1 /*- 2 * Copyright (c) 2007 Doug Rabson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 /* 31 * Stand-alone ZFS file reader. 32 */ 33 34 #include <sys/endian.h> 35 #include <sys/stat.h> 36 #include <sys/stdint.h> 37 #include <sys/list.h> 38 39 #include "zfsimpl.h" 40 #include "zfssubr.c" 41 42 43 struct zfsmount { 44 const spa_t *spa; 45 objset_phys_t objset; 46 uint64_t rootobj; 47 }; 48 static struct zfsmount zfsmount __unused; 49 50 /* 51 * The indirect_child_t represents the vdev that we will read from, when we 52 * need to read all copies of the data (e.g. for scrub or reconstruction). 53 * For plain (non-mirror) top-level vdevs (i.e. is_vdev is not a mirror), 54 * ic_vdev is the same as is_vdev. However, for mirror top-level vdevs, 55 * ic_vdev is a child of the mirror. 56 */ 57 typedef struct indirect_child { 58 void *ic_data; 59 vdev_t *ic_vdev; 60 } indirect_child_t; 61 62 /* 63 * The indirect_split_t represents one mapped segment of an i/o to the 64 * indirect vdev. For non-split (contiguously-mapped) blocks, there will be 65 * only one indirect_split_t, with is_split_offset==0 and is_size==io_size. 66 * For split blocks, there will be several of these. 67 */ 68 typedef struct indirect_split { 69 list_node_t is_node; /* link on iv_splits */ 70 71 /* 72 * is_split_offset is the offset into the i/o. 73 * This is the sum of the previous splits' is_size's. 74 */ 75 uint64_t is_split_offset; 76 77 vdev_t *is_vdev; /* top-level vdev */ 78 uint64_t is_target_offset; /* offset on is_vdev */ 79 uint64_t is_size; 80 int is_children; /* number of entries in is_child[] */ 81 82 /* 83 * is_good_child is the child that we are currently using to 84 * attempt reconstruction. 85 */ 86 int is_good_child; 87 88 indirect_child_t is_child[1]; /* variable-length */ 89 } indirect_split_t; 90 91 /* 92 * The indirect_vsd_t is associated with each i/o to the indirect vdev. 93 * It is the "Vdev-Specific Data" in the zio_t's io_vsd. 94 */ 95 typedef struct indirect_vsd { 96 boolean_t iv_split_block; 97 boolean_t iv_reconstruct; 98 99 list_t iv_splits; /* list of indirect_split_t's */ 100 } indirect_vsd_t; 101 102 /* 103 * List of all vdevs, chained through v_alllink. 104 */ 105 static vdev_list_t zfs_vdevs; 106 107 /* 108 * List of ZFS features supported for read 109 */ 110 static const char *features_for_read[] = { 111 "org.illumos:lz4_compress", 112 "com.delphix:hole_birth", 113 "com.delphix:extensible_dataset", 114 "com.delphix:embedded_data", 115 "org.open-zfs:large_blocks", 116 "org.illumos:sha512", 117 "org.illumos:skein", 118 "org.zfsonlinux:large_dnode", 119 "com.joyent:multi_vdev_crash_dump", 120 "com.delphix:spacemap_histogram", 121 "com.delphix:zpool_checkpoint", 122 "com.delphix:spacemap_v2", 123 "com.datto:encryption", 124 "org.zfsonlinux:allocation_classes", 125 "com.datto:resilver_defer", 126 "com.delphix:device_removal", 127 "com.delphix:obsolete_counts", 128 NULL 129 }; 130 131 /* 132 * List of all pools, chained through spa_link. 133 */ 134 static spa_list_t zfs_pools; 135 136 static const dnode_phys_t *dnode_cache_obj; 137 static uint64_t dnode_cache_bn; 138 static char *dnode_cache_buf; 139 static char *zap_scratch; 140 static char *zfs_temp_buf, *zfs_temp_end, *zfs_temp_ptr; 141 142 #define TEMP_SIZE (1024 * 1024) 143 144 static int zio_read(const spa_t *spa, const blkptr_t *bp, void *buf); 145 static int zfs_get_root(const spa_t *spa, uint64_t *objid); 146 static int zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result); 147 static int zap_lookup(const spa_t *spa, const dnode_phys_t *dnode, 148 const char *name, uint64_t integer_size, uint64_t num_integers, 149 void *value); 150 static int objset_get_dnode(const spa_t *, const objset_phys_t *, uint64_t, 151 dnode_phys_t *); 152 static int dnode_read(const spa_t *, const dnode_phys_t *, off_t, void *, 153 size_t); 154 static int vdev_indirect_read(vdev_t *, const blkptr_t *, void *, off_t, 155 size_t); 156 static int vdev_mirror_read(vdev_t *, const blkptr_t *, void *, off_t, size_t); 157 vdev_indirect_mapping_t *vdev_indirect_mapping_open(spa_t *, objset_phys_t *, 158 uint64_t); 159 vdev_indirect_mapping_entry_phys_t * 160 vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *, uint64_t, 161 uint64_t, uint64_t *); 162 163 static void 164 zfs_init(void) 165 { 166 STAILQ_INIT(&zfs_vdevs); 167 STAILQ_INIT(&zfs_pools); 168 169 zfs_temp_buf = malloc(TEMP_SIZE); 170 zfs_temp_end = zfs_temp_buf + TEMP_SIZE; 171 zfs_temp_ptr = zfs_temp_buf; 172 dnode_cache_buf = malloc(SPA_MAXBLOCKSIZE); 173 zap_scratch = malloc(SPA_MAXBLOCKSIZE); 174 175 zfs_init_crc(); 176 } 177 178 static void * 179 zfs_alloc(size_t size) 180 { 181 char *ptr; 182 183 if (zfs_temp_ptr + size > zfs_temp_end) { 184 panic("ZFS: out of temporary buffer space"); 185 } 186 ptr = zfs_temp_ptr; 187 zfs_temp_ptr += size; 188 189 return (ptr); 190 } 191 192 static void 193 zfs_free(void *ptr, size_t size) 194 { 195 196 zfs_temp_ptr -= size; 197 if (zfs_temp_ptr != ptr) { 198 panic("ZFS: zfs_alloc()/zfs_free() mismatch"); 199 } 200 } 201 202 static int 203 xdr_int(const unsigned char **xdr, int *ip) 204 { 205 *ip = be32dec(*xdr); 206 (*xdr) += 4; 207 return (0); 208 } 209 210 static int 211 xdr_u_int(const unsigned char **xdr, u_int *ip) 212 { 213 *ip = be32dec(*xdr); 214 (*xdr) += 4; 215 return (0); 216 } 217 218 static int 219 xdr_uint64_t(const unsigned char **xdr, uint64_t *lp) 220 { 221 u_int hi, lo; 222 223 xdr_u_int(xdr, &hi); 224 xdr_u_int(xdr, &lo); 225 *lp = (((uint64_t) hi) << 32) | lo; 226 return (0); 227 } 228 229 static int 230 nvlist_find(const unsigned char *nvlist, const char *name, int type, 231 int *elementsp, void *valuep) 232 { 233 const unsigned char *p, *pair; 234 int junk; 235 int encoded_size, decoded_size; 236 237 p = nvlist; 238 xdr_int(&p, &junk); 239 xdr_int(&p, &junk); 240 241 pair = p; 242 xdr_int(&p, &encoded_size); 243 xdr_int(&p, &decoded_size); 244 while (encoded_size && decoded_size) { 245 int namelen, pairtype, elements; 246 const char *pairname; 247 248 xdr_int(&p, &namelen); 249 pairname = (const char*) p; 250 p += roundup(namelen, 4); 251 xdr_int(&p, &pairtype); 252 253 if (!memcmp(name, pairname, namelen) && type == pairtype) { 254 xdr_int(&p, &elements); 255 if (elementsp) 256 *elementsp = elements; 257 if (type == DATA_TYPE_UINT64) { 258 xdr_uint64_t(&p, (uint64_t *) valuep); 259 return (0); 260 } else if (type == DATA_TYPE_STRING) { 261 int len; 262 xdr_int(&p, &len); 263 (*(const char**) valuep) = (const char*) p; 264 return (0); 265 } else if (type == DATA_TYPE_NVLIST 266 || type == DATA_TYPE_NVLIST_ARRAY) { 267 (*(const unsigned char**) valuep) = 268 (const unsigned char*) p; 269 return (0); 270 } else { 271 return (EIO); 272 } 273 } else { 274 /* 275 * Not the pair we are looking for, skip to the next one. 276 */ 277 p = pair + encoded_size; 278 } 279 280 pair = p; 281 xdr_int(&p, &encoded_size); 282 xdr_int(&p, &decoded_size); 283 } 284 285 return (EIO); 286 } 287 288 static int 289 nvlist_check_features_for_read(const unsigned char *nvlist) 290 { 291 const unsigned char *p, *pair; 292 int junk; 293 int encoded_size, decoded_size; 294 int rc; 295 296 rc = 0; 297 298 p = nvlist; 299 xdr_int(&p, &junk); 300 xdr_int(&p, &junk); 301 302 pair = p; 303 xdr_int(&p, &encoded_size); 304 xdr_int(&p, &decoded_size); 305 while (encoded_size && decoded_size) { 306 int namelen, pairtype; 307 const char *pairname; 308 int i, found; 309 310 found = 0; 311 312 xdr_int(&p, &namelen); 313 pairname = (const char*) p; 314 p += roundup(namelen, 4); 315 xdr_int(&p, &pairtype); 316 317 for (i = 0; features_for_read[i] != NULL; i++) { 318 if (!memcmp(pairname, features_for_read[i], namelen)) { 319 found = 1; 320 break; 321 } 322 } 323 324 if (!found) { 325 printf("ZFS: unsupported feature: %s\n", pairname); 326 rc = EIO; 327 } 328 329 p = pair + encoded_size; 330 331 pair = p; 332 xdr_int(&p, &encoded_size); 333 xdr_int(&p, &decoded_size); 334 } 335 336 return (rc); 337 } 338 339 /* 340 * Return the next nvlist in an nvlist array. 341 */ 342 static const unsigned char * 343 nvlist_next(const unsigned char *nvlist) 344 { 345 const unsigned char *p, *pair; 346 int junk; 347 int encoded_size, decoded_size; 348 349 p = nvlist; 350 xdr_int(&p, &junk); 351 xdr_int(&p, &junk); 352 353 pair = p; 354 xdr_int(&p, &encoded_size); 355 xdr_int(&p, &decoded_size); 356 while (encoded_size && decoded_size) { 357 p = pair + encoded_size; 358 359 pair = p; 360 xdr_int(&p, &encoded_size); 361 xdr_int(&p, &decoded_size); 362 } 363 364 return p; 365 } 366 367 #ifdef TEST 368 369 static const unsigned char * 370 nvlist_print(const unsigned char *nvlist, unsigned int indent) 371 { 372 static const char* typenames[] = { 373 "DATA_TYPE_UNKNOWN", 374 "DATA_TYPE_BOOLEAN", 375 "DATA_TYPE_BYTE", 376 "DATA_TYPE_INT16", 377 "DATA_TYPE_UINT16", 378 "DATA_TYPE_INT32", 379 "DATA_TYPE_UINT32", 380 "DATA_TYPE_INT64", 381 "DATA_TYPE_UINT64", 382 "DATA_TYPE_STRING", 383 "DATA_TYPE_BYTE_ARRAY", 384 "DATA_TYPE_INT16_ARRAY", 385 "DATA_TYPE_UINT16_ARRAY", 386 "DATA_TYPE_INT32_ARRAY", 387 "DATA_TYPE_UINT32_ARRAY", 388 "DATA_TYPE_INT64_ARRAY", 389 "DATA_TYPE_UINT64_ARRAY", 390 "DATA_TYPE_STRING_ARRAY", 391 "DATA_TYPE_HRTIME", 392 "DATA_TYPE_NVLIST", 393 "DATA_TYPE_NVLIST_ARRAY", 394 "DATA_TYPE_BOOLEAN_VALUE", 395 "DATA_TYPE_INT8", 396 "DATA_TYPE_UINT8", 397 "DATA_TYPE_BOOLEAN_ARRAY", 398 "DATA_TYPE_INT8_ARRAY", 399 "DATA_TYPE_UINT8_ARRAY" 400 }; 401 402 unsigned int i, j; 403 const unsigned char *p, *pair; 404 int junk; 405 int encoded_size, decoded_size; 406 407 p = nvlist; 408 xdr_int(&p, &junk); 409 xdr_int(&p, &junk); 410 411 pair = p; 412 xdr_int(&p, &encoded_size); 413 xdr_int(&p, &decoded_size); 414 while (encoded_size && decoded_size) { 415 int namelen, pairtype, elements; 416 const char *pairname; 417 418 xdr_int(&p, &namelen); 419 pairname = (const char*) p; 420 p += roundup(namelen, 4); 421 xdr_int(&p, &pairtype); 422 423 for (i = 0; i < indent; i++) 424 printf(" "); 425 printf("%s %s", typenames[pairtype], pairname); 426 427 xdr_int(&p, &elements); 428 switch (pairtype) { 429 case DATA_TYPE_UINT64: { 430 uint64_t val; 431 xdr_uint64_t(&p, &val); 432 printf(" = 0x%jx\n", (uintmax_t)val); 433 break; 434 } 435 436 case DATA_TYPE_STRING: { 437 int len; 438 xdr_int(&p, &len); 439 printf(" = \"%s\"\n", p); 440 break; 441 } 442 443 case DATA_TYPE_NVLIST: 444 printf("\n"); 445 nvlist_print(p, indent + 1); 446 break; 447 448 case DATA_TYPE_NVLIST_ARRAY: 449 for (j = 0; j < elements; j++) { 450 printf("[%d]\n", j); 451 p = nvlist_print(p, indent + 1); 452 if (j != elements - 1) { 453 for (i = 0; i < indent; i++) 454 printf(" "); 455 printf("%s %s", typenames[pairtype], pairname); 