1 /*- 2 * Copyright (c) 2007 Doug Rabson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 /* 31 * Stand-alone ZFS file reader. 32 */ 33 34 #include <sys/endian.h> 35 #include <sys/stat.h> 36 #include <sys/stdint.h> 37 #include <sys/list.h> 38 #include <machine/_inttypes.h> 39 40 #include "zfsimpl.h" 41 #include "zfssubr.c" 42 43 44 struct zfsmount { 45 const spa_t *spa; 46 objset_phys_t objset; 47 uint64_t rootobj; 48 }; 49 static struct zfsmount zfsmount __unused; 50 51 /* 52 * The indirect_child_t represents the vdev that we will read from, when we 53 * need to read all copies of the data (e.g. for scrub or reconstruction). 54 * For plain (non-mirror) top-level vdevs (i.e. is_vdev is not a mirror), 55 * ic_vdev is the same as is_vdev. However, for mirror top-level vdevs, 56 * ic_vdev is a child of the mirror. 57 */ 58 typedef struct indirect_child { 59 void *ic_data; 60 vdev_t *ic_vdev; 61 } indirect_child_t; 62 63 /* 64 * The indirect_split_t represents one mapped segment of an i/o to the 65 * indirect vdev. For non-split (contiguously-mapped) blocks, there will be 66 * only one indirect_split_t, with is_split_offset==0 and is_size==io_size. 67 * For split blocks, there will be several of these. 68 */ 69 typedef struct indirect_split { 70 list_node_t is_node; /* link on iv_splits */ 71 72 /* 73 * is_split_offset is the offset into the i/o. 74 * This is the sum of the previous splits' is_size's. 75 */ 76 uint64_t is_split_offset; 77 78 vdev_t *is_vdev; /* top-level vdev */ 79 uint64_t is_target_offset; /* offset on is_vdev */ 80 uint64_t is_size; 81 int is_children; /* number of entries in is_child[] */ 82 83 /* 84 * is_good_child is the child that we are currently using to 85 * attempt reconstruction. 86 */ 87 int is_good_child; 88 89 indirect_child_t is_child[1]; /* variable-length */ 90 } indirect_split_t; 91 92 /* 93 * The indirect_vsd_t is associated with each i/o to the indirect vdev. 94 * It is the "Vdev-Specific Data" in the zio_t's io_vsd. 95 */ 96 typedef struct indirect_vsd { 97 boolean_t iv_split_block; 98 boolean_t iv_reconstruct; 99 100 list_t iv_splits; /* list of indirect_split_t's */ 101 } indirect_vsd_t; 102 103 /* 104 * List of all vdevs, chained through v_alllink. 105 */ 106 static vdev_list_t zfs_vdevs; 107 108 /* 109 * List of ZFS features supported for read 110 */ 111 static const char *features_for_read[] = { 112 "org.illumos:lz4_compress", 113 "com.delphix:hole_birth", 114 "com.delphix:extensible_dataset", 115 "com.delphix:embedded_data", 116 "org.open-zfs:large_blocks", 117 "org.illumos:sha512", 118 "org.illumos:skein", 119 "org.zfsonlinux:large_dnode", 120 "com.joyent:multi_vdev_crash_dump", 121 "com.delphix:spacemap_histogram", 122 "com.delphix:zpool_checkpoint", 123 "com.delphix:spacemap_v2", 124 "com.datto:encryption", 125 "org.zfsonlinux:allocation_classes", 126 "com.datto:resilver_defer", 127 "com.delphix:device_removal", 128 "com.delphix:obsolete_counts", 129 "com.intel:allocation_classes", 130 NULL 131 }; 132 133 /* 134 * List of all pools, chained through spa_link. 135 */ 136 static spa_list_t zfs_pools; 137 138 static const dnode_phys_t *dnode_cache_obj; 139 static uint64_t dnode_cache_bn; 140 static char *dnode_cache_buf; 141 static char *zfs_temp_buf, *zfs_temp_end, *zfs_temp_ptr; 142 143 #define TEMP_SIZE (1024 * 1024) 144 145 static int zio_read(const spa_t *spa, const blkptr_t *bp, void *buf); 146 static int zfs_get_root(const spa_t *spa, uint64_t *objid); 147 static int zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result); 148 static int zap_lookup(const spa_t *spa, const dnode_phys_t *dnode, 149 const char *name, uint64_t integer_size, uint64_t num_integers, 150 void *value); 151 static int objset_get_dnode(const spa_t *, const objset_phys_t *, uint64_t, 152 dnode_phys_t *); 153 static int dnode_read(const spa_t *, const dnode_phys_t *, off_t, void *, 154 size_t); 155 static int vdev_indirect_read(vdev_t *, const blkptr_t *, void *, off_t, 156 size_t); 157 static int vdev_mirror_read(vdev_t *, const blkptr_t *, void *, off_t, size_t); 158 vdev_indirect_mapping_t *vdev_indirect_mapping_open(spa_t *, objset_phys_t *, 159 uint64_t); 160 vdev_indirect_mapping_entry_phys_t * 161 vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *, uint64_t, 162 uint64_t, uint64_t *); 163 164 static void 165 zfs_init(void) 166 { 167 STAILQ_INIT(&zfs_vdevs); 168 STAILQ_INIT(&zfs_pools); 169 170 zfs_temp_buf = malloc(TEMP_SIZE); 171 zfs_temp_end = zfs_temp_buf + TEMP_SIZE; 172 zfs_temp_ptr = zfs_temp_buf; 173 dnode_cache_buf = malloc(SPA_MAXBLOCKSIZE); 174 175 zfs_init_crc(); 176 } 177 178 static void * 179 zfs_alloc(size_t size) 180 { 181 char *ptr; 182 183 if (zfs_temp_ptr + size > zfs_temp_end) { 184 panic("ZFS: out of temporary buffer space"); 185 } 186 ptr = zfs_temp_ptr; 187 zfs_temp_ptr += size; 188 189 return (ptr); 190 } 191 192 static void 193 zfs_free(void *ptr, size_t size) 194 { 195 196 zfs_temp_ptr -= size; 197 if (zfs_temp_ptr != ptr) { 198 panic("ZFS: zfs_alloc()/zfs_free() mismatch"); 199 } 200 } 201 202 static int 203 xdr_int(const unsigned char **xdr, int *ip) 204 { 205 *ip = be32dec(*xdr); 206 (*xdr) += 4; 207 return (0); 208 } 209 210 static int 211 xdr_u_int(const unsigned char **xdr, u_int *ip) 212 { 213 *ip = be32dec(*xdr); 214 (*xdr) += 4; 215 return (0); 216 } 217 218 static int 219 xdr_uint64_t(const unsigned char **xdr, uint64_t *lp) 220 { 221 u_int hi, lo; 222 223 xdr_u_int(xdr, &hi); 224 xdr_u_int(xdr, &lo); 225 *lp = (((uint64_t)hi) << 32) | lo; 226 return (0); 227 } 228 229 static int 230 nvlist_find(const unsigned char *nvlist, const char *name, int type, 231 int *elementsp, void *valuep) 232 { 233 const unsigned char *p, *pair; 234 int junk; 235 int encoded_size, decoded_size; 236 237 p = nvlist; 238 xdr_int(&p, &junk); 239 xdr_int(&p, &junk); 240 241 pair = p; 242 xdr_int(&p, &encoded_size); 243 xdr_int(&p, &decoded_size); 244 while (encoded_size && decoded_size) { 245 int namelen, pairtype, elements; 246 const char *pairname; 247 248 xdr_int(&p, &namelen); 249 pairname = (const char *)p; 250 p += roundup(namelen, 4); 251 xdr_int(&p, &pairtype); 252 253 if (memcmp(name, pairname, namelen) == 0 && type == pairtype) { 254 xdr_int(&p, &elements); 255 if (elementsp) 256 *elementsp = elements; 257 if (type == DATA_TYPE_UINT64) { 258 xdr_uint64_t(&p, (uint64_t *)valuep); 259 return (0); 260 } else if (type == DATA_TYPE_STRING) { 261 int len; 262 xdr_int(&p, &len); 263 (*(const char **)valuep) = (const char *)p; 264 return (0); 265 } else if (type == DATA_TYPE_NVLIST || 266 type == DATA_TYPE_NVLIST_ARRAY) { 267 (*(const unsigned char **)valuep) = 268 (const unsigned char *)p; 269 return (0); 270 } else { 271 return (EIO); 272 } 273 } else { 274 /* 275 * Not the pair we are looking for, skip to the 276 * next one. 277 */ 278 p = pair + encoded_size; 279 } 280 281 pair = p; 282 xdr_int(&p, &encoded_size); 283 xdr_int(&p, &decoded_size); 284 } 285 286 return (EIO); 287 } 288 289 static int 290 nvlist_check_features_for_read(const unsigned char *nvlist) 291 { 292 const unsigned char *p, *pair; 293 int junk; 294 int encoded_size, decoded_size; 295 int rc; 296 297 rc = 0; 298 299 p = nvlist; 300 xdr_int(&p, &junk); 301 xdr_int(&p, &junk); 302 303 pair = p; 304 xdr_int(&p, &encoded_size); 305 xdr_int(&p, &decoded_size); 306 while (encoded_size && decoded_size) { 307 int namelen, pairtype; 308 const char *pairname; 309 int i, found; 310 311 found = 0; 312 313 xdr_int(&p, &namelen); 314 pairname = (const char *)p; 315 p += roundup(namelen, 4); 316 xdr_int(&p, &pairtype); 317 318 for (i = 0; features_for_read[i] != NULL; i++) { 319 if (memcmp(pairname, features_for_read[i], 320 namelen) == 0) { 321 found = 1; 322 break; 323 } 324 } 325 326 if (!found) { 327 printf("ZFS: unsupported feature: %s\n", pairname); 328 rc = EIO; 329 } 330 331 p = pair + encoded_size; 332 333 pair = p; 334 xdr_int(&p, &encoded_size); 335 xdr_int(&p, &decoded_size); 336 } 337 338 return (rc); 339 } 340 341 /* 342 * Return the next nvlist in an nvlist array. 