF_HASH(l, h) \ 2300 ((ZAP_LEAF_HASH_NUMENTRIES(l)-1) & \ 2301 ((h) >> \ 2302 (64 - ZAP_LEAF_HASH_SHIFT(l) - (l)->l_phys->l_hdr.lh_prefix_len))) 2303 #define LEAF_HASH_ENTPTR(l, h) (&(l)->l_phys->l_hash[LEAF_HASH(l, h)]) 2304 2305 static int 2306 zap_leaf_lookup(zap_leaf_t *zl, uint64_t hash, const char *name, 2307 uint64_t integer_size, uint64_t num_integers, void *value) 2308 { 2309 int rc; 2310 uint16_t *chunkp; 2311 struct zap_leaf_entry *le; 2312 2313 /* 2314 * Make sure this chunk matches our hash. 2315 */ 2316 if (zl->l_phys->l_hdr.lh_prefix_len > 0 && 2317 zl->l_phys->l_hdr.lh_prefix != 2318 hash >> (64 - zl->l_phys->l_hdr.lh_prefix_len)) 2319 return (EIO); 2320 2321 rc = ENOENT; 2322 for (chunkp = LEAF_HASH_ENTPTR(zl, hash); 2323 *chunkp != CHAIN_END; chunkp = &le->le_next) { 2324 zap_leaf_chunk_t *zc; 2325 uint16_t chunk = *chunkp; 2326 2327 le = ZAP_LEAF_ENTRY(zl, chunk); 2328 if (le->le_hash != hash) 2329 continue; 2330 zc = &ZAP_LEAF_CHUNK(zl, chunk); 2331 if (fzap_name_equal(zl, zc, name)) { 2332 if (zc->l_entry.le_value_intlen > integer_size) { 2333 rc = EINVAL; 2334 } else { 2335 fzap_leaf_array(zl, zc, integer_size, 2336 num_integers, value); 2337 rc = 0; 2338 } 2339 break; 2340 } 2341 } 2342 return (rc); 2343 } 2344 2345 /* 2346 * Lookup a value in a fatzap directory. 2347 */ 2348 static int 2349 fzap_lookup(const spa_t *spa, const dnode_phys_t *dnode, zap_phys_t *zh, 2350 const char *name, uint64_t integer_size, uint64_t num_integers, 2351 void *value) 2352 { 2353 int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2354 fat_zap_t z; 2355 zap_leaf_t *zl; 2356 uint64_t hash; 2357 int rc; 2358 2359 if (zh->zap_magic != ZAP_MAGIC) 2360 return (EIO); 2361 2362 if ((rc = fzap_check_size(integer_size, num_integers)) != 0) 2363 return (rc); 2364 2365 z.zap_block_shift = ilog2(bsize); 2366 z.zap_phys = zh; 2367 z.zap_spa = spa; 2368 z.zap_dnode = dnode; 2369 2370 hash = zap_hash(zh->zap_salt, name); 2371 rc = zap_deref_leaf(&z, hash, &zl); 2372 if (rc != 0) 2373 return (rc); 2374 2375 rc = zap_leaf_lookup(zl, hash, name, integer_size, num_integers, value); 2376 2377 zap_leaf_free(zl); 2378 return (rc); 2379 } 2380 2381 /* 2382 * Lookup a name in a zap object and return its value as a uint64_t. 2383 */ 2384 static int 2385 zap_lookup(const spa_t *spa, const dnode_phys_t *dnode, const char *name, 2386 uint64_t integer_size, uint64_t num_integers, void *value) 2387 { 2388 int rc; 2389 zap_phys_t *zap; 2390 size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2391 2392 zap = malloc(size); 2393 if (zap == NULL) 2394 return (ENOMEM); 2395 2396 rc = dnode_read(spa, dnode, 0, zap, size); 2397 if (rc) 2398 goto done; 2399 2400 switch (zap->zap_block_type) { 2401 case ZBT_MICRO: 2402 rc = mzap_lookup((const mzap_phys_t *)zap, size, name, value); 2403 break; 2404 case ZBT_HEADER: 2405 rc = fzap_lookup(spa, dnode, zap, name, integer_size, 2406 num_integers, value); 2407 break; 2408 default: 2409 printf("ZFS: invalid zap_type=%" PRIx64 "\n", 2410 zap->zap_block_type); 2411 rc = EIO; 2412 } 2413 done: 2414 free(zap); 2415 return (rc); 2416 } 2417 2418 /* 2419 * List a microzap directory. 2420 */ 2421 static int 2422 mzap_list(const mzap_phys_t *mz, size_t size, 2423 int (*callback)(const char *, uint64_t)) 2424 { 2425 const mzap_ent_phys_t *mze; 2426 int chunks, i, rc; 2427 2428 /* 2429 * Microzap objects use exactly one block. Read the whole 2430 * thing. 2431 */ 2432 rc = 0; 2433 chunks = size / MZAP_ENT_LEN - 1; 2434 for (i = 0; i < chunks; i++) { 2435 mze = &mz->mz_chunk[i]; 2436 if (mze->mze_name[0]) { 2437 rc = callback(mze->mze_name, mze->mze_value); 2438 if (rc != 0) 2439 break; 2440 } 2441 } 2442 2443 return (rc); 2444 } 2445 2446 /* 2447 * List a fatzap directory. 