456 } 457 } 458 break; 459 460 default: 461 printf("\n"); 462 } 463 464 p = pair + encoded_size; 465 466 pair = p; 467 xdr_int(&p, &encoded_size); 468 xdr_int(&p, &decoded_size); 469 } 470 471 return p; 472 } 473 474 #endif 475 476 static int 477 vdev_read_phys(vdev_t *vdev, const blkptr_t *bp, void *buf, 478 off_t offset, size_t size) 479 { 480 size_t psize; 481 int rc; 482 483 if (!vdev->v_phys_read) 484 return (EIO); 485 486 if (bp) { 487 psize = BP_GET_PSIZE(bp); 488 } else { 489 psize = size; 490 } 491 492 /*printf("ZFS: reading %zu bytes at 0x%jx to %p\n", psize, (uintmax_t)offset, buf);*/ 493 rc = vdev->v_phys_read(vdev, vdev->v_read_priv, offset, buf, psize); 494 if (rc) 495 return (rc); 496 if (bp != NULL) 497 return (zio_checksum_verify(vdev->spa, bp, buf)); 498 499 return (0); 500 } 501 502 typedef struct remap_segment { 503 vdev_t *rs_vd; 504 uint64_t rs_offset; 505 uint64_t rs_asize; 506 uint64_t rs_split_offset; 507 list_node_t rs_node; 508 } remap_segment_t; 509 510 static remap_segment_t * 511 rs_alloc(vdev_t *vd, uint64_t offset, uint64_t asize, uint64_t split_offset) 512 { 513 remap_segment_t *rs = malloc(sizeof (remap_segment_t)); 514 515 if (rs != NULL) { 516 rs->rs_vd = vd; 517 rs->rs_offset = offset; 518 rs->rs_asize = asize; 519 rs->rs_split_offset = split_offset; 520 } 521 522 return (rs); 523 } 524 525 vdev_indirect_mapping_t * 526 vdev_indirect_mapping_open(spa_t *spa, objset_phys_t *os, 527 uint64_t mapping_object) 528 { 529 vdev_indirect_mapping_t *vim; 530 vdev_indirect_mapping_phys_t *vim_phys; 531 int rc; 532 533 vim = calloc(1, sizeof (*vim)); 534 if (vim == NULL) 535 return (NULL); 536 537 vim->vim_dn = calloc(1, sizeof (*vim->vim_dn)); 538 if (vim->vim_dn == NULL) { 539 free(vim); 540 return (NULL); 541 } 542 543 rc = objset_get_dnode(spa, os, mapping_object, vim->vim_dn); 544 if (rc != 0) { 545 free(vim->vim_dn); 546 free(vim); 547 return (NULL); 548 } 549 550 vim->vim_spa = spa; 551 vim->vim_phys = malloc(sizeof (*vim->vim_phys)); 552 if (vim->vim_phys == NULL) { 553 free(vim->vim_dn); 554 free(vim); 555 return (NULL); 556 } 557 558 vim_phys = (vdev_indirect_mapping_phys_t *)DN_BONUS(vim->vim_dn); 559 *vim->vim_phys = *vim_phys; 560 561 vim->vim_objset = os; 562 vim->vim_object = mapping_object; 563 vim->vim_entries = NULL; 564 565 vim->vim_havecounts = 566 (vim->vim_dn->dn_bonuslen > VDEV_INDIRECT_MAPPING_SIZE_V0); 567 return (vim); 568 } 569 570 /* 571 * Compare an offset with an indirect mapping entry; there are three 572 * possible scenarios: 573 * 574 * 1. The offset is "less than" the mapping entry; meaning the 575 * offset is less than the source offset of the mapping entry. In 576 * this case, there is no overlap between the offset and the 577 * mapping entry and -1 will be returned. 578 * 579 * 2. The offset is "greater than" the mapping entry; meaning the 580 * offset is greater than the mapping entry's source offset plus 581 * the entry's size. In this case, there is no overlap between 582 * the offset and the mapping entry and 1 will be returned. 583 * 584 * NOTE: If the offset is actually equal to the entry's offset 585 * plus size, this is considered to be "greater" than the entry, 586 * and this case applies (i.e. 1 will be returned). Thus, the 587 * entry's "range" can be considered to be inclusive at its 588 * start, but exclusive at its end: e.g. [src, src + size). 589 * 590 * 3. The last case to consider is if the offset actually falls 591 * within the mapping entry's range. If this is the case, the 592 * offset is considered to be "equal to" the mapping entry and 593 * 0 will be returned. 594 * 595 * NOTE: If the offset is equal to the entry's source offset, 596 * this case applies and 0 will be returned. If the offset is 597 * equal to the entry's source plus its size, this case does 598 * *not* apply (see "NOTE" above for scenario 2), and 1 will be 599 * returned. 600 */ 601 static int 602 dva_mapping_overlap_compare(const void *v_key, const void *v_array_elem) 603 { 604 const uint64_t *key = v_key; 605 const vdev_indirect_mapping_entry_phys_t *array_elem = 606 v_array_elem; 607 uint64_t src_offset = DVA_MAPPING_GET_SRC_OFFSET(array_elem); 608 609 if (*key < src_offset) { 610 return (-1); 611 } else if (*key < src_offset + DVA_GET_ASIZE(&array_elem->vimep_dst)) { 612 return (0); 613 } else { 614 return (1); 615 } 616 } 617 618 /* 619 * Return array entry. 620 */ 621 static vdev_indirect_mapping_entry_phys_t * 622 vdev_indirect_mapping_entry(vdev_indirect_mapping_t *vim, uint64_t index) 623 { 624 uint64_t size; 625 off_t offset = 0; 626 int rc; 627 628 if (vim->vim_phys->vimp_num_entries == 0) 629 return (NULL); 630 631 if (vim->vim_entries == NULL) { 632 uint64_t bsize; 633 634 bsize = vim->vim_dn->dn_datablkszsec << SPA_MINBLOCKSHIFT; 635 size = vim->vim_phys->vimp_num_entries * 636 sizeof (*vim->vim_entries); 637 if (size > bsize) { 638 size = bsize / sizeof (*vim->vim_entries); 639 size *= sizeof (*vim->vim_entries); 640 } 641 vim->vim_entries = malloc(size); 642 if (vim->vim_entries == NULL) 643 return (NULL); 644 vim->vim_num_entries = size / sizeof (*vim->vim_entries); 645 offset = index * sizeof (*vim->vim_entries); 646 } 647 648 /* We have data in vim_entries */ 649 if (offset == 0) { 650 if (index >= vim->vim_entry_offset && 651 index <= vim->vim_entry_offset + vim->vim_num_entries) { 652 index -= vim->vim_entry_offset; 653 return (&vim->vim_entries[index]); 654 } 655 offset = index * sizeof (*vim->vim_entries); 656 } 657 658 vim->vim_entry_offset = index; 659 size = vim->vim_num_entries * sizeof (*vim->vim_entries); 660 rc = dnode_read(vim->vim_spa, vim->vim_dn, offset, vim->vim_entries, 661 size); 662 if (rc != 0) { 663 /* Read error, invalidate vim_entries. */ 664 free(vim->vim_entries); 665 vim->vim_entries = NULL; 666 return (NULL); 667 } 668 index -= vim->vim_entry_offset; 669 return (&vim->vim_entries[index]); 670 } 671 672 /* 673 * Returns the mapping entry for the given offset. 674 * 675 * It's possible that the given offset will not be in the mapping table 676 * (i.e. no mapping entries contain this offset), in which case, the 677 * return value value depends on the "next_if_missing" parameter. 678 * 679 * If the offset is not found in the table and "next_if_missing" is 680 * B_FALSE, then NULL will always be returned. The behavior is intended 681 * to allow consumers to get the entry corresponding to the offset 682 * parameter, iff the offset overlaps with an entry in the table. 683 * 684 * If the offset is not found in the table and "next_if_missing" is 685 * B_TRUE, then the entry nearest to the given offset will be returned, 686 * such that the entry's source offset is greater than the offset 687 * passed in (i.e. the "next" mapping entry in the table is returned, if 688 * the offset is missing from the table). If there are no entries whose 689 * source offset is greater than the passed in offset, NULL is returned. 690 */ 691 static vdev_indirect_mapping_entry_phys_t * 692 vdev_indirect_mapping_entry_for_offset(vdev_indirect_mapping_t *vim, 693 uint64_t offset) 694 { 695 ASSERT(vim->vim_phys->vimp_num_entries > 0); 696 697 vdev_indirect_mapping_entry_phys_t *entry; 698 699 uint64_t last = vim->vim_phys->vimp_num_entries - 1; 700 uint64_t base = 0; 701 702 /* 703 * We don't define these inside of the while loop because we use 704 * their value in the case that offset isn't in the mapping. 705 */ 706 uint64_t mid; 707 int result; 708 709 while (last >= base) { 710 mid = base + ((last - base) >> 1); 711 712 entry = vdev_indirect_mapping_entry(vim, mid); 713 if (entry == NULL) 714 break; 715 result = dva_mapping_overlap_compare(&offset, entry); 716 717 if (result == 0) { 718 break; 719 } else if (result < 0) { 720 last = mid - 1; 721 } else { 722 base = mid + 1; 723 } 724 } 725 return (entry); 726 } 727 728 /* 729 * Given an indirect vdev and an extent on that vdev, it duplicates the 730 * physical entries of the indirect mapping that correspond to the extent 731 * to a new array and returns a pointer to it. In addition, copied_entries 732 * is populated with the number of mapping entries that were duplicated. 733 * 734 * Finally, since we are doing an allocation, it is up to the caller to 735 * free the array allocated in this function. 736 */ 737 vdev_indirect_mapping_entry_phys_t * 738 vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *vd, uint64_t offset, 739 uint64_t asize, uint64_t *copied_entries) 740 { 741 vdev_indirect_mapping_entry_phys_t *duplicate_mappings = NULL; 742 vdev_indirect_mapping_t *vim = vd->v_mapping; 743 uint64_t entries = 0; 744 745 vdev_indirect_mapping_entry_phys_t *first_mapping = 746 vdev_indirect_mapping_entry_for_offset(vim, offset); 747 ASSERT3P(first_mapping, !=, NULL); 748 749 vdev_indirect_mapping_entry_phys_t *m = first_mapping; 750 while (asize > 0) { 751 uint64_t size = DVA_GET_ASIZE(&m->vimep_dst); 752 uint64_t inner_offset = offset - DVA_MAPPING_GET_SRC_OFFSET(m); 753 uint64_t inner_size = MIN(asize, size - inner_offset); 754 755 offset += inner_size; 756 asize -= inner_size; 757 entries++; 758 m++; 759 } 760 761 size_t copy_length = entries * sizeof (*first_mapping); 762 duplicate_mappings = malloc(copy_length); 763 if (duplicate_mappings != NULL) 764 bcopy(first_mapping, duplicate_mappings, copy_length); 765 else 766 entries = 0; 767 768 *copied_entries = entries; 769 770 return (duplicate_mappings); 771 } 772 773 static vdev_t * 774 vdev_lookup_top(spa_t *spa, uint64_t vdev) 775 { 776 vdev_t *rvd; 777 778 STAILQ_FOREACH(rvd, &spa->spa_vdevs, v_childlink) 779 if (rvd->v_id == vdev) 780 break; 781 782 return (rvd); 783 } 784 785 /* 786 * This is a callback for vdev_indirect_remap() which allocates an 787 * indirect_split_t for each split segment and adds it to iv_splits. 788 */ 789 static void 790 vdev_indirect_gather_splits(uint64_t split_offset, vdev_t *vd, uint64_t offset, 791 uint64_t size, void *arg) 792 { 793 int n = 1; 794 zio_t *zio = arg; 795 indirect_vsd_t *iv = zio->io_vsd; 796 797 if (vd->v_read == vdev_indirect_read) 798 return; 799 800 if (vd->v_read == vdev_mirror_read) 801 n = vd->v_nchildren; 802 803 indirect_split_t *is = 804 malloc(offsetof(indirect_split_t, is_child[n])); 805 if (is == NULL) { 806 zio->io_error = ENOMEM; 807 return; 808 } 809 bzero(is, offsetof(indirect_split_t, is_child[n])); 810 811 is->is_children = n; 812 is->is_size = size; 813 is->is_split_offset = split_offset; 814 is->is_target_offset = offset; 815 is->is_vdev = vd; 816 817 /* 818 * Note that we only consider multiple copies of the data for 819 * *mirror* vdevs. We don't for "replacing" or "spare" vdevs, even 820 * though they use the same ops as mirror, because there's only one 821 * "good" copy under the replacing/spare. 