343 */ 344 static const unsigned char * 345 nvlist_next(const unsigned char *nvlist) 346 { 347 const unsigned char *p, *pair; 348 int junk; 349 int encoded_size, decoded_size; 350 351 p = nvlist; 352 xdr_int(&p, &junk); 353 xdr_int(&p, &junk); 354 355 pair = p; 356 xdr_int(&p, &encoded_size); 357 xdr_int(&p, &decoded_size); 358 while (encoded_size && decoded_size) { 359 p = pair + encoded_size; 360 361 pair = p; 362 xdr_int(&p, &encoded_size); 363 xdr_int(&p, &decoded_size); 364 } 365 366 return (p); 367 } 368 369 #ifdef TEST 370 371 static const unsigned char * 372 nvlist_print(const unsigned char *nvlist, unsigned int indent) 373 { 374 static const char *typenames[] = { 375 "DATA_TYPE_UNKNOWN", 376 "DATA_TYPE_BOOLEAN", 377 "DATA_TYPE_BYTE", 378 "DATA_TYPE_INT16", 379 "DATA_TYPE_UINT16", 380 "DATA_TYPE_INT32", 381 "DATA_TYPE_UINT32", 382 "DATA_TYPE_INT64", 383 "DATA_TYPE_UINT64", 384 "DATA_TYPE_STRING", 385 "DATA_TYPE_BYTE_ARRAY", 386 "DATA_TYPE_INT16_ARRAY", 387 "DATA_TYPE_UINT16_ARRAY", 388 "DATA_TYPE_INT32_ARRAY", 389 "DATA_TYPE_UINT32_ARRAY", 390 "DATA_TYPE_INT64_ARRAY", 391 "DATA_TYPE_UINT64_ARRAY", 392 "DATA_TYPE_STRING_ARRAY", 393 "DATA_TYPE_HRTIME", 394 "DATA_TYPE_NVLIST", 395 "DATA_TYPE_NVLIST_ARRAY", 396 "DATA_TYPE_BOOLEAN_VALUE", 397 "DATA_TYPE_INT8", 398 "DATA_TYPE_UINT8", 399 "DATA_TYPE_BOOLEAN_ARRAY", 400 "DATA_TYPE_INT8_ARRAY", 401 "DATA_TYPE_UINT8_ARRAY" 402 }; 403 404 unsigned int i, j; 405 const unsigned char *p, *pair; 406 int junk; 407 int encoded_size, decoded_size; 408 409 p = nvlist; 410 xdr_int(&p, &junk); 411 xdr_int(&p, &junk); 412 413 pair = p; 414 xdr_int(&p, &encoded_size); 415 xdr_int(&p, &decoded_size); 416 while (encoded_size && decoded_size) { 417 int namelen, pairtype, elements; 418 const char *pairname; 419 420 xdr_int(&p, &namelen); 421 pairname = (const char *)p; 422 p += roundup(namelen, 4); 423 xdr_int(&p, &pairtype); 424 425 for (i = 0; i < indent; i++) 426 printf(" "); 427 printf("%s %s", typenames[pairtype], pairname); 428 429 xdr_int(&p, &elements); 430 switch (pairtype) { 431 case DATA_TYPE_UINT64: { 432 uint64_t val; 433 xdr_uint64_t(&p, &val); 434 printf(" = 0x%jx\n", (uintmax_t)val); 435 break; 436 } 437 438 case DATA_TYPE_STRING: { 439 int len; 440 xdr_int(&p, &len); 441 printf(" = \"%s\"\n", p); 442 break; 443 } 444 445 case DATA_TYPE_NVLIST: 446 printf("\n"); 447 nvlist_print(p, indent + 1); 448 break; 449 450 case DATA_TYPE_NVLIST_ARRAY: 451 for (j = 0; j < elements; j++) { 452 printf("[%d]\n", j); 453 p = nvlist_print(p, indent + 1); 454 if (j != elements - 1) { 455 for (i = 0; i < indent; i++) 456 printf(" "); 457 printf("%s %s", typenames[pairtype], 458 pairname); 459 } 460 } 461 break; 462 463 default: 464 printf("\n"); 465 } 466 467 p = pair + encoded_size; 468 469 pair = p; 470 xdr_int(&p, &encoded_size); 471 xdr_int(&p, &decoded_size); 472 } 473 474 return (p); 475 } 476 477 #endif 478 479 static int 480 vdev_read_phys(vdev_t *vdev, const blkptr_t *bp, void *buf, 481 off_t offset, size_t size) 482 { 483 size_t psize; 484 int rc; 485 486 if (!vdev->v_phys_read) 487 return (EIO); 488 489 if (bp) { 490 psize = BP_GET_PSIZE(bp); 491 } else { 492 psize = size; 493 } 494 495 rc = vdev->v_phys_read(vdev, vdev->v_read_priv, offset, buf, psize); 496 if (rc == 0) { 497 if (bp != NULL) 498 rc = zio_checksum_verify(vdev->v_spa, bp, buf); 499 } 500 501 return (rc); 502 } 503 504 typedef struct remap_segment { 505 vdev_t *rs_vd; 506 uint64_t rs_offset; 507 uint64_t rs_asize; 508 uint64_t rs_split_offset; 509 list_node_t rs_node; 510 } remap_segment_t; 511 512 static remap_segment_t * 513 rs_alloc(vdev_t *vd, uint64_t offset, uint64_t asize, uint64_t split_offset) 514 { 515 remap_segment_t *rs = malloc(sizeof (remap_segment_t)); 516 517 if (rs != NULL) { 518 rs->rs_vd = vd; 519 rs->rs_offset = offset; 520 rs->rs_asize = asize; 521 rs->rs_split_offset = split_offset; 522 } 523 524 return (rs); 525 } 526 527 vdev_indirect_mapping_t * 528 vdev_indirect_mapping_open(spa_t *spa, objset_phys_t *os, 529 uint64_t mapping_object) 530 { 531 vdev_indirect_mapping_t *vim; 532 vdev_indirect_mapping_phys_t *vim_phys; 533 int rc; 534 535 vim = calloc(1, sizeof (*vim)); 536 if (vim == NULL) 537 return (NULL); 538 539 vim->vim_dn = calloc(1, sizeof (*vim->vim_dn)); 540 if (vim->vim_dn == NULL) { 541 free(vim); 542 return (NULL); 543 } 544 545 rc = objset_get_dnode(spa, os, mapping_object, vim->vim_dn); 546 if (rc != 0) { 547 free(vim->vim_dn); 548 free(vim); 549 return (NULL); 550 } 551 552 vim->vim_spa = spa; 553 vim->vim_phys = malloc(sizeof (*vim->vim_phys)); 554 if (vim->vim_phys == NULL) { 555 free(vim->vim_dn); 556 free(vim); 557 