2448 */ 2449 static int 2450 fzap_list(const spa_t *spa, const dnode_phys_t *dnode, zap_phys_t *zh, 2451 int (*callback)(const char *, uint64_t)) 2452 { 2453 int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2454 fat_zap_t z; 2455 uint64_t i; 2456 int j, rc; 2457 2458 if (zh->zap_magic != ZAP_MAGIC) 2459 return (EIO); 2460 2461 z.zap_block_shift = ilog2(bsize); 2462 z.zap_phys = zh; 2463 2464 /* 2465 * This assumes that the leaf blocks start at block 1. The 2466 * documentation isn't exactly clear on this. 2467 */ 2468 zap_leaf_t zl; 2469 zl.l_bs = z.zap_block_shift; 2470 zl.l_phys = malloc(bsize); 2471 if (zl.l_phys == NULL) 2472 return (ENOMEM); 2473 2474 for (i = 0; i < zh->zap_num_leafs; i++) { 2475 off_t off = ((off_t)(i + 1)) << zl.l_bs; 2476 char name[256], *p; 2477 uint64_t value; 2478 2479 if (dnode_read(spa, dnode, off, zl.l_phys, bsize)) { 2480 free(zl.l_phys); 2481 return (EIO); 2482 } 2483 2484 for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) { 2485 zap_leaf_chunk_t *zc, *nc; 2486 int namelen; 2487 2488 zc = &ZAP_LEAF_CHUNK(&zl, j); 2489 if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY) 2490 continue; 2491 namelen = zc->l_entry.le_name_numints; 2492 if (namelen > sizeof(name)) 2493 namelen = sizeof(name); 2494 2495 /* 2496 * Paste the name back together. 2497 */ 2498 nc = &ZAP_LEAF_CHUNK(&zl, zc->l_entry.le_name_chunk); 2499 p = name; 2500 while (namelen > 0) { 2501 int len; 2502 len = namelen; 2503 if (len > ZAP_LEAF_ARRAY_BYTES) 2504 len = ZAP_LEAF_ARRAY_BYTES; 2505 memcpy(p, nc->l_array.la_array, len); 2506 p += len; 2507 namelen -= len; 2508 nc = &ZAP_LEAF_CHUNK(&zl, nc->l_array.la_next); 2509 } 2510 2511 /* 2512 * Assume the first eight bytes of the value are 2513 * a uint64_t. 2514 */ 2515 value = fzap_leaf_value(&zl, zc); 2516 2517 /* printf("%s 0x%jx\n", name, (uintmax_t)value); */ 2518 rc = callback((const char *)name, value); 2519 if (rc != 0) { 2520 free(zl.l_phys); 2521 return (rc); 2522 } 2523 } 2524 } 2525 2526 free(zl.l_phys); 2527 return (0); 2528 } 2529 2530 static int zfs_printf(const char *name, uint64_t value __unused) 2531 { 2532 2533 printf("%s\n", name); 2534 2535 return (0); 2536 } 2537 2538 /* 2539 * List a zap directory. 2540 */ 2541 static int 2542 zap_list(const spa_t *spa, const dnode_phys_t *dnode) 2543 { 2544 zap_phys_t *zap; 2545 size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2546 int rc; 2547 2548 zap = malloc(size); 2549 if (zap == NULL) 2550 return (ENOMEM); 2551 2552 rc = dnode_read(spa, dnode, 0, zap, size); 2553 if (rc == 0) { 2554 if (zap->zap_block_type == ZBT_MICRO) 2555 rc = mzap_list((const mzap_phys_t *)zap, size, 2556 zfs_printf); 2557 else 2558 rc = fzap_list(spa, dnode, zap, zfs_printf); 2559 } 2560 free(zap); 2561 return (rc); 2562 } 2563 2564 static int 2565 objset_get_dnode(const spa_t *spa, const objset_phys_t *os, uint64_t objnum, 2566 dnode_phys_t *dnode) 2567 { 2568 off_t offset; 2569 2570 offset = objnum * sizeof(dnode_phys_t); 2571 return dnode_read(spa, &os->os_meta_dnode, offset, 2572 dnode, sizeof(dnode_phys_t)); 2573 } 2574 2575 /* 2576 * Lookup a name in a microzap directory. 2577 */ 2578 static int 2579 mzap_rlookup(const mzap_phys_t *mz, size_t size, char *name, uint64_t value) 2580 { 2581 const mzap_ent_phys_t *mze; 2582 int chunks, i; 2583 2584 /* 2585 * Microzap objects use exactly one block. Read the whole 2586 * thing. 