822 */ 823 if (vd->v_read == vdev_mirror_read) { 824 int i = 0; 825 vdev_t *kid; 826 827 STAILQ_FOREACH(kid, &vd->v_children, v_childlink) { 828 is->is_child[i++].ic_vdev = kid; 829 } 830 } else { 831 is->is_child[0].ic_vdev = vd; 832 } 833 834 list_insert_tail(&iv->iv_splits, is); 835 } 836 837 static void 838 vdev_indirect_remap(vdev_t *vd, uint64_t offset, uint64_t asize, void *arg) 839 { 840 list_t stack; 841 spa_t *spa = vd->spa; 842 zio_t *zio = arg; 843 844 list_create(&stack, sizeof (remap_segment_t), 845 offsetof(remap_segment_t, rs_node)); 846 847 for (remap_segment_t *rs = rs_alloc(vd, offset, asize, 0); 848 rs != NULL; rs = list_remove_head(&stack)) { 849 vdev_t *v = rs->rs_vd; 850 uint64_t num_entries = 0; 851 /* vdev_indirect_mapping_t *vim = v->v_mapping; */ 852 vdev_indirect_mapping_entry_phys_t *mapping = 853 vdev_indirect_mapping_duplicate_adjacent_entries(v, 854 rs->rs_offset, rs->rs_asize, &num_entries); 855 856 for (uint64_t i = 0; i < num_entries; i++) { 857 vdev_indirect_mapping_entry_phys_t *m = &mapping[i]; 858 uint64_t size = DVA_GET_ASIZE(&m->vimep_dst); 859 uint64_t dst_offset = DVA_GET_OFFSET(&m->vimep_dst); 860 uint64_t dst_vdev = DVA_GET_VDEV(&m->vimep_dst); 861 uint64_t inner_offset = rs->rs_offset - 862 DVA_MAPPING_GET_SRC_OFFSET(m); 863 uint64_t inner_size = 864 MIN(rs->rs_asize, size - inner_offset); 865 vdev_t *dst_v = vdev_lookup_top(spa, dst_vdev); 866 867 if (dst_v->v_read == vdev_indirect_read) { 868 list_insert_head(&stack, 869 rs_alloc(dst_v, dst_offset + inner_offset, 870 inner_size, rs->rs_split_offset)); 871 } 872 vdev_indirect_gather_splits(rs->rs_split_offset, dst_v, 873 dst_offset + inner_offset, 874 inner_size, arg); 875 876 /* 877 * vdev_indirect_gather_splits can have memory 878 * allocation error, we can not recover from it. 879 */ 880 if (zio->io_error != 0) 881 break; 882 883 rs->rs_offset += inner_size; 884 rs->rs_asize -= inner_size; 885 rs->rs_split_offset += inner_size; 886 } 887 888 free(mapping); 889 free(rs); 890 if (zio->io_error != 0) 891 break; 892 } 893 894 list_destroy(&stack); 895 } 896 897 static void 898 vdev_indirect_map_free(zio_t *zio) 899 { 900 indirect_vsd_t *iv = zio->io_vsd; 901 indirect_split_t *is; 902 903 while ((is = list_head(&iv->iv_splits)) != NULL) { 904 for (int c = 0; c < is->is_children; c++) { 905 indirect_child_t *ic = &is->is_child[c]; 906 free(ic->ic_data); 907 } 908 list_remove(&iv->iv_splits, is); 909 free(is); 910 } 911 free(iv); 912 } 913 914 static int 915 vdev_indirect_read(vdev_t *vdev, const blkptr_t *bp, void *buf, 916 off_t offset, size_t bytes) 917 { 918 zio_t zio = { 0 }; 919 spa_t *spa = vdev->spa; 920 indirect_vsd_t *iv = malloc(sizeof (*iv)); 921 indirect_split_t *first; 922 int rc = EIO; 923 924 if (iv == NULL) 925 return (ENOMEM); 926 bzero(iv, sizeof (*iv)); 927 928 list_create(&iv->iv_splits, 929 sizeof (indirect_split_t), offsetof(indirect_split_t, is_node)); 930 931 zio.io_spa = spa; 932 zio.io_bp = (blkptr_t *)bp; 933 zio.io_data = buf; 934 zio.io_size = bytes; 935 zio.io_offset = offset; 936 zio.io_vd = vdev; 937 zio.io_vsd = iv; 938 939 if (vdev->v_mapping == NULL) { 940 vdev_indirect_config_t *vic; 941 942 vic = &vdev->vdev_indirect_config; 943 vdev->v_mapping = vdev_indirect_mapping_open(spa, 944 &spa->spa_mos, vic->vic_mapping_object); 945 } 946 947 vdev_indirect_remap(vdev, offset, bytes, &zio); 948 if (zio.io_error != 0) 949 return (zio.io_error); 950 951 first = list_head(&iv->iv_splits); 952 if (first->is_size == zio.io_size) { 953 /* 954 * This is not a split block; we are pointing to the entire 955 * data, which will checksum the same as the original data. 956 * Pass the BP down so that the child i/o can verify the 957 * checksum, and try a different location if available 958 * (e.g. on a mirror). 959 * 960 * While this special case could be handled the same as the 961 * general (split block) case, doing it this way ensures 962 * that the vast majority of blocks on indirect vdevs 963 * (which are not split) are handled identically to blocks 964 * on non-indirect vdevs. This allows us to be less strict 965 * about performance in the general (but rare) case. 966 */ 967 rc = first->is_vdev->v_read(first->is_vdev, zio.io_bp, 968 zio.io_data, first->is_target_offset, bytes); 969 } else { 970 iv->iv_split_block = B_TRUE; 971 /* 972 * Read one copy of each split segment, from the 973 * top-level vdev. Since we don't know the 974 * checksum of each split individually, the child 975 * zio can't ensure that we get the right data. 976 * E.g. if it's a mirror, it will just read from a 977 * random (healthy) leaf vdev. We have to verify 978 * the checksum in vdev_indirect_io_done(). 979 */ 980 for (indirect_split_t *is = list_head(&iv->iv_splits); 981 is != NULL; is = list_next(&iv->iv_splits, is)) { 982 char *ptr = zio.io_data; 983 984 rc = is->is_vdev->v_read(is->is_vdev, zio.io_bp, 985 ptr + is->is_split_offset, is->is_target_offset, 986 is->is_size); 987 } 988 if (zio_checksum_verify(spa, zio.io_bp, zio.io_data)) 989 rc = ECKSUM; 990 else 991 rc = 0; 992 } 993 994 vdev_indirect_map_free(&zio); 995 if (rc == 0) 996 rc = zio.io_error; 997 998 return (rc); 999 } 1000 1001 static int 1002 vdev_disk_read(vdev_t *vdev, const blkptr_t *bp, void *buf, 1003 off_t offset, size_t bytes) 1004 { 1005 1006 return (vdev_read_phys(vdev, bp, buf, 1007 offset + VDEV_LABEL_START_SIZE, bytes)); 1008 } 1009 1010 1011 static int 1012 vdev_mirror_read(vdev_t *vdev, const blkptr_t *bp, void *buf, 1013 off_t offset, size_t bytes) 1014 { 1015 vdev_t *kid; 1016 int rc; 1017 1018 rc = EIO; 1019 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) { 1020 if (kid->v_state != VDEV_STATE_HEALTHY) 1021 continue; 1022 rc = kid->v_read(kid, bp, buf, offset, bytes); 1023 if (!rc) 1024 return (0); 1025 } 1026 1027 return (rc); 1028 } 1029 1030 static int 1031 vdev_replacing_read(vdev_t *vdev, const blkptr_t *bp, void *buf, 1032 off_t offset, size_t bytes) 1033 { 1034 vdev_t *kid; 1035 1036 /* 1037 * Here we should have two kids: 1038 * First one which is the one we are replacing and we can trust 1039 * only this one to have valid data, but it might not be present. 1040 * Second one is that one we are replacing with. It is most likely 1041 * healthy, but we can't trust it has needed data, so we won't use it. 1042 */ 1043 kid = STAILQ_FIRST(&vdev->v_children); 1044 if (kid == NULL) 1045 return (EIO); 1046 if (kid->v_state != VDEV_STATE_HEALTHY) 1047 return (EIO); 1048 return (kid->v_read(kid, bp, buf, offset, bytes)); 1049 } 1050 1051 static vdev_t * 1052 vdev_find(uint64_t guid) 1053 { 1054 vdev_t *vdev; 1055 1056 STAILQ_FOREACH(vdev, &zfs_vdevs, v_alllink) 1057 if (vdev->v_guid == guid) 1058 return (vdev); 1059 1060 return (0); 1061 } 1062 1063 static vdev_t * 1064 vdev_create(uint64_t guid, vdev_read_t *_read) 1065 { 1066 vdev_t *vdev; 1067 vdev_indirect_config_t *vic; 1068 1069 vdev = malloc(sizeof(vdev_t)); 1070 memset(vdev, 0, sizeof(vdev_t)); 1071 STAILQ_INIT(&vdev->v_children); 1072 vdev->v_guid = guid; 1073 vdev->v_state = VDEV_STATE_OFFLINE; 1074 vdev->v_read = _read; 1075 1076 vic = &vdev->vdev_indirect_config; 1077 vic->vic_prev_indirect_vdev = UINT64_MAX; 1078 STAILQ_INSERT_TAIL(&zfs_vdevs, vdev, v_alllink); 1079 1080 return (vdev); 1081 } 1082 1083 static int 1084 vdev_init_from_nvlist(const unsigned char *nvlist, vdev_t *pvdev, 1085 vdev_t **vdevp, int is_newer) 1086 { 1087 int rc; 1088 uint64_t guid, id, ashift, nparity; 1089 const char *type; 1090 const char *path; 1091 vdev_t *vdev, *kid; 1092 const unsigned char *kids; 1093 int nkids, i, is_new; 1094 uint64_t is_offline, is_faulted, is_degraded, is_removed, isnt_present; 1095 1096 if (nvlist_find(nvlist, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64, 1097 NULL, &guid) 1098 || nvlist_find(nvlist, ZPOOL_CONFIG_ID, DATA_TYPE_UINT64, NULL, &id) 1099 || nvlist_find(nvlist, ZPOOL_CONFIG_TYPE, DATA_TYPE_STRING, 1100 NULL, &type)) { 1101 printf("ZFS: can't find vdev details\n"); 1102 return (ENOENT); 1103 } 1104 1105 if (strcmp(type, VDEV_TYPE_MIRROR) 1106 && strcmp(type, VDEV_TYPE_DISK) 1107 #ifdef ZFS_TEST 1108 && strcmp(type, VDEV_TYPE_FILE) 1109 #endif 1110 && strcmp(type, VDEV_TYPE_RAIDZ) 1111 && strcmp(type, VDEV_TYPE_INDIRECT) 1112 && strcmp(type, VDEV_TYPE_REPLACING)) { 1113 printf("ZFS: can only boot from disk, mirror, raidz1, raidz2 and raidz3 vdevs\n"); 1114 return (EIO); 1115 } 1116 1117 is_offline = is_removed = is_faulted = is_degraded = isnt_present = 0; 1118 1119 nvlist_find(nvlist, ZPOOL_CONFIG_OFFLINE, DATA_TYPE_UINT64, NULL, 1120 &is_offline); 1121 nvlist_find(nvlist, ZPOOL_CONFIG_REMOVED, DATA_TYPE_UINT64, NULL, 1122 &is_removed); 1123 nvlist_find(nvlist, ZPOOL_CONFIG_FAULTED, DATA_TYPE_UINT64, NULL, 1124 &is_faulted); 1125 nvlist_find(nvlist, ZPOOL_CONFIG_DEGRADED, DATA_TYPE_UINT64, NULL, 1126 &is_degraded); 1127 nvlist_find(nvlist, ZPOOL_CONFIG_NOT_PRESENT, DATA_TYPE_UINT64, NULL, 1128 &isnt_present); 1129 1130 vdev = vdev_find(guid); 1131 if (!vdev) { 1132 is_new = 1; 1133 1134 if (!strcmp(type, VDEV_TYPE_MIRROR)) 1135 vdev = vdev_create(guid, vdev_mirror_read); 1136 else if (!strcmp(type, VDEV_TYPE_RAIDZ)) 1137 vdev = vdev_create(guid, vdev_raidz_read); 1138 else if (!strcmp(type, VDEV_TYPE_REPLACING)) 1139 vdev = vdev_create(guid, vdev_replacing_read); 1140 else if (!strcmp(type, VDEV_TYPE_INDIRECT)) { 1141 vdev_indirect_config_t *vic; 1142 1143 vdev = vdev_create(guid, vdev_indirect_read); 1144 vdev->v_state = VDEV_STATE_HEALTHY; 1145 vic = &vdev->vdev_indirect_config; 1146 1147 nvlist_find(nvlist, 1148 ZPOOL_CONFIG_INDIRECT_OBJECT, DATA_TYPE_UINT64, 1149 NULL, &vic->vic_mapping_object); 1150 nvlist_find(nvlist, 1151 ZPOOL_CONFIG_INDIRECT_BIRTHS, DATA_TYPE_UINT64, 1152 NULL, &vic->vic_births_object); 1153 nvlist_find(nvlist, 1154 ZPOOL_CONFIG_PREV_INDIRECT_VDEV, DATA_TYPE_UINT64, 1155 NULL, &vic->vic_prev_indirect_vdev); 1156 } else 1157 vdev = vdev_create(guid, vdev_disk_read); 1158 1159 vdev->v_id = id; 1160 vdev->v_top = pvdev != NULL ? pvdev : vdev; 1161 if (nvlist_find(nvlist, ZPOOL_CONFIG_ASHIFT, 1162 DATA_TYPE_UINT64, NULL, &ashift) == 0) { 1163 vdev->v_ashift = ashift; 1164 } else { 1165 vdev->v_ashift = 0; 1166 } 1167 if (nvlist_find(nvlist, ZPOOL_CONFIG_NPARITY, 1168 DATA_TYPE_UINT64, NULL, &nparity) == 0) { 1169 vdev->v_nparity = nparity; 1170 } else { 1171 vdev->v_nparity = 0; 1172 } 1173 if (nvlist_find(nvlist, ZPOOL_CONFIG_PATH, 1174 DATA_TYPE_STRING, NULL, &path) == 0) { 1175 if (strncmp(path, "/dev/", 5) == 0) 1176 path += 5; 1177 vdev->v_name = strdup(path); 1178 } else { 1179 char *name; 1180 1181 if (!strcmp(type, "raidz")) { 1182 if (vdev->v_nparity < 1 || 1183 vdev->v_nparity > 3) { 1184 printf("ZFS: can only boot from disk, " 1185 "mirror, raidz1, raidz2 and raidz3 " 1186 "vdevs\n"); 1187 return (EIO); 1188 } 1189 asprintf(&name, "%s%d-%jd", type, 1190 vdev->v_nparity, id); 1191 } else { 1192 asprintf(&name, "%s-%jd", type, id); 1193 } 1194 if (name == NULL) 1195 return (ENOMEM); 1196 vdev->v_name = name; 1197 } 1198 } else { 1199 is_new = 0; 1200 } 1201 1202 if (is_new || is_newer) { 1203 /* 1204 * This is either new vdev or we've already seen this vdev, 1205 * but from an older vdev label, so let's refresh its state 1206 * from the newer label. 