return (NULL); 558 } 559 560 vim_phys = (vdev_indirect_mapping_phys_t *)DN_BONUS(vim->vim_dn); 561 *vim->vim_phys = *vim_phys; 562 563 vim->vim_objset = os; 564 vim->vim_object = mapping_object; 565 vim->vim_entries = NULL; 566 567 vim->vim_havecounts = 568 (vim->vim_dn->dn_bonuslen > VDEV_INDIRECT_MAPPING_SIZE_V0); 569 570 return (vim); 571 } 572 573 /* 574 * Compare an offset with an indirect mapping entry; there are three 575 * possible scenarios: 576 * 577 * 1. The offset is "less than" the mapping entry; meaning the 578 * offset is less than the source offset of the mapping entry. In 579 * this case, there is no overlap between the offset and the 580 * mapping entry and -1 will be returned. 581 * 582 * 2. The offset is "greater than" the mapping entry; meaning the 583 * offset is greater than the mapping entry's source offset plus 584 * the entry's size. In this case, there is no overlap between 585 * the offset and the mapping entry and 1 will be returned. 586 * 587 * NOTE: If the offset is actually equal to the entry's offset 588 * plus size, this is considered to be "greater" than the entry, 589 * and this case applies (i.e. 1 will be returned). Thus, the 590 * entry's "range" can be considered to be inclusive at its 591 * start, but exclusive at its end: e.g. [src, src + size). 592 * 593 * 3. The last case to consider is if the offset actually falls 594 * within the mapping entry's range. If this is the case, the 595 * offset is considered to be "equal to" the mapping entry and 596 * 0 will be returned. 597 * 598 * NOTE: If the offset is equal to the entry's source offset, 599 * this case applies and 0 will be returned. If the offset is 600 * equal to the entry's source plus its size, this case does 601 * *not* apply (see "NOTE" above for scenario 2), and 1 will be 602 * returned. 603 */ 604 static int 605 dva_mapping_overlap_compare(const void *v_key, const void *v_array_elem) 606 { 607 const uint64_t *key = v_key; 608 const vdev_indirect_mapping_entry_phys_t *array_elem = 609 v_array_elem; 610 uint64_t src_offset = DVA_MAPPING_GET_SRC_OFFSET(array_elem); 611 612 if (*key < src_offset) { 613 return (-1); 614 } else if (*key < src_offset + DVA_GET_ASIZE(&array_elem->vimep_dst)) { 615 return (0); 616 } else { 617 return (1); 618 } 619 } 620 621 /* 622 * Return array entry. 623 */ 624 static vdev_indirect_mapping_entry_phys_t * 625 vdev_indirect_mapping_entry(vdev_indirect_mapping_t *vim, uint64_t index) 626 { 627 uint64_t size; 628 off_t offset = 0; 629 int rc; 630 631 if (vim->vim_phys->vimp_num_entries == 0) 632 return (NULL); 633 634 if (vim->vim_entries == NULL) { 635 uint64_t bsize; 636 637 bsize = vim->vim_dn->dn_datablkszsec << SPA_MINBLOCKSHIFT; 638 size = vim->vim_phys->vimp_num_entries * 639 sizeof (*vim->vim_entries); 640 if (size > bsize) { 641 size = bsize / sizeof (*vim->vim_entries); 642 size *= sizeof (*vim->vim_entries); 643 } 644 vim->vim_entries = malloc(size); 645 if (vim->vim_entries == NULL) 646 return (NULL); 647 vim->vim_num_entries = size / sizeof (*vim->vim_entries); 648 offset = index * sizeof (*vim->vim_entries); 649 } 650 651 /* We have data in vim_entries */ 652 if (offset == 0) { 653 if (index >= vim->vim_entry_offset && 654 index <= vim->vim_entry_offset + vim->vim_num_entries) { 655 index -= vim->vim_entry_offset; 656 return (&vim->vim_entries[index]); 657 } 658 offset = index * sizeof (*vim->vim_entries); 659 } 660 661 vim->vim_entry_offset = index; 662 size = vim->vim_num_entries * sizeof (*vim->vim_entries); 663 rc = dnode_read(vim->vim_spa, vim->vim_dn, offset, vim->vim_entries, 664 size); 665 if (rc != 0) { 666 /* Read error, invalidate vim_entries. */ 667 free(vim->vim_entries); 668 vim->vim_entries = NULL; 669 return (NULL); 670 } 671 index -= vim->vim_entry_offset; 672 return (&vim->vim_entries[index]); 673 } 674 675 /* 676 * Returns the mapping entry for the given offset. 677 * 678 * It's possible that the given offset will not be in the mapping table 679 * (i.e. no mapping entries contain this offset), in which case, the 680 * return value value depends on the "next_if_missing" parameter. 