2587 */ 2588 chunks = size / MZAP_ENT_LEN - 1; 2589 for (i = 0; i < chunks; i++) { 2590 mze = &mz->mz_chunk[i]; 2591 if (value == mze->mze_value) { 2592 strcpy(name, mze->mze_name); 2593 return (0); 2594 } 2595 } 2596 2597 return (ENOENT); 2598 } 2599 2600 static void 2601 fzap_name_copy(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, char *name) 2602 { 2603 size_t namelen; 2604 const zap_leaf_chunk_t *nc; 2605 char *p; 2606 2607 namelen = zc->l_entry.le_name_numints; 2608 2609 nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk); 2610 p = name; 2611 while (namelen > 0) { 2612 size_t len; 2613 len = namelen; 2614 if (len > ZAP_LEAF_ARRAY_BYTES) 2615 len = ZAP_LEAF_ARRAY_BYTES; 2616 memcpy(p, nc->l_array.la_array, len); 2617 p += len; 2618 namelen -= len; 2619 nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next); 2620 } 2621 2622 *p = '\0'; 2623 } 2624 2625 static int 2626 fzap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, zap_phys_t *zh, 2627 char *name, uint64_t value) 2628 { 2629 int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2630 fat_zap_t z; 2631 uint64_t i; 2632 int j, rc; 2633 2634 if (zh->zap_magic != ZAP_MAGIC) 2635 return (EIO); 2636 2637 z.zap_block_shift = ilog2(bsize); 2638 z.zap_phys = zh; 2639 2640 /* 2641 * This assumes that the leaf blocks start at block 1. The 2642 * documentation isn't exactly clear on this. 2643 */ 2644 zap_leaf_t zl; 2645 zl.l_bs = z.zap_block_shift; 2646 zl.l_phys = malloc(bsize); 2647 if (zl.l_phys == NULL) 2648 return (ENOMEM); 2649 2650 for (i = 0; i < zh->zap_num_leafs; i++) { 2651 off_t off = ((off_t)(i + 1)) << zl.l_bs; 2652 2653 rc = dnode_read(spa, dnode, off, zl.l_phys, bsize); 2654 if (rc != 0) 2655 goto done; 2656 2657 for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) { 2658 zap_leaf_chunk_t *zc; 2659 2660 zc = &ZAP_LEAF_CHUNK(&zl, j); 2661 if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY) 2662 continue; 2663 if (zc->l_entry.le_value_intlen != 8 || 2664 zc->l_entry.le_value_numints != 1) 2665 continue; 2666 2667 if (fzap_leaf_value(&zl, zc) == value) { 2668 fzap_name_copy(&zl, zc, name); 2669 goto done; 2670 } 2671 } 2672 } 2673 2674 rc = ENOENT; 2675 done: 2676 free(zl.l_phys); 2677 return (rc); 2678 } 2679 2680 static int 2681 zap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, char *name, 2682 uint64_t value) 2683 { 2684 zap_phys_t *zap; 2685 size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2686 int rc; 2687 2688 zap = malloc(size); 2689 if (zap == NULL) 2690 return (ENOMEM); 2691 2692 rc = dnode_read(spa, dnode, 0, zap, size); 2693 if (rc == 0) { 2694 if (zap->zap_block_type == ZBT_MICRO) 2695 rc = mzap_rlookup((const mzap_phys_t *)zap, size, 2696 name, value); 2697 else 2698 rc = fzap_rlookup(spa, dnode, zap, name, value); 2699 } 2700 free(zap); 2701 return (rc); 2702 } 2703 2704 static int 2705 zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result) 2706 { 2707 char name[256]; 2708 char component[256]; 2709 uint64_t dir_obj, parent_obj, child_dir_zapobj; 2710 dnode_phys_t child_dir_zap, dataset, dir, parent; 2711 dsl_dir_phys_t *dd; 2712 dsl_dataset_phys_t *ds; 2713 char *p; 2714 int len; 2715 2716 p = &name[sizeof(name) - 1]; 2717 *p = '\0'; 2718 2719 if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) { 2720 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum); 2721 return (EIO); 2722 } 2723 ds = (dsl_dataset_phys_t *)&dataset.dn_bonus; 2724 dir_obj = ds->ds_dir_obj; 2725 2726 for (;;) { 2727 if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir) != 0) 2728 return (EIO); 2729 dd = (dsl_dir_phys_t *)&dir.dn_bonus; 2730 2731 /* Actual loop condition. */ 2732 parent_obj = dd->dd_parent_obj; 2733 if (parent_obj == 0) 2734 break; 2735 2736 if (objset_get_dnode(spa, &spa->spa_mos, parent_obj, 