1207 */ 1208 if (is_offline) 1209 vdev->v_state = VDEV_STATE_OFFLINE; 1210 else if (is_removed) 1211 vdev->v_state = VDEV_STATE_REMOVED; 1212 else if (is_faulted) 1213 vdev->v_state = VDEV_STATE_FAULTED; 1214 else if (is_degraded) 1215 vdev->v_state = VDEV_STATE_DEGRADED; 1216 else if (isnt_present) 1217 vdev->v_state = VDEV_STATE_CANT_OPEN; 1218 } 1219 1220 rc = nvlist_find(nvlist, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY, 1221 &nkids, &kids); 1222 /* 1223 * Its ok if we don't have any kids. 1224 */ 1225 if (rc == 0) { 1226 vdev->v_nchildren = nkids; 1227 for (i = 0; i < nkids; i++) { 1228 rc = vdev_init_from_nvlist(kids, vdev, &kid, is_newer); 1229 if (rc) 1230 return (rc); 1231 if (is_new) 1232 STAILQ_INSERT_TAIL(&vdev->v_children, kid, 1233 v_childlink); 1234 kids = nvlist_next(kids); 1235 } 1236 } else { 1237 vdev->v_nchildren = 0; 1238 } 1239 1240 if (vdevp) 1241 *vdevp = vdev; 1242 return (0); 1243 } 1244 1245 static void 1246 vdev_set_state(vdev_t *vdev) 1247 { 1248 vdev_t *kid; 1249 int good_kids; 1250 int bad_kids; 1251 1252 /* 1253 * A mirror or raidz is healthy if all its kids are healthy. A 1254 * mirror is degraded if any of its kids is healthy; a raidz 1255 * is degraded if at most nparity kids are offline. 1256 */ 1257 if (STAILQ_FIRST(&vdev->v_children)) { 1258 good_kids = 0; 1259 bad_kids = 0; 1260 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) { 1261 if (kid->v_state == VDEV_STATE_HEALTHY) 1262 good_kids++; 1263 else 1264 bad_kids++; 1265 } 1266 if (bad_kids == 0) { 1267 vdev->v_state = VDEV_STATE_HEALTHY; 1268 } else { 1269 if (vdev->v_read == vdev_mirror_read) { 1270 if (good_kids) { 1271 vdev->v_state = VDEV_STATE_DEGRADED; 1272 } else { 1273 vdev->v_state = VDEV_STATE_OFFLINE; 1274 } 1275 } else if (vdev->v_read == vdev_raidz_read) { 1276 if (bad_kids > vdev->v_nparity) { 1277 vdev->v_state = VDEV_STATE_OFFLINE; 1278 } else { 1279 vdev->v_state = VDEV_STATE_DEGRADED; 1280 } 1281 } 1282 } 1283 } 1284 } 1285 1286 static spa_t * 1287 spa_find_by_guid(uint64_t guid) 1288 { 1289 spa_t *spa; 1290 1291 STAILQ_FOREACH(spa, &zfs_pools, spa_link) 1292 if (spa->spa_guid == guid) 1293 return (spa); 1294 1295 return (0); 1296 } 1297 1298 static spa_t * 1299 spa_find_by_name(const char *name) 1300 { 1301 spa_t *spa; 1302 1303 STAILQ_FOREACH(spa, &zfs_pools, spa_link) 1304 if (!strcmp(spa->spa_name, name)) 1305 return (spa); 1306 1307 return (0); 1308 } 1309 1310 #ifdef BOOT2 1311 static spa_t * 1312 spa_get_primary(void) 1313 { 1314 1315 return (STAILQ_FIRST(&zfs_pools)); 1316 } 1317 1318 static vdev_t * 1319 spa_get_primary_vdev(const spa_t *spa) 1320 { 1321 vdev_t *vdev; 1322 vdev_t *kid; 1323 1324 if (spa == NULL) 1325 spa = spa_get_primary(); 1326 if (spa == NULL) 1327 return (NULL); 1328 vdev = STAILQ_FIRST(&spa->spa_vdevs); 1329 if (vdev == NULL) 1330 return (NULL); 1331 for (kid = STAILQ_FIRST(&vdev->v_children); kid != NULL; 1332 kid = STAILQ_FIRST(&vdev->v_children)) 1333 vdev = kid; 1334 return (vdev); 1335 } 1336 #endif 1337 1338 static spa_t * 1339 spa_create(uint64_t guid, const char *name) 1340 { 1341 spa_t *spa; 1342 1343 if ((spa = calloc(1, sizeof(spa_t))) == NULL) 1344 return (NULL); 1345 if ((spa->spa_name = strdup(name)) == NULL) { 1346 free(spa); 1347 return (NULL); 1348 } 1349 STAILQ_INIT(&spa->spa_vdevs); 1350 spa->spa_guid = guid; 1351 STAILQ_INSERT_TAIL(&zfs_pools, spa, spa_link); 1352 1353 return (spa); 1354 } 1355 1356 static const char * 1357 state_name(vdev_state_t state) 1358 { 1359 static const char* names[] = { 1360 "UNKNOWN", 1361 "CLOSED", 1362 "OFFLINE", 1363 "REMOVED", 1364 "CANT_OPEN", 1365 "FAULTED", 1366 "DEGRADED", 1367 "ONLINE" 1368 }; 1369 return names[state]; 1370 } 1371 1372 #ifdef BOOT2 1373 1374 #define pager_printf printf 1375 1376 #else 1377 1378 static int 1379 pager_printf(const char *fmt, ...) 1380 { 1381 char line[80]; 1382 va_list args; 1383 1384 va_start(args, fmt); 1385 vsprintf(line, fmt, args); 1386 va_end(args); 1387 1388 return (pager_output(line)); 1389 } 1390 1391 #endif 1392 1393 #define STATUS_FORMAT " %s %s\n" 1394 1395 static int 1396 print_state(int indent, const char *name, vdev_state_t state) 1397 { 1398 char buf[512]; 1399 int i; 1400 1401 buf[0] = 0; 1402 for (i = 0; i < indent; i++) 1403 strcat(buf, " "); 1404 strcat(buf, name); 1405 1406 return (pager_printf(STATUS_FORMAT, buf, state_name(state))); 1407 } 1408 1409 static int 1410 vdev_status(vdev_t *vdev, int indent) 1411 { 1412 vdev_t *kid; 1413 int ret; 1414 ret = print_state(indent, vdev->v_name, vdev->v_state); 1415 if (ret != 0) 1416 return (ret); 1417 1418 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) { 1419 ret = vdev_status(kid, indent + 1); 1420 if (ret != 0) 1421 return (ret); 1422 } 1423 return (ret); 1424 } 1425 1426 static int 1427 spa_status(spa_t *spa) 1428 { 1429 static char bootfs[ZFS_MAXNAMELEN]; 1430 uint64_t rootid; 1431 vdev_t *vdev; 1432 int good_kids, bad_kids, degraded_kids, ret; 1433 vdev_state_t state; 1434 1435 ret = pager_printf(" pool: %s\n", spa->spa_name); 1436 if (ret != 0) 1437 return (ret); 1438 1439 if (zfs_get_root(spa, &rootid) == 0 && 1440 zfs_rlookup(spa, rootid, bootfs) == 0) { 1441 if (bootfs[0] == '\0') 1442 ret = pager_printf("bootfs: %s\n", spa->spa_name); 1443 else 1444 ret = pager_printf("bootfs: %s/%s\n", spa->spa_name, 1445 bootfs); 1446 if (ret != 0) 1447 return (ret); 1448 } 1449 ret = pager_printf("config:\n\n"); 1450 if (ret != 0) 1451 return (ret); 1452 ret = pager_printf(STATUS_FORMAT, "NAME", "STATE"); 1453 if (ret != 0) 1454 return (ret); 1455 1456 good_kids = 0; 1457 degraded_kids = 0; 1458 bad_kids = 0; 1459 STAILQ_FOREACH(vdev, &spa->spa_vdevs, v_childlink) { 1460 if (vdev->v_state == VDEV_STATE_HEALTHY) 1461 good_kids++; 1462 else if (vdev->v_state == VDEV_STATE_DEGRADED) 1463 degraded_kids++; 1464 else 1465 bad_kids++; 1466 } 1467 1468 state = VDEV_STATE_CLOSED; 1469 if (good_kids > 0 && (degraded_kids + bad_kids) == 0) 1470 state = VDEV_STATE_HEALTHY; 1471 else if ((good_kids + degraded_kids) > 0) 1472 state = VDEV_STATE_DEGRADED; 1473 1474 ret = print_state(0, spa->spa_name, state); 1475 if (ret != 0) 1476 return (ret); 1477 STAILQ_FOREACH(vdev, &spa->spa_vdevs, v_childlink) { 1478 ret = vdev_status(vdev, 1); 1479 if (ret != 0) 1480 return (ret); 1481 } 1482 return (ret); 1483 } 1484 1485 static int 1486 spa_all_status(void) 1487 { 1488 spa_t *spa; 1489 int first = 1, ret = 0; 1490 1491 STAILQ_FOREACH(spa, &zfs_pools, spa_link) { 1492 if (!first) { 1493 ret = pager_printf("\n"); 1494 if (ret != 0) 1495 return (ret); 1496 } 1497 first = 0; 1498 ret = spa_status(spa); 1499 if (ret != 0) 1500 return (ret); 1501 } 1502 return (ret); 1503 } 1504 1505 static uint64_t 1506 vdev_label_offset(uint64_t psize, int l, uint64_t offset) 1507 { 1508 uint64_t label_offset; 1509 1510 if (l < VDEV_LABELS / 2) 1511 label_offset = 0; 1512 else 1513 label_offset = psize - VDEV_LABELS * sizeof (vdev_label_t); 1514 1515 return (offset + l * sizeof (vdev_label_t) + label_offset); 1516 } 1517 1518 static int 1519 vdev_probe(vdev_phys_read_t *_read, void *read_priv, spa_t **spap) 1520 { 1521 vdev_t vtmp; 1522 vdev_phys_t *vdev_label = (vdev_phys_t *) zap_scratch; 1523 vdev_phys_t *tmp_label; 1524 spa_t *spa; 1525 vdev_t *vdev, *top_vdev, *pool_vdev; 1526 off_t off; 1527 blkptr_t bp; 1528 const unsigned char *nvlist = NULL; 1529 uint64_t val; 1530 uint64_t guid; 1531 uint64_t best_txg = 0; 1532 uint64_t pool_txg, pool_guid; 1533 uint64_t psize; 1534 const char *pool_name; 1535 const unsigned char *vdevs; 1536 const unsigned char *features; 1537 int i, l, rc, is_newer; 1538 char *upbuf; 1539 const struct uberblock *up; 1540 1541 /* 1542 * Load the vdev label and figure out which 1543 * uberblock is most current. 1544 */ 1545 memset(&vtmp, 0, sizeof(vtmp)); 1546 vtmp.v_phys_read = _read; 1547 vtmp.v_read_priv = read_priv; 1548 psize = P2ALIGN(ldi_get_size(read_priv), 1549 (uint64_t)sizeof (vdev_label_t)); 1550 1551 /* Test for minimum pool size. */ 1552 if (psize < SPA_MINDEVSIZE) 1553 return (EIO); 1554 1555 tmp_label = zfs_alloc(sizeof(vdev_phys_t)); 1556 1557 for (l = 0; l < VDEV_LABELS; l++) { 1558 off = vdev_label_offset(psize, l, 1559 offsetof(vdev_label_t, vl_vdev_phys)); 1560 1561 BP_ZERO(&bp); 1562 BP_SET_LSIZE(&bp, sizeof(vdev_phys_t)); 1563 BP_SET_PSIZE(&bp, sizeof(vdev_phys_t)); 1564 BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_LABEL); 1565 BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF); 1566 DVA_SET_OFFSET(BP_IDENTITY(&bp), off); 1567 ZIO_SET_CHECKSUM(&bp.blk_cksum, off, 0, 0, 0); 1568 1569 if (vdev_read_phys(&vtmp, &bp, tmp_label, off, 0)) 1570 continue; 1571 1572 if (tmp_label->vp_nvlist[0] != NV_ENCODE_XDR) 1573 continue; 1574 1575 nvlist = (const unsigned char *) tmp_label->vp_nvlist + 4; 1576 if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_TXG, 1577 DATA_TYPE_UINT64, NULL, &pool_txg) != 0) 1578 continue; 1579 1580 if (best_txg <= pool_txg) { 1581 best_txg = pool_txg; 1582 memcpy(vdev_label, tmp_label, sizeof (vdev_phys_t)); 1583 } 1584 } 1585 1586 zfs_free(tmp_label, sizeof (vdev_phys_t)); 1587 1588 if (best_txg == 0) 1589 return (EIO); 1590 1591 if (vdev_label->vp_nvlist[0] != NV_ENCODE_XDR) 1592 return (EIO); 1593 1594 nvlist = (const unsigned char *) vdev_label->vp_nvlist + 4; 1595 1596 if (nvlist_find(nvlist, ZPOOL_CONFIG_VERSION, DATA_TYPE_UINT64, 1597 NULL, &val) != 0) { 1598 return (EIO); 1599 } 1600 1601 if (!SPA_VERSION_IS_SUPPORTED(val)) { 1602 printf("ZFS: unsupported ZFS version %u (should be %u)\n", 1603 (unsigned) val, (unsigned) SPA_VERSION); 1604 return (EIO); 1605 } 1606 1607 /* Check ZFS features for read */ 1608 if (nvlist_find(nvlist, ZPOOL_CONFIG_FEATURES_FOR_READ, 1609 DATA_TYPE_NVLIST, NULL, &features) == 0 && 1610 nvlist_check_features_for_read(features) != 0) { 1611 return (EIO); 1612 } 1613 1614 if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_STATE, DATA_TYPE_UINT64, 1615 NULL, &val) != 0) { 1616 return (EIO); 1617 } 1618 1619 if (val == POOL_STATE_DESTROYED) { 1620 /* We don't boot only from destroyed pools. */ 1621 return (EIO); 1622 } 1623 1624 if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_TXG, DATA_TYPE_UINT64, 1625 NULL, &pool_txg) != 0 || 1626 nvlist_find(nvlist, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64, 1627 NULL, &pool_guid) != 0 || 1628 nvlist_find(nvlist, ZPOOL_CONFIG_POOL_NAME, DATA_TYPE_STRING, 1629 NULL, &pool_name) != 0) { 1630 /* 1631 * Cache and spare devices end up here - just ignore 1632 * them. 1633 */ 1634 /*printf("ZFS: can't find pool details\n");*/ 1635 return (EIO); 1636 } 1637 1638 if (nvlist_find(nvlist, ZPOOL_CONFIG_IS_LOG, DATA_TYPE_UINT64, 1639 NULL, &val) == 0 && val != 0) { 1640 return (EIO); 1641 } 1642 1643 /* 1644 * Create the pool if this is the first time we've seen it. 1645 */ 1646 spa = spa_find_by_guid(pool_guid); 1647 if (spa == NULL) { 1648 spa = spa_create(pool_guid, pool_name); 1649 if (spa == NULL) 1650 return (ENOMEM); 1651 } 1652 if (pool_txg > spa->spa_txg) { 1653 spa->spa_txg = pool_txg; 1654 is_newer = 1; 1655 } else { 1656 is_newer = 0; 1657 } 1658 1659 /* 1660 * Get the vdev tree and create our in-core copy of it. 1661 * If we already have a vdev with this guid, this must 1662 * be some kind of alias (overlapping slices, dangerously dedicated 1663 * disks etc). 