681 * 682 * If the offset is not found in the table and "next_if_missing" is 683 * B_FALSE, then NULL will always be returned. The behavior is intended 684 * to allow consumers to get the entry corresponding to the offset 685 * parameter, iff the offset overlaps with an entry in the table. 686 * 687 * If the offset is not found in the table and "next_if_missing" is 688 * B_TRUE, then the entry nearest to the given offset will be returned, 689 * such that the entry's source offset is greater than the offset 690 * passed in (i.e. the "next" mapping entry in the table is returned, if 691 * the offset is missing from the table). If there are no entries whose 692 * source offset is greater than the passed in offset, NULL is returned. 693 */ 694 static vdev_indirect_mapping_entry_phys_t * 695 vdev_indirect_mapping_entry_for_offset(vdev_indirect_mapping_t *vim, 696 uint64_t offset) 697 { 698 ASSERT(vim->vim_phys->vimp_num_entries > 0); 699 700 vdev_indirect_mapping_entry_phys_t *entry; 701 702 uint64_t last = vim->vim_phys->vimp_num_entries - 1; 703 uint64_t base = 0; 704 705 /* 706 * We don't define these inside of the while loop because we use 707 * their value in the case that offset isn't in the mapping. 708 */ 709 uint64_t mid; 710 int result; 711 712 while (last >= base) { 713 mid = base + ((last - base) >> 1); 714 715 entry = vdev_indirect_mapping_entry(vim, mid); 716 if (entry == NULL) 717 break; 718 result = dva_mapping_overlap_compare(&offset, entry); 719 720 if (result == 0) { 721 break; 722 } else if (result < 0) { 723 last = mid - 1; 724 } else { 725 base = mid + 1; 726 } 727 } 728 return (entry); 729 } 730 731 /* 732 * Given an indirect vdev and an extent on that vdev, it duplicates the 733 * physical entries of the indirect mapping that correspond to the extent 734 * to a new array and returns a pointer to it. In addition, copied_entries 735 * is populated with the number of mapping entries that were duplicated. 736 * 737 * Finally, since we are doing an allocation, it is up to the caller to 738 * free the array allocated in this function. 739 */ 740 vdev_indirect_mapping_entry_phys_t * 741 vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *vd, uint64_t offset, 742 uint64_t asize, uint64_t *copied_entries) 743 { 744 vdev_indirect_mapping_entry_phys_t *duplicate_mappings = NULL; 745 vdev_indirect_mapping_t *vim = vd->v_mapping; 746 uint64_t entries = 0; 747 748 vdev_indirect_mapping_entry_phys_t *first_mapping = 749 vdev_indirect_mapping_entry_for_offset(vim, offset); 750 ASSERT3P(first_mapping, !=, NULL); 751 752 vdev_indirect_mapping_entry_phys_t *m = first_mapping; 753 while (asize > 0) { 754 uint64_t size = DVA_GET_ASIZE(&m->vimep_dst); 755 uint64_t inner_offset = offset - DVA_MAPPING_GET_SRC_OFFSET(m); 756 uint64_t inner_size = MIN(asize, size - inner_offset); 757 758 offset += inner_size; 759 asize -= inner_size; 760 entries++; 761 m++; 762 } 763 764 size_t copy_length = entries * sizeof (*first_mapping); 765 duplicate_mappings = malloc(copy_length); 766 if (duplicate_mappings != NULL) 767 bcopy(first_mapping, duplicate_mappings, copy_length); 768 else 769 entries = 0; 770 771 *copied_entries = entries; 772 773 return (duplicate_mappings); 774 } 775 776 static vdev_t * 777 vdev_lookup_top(spa_t *spa, uint64_t vdev) 778 { 779 vdev_t *rvd; 780 vdev_list_t *vlist; 781 782 vlist = &spa->spa_root_vdev->v_children; 783 STAILQ_FOREACH(rvd, vlist, v_childlink) 784 if (rvd->v_id == vdev) 785 break; 786 787 return (rvd); 788 } 789 790 /* 791 * This is a callback for vdev_indirect_remap() which allocates an 792 * indirect_split_t for each split segment and adds it to iv_splits. 793 */ 794 static void 795 vdev_indirect_gather_splits(uint64_t split_offset, vdev_t *vd, uint64_t offset, 796 uint64_t size, void *arg) 797 { 798 int n = 1; 799 zio_t *zio = arg; 800 indirect_vsd_t *iv = zio->io_vsd; 801 802 if (vd->v_read == vdev_indirect_read) 803 return; 804 805 if (vd->v_read == vdev_mirror_read) 806 n = vd->v_nchildren; 807 808 indirect_split_t *is = 809 malloc(offsetof(indirect_split_t, is_child[n])); 810 if (is == NULL) { 811 zio->io_error = ENOMEM; 812 return; 813 } 814 bzero(is, offsetof(indirect_split_t, is_child[n])); 815 816 is->is_children = n; 817 is->is_size = size; 818 is->is_split_offset = split_offset; 819 is->is_target_offset = offset; 820 is->is_vdev = vd; 821 822 /* 823 * Note that we only consider multiple copies of the data for 824 * *mirror* vdevs. We don't for "replacing" or "spare" vdevs, even 825 * though they use the same ops as mirror, because there's only one 826 * "good" copy under the replacing/spare. 