2737 &parent) != 0) 2738 return (EIO); 2739 dd = (dsl_dir_phys_t *)&parent.dn_bonus; 2740 child_dir_zapobj = dd->dd_child_dir_zapobj; 2741 if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, 2742 &child_dir_zap) != 0) 2743 return (EIO); 2744 if (zap_rlookup(spa, &child_dir_zap, component, dir_obj) != 0) 2745 return (EIO); 2746 2747 len = strlen(component); 2748 p -= len; 2749 memcpy(p, component, len); 2750 --p; 2751 *p = '/'; 2752 2753 /* Actual loop iteration. */ 2754 dir_obj = parent_obj; 2755 } 2756 2757 if (*p != '\0') 2758 ++p; 2759 strcpy(result, p); 2760 2761 return (0); 2762 } 2763 2764 static int 2765 zfs_lookup_dataset(const spa_t *spa, const char *name, uint64_t *objnum) 2766 { 2767 char element[256]; 2768 uint64_t dir_obj, child_dir_zapobj; 2769 dnode_phys_t child_dir_zap, dir; 2770 dsl_dir_phys_t *dd; 2771 const char *p, *q; 2772 2773 if (objset_get_dnode(spa, &spa->spa_mos, 2774 DMU_POOL_DIRECTORY_OBJECT, &dir)) 2775 return (EIO); 2776 if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET, sizeof (dir_obj), 2777 1, &dir_obj)) 2778 return (EIO); 2779 2780 p = name; 2781 for (;;) { 2782 if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir)) 2783 return (EIO); 2784 dd = (dsl_dir_phys_t *)&dir.dn_bonus; 2785 2786 while (*p == '/') 2787 p++; 2788 /* Actual loop condition #1. */ 2789 if (*p == '\0') 2790 break; 2791 2792 q = strchr(p, '/'); 2793 if (q) { 2794 memcpy(element, p, q - p); 2795 element[q - p] = '\0'; 2796 p = q + 1; 2797 } else { 2798 strcpy(element, p); 2799 p += strlen(p); 2800 } 2801 2802 child_dir_zapobj = dd->dd_child_dir_zapobj; 2803 if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, 2804 &child_dir_zap) != 0) 2805 return (EIO); 2806 2807 /* Actual loop condition #2. */ 2808 if (zap_lookup(spa, &child_dir_zap, element, sizeof (dir_obj), 2809 1, &dir_obj) != 0) 2810 return (ENOENT); 2811 } 2812 2813 *objnum = dd->dd_head_dataset_obj; 2814 return (0); 2815 } 2816 2817 #ifndef BOOT2 2818 static int 2819 zfs_list_dataset(const spa_t *spa, uint64_t objnum/*, int pos, char *entry*/) 2820 { 2821 uint64_t dir_obj, child_dir_zapobj; 2822 dnode_phys_t child_dir_zap, dir, dataset; 2823 dsl_dataset_phys_t *ds; 2824 dsl_dir_phys_t *dd; 2825 2826 if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) { 2827 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum); 2828 return (EIO); 2829 } 2830 ds = (dsl_dataset_phys_t *)&dataset.dn_bonus; 2831 dir_obj = ds->ds_dir_obj; 2832 2833 if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir)) { 2834 printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj); 2835 return (EIO); 2836 } 2837 dd = (dsl_dir_phys_t *)&dir.dn_bonus; 2838 2839 child_dir_zapobj = dd->dd_child_dir_zapobj; 2840 if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, 2841 &child_dir_zap) != 0) { 2842 printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj); 2843 return (EIO); 2844 } 2845 2846 return (zap_list(spa, &child_dir_zap) != 0); 2847 } 2848 2849 int 2850 zfs_callback_dataset(const spa_t *spa, uint64_t objnum, 2851 int (*callback)(const char *, uint64_t)) 2852 { 2853 uint64_t dir_obj, child_dir_zapobj; 2854 dnode_phys_t child_dir_zap, dir, dataset; 2855 dsl_dataset_phys_t *ds; 2856 dsl_dir_phys_t *dd; 2857 zap_phys_t *zap; 2858 size_t size; 2859 int err; 2860 2861 err = objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset); 2862 if (err != 0) { 2863 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum); 2864 return (err); 2865 } 2866 ds = (dsl_dataset_phys_t *)&dataset.dn_bonus; 2867 dir_obj = ds->ds_dir_obj; 2868 2869 err = objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir); 2870 if (err != 0) { 2871 printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj); 2872 return (err); 2873 } 2874 dd = (dsl_dir_phys_t *)&dir.dn_bonus; 2875 2876 child_dir_zapobj = dd->dd_child_dir_zapobj; 2877 err = objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, 2878 &child_dir_zap); 2879 if (err != 0) { 2880 printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj); 2881 return (err); 2882 } 2883 2884 size = child_dir_zap.dn_datablkszsec << SPA_MINBLOCKSHIFT; 2885 zap = malloc(size); 2886 if (zap != NULL) { 2887 err = dnode_read(spa, &child_dir_zap, 0, zap, size); 2888 if (err != 0) 2889 goto done; 2890 2891 if (zap->zap_block_type == ZBT_MICRO) 2892 err = mzap_list((const mzap_phys_t *)zap, size, 2893 callback); 2894 else 2895 err = fzap_list(spa, &child_dir_zap, zap, callback); 2896 } else { 2897 err = ENOMEM; 2898 } 2899 done: 2900 free(zap); 2901 return (err); 2902 } 2903 #endif 2904 2905 /* 2906 * Find the object set given the object number of its dataset object 2907 * and return its details in *objset 2908 */ 2909 static int 2910 zfs_mount_dataset(const spa_t *spa, uint64_t objnum, objset_phys_t *objset) 2911 { 2912 dnode_phys_t dataset; 2913 dsl_dataset_phys_t *ds; 2914 2915 if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) { 2916 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum); 2917 return (EIO); 2918 } 2919 2920 ds = (dsl_dataset_phys_t *)&dataset.dn_bonus; 2921 if (zio_read(spa, &ds->ds_bp, objset)) { 2922 printf("ZFS: can't read object set for dataset %ju\n", 2923 (uintmax_t)objnum); 2924 return (EIO); 2925 } 2926 2927 return (0); 2928 } 2929 2930 /* 2931 * Find the object set pointed to by the BOOTFS property or the root 2932 * dataset if there is none and return its details in *objset 2933 */ 2934 static int 2935 zfs_get_root(const spa_t *spa, uint64_t *objid) 2936 { 2937 dnode_phys_t dir, propdir; 2938 uint64_t props, bootfs, root; 2939 2940 *objid = 0; 2941 2942 /* 2943 * Start with the MOS directory object. 2944 */ 2945 if (objset_get_dnode(spa, &spa->spa_mos, 2946 DMU_POOL_DIRECTORY_OBJECT, &dir)) { 2947 printf("ZFS: can't read MOS object directory\n"); 2948 return (EIO); 2949 } 2950 2951 /* 2952 * Lookup the pool_props and see if we can find a bootfs. 2953 */ 2954 if (zap_lookup(spa, &dir, DMU_POOL_PROPS, 2955 sizeof(props), 1, &props) == 0 && 2956 objset_get_dnode(spa, &spa->spa_mos, props, &propdir) == 0 && 2957 zap_lookup(spa, &propdir, "bootfs", 2958 sizeof(bootfs), 1, &bootfs) == 0 && bootfs != 0) { 2959 *objid = bootfs; 2960 return (0); 2961 } 2962 /* 2963 * Lookup the root dataset directory 2964 */ 2965 if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET, 2966 sizeof(root), 1, &root) || 2967 objset_get_dnode(spa, &spa->spa_mos, root, &dir)) { 2968 printf("ZFS: can't find root dsl_dir\n"); 2969 return (EIO); 2970 } 2971 2972 /* 2973 * Use the information from the dataset directory's bonus buffer 2974 * to find the dataset object and from that the object set itself. 2975 */ 2976 dsl_dir_phys_t *dd = (dsl_dir_phys_t *)&dir.dn_bonus; 2977 *objid = dd->dd_head_dataset_obj; 2978 return (0); 2979 } 2980 2981 static int 2982 zfs_mount(const spa_t *spa, uint64_t rootobj, struct zfsmount *mount) 2983 { 2984 2985 mount->spa = spa; 2986 2987 /* 2988 * Find the root object set if not explicitly provided 2989 */ 2990 if (rootobj == 0 && zfs_get_root(spa, &rootobj)) { 2991 printf("ZFS: can't find root filesystem\n"); 2992 return (EIO); 2993 } 2994 2995 if (zfs_mount_dataset(spa, rootobj, &mount->objset)) { 2996 printf("ZFS: can't open root filesystem\n"); 2997 return (EIO); 2998 } 2999 3000 mount->rootobj = rootobj; 3001 3002 return (0); 3003 } 3004 3005 /* 3006 * callback function for feature name checks. 