1664 */ 1665 if (nvlist_find(nvlist, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64, 1666 NULL, &guid) != 0) { 1667 return (EIO); 1668 } 1669 vdev = vdev_find(guid); 1670 if (vdev && vdev->v_phys_read) /* Has this vdev already been inited? */ 1671 return (EIO); 1672 1673 if (nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST, 1674 NULL, &vdevs)) { 1675 return (EIO); 1676 } 1677 1678 rc = vdev_init_from_nvlist(vdevs, NULL, &top_vdev, is_newer); 1679 if (rc != 0) 1680 return (rc); 1681 1682 /* 1683 * Add the toplevel vdev to the pool if its not already there. 1684 */ 1685 STAILQ_FOREACH(pool_vdev, &spa->spa_vdevs, v_childlink) 1686 if (top_vdev == pool_vdev) 1687 break; 1688 if (!pool_vdev && top_vdev) { 1689 top_vdev->spa = spa; 1690 STAILQ_INSERT_TAIL(&spa->spa_vdevs, top_vdev, v_childlink); 1691 } 1692 1693 /* 1694 * We should already have created an incomplete vdev for this 1695 * vdev. Find it and initialise it with our read proc. 1696 */ 1697 vdev = vdev_find(guid); 1698 if (vdev) { 1699 vdev->v_phys_read = _read; 1700 vdev->v_read_priv = read_priv; 1701 vdev->v_state = VDEV_STATE_HEALTHY; 1702 } else { 1703 printf("ZFS: inconsistent nvlist contents\n"); 1704 return (EIO); 1705 } 1706 1707 /* 1708 * Re-evaluate top-level vdev state. 1709 */ 1710 vdev_set_state(top_vdev); 1711 1712 /* 1713 * Ok, we are happy with the pool so far. Lets find 1714 * the best uberblock and then we can actually access 1715 * the contents of the pool. 1716 */ 1717 upbuf = zfs_alloc(VDEV_UBERBLOCK_SIZE(vdev)); 1718 up = (const struct uberblock *)upbuf; 1719 for (l = 0; l < VDEV_LABELS; l++) { 1720 for (i = 0; i < VDEV_UBERBLOCK_COUNT(vdev); i++) { 1721 off = vdev_label_offset(psize, l, 1722 VDEV_UBERBLOCK_OFFSET(vdev, i)); 1723 BP_ZERO(&bp); 1724 DVA_SET_OFFSET(&bp.blk_dva[0], off); 1725 BP_SET_LSIZE(&bp, VDEV_UBERBLOCK_SIZE(vdev)); 1726 BP_SET_PSIZE(&bp, VDEV_UBERBLOCK_SIZE(vdev)); 1727 BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_LABEL); 1728 BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF); 1729 ZIO_SET_CHECKSUM(&bp.blk_cksum, off, 0, 0, 0); 1730 1731 if (vdev_read_phys(vdev, &bp, upbuf, off, 0)) 1732 continue; 1733 1734 if (up->ub_magic != UBERBLOCK_MAGIC) 1735 continue; 1736 if (up->ub_txg < spa->spa_txg) 1737 continue; 1738 if (up->ub_txg > spa->spa_uberblock.ub_txg || 1739 (up->ub_txg == spa->spa_uberblock.ub_txg && 1740 up->ub_timestamp > 1741 spa->spa_uberblock.ub_timestamp)) { 1742 spa->spa_uberblock = *up; 1743 } 1744 } 1745 } 1746 zfs_free(upbuf, VDEV_UBERBLOCK_SIZE(vdev)); 1747 1748 vdev->spa = spa; 1749 if (spap != NULL) 1750 *spap = spa; 1751 return (0); 1752 } 1753 1754 static int 1755 ilog2(int n) 1756 { 1757 int v; 1758 1759 for (v = 0; v < 32; v++) 1760 if (n == (1 << v)) 1761 return v; 1762 return -1; 1763 } 1764 1765 static int 1766 zio_read_gang(const spa_t *spa, const blkptr_t *bp, void *buf) 1767 { 1768 blkptr_t gbh_bp; 1769 zio_gbh_phys_t zio_gb; 1770 char *pbuf; 1771 int i; 1772 1773 /* Artificial BP for gang block header. */ 1774 gbh_bp = *bp; 1775 BP_SET_PSIZE(&gbh_bp, SPA_GANGBLOCKSIZE); 1776 BP_SET_LSIZE(&gbh_bp, SPA_GANGBLOCKSIZE); 1777 BP_SET_CHECKSUM(&gbh_bp, ZIO_CHECKSUM_GANG_HEADER); 1778 BP_SET_COMPRESS(&gbh_bp, ZIO_COMPRESS_OFF); 1779 for (i = 0; i < SPA_DVAS_PER_BP; i++) 1780 DVA_SET_GANG(&gbh_bp.blk_dva[i], 0); 1781 1782 /* Read gang header block using the artificial BP. */ 1783 if (zio_read(spa, &gbh_bp, &zio_gb)) 1784 return (EIO); 1785 1786 pbuf = buf; 1787 for (i = 0; i < SPA_GBH_NBLKPTRS; i++) { 1788 blkptr_t *gbp = &zio_gb.zg_blkptr[i]; 1789 1790 if (BP_IS_HOLE(gbp)) 1791 continue; 1792 if (zio_read(spa, gbp, pbuf)) 1793 return (EIO); 1794 pbuf += BP_GET_PSIZE(gbp); 1795 } 1796 1797 if (zio_checksum_verify(spa, bp, buf)) 1798 return (EIO); 1799 return (0); 1800 } 1801 1802 static int 1803 zio_read(const spa_t *spa, const blkptr_t *bp, void *buf) 1804 { 1805 int cpfunc = BP_GET_COMPRESS(bp); 1806 uint64_t align, size; 1807 void *pbuf; 1808 int i, error; 1809 1810 /* 1811 * Process data embedded in block pointer 1812 */ 1813 if (BP_IS_EMBEDDED(bp)) { 1814 ASSERT(BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA); 1815 1816 size = BPE_GET_PSIZE(bp); 1817 ASSERT(size <= BPE_PAYLOAD_SIZE); 1818 1819 if (cpfunc != ZIO_COMPRESS_OFF) 1820 pbuf = zfs_alloc(size); 1821 else 1822 pbuf = buf; 1823 1824 decode_embedded_bp_compressed(bp, pbuf); 1825 error = 0; 1826 1827 if (cpfunc != ZIO_COMPRESS_OFF) { 1828 error = zio_decompress_data(cpfunc, pbuf, 1829 size, buf, BP_GET_LSIZE(bp)); 1830 zfs_free(pbuf, size); 1831 } 1832 if (error != 0) 1833 printf("ZFS: i/o error - unable to decompress block pointer data, error %d\n", 1834 error); 1835 return (error); 1836 } 1837 1838 error = EIO; 1839 1840 for (i = 0; i < SPA_DVAS_PER_BP; i++) { 1841 const dva_t *dva = &bp->blk_dva[i]; 1842 vdev_t *vdev; 1843 int vdevid; 1844 off_t offset; 1845 1846 if (!dva->dva_word[0] && !dva->dva_word[1]) 1847 continue; 1848 1849 vdevid = DVA_GET_VDEV(dva); 1850 offset = DVA_GET_OFFSET(dva); 1851 STAILQ_FOREACH(vdev, &spa->spa_vdevs, v_childlink) { 1852 if (vdev->v_id == vdevid) 1853 break; 1854 } 1855 if (!vdev || !vdev->v_read) 1856 continue; 1857 1858 size = BP_GET_PSIZE(bp); 1859 if (vdev->v_read == vdev_raidz_read) { 1860 align = 1ULL << vdev->v_top->v_ashift; 1861 if (P2PHASE(size, align) != 0) 1862 size = P2ROUNDUP(size, align); 1863 } 1864 if (size != BP_GET_PSIZE(bp) || cpfunc != ZIO_COMPRESS_OFF) 1865 pbuf = zfs_alloc(size); 1866 else 1867 pbuf = buf; 1868 1869 if (DVA_GET_GANG(dva)) 1870 error = zio_read_gang(spa, bp, pbuf); 1871 else 1872 error = vdev->v_read(vdev, bp, pbuf, offset, size); 1873 if (error == 0) { 1874 if (cpfunc != ZIO_COMPRESS_OFF) 1875 error = zio_decompress_data(cpfunc, pbuf, 1876 BP_GET_PSIZE(bp), buf, BP_GET_LSIZE(bp)); 1877 else if (size != BP_GET_PSIZE(bp)) 1878 bcopy(pbuf, buf, BP_GET_PSIZE(bp)); 1879 } 1880 if (buf != pbuf) 1881 zfs_free(pbuf, size); 1882 if (error == 0) 1883 break; 1884 } 1885 if (error != 0) 1886 printf("ZFS: i/o error - all block copies unavailable\n"); 1887 return (error); 1888 } 1889 1890 static int 1891 dnode_read(const spa_t *spa, const dnode_phys_t *dnode, off_t offset, void *buf, size_t buflen) 1892 { 1893 int ibshift = dnode->dn_indblkshift - SPA_BLKPTRSHIFT; 1894 int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 1895 int nlevels = dnode->dn_nlevels; 1896 int i, rc; 1897 1898 if (bsize > SPA_MAXBLOCKSIZE) { 1899 printf("ZFS: I/O error - blocks larger than %llu are not " 1900 "supported\n", SPA_MAXBLOCKSIZE); 1901 return (EIO); 1902 } 1903 1904 /* 1905 * Note: bsize may not be a power of two here so we need to do an 1906 * actual divide rather than a bitshift. 1907 */ 1908 while (buflen > 0) { 1909 uint64_t bn = offset / bsize; 1910 int boff = offset % bsize; 1911 int ibn; 1912 const blkptr_t *indbp; 1913 blkptr_t bp; 1914 1915 if (bn > dnode->dn_maxblkid) 1916 return (EIO); 1917 1918 if (dnode == dnode_cache_obj && bn == dnode_cache_bn) 1919 goto cached; 1920 1921 indbp = dnode->dn_blkptr; 1922 for (i = 0; i < nlevels; i++) { 1923 /* 1924 * Copy the bp from the indirect array so that 1925 * we can re-use the scratch buffer for multi-level 1926 * objects. 1927 */ 1928 ibn = bn >> ((nlevels - i - 1) * ibshift); 1929 ibn &= ((1 << ibshift) - 1); 1930 bp = indbp[ibn]; 1931 if (BP_IS_HOLE(&bp)) { 1932 memset(dnode_cache_buf, 0, bsize); 1933 break; 1934 } 1935 rc = zio_read(spa, &bp, dnode_cache_buf); 1936 if (rc) 1937 return (rc); 1938 indbp = (const blkptr_t *) dnode_cache_buf; 1939 } 1940 dnode_cache_obj = dnode; 1941 dnode_cache_bn = bn; 1942 cached: 1943 1944 /* 1945 * The buffer contains our data block. Copy what we 1946 * need from it and loop. 1947 */ 1948 i = bsize - boff; 1949 if (i > buflen) i = buflen; 1950 memcpy(buf, &dnode_cache_buf[boff], i); 1951 buf = ((char*) buf) + i; 1952 offset += i; 1953 buflen -= i; 1954 } 1955 1956 return (0); 1957 } 1958 1959 /* 1960 * Lookup a value in a microzap directory. Assumes that the zap 1961 * scratch buffer contains the directory contents. 1962 */ 1963 static int 1964 mzap_lookup(const dnode_phys_t *dnode, const char *name, uint64_t *value) 1965 { 1966 const mzap_phys_t *mz; 1967 const mzap_ent_phys_t *mze; 1968 size_t size; 1969 int chunks, i; 1970 1971 /* 1972 * Microzap objects use exactly one block. Read the whole 1973 * thing. 1974 */ 1975 size = dnode->dn_datablkszsec * 512; 1976 1977 mz = (const mzap_phys_t *) zap_scratch; 1978 chunks = size / MZAP_ENT_LEN - 1; 1979 1980 for (i = 0; i < chunks; i++) { 1981 mze = &mz->mz_chunk[i]; 1982 if (!strcmp(mze->mze_name, name)) { 1983 *value = mze->mze_value; 1984 return (0); 1985 } 1986 } 1987 1988 return (ENOENT); 1989 } 1990 1991 /* 1992 * Compare a name with a zap leaf entry. Return non-zero if the name 1993 * matches. 1994 */ 1995 static int 1996 fzap_name_equal(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, const char *name) 1997 { 1998 size_t namelen; 1999 const zap_leaf_chunk_t *nc; 2000 const char *p; 2001 2002 namelen = zc->l_entry.le_name_numints; 2003 2004 nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk); 2005 p = name; 2006 while (namelen > 0) { 2007 size_t len; 2008 len = namelen; 2009 if (len > ZAP_LEAF_ARRAY_BYTES) 2010 len = ZAP_LEAF_ARRAY_BYTES; 2011 if (memcmp(p, nc->l_array.la_array, len)) 2012 return (0); 2013 p += len; 2014 namelen -= len; 2015 nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next); 2016 } 2017 2018 return 1; 2019 } 2020 2021 /* 2022 * Extract a uint64_t value from a zap leaf entry. 