827 */ 828 if (vd->v_read == vdev_mirror_read) { 829 int i = 0; 830 vdev_t *kid; 831 832 STAILQ_FOREACH(kid, &vd->v_children, v_childlink) { 833 is->is_child[i++].ic_vdev = kid; 834 } 835 } else { 836 is->is_child[0].ic_vdev = vd; 837 } 838 839 list_insert_tail(&iv->iv_splits, is); 840 } 841 842 static void 843 vdev_indirect_remap(vdev_t *vd, uint64_t offset, uint64_t asize, void *arg) 844 { 845 list_t stack; 846 spa_t *spa = vd->v_spa; 847 zio_t *zio = arg; 848 remap_segment_t *rs; 849 850 list_create(&stack, sizeof (remap_segment_t), 851 offsetof(remap_segment_t, rs_node)); 852 853 rs = rs_alloc(vd, offset, asize, 0); 854 if (rs == NULL) { 855 printf("vdev_indirect_remap: out of memory.\n"); 856 zio->io_error = ENOMEM; 857 } 858 for (; rs != NULL; rs = list_remove_head(&stack)) { 859 vdev_t *v = rs->rs_vd; 860 uint64_t num_entries = 0; 861 /* vdev_indirect_mapping_t *vim = v->v_mapping; */ 862 vdev_indirect_mapping_entry_phys_t *mapping = 863 vdev_indirect_mapping_duplicate_adjacent_entries(v, 864 rs->rs_offset, rs->rs_asize, &num_entries); 865 866 if (num_entries == 0) 867 zio->io_error = ENOMEM; 868 869 for (uint64_t i = 0; i < num_entries; i++) { 870 vdev_indirect_mapping_entry_phys_t *m = &mapping[i]; 871 uint64_t size = DVA_GET_ASIZE(&m->vimep_dst); 872 uint64_t dst_offset = DVA_GET_OFFSET(&m->vimep_dst); 873 uint64_t dst_vdev = DVA_GET_VDEV(&m->vimep_dst); 874 uint64_t inner_offset = rs->rs_offset - 875 DVA_MAPPING_GET_SRC_OFFSET(m); 876 uint64_t inner_size = 877 MIN(rs->rs_asize, size - inner_offset); 878 vdev_t *dst_v = vdev_lookup_top(spa, dst_vdev); 879 880 if (dst_v->v_read == vdev_indirect_read) { 881 remap_segment_t *o; 882 883 o = rs_alloc(dst_v, dst_offset + inner_offset, 884 inner_size, rs->rs_split_offset); 885 if (o == NULL) { 886 printf("vdev_indirect_remap: " 887 "out of memory.\n"); 888 zio->io_error = ENOMEM; 889 break; 890 } 891 892 list_insert_head(&stack, o); 893 } 894 vdev_indirect_gather_splits(rs->rs_split_offset, dst_v, 895 dst_offset + inner_offset, 896 inner_size, arg); 897 898 /* 899 * vdev_indirect_gather_splits can have memory 900 * allocation error, we can not recover from it. 901 */ 902 if (zio->io_error != 0) 903 break; 904 rs->rs_offset += inner_size; 905 rs->rs_asize -= inner_size; 906 rs->rs_split_offset += inner_size; 907 } 908 909 free(mapping); 910 free(rs); 911 if (zio->io_error != 0) 912 break; 913 } 914 915 list_destroy(&stack); 916 } 917 918 static void 919 vdev_indirect_map_free(zio_t *zio) 920 { 921 indirect_vsd_t *iv = zio->io_vsd; 922 indirect_split_t *is; 923 924 while ((is = list_head(&iv->iv_splits)) != NULL) { 925 for (int c = 0; c < is->is_children; c++) { 926 indirect_child_t *ic = &is->is_child[c]; 927 free(ic->ic_data); 928 } 929 list_remove(&iv->iv_splits, is); 930 free(is); 931 } 932 free(iv); 933 } 934 935 static int 936 vdev_indirect_read(vdev_t *vdev, const blkptr_t *bp, void *buf, 937 off_t offset, size_t bytes) 938 { 939 zio_t zio; 940 spa_t *spa = vdev->v_spa; 941 indirect_vsd_t *iv; 942 indirect_split_t *first; 943 int rc = EIO; 944 945 iv = calloc(1, sizeof(*iv)); 946 if (iv == NULL) 947 return (ENOMEM); 948 949 list_create(&iv->iv_splits, 950 sizeof (indirect_split_t), offsetof(indirect_split_t, is_node)); 951 952 bzero(&zio, sizeof(zio)); 953 zio.io_spa = spa; 954 zio.io_bp = (blkptr_t *)bp; 955 zio.io_data = buf; 956 zio.io_size = bytes; 957 zio.io_offset = offset; 958 zio.io_vd = vdev; 959 zio.io_vsd = iv; 960 961 if (vdev->v_mapping == NULL) { 962 vdev_indirect_config_t *vic; 963 964 vic = &vdev->vdev_indirect_config; 965 vdev->v_mapping = vdev_indirect_mapping_open(spa, 966 &spa->spa_mos, vic->vic_mapping_object); 967 } 968 969 vdev_indirect_remap(vdev, offset, bytes, &zio); 970 if (zio.io_error != 0) 971 return (zio.io_error); 972 973 first = list_head(&iv->iv_splits); 974 if (first->is_size == zio.io_size) { 975 /* 976 * This is not a split block; we are pointing to the entire 977 * data, which will checksum the same as the original data. 978 * Pass the BP down so that the child i/o can verify the 979 * checksum, and try a different location if available 980 * (e.g. on a mirror). 