3007 */ 3008 static int 3009 check_feature(const char *name, uint64_t value) 3010 { 3011 int i; 3012 3013 if (value == 0) 3014 return (0); 3015 if (name[0] == '\0') 3016 return (0); 3017 3018 for (i = 0; features_for_read[i] != NULL; i++) { 3019 if (strcmp(name, features_for_read[i]) == 0) 3020 return (0); 3021 } 3022 printf("ZFS: unsupported feature: %s\n", name); 3023 return (EIO); 3024 } 3025 3026 /* 3027 * Checks whether the MOS features that are active are supported. 3028 */ 3029 static int 3030 check_mos_features(const spa_t *spa) 3031 { 3032 dnode_phys_t dir; 3033 zap_phys_t *zap; 3034 uint64_t objnum; 3035 size_t size; 3036 int rc; 3037 3038 if ((rc = objset_get_dnode(spa, &spa->spa_mos, DMU_OT_OBJECT_DIRECTORY, 3039 &dir)) != 0) 3040 return (rc); 3041 if ((rc = zap_lookup(spa, &dir, DMU_POOL_FEATURES_FOR_READ, 3042 sizeof (objnum), 1, &objnum)) != 0) { 3043 /* 3044 * It is older pool without features. As we have already 3045 * tested the label, just return without raising the error. 3046 */ 3047 return (0); 3048 } 3049 3050 if ((rc = objset_get_dnode(spa, &spa->spa_mos, objnum, &dir)) != 0) 3051 return (rc); 3052 3053 if (dir.dn_type != DMU_OTN_ZAP_METADATA) 3054 return (EIO); 3055 3056 size = dir.dn_datablkszsec << SPA_MINBLOCKSHIFT; 3057 zap = malloc(size); 3058 if (zap == NULL) 3059 return (ENOMEM); 3060 3061 if (dnode_read(spa, &dir, 0, zap, size)) { 3062 free(zap); 3063 return (EIO); 3064 } 3065 3066 if (zap->zap_block_type == ZBT_MICRO) 3067 rc = mzap_list((const mzap_phys_t *)zap, size, check_feature); 3068 else 3069 rc = fzap_list(spa, &dir, zap, check_feature); 3070 3071 free(zap); 3072 return (rc); 3073 } 3074 3075 static int 3076 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 3077 { 3078 dnode_phys_t dir; 3079 size_t size; 3080 int rc; 3081 unsigned char *nv; 3082 3083 *value = NULL; 3084 if ((rc = objset_get_dnode(spa, &spa->spa_mos, obj, &dir)) != 0) 3085 return (rc); 3086 if (dir.dn_type != DMU_OT_PACKED_NVLIST && 3087 dir.dn_bonustype != DMU_OT_PACKED_NVLIST_SIZE) { 3088 return (EIO); 3089 } 3090 3091 if (dir.dn_bonuslen != sizeof (uint64_t)) 3092 return (EIO); 3093 3094 size = *(uint64_t *)DN_BONUS(&dir); 3095 nv = malloc(size); 3096 if (nv == NULL) 3097 return (ENOMEM); 3098 3099 rc = dnode_read(spa, &dir, 0, nv, size); 3100 if (rc != 0) { 3101 free(nv); 3102 nv = NULL; 3103 return (rc); 3104 } 3105 *value = nvlist_import(nv + 4, nv[0], nv[1]); 3106 free(nv); 3107 return (rc); 3108 } 3109 3110 static int 3111 zfs_spa_init(spa_t *spa) 3112 { 3113 dnode_phys_t dir; 3114 uint64_t config_object; 3115 nvlist_t *nvlist; 3116 int rc; 3117 3118 if (zio_read(spa, &spa->spa_uberblock.ub_rootbp, &spa->spa_mos)) { 3119 printf("ZFS: can't read MOS of pool %s\n", spa->spa_name); 3120 return (EIO); 3121 } 3122 if (spa->spa_mos.os_type != DMU_OST_META) { 3123 printf("ZFS: corrupted MOS of pool %s\n", spa->spa_name); 3124 return (EIO); 3125 } 3126 3127 if (objset_get_dnode(spa, &spa->spa_mos, DMU_POOL_DIRECTORY_OBJECT, 3128 &dir)) { 3129 printf("ZFS: failed to read pool %s directory object\n", 3130 spa->spa_name); 3131 return (EIO); 3132 } 3133 /* this is allowed to fail, older pools do not have salt */ 3134 rc = zap_lookup(spa, &dir, DMU_POOL_CHECKSUM_SALT, 1, 3135 sizeof (spa->spa_cksum_salt.zcs_bytes), 3136 spa->spa_cksum_salt.zcs_bytes); 3137 3138 rc = check_mos_features(spa); 3139 if (rc != 0) { 3140 printf("ZFS: pool %s is not supported\n", spa->spa_name); 3141 return (rc); 3142 } 3143 3144 rc = zap_lookup(spa, &dir, DMU_POOL_CONFIG, 3145 sizeof (config_object), 1, &config_object); 3146 if (rc != 0) { 3147 printf("ZFS: can not read MOS %s\n", DMU_POOL_CONFIG); 3148 return (EIO); 3149 } 3150 rc = load_nvlist(spa, config_object, &nvlist); 3151 if (rc != 0) 3152 return (rc); 3153 /* 3154 * Update vdevs from MOS config. Note, we do skip encoding bytes 3155 * here. See also vdev_label_read_config(). 