2023 */ 2024 static uint64_t 2025 fzap_leaf_value(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc) 2026 { 2027 const zap_leaf_chunk_t *vc; 2028 int i; 2029 uint64_t value; 2030 const uint8_t *p; 2031 2032 vc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_value_chunk); 2033 for (i = 0, value = 0, p = vc->l_array.la_array; i < 8; i++) { 2034 value = (value << 8) | p[i]; 2035 } 2036 2037 return value; 2038 } 2039 2040 static void 2041 stv(int len, void *addr, uint64_t value) 2042 { 2043 switch (len) { 2044 case 1: 2045 *(uint8_t *)addr = value; 2046 return; 2047 case 2: 2048 *(uint16_t *)addr = value; 2049 return; 2050 case 4: 2051 *(uint32_t *)addr = value; 2052 return; 2053 case 8: 2054 *(uint64_t *)addr = value; 2055 return; 2056 } 2057 } 2058 2059 /* 2060 * Extract a array from a zap leaf entry. 2061 */ 2062 static void 2063 fzap_leaf_array(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, 2064 uint64_t integer_size, uint64_t num_integers, void *buf) 2065 { 2066 uint64_t array_int_len = zc->l_entry.le_value_intlen; 2067 uint64_t value = 0; 2068 uint64_t *u64 = buf; 2069 char *p = buf; 2070 int len = MIN(zc->l_entry.le_value_numints, num_integers); 2071 int chunk = zc->l_entry.le_value_chunk; 2072 int byten = 0; 2073 2074 if (integer_size == 8 && len == 1) { 2075 *u64 = fzap_leaf_value(zl, zc); 2076 return; 2077 } 2078 2079 while (len > 0) { 2080 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(zl, chunk).l_array; 2081 int i; 2082 2083 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(zl)); 2084 for (i = 0; i < ZAP_LEAF_ARRAY_BYTES && len > 0; i++) { 2085 value = (value << 8) | la->la_array[i]; 2086 byten++; 2087 if (byten == array_int_len) { 2088 stv(integer_size, p, value); 2089 byten = 0; 2090 len--; 2091 if (len == 0) 2092 return; 2093 p += integer_size; 2094 } 2095 } 2096 chunk = la->la_next; 2097 } 2098 } 2099 2100 /* 2101 * Lookup a value in a fatzap directory. Assumes that the zap scratch 2102 * buffer contains the directory header. 2103 */ 2104 static int 2105 fzap_lookup(const spa_t *spa, const dnode_phys_t *dnode, const char *name, 2106 uint64_t integer_size, uint64_t num_integers, void *value) 2107 { 2108 int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2109 zap_phys_t zh = *(zap_phys_t *) zap_scratch; 2110 fat_zap_t z; 2111 uint64_t *ptrtbl; 2112 uint64_t hash; 2113 int rc; 2114 2115 if (zh.zap_magic != ZAP_MAGIC) 2116 return (EIO); 2117 2118 z.zap_block_shift = ilog2(bsize); 2119 z.zap_phys = (zap_phys_t *) zap_scratch; 2120 2121 /* 2122 * Figure out where the pointer table is and read it in if necessary. 2123 */ 2124 if (zh.zap_ptrtbl.zt_blk) { 2125 rc = dnode_read(spa, dnode, zh.zap_ptrtbl.zt_blk * bsize, 2126 zap_scratch, bsize); 2127 if (rc) 2128 return (rc); 2129 ptrtbl = (uint64_t *) zap_scratch; 2130 } else { 2131 ptrtbl = &ZAP_EMBEDDED_PTRTBL_ENT(&z, 0); 2132 } 2133 2134 hash = zap_hash(zh.zap_salt, name); 2135 2136 zap_leaf_t zl; 2137 zl.l_bs = z.zap_block_shift; 2138 2139 off_t off = ptrtbl[hash >> (64 - zh.zap_ptrtbl.zt_shift)] << zl.l_bs; 2140 zap_leaf_chunk_t *zc; 2141 2142 rc = dnode_read(spa, dnode, off, zap_scratch, bsize); 2143 if (rc) 2144 return (rc); 2145 2146 zl.l_phys = (zap_leaf_phys_t *) zap_scratch; 2147 2148 /* 2149 * Make sure this chunk matches our hash. 2150 */ 2151 if (zl.l_phys->l_hdr.lh_prefix_len > 0 2152 && zl.l_phys->l_hdr.lh_prefix 2153 != hash >> (64 - zl.l_phys->l_hdr.lh_prefix_len)) 2154 return (ENOENT); 2155 2156 /* 2157 * Hash within the chunk to find our entry. 2158 */ 2159 int shift = (64 - ZAP_LEAF_HASH_SHIFT(&zl) - zl.l_phys->l_hdr.lh_prefix_len); 2160 int h = (hash >> shift) & ((1 << ZAP_LEAF_HASH_SHIFT(&zl)) - 1); 2161 h = zl.l_phys->l_hash[h]; 2162 if (h == 0xffff) 2163 return (ENOENT); 2164 zc = &ZAP_LEAF_CHUNK(&zl, h); 2165 while (zc->l_entry.le_hash != hash) { 2166 if (zc->l_entry.le_next == 0xffff) { 2167 zc = NULL; 2168 break; 2169 } 2170 zc = &ZAP_LEAF_CHUNK(&zl, zc->l_entry.le_next); 2171 } 2172 if (fzap_name_equal(&zl, zc, name)) { 2173 if (zc->l_entry.le_value_intlen * zc->l_entry.le_value_numints > 2174 integer_size * num_integers) 2175 return (E2BIG); 2176 fzap_leaf_array(&zl, zc, integer_size, num_integers, value); 2177 return (0); 2178 } 2179 2180 return (ENOENT); 2181 } 2182 2183 /* 2184 * Lookup a name in a zap object and return its value as a uint64_t. 2185 */ 2186 static int 2187 zap_lookup(const spa_t *spa, const dnode_phys_t *dnode, const char *name, 2188 uint64_t integer_size, uint64_t num_integers, void *value) 2189 { 2190 int rc; 2191 uint64_t zap_type; 2192 size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2193 2194 rc = dnode_read(spa, dnode, 0, zap_scratch, size); 2195 if (rc) 2196 return (rc); 2197 2198 zap_type = *(uint64_t *) zap_scratch; 2199 if (zap_type == ZBT_MICRO) 2200 return mzap_lookup(dnode, name, value); 2201 else if (zap_type == ZBT_HEADER) { 2202 return fzap_lookup(spa, dnode, name, integer_size, 2203 num_integers, value); 2204 } 2205 printf("ZFS: invalid zap_type=%d\n", (int)zap_type); 2206 return (EIO); 2207 } 2208 2209 /* 2210 * List a microzap directory. Assumes that the zap scratch buffer contains 2211 * the directory contents. 2212 */ 2213 static int 2214 mzap_list(const dnode_phys_t *dnode, int (*callback)(const char *, uint64_t)) 2215 { 2216 const mzap_phys_t *mz; 2217 const mzap_ent_phys_t *mze; 2218 size_t size; 2219 int chunks, i, rc; 2220 2221 /* 2222 * Microzap objects use exactly one block. Read the whole 2223 * thing. 2224 */ 2225 size = dnode->dn_datablkszsec * 512; 2226 mz = (const mzap_phys_t *) zap_scratch; 2227 chunks = size / MZAP_ENT_LEN - 1; 2228 2229 for (i = 0; i < chunks; i++) { 2230 mze = &mz->mz_chunk[i]; 2231 if (mze->mze_name[0]) { 2232 rc = callback(mze->mze_name, mze->mze_value); 2233 if (rc != 0) 2234 return (rc); 2235 } 2236 } 2237 2238 return (0); 2239 } 2240 2241 /* 2242 * List a fatzap directory. Assumes that the zap scratch buffer contains 2243 * the directory header. 2244 */ 2245 static int 2246 fzap_list(const spa_t *spa, const dnode_phys_t *dnode, int (*callback)(const char *, uint64_t)) 2247 { 2248 int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2249 zap_phys_t zh = *(zap_phys_t *) zap_scratch; 2250 fat_zap_t z; 2251 int i, j, rc; 2252 2253 if (zh.zap_magic != ZAP_MAGIC) 2254 return (EIO); 2255 2256 z.zap_block_shift = ilog2(bsize); 2257 z.zap_phys = (zap_phys_t *) zap_scratch; 2258 2259 /* 2260 * This assumes that the leaf blocks start at block 1. The 2261 * documentation isn't exactly clear on this. 2262 */ 2263 zap_leaf_t zl; 2264 zl.l_bs = z.zap_block_shift; 2265 for (i = 0; i < zh.zap_num_leafs; i++) { 2266 off_t off = (i + 1) << zl.l_bs; 2267 char name[256], *p; 2268 uint64_t value; 2269 2270 if (dnode_read(spa, dnode, off, zap_scratch, bsize)) 2271 return (EIO); 2272 2273 zl.l_phys = (zap_leaf_phys_t *) zap_scratch; 2274 2275 for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) { 2276 zap_leaf_chunk_t *zc, *nc; 2277 int namelen; 2278 2279 zc = &ZAP_LEAF_CHUNK(&zl, j); 2280 if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY) 2281 continue; 2282 namelen = zc->l_entry.le_name_numints; 2283 if (namelen > sizeof(name)) 2284 namelen = sizeof(name); 2285 2286 /* 2287 * Paste the name back together. 2288 */ 2289 nc = &ZAP_LEAF_CHUNK(&zl, zc->l_entry.le_name_chunk); 2290 p = name; 2291 while (namelen > 0) { 2292 int len; 2293 len = namelen; 2294 if (len > ZAP_LEAF_ARRAY_BYTES) 2295 len = ZAP_LEAF_ARRAY_BYTES; 2296 memcpy(p, nc->l_array.la_array, len); 2297 p += len; 2298 namelen -= len; 2299 nc = &ZAP_LEAF_CHUNK(&zl, nc->l_array.la_next); 2300 } 2301 2302 /* 2303 * Assume the first eight bytes of the value are 2304 * a uint64_t. 2305 */ 2306 value = fzap_leaf_value(&zl, zc); 2307 2308 //printf("%s 0x%jx\n", name, (uintmax_t)value); 2309 rc = callback((const char *)name, value); 2310 if (rc != 0) 2311 return (rc); 2312 } 2313 } 2314 2315 return (0); 2316 } 2317 2318 static int zfs_printf(const char *name, uint64_t value __unused) 2319 { 2320 2321 printf("%s\n", name); 2322 2323 return (0); 2324 } 2325 2326 /* 2327 * List a zap directory. 2328 */ 2329 static int 2330 zap_list(const spa_t *spa, const dnode_phys_t *dnode) 2331 { 2332 uint64_t zap_type; 2333 size_t size = dnode->dn_datablkszsec * 512; 2334 2335 if (dnode_read(spa, dnode, 0, zap_scratch, size)) 2336 return (EIO); 2337 2338 zap_type = *(uint64_t *) zap_scratch; 2339 if (zap_type == ZBT_MICRO) 2340 return mzap_list(dnode, zfs_printf); 2341 else 2342 return fzap_list(spa, dnode, zfs_printf); 2343 } 2344 2345 static int 2346 objset_get_dnode(const spa_t *spa, const objset_phys_t *os, uint64_t objnum, dnode_phys_t *dnode) 2347 { 2348 off_t offset; 2349 2350 offset = objnum * sizeof(dnode_phys_t); 2351 return dnode_read(spa, &os->os_meta_dnode, offset, 2352 dnode, sizeof(dnode_phys_t)); 2353 } 2354 2355 static int 2356 mzap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, char *name, uint64_t value) 2357 { 2358 const mzap_phys_t *mz; 2359 const mzap_ent_phys_t *mze; 2360 size_t size; 2361 int chunks, i; 2362 2363 /* 2364 * Microzap objects use exactly one block. Read the whole 2365 * thing. 