3156 */ 3157 rc = vdev_init_from_nvlist(spa, nvlist); 3158 nvlist_destroy(nvlist); 3159 return (rc); 3160 } 3161 3162 static int 3163 zfs_dnode_stat(const spa_t *spa, dnode_phys_t *dn, struct stat *sb) 3164 { 3165 3166 if (dn->dn_bonustype != DMU_OT_SA) { 3167 znode_phys_t *zp = (znode_phys_t *)dn->dn_bonus; 3168 3169 sb->st_mode = zp->zp_mode; 3170 sb->st_uid = zp->zp_uid; 3171 sb->st_gid = zp->zp_gid; 3172 sb->st_size = zp->zp_size; 3173 } else { 3174 sa_hdr_phys_t *sahdrp; 3175 int hdrsize; 3176 size_t size = 0; 3177 void *buf = NULL; 3178 3179 if (dn->dn_bonuslen != 0) 3180 sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn); 3181 else { 3182 if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0) { 3183 blkptr_t *bp = DN_SPILL_BLKPTR(dn); 3184 int error; 3185 3186 size = BP_GET_LSIZE(bp); 3187 buf = malloc(size); 3188 if (buf == NULL) 3189 error = ENOMEM; 3190 else 3191 error = zio_read(spa, bp, buf); 3192 3193 if (error != 0) { 3194 free(buf); 3195 return (error); 3196 } 3197 sahdrp = buf; 3198 } else { 3199 return (EIO); 3200 } 3201 } 3202 hdrsize = SA_HDR_SIZE(sahdrp); 3203 sb->st_mode = *(uint64_t *)((char *)sahdrp + hdrsize + 3204 SA_MODE_OFFSET); 3205 sb->st_uid = *(uint64_t *)((char *)sahdrp + hdrsize + 3206 SA_UID_OFFSET); 3207 sb->st_gid = *(uint64_t *)((char *)sahdrp + hdrsize + 3208 SA_GID_OFFSET); 3209 sb->st_size = *(uint64_t *)((char *)sahdrp + hdrsize + 3210 SA_SIZE_OFFSET); 3211 free(buf); 3212 } 3213 3214 return (0); 3215 } 3216 3217 static int 3218 zfs_dnode_readlink(const spa_t *spa, dnode_phys_t *dn, char *path, size_t psize) 3219 { 3220 int rc = 0; 3221 3222 if (dn->dn_bonustype == DMU_OT_SA) { 3223 sa_hdr_phys_t *sahdrp = NULL; 3224 size_t size = 0; 3225 void *buf = NULL; 3226 int hdrsize; 3227 char *p; 3228 3229 if (dn->dn_bonuslen != 0) { 3230 sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn); 3231 } else { 3232 blkptr_t *bp; 3233 3234 if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) == 0) 3235 return (EIO); 3236 bp = DN_SPILL_BLKPTR(dn); 3237 3238 size = BP_GET_LSIZE(bp); 3239 buf = malloc(size); 3240 if (buf == NULL) 3241 rc = ENOMEM; 3242 else 3243 rc = zio_read(spa, bp, buf); 3244 if (rc != 0) { 3245 free(buf); 3246 return (rc); 3247 } 3248 sahdrp = buf; 3249 } 3250 hdrsize = SA_HDR_SIZE(sahdrp); 3251 p = (char *)((uintptr_t)sahdrp + hdrsize + SA_SYMLINK_OFFSET); 3252 memcpy(path, p, psize); 3253 free(buf); 3254 return (0); 3255 } 3256 /* 3257 * Second test is purely to silence bogus compiler 3258 * warning about accessing past the end of dn_bonus. 3259 */ 3260 if (psize + sizeof(znode_phys_t) <= dn->dn_bonuslen && 3261 sizeof(znode_phys_t) <= sizeof(dn->dn_bonus)) { 3262 memcpy(path, &dn->dn_bonus[sizeof(znode_phys_t)], psize); 3263 } else { 3264 rc = dnode_read(spa, dn, 0, path, psize); 3265 } 3266 return (rc); 3267 } 3268 3269 struct obj_list { 3270 uint64_t objnum; 3271 STAILQ_ENTRY(obj_list) entry; 3272 }; 3273 3274 /* 3275 * Lookup a file and return its dnode. 