2366 */ 2367 size = dnode->dn_datablkszsec * 512; 2368 2369 mz = (const mzap_phys_t *) zap_scratch; 2370 chunks = size / MZAP_ENT_LEN - 1; 2371 2372 for (i = 0; i < chunks; i++) { 2373 mze = &mz->mz_chunk[i]; 2374 if (value == mze->mze_value) { 2375 strcpy(name, mze->mze_name); 2376 return (0); 2377 } 2378 } 2379 2380 return (ENOENT); 2381 } 2382 2383 static void 2384 fzap_name_copy(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, char *name) 2385 { 2386 size_t namelen; 2387 const zap_leaf_chunk_t *nc; 2388 char *p; 2389 2390 namelen = zc->l_entry.le_name_numints; 2391 2392 nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk); 2393 p = name; 2394 while (namelen > 0) { 2395 size_t len; 2396 len = namelen; 2397 if (len > ZAP_LEAF_ARRAY_BYTES) 2398 len = ZAP_LEAF_ARRAY_BYTES; 2399 memcpy(p, nc->l_array.la_array, len); 2400 p += len; 2401 namelen -= len; 2402 nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next); 2403 } 2404 2405 *p = '\0'; 2406 } 2407 2408 static int 2409 fzap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, char *name, uint64_t value) 2410 { 2411 int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2412 zap_phys_t zh = *(zap_phys_t *) zap_scratch; 2413 fat_zap_t z; 2414 int i, j; 2415 2416 if (zh.zap_magic != ZAP_MAGIC) 2417 return (EIO); 2418 2419 z.zap_block_shift = ilog2(bsize); 2420 z.zap_phys = (zap_phys_t *) zap_scratch; 2421 2422 /* 2423 * This assumes that the leaf blocks start at block 1. The 2424 * documentation isn't exactly clear on this. 2425 */ 2426 zap_leaf_t zl; 2427 zl.l_bs = z.zap_block_shift; 2428 for (i = 0; i < zh.zap_num_leafs; i++) { 2429 off_t off = (i + 1) << zl.l_bs; 2430 2431 if (dnode_read(spa, dnode, off, zap_scratch, bsize)) 2432 return (EIO); 2433 2434 zl.l_phys = (zap_leaf_phys_t *) zap_scratch; 2435 2436 for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) { 2437 zap_leaf_chunk_t *zc; 2438 2439 zc = &ZAP_LEAF_CHUNK(&zl, j); 2440 if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY) 2441 continue; 2442 if (zc->l_entry.le_value_intlen != 8 || 2443 zc->l_entry.le_value_numints != 1) 2444 continue; 2445 2446 if (fzap_leaf_value(&zl, zc) == value) { 2447 fzap_name_copy(&zl, zc, name); 2448 return (0); 2449 } 2450 } 2451 } 2452 2453 return (ENOENT); 2454 } 2455 2456 static int 2457 zap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, char *name, uint64_t value) 2458 { 2459 int rc; 2460 uint64_t zap_type; 2461 size_t size = dnode->dn_datablkszsec * 512; 2462 2463 rc = dnode_read(spa, dnode, 0, zap_scratch, size); 2464 if (rc) 2465 return (rc); 2466 2467 zap_type = *(uint64_t *) zap_scratch; 2468 if (zap_type == ZBT_MICRO) 2469 return mzap_rlookup(spa, dnode, name, value); 2470 else 2471 return fzap_rlookup(spa, dnode, name, value); 2472 } 2473 2474 static int 2475 zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result) 2476 { 2477 char name[256]; 2478 char component[256]; 2479 uint64_t dir_obj, parent_obj, child_dir_zapobj; 2480 dnode_phys_t child_dir_zap, dataset, dir, parent; 2481 dsl_dir_phys_t *dd; 2482 dsl_dataset_phys_t *ds; 2483 char *p; 2484 int len; 2485 2486 p = &name[sizeof(name) - 1]; 2487 *p = '\0'; 2488 2489 if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) { 2490 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum); 2491 return (EIO); 2492 } 2493 ds = (dsl_dataset_phys_t *)&dataset.dn_bonus; 2494 dir_obj = ds->ds_dir_obj; 2495 2496 for (;;) { 2497 if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir) != 0) 2498 return (EIO); 2499 dd = (dsl_dir_phys_t *)&dir.dn_bonus; 2500 2501 /* Actual loop condition. */ 2502 parent_obj = dd->dd_parent_obj; 2503 if (parent_obj == 0) 2504 break; 2505 2506 if (objset_get_dnode(spa, &spa->spa_mos, parent_obj, &parent) != 0) 2507 return (EIO); 2508 dd = (dsl_dir_phys_t *)&parent.dn_bonus; 2509 child_dir_zapobj = dd->dd_child_dir_zapobj; 2510 if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, &child_dir_zap) != 0) 2511 return (EIO); 2512 if (zap_rlookup(spa, &child_dir_zap, component, dir_obj) != 0) 2513 return (EIO); 2514 2515 len = strlen(component); 2516 p -= len; 2517 memcpy(p, component, len); 2518 --p; 2519 *p = '/'; 2520 2521 /* Actual loop iteration. */ 2522 dir_obj = parent_obj; 2523 } 2524 2525 if (*p != '\0') 2526 ++p; 2527 strcpy(result, p); 2528 2529 return (0); 2530 } 2531 2532 static int 2533 zfs_lookup_dataset(const spa_t *spa, const char *name, uint64_t *objnum) 2534 { 2535 char element[256]; 2536 uint64_t dir_obj, child_dir_zapobj; 2537 dnode_phys_t child_dir_zap, dir; 2538 dsl_dir_phys_t *dd; 2539 const char *p, *q; 2540 2541 if (objset_get_dnode(spa, &spa->spa_mos, DMU_POOL_DIRECTORY_OBJECT, &dir)) 2542 return (EIO); 2543 if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET, sizeof (dir_obj), 2544 1, &dir_obj)) 2545 return (EIO); 2546 2547 p = name; 2548 for (;;) { 2549 if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir)) 2550 return (EIO); 2551 dd = (dsl_dir_phys_t *)&dir.dn_bonus; 2552 2553 while (*p == '/') 2554 p++; 2555 /* Actual loop condition #1. */ 2556 if (*p == '\0') 2557 break; 2558 2559 q = strchr(p, '/'); 2560 if (q) { 2561 memcpy(element, p, q - p); 2562 element[q - p] = '\0'; 2563 p = q + 1; 2564 } else { 2565 strcpy(element, p); 2566 p += strlen(p); 2567 } 2568 2569 child_dir_zapobj = dd->dd_child_dir_zapobj; 2570 if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, &child_dir_zap) != 0) 2571 return (EIO); 2572 2573 /* Actual loop condition #2. */ 2574 if (zap_lookup(spa, &child_dir_zap, element, sizeof (dir_obj), 2575 1, &dir_obj) != 0) 2576 return (ENOENT); 2577 } 2578 2579 *objnum = dd->dd_head_dataset_obj; 2580 return (0); 2581 } 2582 2583 #ifndef BOOT2 2584 static int 2585 zfs_list_dataset(const spa_t *spa, uint64_t objnum/*, int pos, char *entry*/) 2586 { 2587 uint64_t dir_obj, child_dir_zapobj; 2588 dnode_phys_t child_dir_zap, dir, dataset; 2589 dsl_dataset_phys_t *ds; 2590 dsl_dir_phys_t *dd; 2591 2592 if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) { 2593 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum); 2594 return (EIO); 2595 } 2596 ds = (dsl_dataset_phys_t *) &dataset.dn_bonus; 2597 dir_obj = ds->ds_dir_obj; 2598 2599 if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir)) { 2600 printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj); 2601 return (EIO); 2602 } 2603 dd = (dsl_dir_phys_t *)&dir.dn_bonus; 2604 2605 child_dir_zapobj = dd->dd_child_dir_zapobj; 2606 if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, &child_dir_zap) != 0) { 2607 printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj); 2608 return (EIO); 2609 } 2610 2611 return (zap_list(spa, &child_dir_zap) != 0); 2612 } 2613 2614 int 2615 zfs_callback_dataset(const spa_t *spa, uint64_t objnum, int (*callback)(const char *, uint64_t)) 2616 { 2617 uint64_t dir_obj, child_dir_zapobj, zap_type; 2618 dnode_phys_t child_dir_zap, dir, dataset; 2619 dsl_dataset_phys_t *ds; 2620 dsl_dir_phys_t *dd; 2621 int err; 2622 2623 err = objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset); 2624 if (err != 0) { 2625 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum); 2626 return (err); 2627 } 2628 ds = (dsl_dataset_phys_t *) &dataset.dn_bonus; 2629 dir_obj = ds->ds_dir_obj; 2630 2631 err = objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir); 2632 if (err != 0) { 2633 printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj); 2634 return (err); 2635 } 2636 dd = (dsl_dir_phys_t *)&dir.dn_bonus; 2637 2638 child_dir_zapobj = dd->dd_child_dir_zapobj; 2639 err = objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, &child_dir_zap); 2640 if (err != 0) { 2641 printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj); 2642 return (err); 2643 } 2644 2645 err = dnode_read(spa, &child_dir_zap, 0, zap_scratch, child_dir_zap.dn_datablkszsec * 512); 2646 if (err != 0) 2647 return (err); 2648 2649 zap_type = *(uint64_t *) zap_scratch; 2650 if (zap_type == ZBT_MICRO) 2651 return mzap_list(&child_dir_zap, callback); 2652 else 2653 return fzap_list(spa, &child_dir_zap, callback); 2654 } 2655 #endif 2656 2657 /* 2658 * Find the object set given the object number of its dataset object 2659 * and return its details in *objset 2660 */ 2661 static int 2662 zfs_mount_dataset(const spa_t *spa, uint64_t objnum, objset_phys_t *objset) 2663 { 2664 dnode_phys_t dataset; 2665 dsl_dataset_phys_t *ds; 2666 2667 if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) { 2668 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum); 2669 return (EIO); 2670 } 2671 2672 ds = (dsl_dataset_phys_t *) &dataset.dn_bonus; 2673 if (zio_read(spa, &ds->ds_bp, objset)) { 2674 printf("ZFS: can't read object set for dataset %ju\n", 2675 (uintmax_t)objnum); 2676 return (EIO); 2677 } 2678 2679 return (0); 2680 } 2681 2682 /* 2683 * Find the object set pointed to by the BOOTFS property or the root 2684 * dataset if there is none and return its details in *objset 2685 */ 2686 static int 2687 zfs_get_root(const spa_t *spa, uint64_t *objid) 2688 { 2689 dnode_phys_t dir, propdir; 2690 uint64_t props, bootfs, root; 2691 2692 *objid = 0; 2693 2694 /* 2695 * Start with the MOS directory object. 2696 */ 2697 if (objset_get_dnode(spa, &spa->spa_mos, DMU_POOL_DIRECTORY_OBJECT, &dir)) { 2698 printf("ZFS: can't read MOS object directory\n"); 2699 return (EIO); 2700 } 2701 2702 /* 2703 * Lookup the pool_props and see if we can find a bootfs. 2704 */ 2705 if (zap_lookup(spa, &dir, DMU_POOL_PROPS, sizeof (props), 1, &props) == 0 2706 && objset_get_dnode(spa, &spa->spa_mos, props, &propdir) == 0 2707 && zap_lookup(spa, &propdir, "bootfs", sizeof (bootfs), 1, &bootfs) == 0 2708 && bootfs != 0) 2709 { 2710 *objid = bootfs; 2711 return (0); 2712 } 2713 /* 2714 * Lookup the root dataset directory 2715 */ 2716 if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET, sizeof (root), 1, &root) 2717 || objset_get_dnode(spa, &spa->spa_mos, root, &dir)) { 2718 printf("ZFS: can't find root dsl_dir\n"); 2719 return (EIO); 2720 } 2721 2722 /* 2723 * Use the information from the dataset directory's bonus buffer 2724 * to find the dataset object and from that the object set itself. 2725 */ 2726 dsl_dir_phys_t *dd = (dsl_dir_phys_t *) &dir.dn_bonus; 2727 *objid = dd->dd_head_dataset_obj; 2728 return (0); 2729 } 2730 2731 static int 2732 zfs_mount(const spa_t *spa, uint64_t rootobj, struct zfsmount *mount) 2733 { 2734 2735 mount->spa = spa; 2736 2737 /* 2738 * Find the root object set if not explicitly provided 2739 */ 2740 if (rootobj == 0 && zfs_get_root(spa, &rootobj)) { 2741 printf("ZFS: can't find root filesystem\n"); 2742 return (EIO); 2743 } 2744 2745 if (zfs_mount_dataset(spa, rootobj, &mount->objset)) { 2746 printf("ZFS: can't open root filesystem\n"); 2747 return (EIO); 2748 } 2749 2750 mount->rootobj = rootobj; 2751 2752 return (0); 2753 } 2754 2755 /* 2756 * callback function for feature name checks. 2757 */ 2758 static int 2759 check_feature(const char *name, uint64_t value) 2760 { 2761 int i; 2762 2763 if (value == 0) 2764 return (0); 2765 if (name[0] == '\0') 2766 return (0); 2767 2768 for (i = 0; features_for_read[i] != NULL; i++) { 2769 if (strcmp(name, features_for_read[i]) == 0) 2770 return (0); 2771 } 2772 printf("ZFS: unsupported feature: %s\n", name); 2773 return (EIO); 2774 } 2775 2776 /* 2777 * Checks whether the MOS features that are active are supported. 2778 */ 2779 static int 2780 check_mos_features(const spa_t *spa) 2781 { 2782 dnode_phys_t dir; 2783 uint64_t objnum, zap_type; 2784 size_t size; 2785 int rc; 2786 2787 if ((rc = objset_get_dnode(spa, &spa->spa_mos, DMU_OT_OBJECT_DIRECTORY, 2788 &dir)) != 0) 2789 return (rc); 2790 if ((rc = zap_lookup(spa, &dir, DMU_POOL_FEATURES_FOR_READ, 2791 sizeof (objnum), 1, &objnum)) != 0) { 2792 /* 2793 * It is older pool without features. As we have already 2794 * tested the label, just return without raising the error. 2795 */ 2796 return (0); 2797 } 2798 2799 if ((rc = objset_get_dnode(spa, &spa->spa_mos, objnum, &dir)) != 0) 2800 return (rc); 2801 2802 if (dir.dn_type != DMU_OTN_ZAP_METADATA) 2803 return (EIO); 2804 2805 size = dir.dn_datablkszsec * 512; 2806 if (dnode_read(spa, &dir, 0, zap_scratch, size)) 2807 return (EIO); 2808 2809 zap_type = *(uint64_t *) zap_scratch; 2810 if (zap_type == ZBT_MICRO) 2811 rc = mzap_list(&dir, check_feature); 2812 else 2813 rc = fzap_list(spa, &dir, check_feature); 2814 2815 return (rc); 2816 } 2817 2818 static int 2819 load_nvlist(spa_t *spa, uint64_t obj, unsigned char **value) 2820 { 2821 dnode_phys_t dir; 2822 size_t size; 2823 int rc; 2824 unsigned char *nv; 2825 2826 *value = NULL; 2827 if ((rc = objset_get_dnode(spa, &spa->spa_mos, obj, &dir)) != 0) 2828 return (rc); 2829 if (dir.dn_type != DMU_OT_PACKED_NVLIST && 2830 dir.dn_bonustype != DMU_OT_PACKED_NVLIST_SIZE) { 2831 return (EIO); 2832 } 2833 2834 if (dir.dn_bonuslen != sizeof (uint64_t)) 2835 return (EIO); 2836 2837 size = *(uint64_t *)DN_BONUS(&dir); 2838 nv = malloc(size); 2839 if (nv == NULL) 2840 return (ENOMEM); 2841 2842 rc = dnode_read(spa, &dir, 0, nv, size); 2843 if (rc != 0) { 2844 free(nv); 2845 nv = NULL; 2846 return (rc); 2847 } 2848 *value = nv; 2849 return (rc); 2850 } 2851 2852 static int 2853 zfs_spa_init(spa_t *spa) 2854 { 2855 dnode_phys_t dir; 2856 uint64_t config_object; 2857 unsigned char *nvlist; 2858 char *type; 2859 const unsigned char *nv; 2860 int nkids, rc; 2861 2862 if (zio_read(spa, &spa->spa_uberblock.ub_rootbp, &spa->spa_mos)) { 2863 printf("ZFS: can't read MOS of pool %s\n", spa->spa_name); 2864 return (EIO); 2865 } 2866 if (spa->spa_mos.os_type != DMU_OST_META) { 2867 printf("ZFS: corrupted MOS of pool %s\n", spa->spa_name); 2868 return (EIO); 2869 } 2870 2871 if (objset_get_dnode(spa, &spa->spa_mos, DMU_POOL_DIRECTORY_OBJECT, 2872 &dir)) { 2873 printf("ZFS: failed to read pool %s directory object\n", 2874 spa->spa_name); 2875 return (EIO); 2876 } 2877 /* this is allowed to fail, older pools do not have salt */ 2878 rc = zap_lookup(spa, &dir, DMU_POOL_CHECKSUM_SALT, 1, 2879 sizeof (spa->spa_cksum_salt.zcs_bytes), 2880 spa->spa_cksum_salt.zcs_bytes); 2881 2882 rc = check_mos_features(spa); 2883 if (rc != 0) { 2884 printf("ZFS: pool %s is not supported\n", spa->spa_name); 2885 return (rc); 2886 } 2887 2888 rc = zap_lookup(spa, &dir, DMU_POOL_CONFIG, 2889 sizeof (config_object), 1, &config_object); 2890 if (rc != 0) { 2891 printf("ZFS: can not read MOS %s\n", DMU_POOL_CONFIG); 2892 return (EIO); 2893 } 2894 rc = load_nvlist(spa, config_object, &nvlist); 2895 if (rc != 0) 2896 return (rc); 2897 2898 /* Update vdevs from MOS config. */ 2899 if (nvlist_find(nvlist + 4, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST, 2900 NULL, &nv)) { 2901 rc = EIO; 2902 goto done; 2903 } 2904 2905 if (nvlist_find(nv, ZPOOL_CONFIG_TYPE, DATA_TYPE_STRING, 2906 NULL, &type)) { 2907 printf("ZFS: can't find vdev details\n"); 2908 rc = ENOENT; 2909 goto done; 2910 } 2911 if (strcmp(type, VDEV_TYPE_ROOT) != 0) { 2912 rc = ENOENT; 2913 goto done; 2914 } 2915 2916 rc = nvlist_find(nv, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY, 2917 &nkids, &nv); 2918 if (rc != 0) 2919 goto done; 2920 2921 for (int i = 0; i < nkids; i++) { 2922 vdev_t *vd, *prev, *kid = NULL; 2923 rc = vdev_init_from_nvlist(nv, NULL, &kid, 0); 2924 if (rc != 0) { 2925 printf("vdev_init_from_nvlist: %d\n", rc); 2926 break; 2927 } 2928 kid->spa = spa; 2929 prev = NULL; 2930 STAILQ_FOREACH(vd, &spa->spa_vdevs, v_childlink) { 2931 /* Already present? */ 2932 if (kid->v_id == vd->v_id) { 2933 kid = NULL; 2934 break; 2935 } 2936 if (vd->v_id > kid->v_id) { 2937 if (prev == NULL) { 2938 STAILQ_INSERT_HEAD(&spa->spa_vdevs, 2939 kid, v_childlink); 2940 } else { 2941 STAILQ_INSERT_AFTER(&spa->spa_vdevs, 2942 prev, kid, v_childlink); 2943 } 2944 kid = NULL; 2945 break; 2946 } 2947 prev = vd; 2948 } 2949 if (kid != NULL) 2950 STAILQ_INSERT_TAIL(&spa->spa_vdevs, kid, v_childlink); 2951 nv = nvlist_next(nv); 2952 } 2953 rc = 0; 2954 done: 2955 free(nvlist); 2956 return (rc); 2957 } 2958 2959 static int 2960 zfs_dnode_stat(const spa_t *spa, dnode_phys_t *dn, struct stat *sb) 2961 { 2962 2963 if (dn->dn_bonustype != DMU_OT_SA) { 2964 znode_phys_t *zp = (znode_phys_t *)dn->dn_bonus; 2965 2966 sb->st_mode = zp->zp_mode; 2967 sb->st_uid = zp->zp_uid; 2968 sb->st_gid = zp->zp_gid; 2969 sb->st_size = zp->zp_size; 2970 } else { 2971 sa_hdr_phys_t *sahdrp; 2972 int hdrsize; 2973 size_t size = 0; 2974 void *buf = NULL; 2975 2976 if (dn->dn_bonuslen != 0) 2977 sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn); 2978 else { 2979 if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0) { 2980 blkptr_t *bp = DN_SPILL_BLKPTR(dn); 2981 int error; 2982 2983 size = BP_GET_LSIZE(bp); 2984 buf = zfs_alloc(size); 2985 error = zio_read(spa, bp, buf); 2986 if (error != 0) { 2987 zfs_free(buf, size); 2988 return (error); 2989 } 2990 sahdrp = buf; 2991 } else { 2992 return (EIO); 2993 } 2994 } 2995 hdrsize = SA_HDR_SIZE(sahdrp); 2996 sb->st_mode = *(uint64_t *)((char *)sahdrp + hdrsize + 2997 SA_MODE_OFFSET); 2998 sb->st_uid = *(uint64_t *)((char *)sahdrp + hdrsize + 2999 SA_UID_OFFSET); 3000 sb->st_gid = *(uint64_t *)((char *)sahdrp + hdrsize + 3001 SA_GID_OFFSET); 3002 sb->st_size = *(uint64_t *)((char *)sahdrp + hdrsize + 3003 SA_SIZE_OFFSET); 3004 if (buf != NULL) 3005 zfs_free(buf, size); 3006 } 3007 3008 return (0); 3009 } 3010 3011 static int 3012 zfs_dnode_readlink(const spa_t *spa, dnode_phys_t *dn, char *path, size_t psize) 3013 { 3014 int rc = 0; 3015 3016 if (dn->dn_bonustype == DMU_OT_SA) { 3017 sa_hdr_phys_t *sahdrp = NULL; 3018 size_t size = 0; 3019 void *buf = NULL; 3020 int hdrsize; 3021 char *p; 3022 3023 if (dn->dn_bonuslen != 0) 3024 sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn); 3025 else { 3026 blkptr_t *bp; 3027 3028 if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) == 0) 3029 return (EIO); 3030 bp = DN_SPILL_BLKPTR(dn); 3031 3032 size = BP_GET_LSIZE(bp); 3033 buf = zfs_alloc(size); 3034 rc = zio_read(spa, bp, buf); 3035 if (rc != 0) { 3036 zfs_free(buf, size); 3037 return (rc); 3038 } 3039 sahdrp = buf; 3040 } 3041 hdrsize = SA_HDR_SIZE(sahdrp); 3042 p = (char *)((uintptr_t)sahdrp + hdrsize + SA_SYMLINK_OFFSET); 3043 memcpy(path, p, psize); 3044 if (buf != NULL) 3045 zfs_free(buf, size); 3046 return (0); 3047 } 3048 /* 3049 * Second test is purely to silence bogus compiler 3050 * warning about accessing past the end of dn_bonus. 3051 */ 3052 if (psize + sizeof(znode_phys_t) <= dn->dn_bonuslen && 3053 sizeof(znode_phys_t) <= sizeof(dn->dn_bonus)) { 3054 memcpy(path, &dn->dn_bonus[sizeof(znode_phys_t)], psize); 3055 } else { 3056 rc = dnode_read(spa, dn, 0, path, psize); 3057 } 3058 return (rc); 3059 } 3060 3061 struct obj_list { 3062 uint64_t objnum; 3063 STAILQ_ENTRY(obj_list) entry; 3064 }; 3065 3066 /* 3067 * Lookup a file and return its dnode. 3068 */ 3069 static int 3070 zfs_lookup(const struct zfsmount *mount, const char *upath, dnode_phys_t *dnode) 3071 { 3072 int rc; 3073 uint64_t objnum; 3074 const spa_t *spa; 3075 dnode_phys_t dn; 3076 const char *p, *q; 3077 char element[256]; 3078 char path[1024]; 3079 int symlinks_followed = 0; 3080 struct stat sb; 3081 struct obj_list *entry, *tentry; 3082 STAILQ_HEAD(, obj_list) on_cache = STAILQ_HEAD_INITIALIZER(on_cache); 3083 3084 spa = mount->spa; 3085 if (mount->objset.os_type != DMU_OST_ZFS) { 3086 printf("ZFS: unexpected object set type %ju\n", 3087 (uintmax_t)mount->objset.os_type); 3088 return (EIO); 3089 } 3090 3091 if ((entry = malloc(sizeof(struct obj_list))) == NULL) 3092 return (ENOMEM); 3093 3094 /* 3095 * Get the root directory dnode. 3096 */ 3097 rc = objset_get_dnode(spa, &mount->objset, MASTER_NODE_OBJ, &dn); 3098 if (rc) { 3099 free(entry); 3100 return (rc); 3101 } 3102 3103 rc = zap_lookup(spa, &dn, ZFS_ROOT_OBJ, sizeof (objnum), 1, &objnum); 3104 if (rc) { 3105 free(entry); 3106 return (rc); 3107 } 3108 entry->objnum = objnum; 3109 STAILQ_INSERT_HEAD(&on_cache, entry, entry); 3110 3111 rc = objset_get_dnode(spa, &mount->objset, objnum, &dn); 3112 if (rc != 0) 3113 goto done; 3114 3115 p = upath; 3116 while (p && *p) { 3117 rc = objset_get_dnode(spa, &mount->objset, objnum, &dn); 3118 if (rc != 0) 3119 goto done; 3120 3121 while (*p == '/') 3122 p++; 3123 if (*p == '\0') 3124 break; 3125 q = p; 3126 while (*q != '\0' && *q != '/') 3127 q++; 3128 3129 /* skip dot */ 3130 if (p + 1 == q && p[0] == '.') { 3131 p++; 3132 continue; 3133 } 3134 /* double dot */ 3135 if (p + 2 == q && p[0] == '.' && p[1] == '.') { 3136 p += 2; 3137 if (STAILQ_FIRST(&on_cache) == 3138 STAILQ_LAST(&on_cache, obj_list, entry)) { 3139 rc = ENOENT; 3140 goto done; 3141 } 3142 entry = STAILQ_FIRST(&on_cache); 3143 STAILQ_REMOVE_HEAD(&on_cache, entry); 3144 free(entry); 3145 objnum = (STAILQ_FIRST(&on_cache))->objnum; 3146 continue; 3147 } 3148 if (q - p + 1 > sizeof(element)) { 3149 rc = ENAMETOOLONG; 3150 goto done; 3151 } 3152 memcpy(element, p, q - p); 3153 element[q - p] = 0; 3154 p = q; 3155 3156 if ((rc = zfs_dnode_stat(spa, &dn, &sb)) != 0) 3157 goto done; 3158 if (!S_ISDIR(sb.st_mode)) { 3159 rc = ENOTDIR; 3160 goto done; 3161 } 3162 3163 rc = zap_lookup(spa, &dn, element, sizeof (objnum), 1, &objnum); 3164 if (rc) 3165 goto done; 3166 objnum = ZFS_DIRENT_OBJ(objnum); 3167 3168 if ((entry = malloc(sizeof(struct obj_list))) == NULL) { 3169 rc = ENOMEM; 3170 goto done; 3171 } 3172 entry->objnum = objnum; 3173 STAILQ_INSERT_HEAD(&on_cache, entry, entry); 3174 rc = objset_get_dnode(spa, &mount->objset, objnum, &dn); 3175 if (rc) 3176 goto done; 3177 3178 /* 3179 * Check for symlink. 3180 */ 3181 rc = zfs_dnode_stat(spa, &dn, &sb); 3182 if (rc) 3183 goto done; 3184 if (S_ISLNK(sb.st_mode)) { 3185 if (symlinks_followed > 10) { 3186 rc = EMLINK; 3187 goto done; 3188 } 3189 symlinks_followed++; 3190 3191 /* 3192 * Read the link value and copy the tail of our 3193 * current path onto the end. 3194 */ 3195 if (sb.st_size + strlen(p) + 1 > sizeof(path)) { 3196 rc = ENAMETOOLONG; 3197 goto done; 3198 } 3199 strcpy(&path[sb.st_size], p); 3200 3201 rc = zfs_dnode_readlink(spa, &dn, path, sb.st_size); 3202 if (rc != 0) 3203 goto done; 3204 3205 /* 3206 * Restart with the new path, starting either at 3207 * the root or at the parent depending whether or 3208 * not the link is relative. 3209 */ 3210 p = path; 3211 if (*p == '/') { 3212 while (STAILQ_FIRST(&on_cache) != 3213 STAILQ_LAST(&on_cache, obj_list, entry)) { 3214 entry = STAILQ_FIRST(&on_cache); 3215 STAILQ_REMOVE_HEAD(&on_cache, entry); 3216 free(entry); 3217 } 3218 } else { 3219 entry = STAILQ_FIRST(&on_cache); 3220 STAILQ_REMOVE_HEAD(&on_cache, entry); 3221 free(entry); 3222 } 3223 objnum = (STAILQ_FIRST(&on_cache))->objnum; 3224 } 3225 } 3226 3227 *dnode = dn; 3228 done: 3229 STAILQ_FOREACH_SAFE(entry, &on_cache, entry, tentry) 3230 free(entry); 3231 return (rc); 3232 } 3233