3276 */ 3277 static int 3278 zfs_lookup(const struct zfsmount *mount, const char *upath, dnode_phys_t *dnode) 3279 { 3280 int rc; 3281 uint64_t objnum; 3282 const spa_t *spa; 3283 dnode_phys_t dn; 3284 const char *p, *q; 3285 char element[256]; 3286 char path[1024]; 3287 int symlinks_followed = 0; 3288 struct stat sb; 3289 struct obj_list *entry, *tentry; 3290 STAILQ_HEAD(, obj_list) on_cache = STAILQ_HEAD_INITIALIZER(on_cache); 3291 3292 spa = mount->spa; 3293 if (mount->objset.os_type != DMU_OST_ZFS) { 3294 printf("ZFS: unexpected object set type %ju\n", 3295 (uintmax_t)mount->objset.os_type); 3296 return (EIO); 3297 } 3298 3299 if ((entry = malloc(sizeof(struct obj_list))) == NULL) 3300 return (ENOMEM); 3301 3302 /* 3303 * Get the root directory dnode. 3304 */ 3305 rc = objset_get_dnode(spa, &mount->objset, MASTER_NODE_OBJ, &dn); 3306 if (rc) { 3307 free(entry); 3308 return (rc); 3309 } 3310 3311 rc = zap_lookup(spa, &dn, ZFS_ROOT_OBJ, sizeof(objnum), 1, &objnum); 3312 if (rc) { 3313 free(entry); 3314 return (rc); 3315 } 3316 entry->objnum = objnum; 3317 STAILQ_INSERT_HEAD(&on_cache, entry, entry); 3318 3319 rc = objset_get_dnode(spa, &mount->objset, objnum, &dn); 3320 if (rc != 0) 3321 goto done; 3322 3323 p = upath; 3324 while (p && *p) { 3325 rc = objset_get_dnode(spa, &mount->objset, objnum, &dn); 3326 if (rc != 0) 3327 goto done; 3328 3329 while (*p == '/') 3330 p++; 3331 if (*p == '\0') 3332 break; 3333 q = p; 3334 while (*q != '\0' && *q != '/') 3335 q++; 3336 3337 /* skip dot */ 3338 if (p + 1 == q && p[0] == '.') { 3339 p++; 3340 continue; 3341 } 3342 /* double dot */ 3343 if (p + 2 == q && p[0] == '.' && p[1] == '.') { 3344 p += 2; 3345 if (STAILQ_FIRST(&on_cache) == 3346 STAILQ_LAST(&on_cache, obj_list, entry)) { 3347 rc = ENOENT; 3348 goto done; 3349 } 3350 entry = STAILQ_FIRST(&on_cache); 3351 STAILQ_REMOVE_HEAD(&on_cache, entry); 3352 free(entry); 3353 objnum = (STAILQ_FIRST(&on_cache))->objnum; 3354 continue; 3355 } 3356 if (q - p + 1 > sizeof(element)) { 3357 rc = ENAMETOOLONG; 3358 goto done; 3359 } 3360 memcpy(element, p, q - p); 3361 element[q - p] = 0; 3362 p = q; 3363 3364 if ((rc = zfs_dnode_stat(spa, &dn, &sb)) != 0) 3365 goto done; 3366 if (!S_ISDIR(sb.st_mode)) { 3367 rc = ENOTDIR; 3368 goto done; 3369 } 3370 3371 rc = zap_lookup(spa, &dn, element, sizeof (objnum), 1, &objnum); 3372 if (rc) 3373 goto done; 3374 objnum = ZFS_DIRENT_OBJ(objnum); 3375 3376 if ((entry = malloc(sizeof(struct obj_list))) == NULL) { 3377 rc = ENOMEM; 3378 goto done; 3379 } 3380 entry->objnum = objnum; 3381 STAILQ_INSERT_HEAD(&on_cache, entry, entry); 3382 rc = objset_get_dnode(spa, &mount->objset, objnum, &dn); 3383 if (rc) 3384 goto done; 3385 3386 /* 3387 * Check for symlink. 3388 */ 3389 rc = zfs_dnode_stat(spa, &dn, &sb); 3390 if (rc) 3391 goto done; 3392 if (S_ISLNK(sb.st_mode)) { 3393 if (symlinks_followed > 10) { 3394 rc = EMLINK; 3395 goto done; 3396 } 3397 symlinks_followed++; 3398 3399 /* 3400 * Read the link value and copy the tail of our 3401 * current path onto the end. 3402 */ 3403 if (sb.st_size + strlen(p) + 1 > sizeof(path)) { 3404 rc = ENAMETOOLONG; 3405 goto done; 3406 } 3407 strcpy(&path[sb.st_size], p); 3408 3409 rc = zfs_dnode_readlink(spa, &dn, path, sb.st_size); 3410 if (rc != 0) 3411 goto done; 3412 3413 /* 3414 * Restart with the new path, starting either at 3415 * the root or at the parent depending whether or 3416 * not the link is relative. 3417 */ 3418 p = path; 3419 if (*p == '/') { 3420 while (STAILQ_FIRST(&on_cache) != 3421 STAILQ_LAST(&on_cache, obj_list, entry)) { 3422 entry = STAILQ_FIRST(&on_cache); 3423 STAILQ_REMOVE_HEAD(&on_cache, entry); 3424 free(entry); 3425 } 3426 } else { 3427 entry = STAILQ_FIRST(&on_cache); 3428 STAILQ_REMOVE_HEAD(&on_cache, entry); 3429 free(entry); 3430 } 3431 objnum = (STAILQ_FIRST(&on_cache))->objnum; 3432 } 3433 } 3434 3435 *dnode = dn; 3436 done: 3437 STAILQ_FOREACH_SAFE(entry, &on_cache, entry, tentry) 3438 free(entry); 3439 return (rc); 3440 } 3441