981 * 982 * While this special case could be handled the same as the 983 * general (split block) case, doing it this way ensures 984 * that the vast majority of blocks on indirect vdevs 985 * (which are not split) are handled identically to blocks 986 * on non-indirect vdevs. This allows us to be less strict 987 * about performance in the general (but rare) case. 988 */ 989 rc = first->is_vdev->v_read(first->is_vdev, zio.io_bp, 990 zio.io_data, first->is_target_offset, bytes); 991 } else { 992 iv->iv_split_block = B_TRUE; 993 /* 994 * Read one copy of each split segment, from the 995 * top-level vdev. Since we don't know the 996 * checksum of each split individually, the child 997 * zio can't ensure that we get the right data. 998 * E.g. if it's a mirror, it will just read from a 999 * random (healthy) leaf vdev. We have to verify 1000 * the checksum in vdev_indirect_io_done(). 1001 */ 1002 for (indirect_split_t *is = list_head(&iv->iv_splits); 1003 is != NULL; is = list_next(&iv->iv_splits, is)) { 1004 char *ptr = zio.io_data; 1005 1006 rc = is->is_vdev->v_read(is->is_vdev, zio.io_bp, 1007 ptr + is->is_split_offset, is->is_target_offset, 1008 is->is_size); 1009 } 1010 if (zio_checksum_verify(spa, zio.io_bp, zio.io_data)) 1011 rc = ECKSUM; 1012 else 1013 rc = 0; 1014 } 1015 1016 vdev_indirect_map_free(&zio); 1017 if (rc == 0) 1018 rc = zio.io_error; 1019 1020 return (rc); 1021 } 1022 1023 static int 1024 vdev_disk_read(vdev_t *vdev, const blkptr_t *bp, void *buf, 1025 off_t offset, size_t bytes) 1026 { 1027 1028 return (vdev_read_phys(vdev, bp, buf, 1029 offset + VDEV_LABEL_START_SIZE, bytes)); 1030 } 1031 1032 1033 static int 1034 vdev_mirror_read(vdev_t *vdev, const blkptr_t *bp, void *buf, 1035 off_t offset, size_t bytes) 1036 { 1037 vdev_t *kid; 1038 int rc; 1039 1040 rc = EIO; 1041 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) { 1042 if (kid->v_state != VDEV_STATE_HEALTHY) 1043 continue; 1044 rc = kid->v_read(kid, bp, buf, offset, bytes); 1045 if (!rc) 1046 return (0); 1047 } 1048 1049 return (rc); 1050 } 1051 1052 static int 1053 vdev_replacing_read(vdev_t *vdev, const blkptr_t *bp, void *buf, 1054 off_t offset, size_t bytes) 1055 { 1056 vdev_t *kid; 1057 1058 /* 1059 * Here we should have two kids: 1060 * First one which is the one we are replacing and we can trust 1061 * only this one to have valid data, but it might not be present. 1062 * Second one is that one we are replacing with. It is most likely 1063 * healthy, but we can't trust it has needed data, so we won't use it. 1064 */ 1065 kid = STAILQ_FIRST(&vdev->v_children); 1066 if (kid == NULL) 1067 return (EIO); 1068 if (kid->v_state != VDEV_STATE_HEALTHY) 1069 return (EIO); 1070 return (kid->v_read(kid, bp, buf, offset, bytes)); 1071 } 1072 1073 static vdev_t * 1074 vdev_find(uint64_t guid) 1075 { 1076 vdev_t *vdev; 1077 1078 STAILQ_FOREACH(vdev, &zfs_vdevs, v_alllink) 1079 if (vdev->v_guid == guid) 1080 return (vdev); 1081 1082 return (0); 1083 } 1084 1085 static vdev_t * 1086 vdev_create(uint64_t guid, vdev_read_t *_read) 1087 { 1088 vdev_t *vdev; 1089 vdev_indirect_config_t *vic; 1090 1091 vdev = calloc(1, sizeof(vdev_t)); 1092 if (vdev != NULL) { 1093 STAILQ_INIT(&vdev->v_children); 1094 vdev->v_guid = guid; 1095 vdev->v_read = _read; 1096 1097 /* 1098 * root vdev has no read function, we use this fact to 1099 * skip setting up data we do not need for root vdev. 1100 * We only point root vdev from spa. 1101 */ 1102 if (_read != NULL) { 1103 vic = &vdev->vdev_indirect_config; 1104 vic->vic_prev_indirect_vdev = UINT64_MAX; 1105 STAILQ_INSERT_TAIL(&zfs_vdevs, vdev, v_alllink); 1106 } 1107 } 1108 1109 return (vdev); 1110 } 1111 1112 static void 1113 vdev_set_initial_state(vdev_t *vdev, const unsigned char *nvlist) 1114 { 1115 uint64_t is_offline, is_faulted, is_degraded, is_removed, isnt_present; 1116 uint64_t is_log; 1117 1118 is_offline = is_removed = is_faulted = is_degraded = isnt_present = 0; 1119 is_log = 0; 1120 (void) nvlist_find(nvlist, ZPOOL_CONFIG_OFFLINE, DATA_TYPE_UINT64, NULL, 1121 &is_offline); 1122 (void) nvlist_find(nvlist, ZPOOL_CONFIG_REMOVED, DATA_TYPE_UINT64, NULL, 1123 &is_removed); 1124 (void) nvlist_find(nvlist, ZPOOL_CONFIG_FAULTED, DATA_TYPE_UINT64, NULL, 1125 &is_faulted); 1126 (void) nvlist_find(nvlist, ZPOOL_CONFIG_DEGRADED, DATA_TYPE_UINT64, 1127 NULL, &is_degraded); 1128 (void) nvlist_find(nvlist, ZPOOL_CONFIG_NOT_PRESENT, DATA_TYPE_UINT64, 1129 NULL, &isnt_present); 1130 (void) nvlist_find(nvlist, ZPOOL_CONFIG_IS_LOG, DATA_TYPE_UINT64, NULL, 1131 &is_log); 1132 1133 if (is_offline != 0) 1134 vdev->v_state = VDEV_STATE_OFFLINE; 1135 else if (is_removed != 0) 1136 vdev->v_state = VDEV_STATE_REMOVED; 1137 else if (is_faulted != 0) 1138 vdev->v_state = VDEV_STATE_FAULTED; 1139 else if (is_degraded != 0) 1140 vdev->v_state = VDEV_STATE_DEGRADED; 1141 else if (isnt_present != 0) 1142 vdev->v_state = VDEV_STATE_CANT_OPEN; 1143 1144 vdev->v_islog = is_log != 0; 1145 } 1146 1147 static int 1148 vdev_init(uint64_t guid, const unsigned char *nvlist, vdev_t **vdevp) 1149 { 1150 uint64_t id, ashift, asize, nparity; 1151 const char *path; 1152 const char *type; 1153 vdev_t *vdev; 1154 1155 if (nvlist_find(nvlist, ZPOOL_CONFIG_ID, DATA_TYPE_UINT64, NULL, &id) || 1156 nvlist_find(nvlist, ZPOOL_CONFIG_TYPE, DATA_TYPE_STRING, 1157 NULL, &type)) { 1158 return (ENOENT); 1159 } 1160 1161 if (strcmp(type, VDEV_TYPE_MIRROR) != 0 && 1162 strcmp(type, VDEV_TYPE_DISK) != 0 && 1163 #ifdef ZFS_TEST 1164 strcmp(type, VDEV_TYPE_FILE) != 0 && 1165 #endif 1166 strcmp(type, VDEV_TYPE_RAIDZ) != 0 && 1167 strcmp(type, VDEV_TYPE_INDIRECT) != 0 && 1168 strcmp(type, VDEV_TYPE_REPLACING) != 0) { 1169 printf("ZFS: can only boot from disk, mirror, raidz1, " 1170 "raidz2 and raidz3 vdevs\n"); 1171 return (EIO); 1172 } 1173 1174 if (strcmp(type, VDEV_TYPE_MIRROR) == 0) 1175 vdev = vdev_create(guid, vdev_mirror_read); 1176 else if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) 1177 vdev = vdev_create(guid, vdev_raidz_read); 1178 else if (strcmp(type, VDEV_TYPE_REPLACING) == 0) 1179 vdev = vdev_create(guid, vdev_replacing_read); 1180 else if (strcmp(type, VDEV_TYPE_INDIRECT) == 0) { 1181 vdev_indirect_config_t *vic; 1182 1183 vdev = vdev_create(guid, vdev_indirect_read); 1184 if (vdev != NULL) { 1185 vdev->v_state = VDEV_STATE_HEALTHY; 1186 vic = &vdev->vdev_indirect_config; 1187 1188 nvlist_find(nvlist, 1189 ZPOOL_CONFIG_INDIRECT_OBJECT, 1190 DATA_TYPE_UINT64, 1191 NULL, &vic->vic_mapping_object); 1192 nvlist_find(nvlist, 1193 ZPOOL_CONFIG_INDIRECT_BIRTHS, 1194 DATA_TYPE_UINT64, 1195 NULL, &vic->vic_births_object); 1196 nvlist_find(nvlist, 1197 ZPOOL_CONFIG_PREV_INDIRECT_VDEV, 1198 DATA_TYPE_UINT64, 1199 NULL, &vic->vic_prev_indirect_vdev); 1200 } 1201 } else { 1202 vdev = vdev_create(guid, vdev_disk_read); 1203 } 1204 1205 if (vdev == NULL) 1206 return (ENOMEM); 1207 1208 vdev_set_initial_state(vdev, nvlist); 1209 vdev->v_id = id; 1210 if (nvlist_find(nvlist, ZPOOL_CONFIG_ASHIFT, 1211 DATA_TYPE_UINT64, NULL, &ashift) == 0) 1212 vdev->v_ashift = ashift; 1213 1214 if (nvlist_find(nvlist, ZPOOL_CONFIG_ASIZE, 1215 DATA_TYPE_UINT64, NULL, &asize) == 0) { 1216 vdev->v_psize = asize + 1217 VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; 1218 } 1219 1220 if (nvlist_find(nvlist, ZPOOL_CONFIG_NPARITY, 1221 DATA_TYPE_UINT64, NULL, &nparity) == 0) 1222 vdev->v_nparity = nparity; 1223 1224 if (nvlist_find(nvlist, ZPOOL_CONFIG_PATH, 1225 DATA_TYPE_STRING, NULL, &path) == 0) { 1226 if (strncmp(path, "/dev/", 5) == 0) 1227 path += 5; 1228 vdev->v_name = strdup(path); 1229 } else { 1230 char *name; 1231 1232 name = NULL; 1233 if (strcmp(type, "raidz") == 0) { 1234 if (vdev->v_nparity < 1 || 1235 vdev->v_nparity > 3) { 1236 printf("ZFS: invalid raidz parity: %d\n", 1237 vdev->v_nparity); 1238 return (EIO); 1239 } 1240 (void) asprintf(&name, "%s%d-%" PRIu64, type, 1241 vdev->v_nparity, id); 1242 } else { 1243 (void) asprintf(&name, "%s-%" PRIu64, type, id); 1244 } 1245 vdev->v_name = name; 1246 } 1247 *vdevp = vdev; 1248 return (0); 1249 } 1250 1251 /* 1252 * Find slot for vdev. We return either NULL to signal to use 1253 * STAILQ_INSERT_HEAD, or we return link element to be used with 1254 * STAILQ_INSERT_AFTER. 1255 */ 1256 static vdev_t * 1257 vdev_find_previous(vdev_t *top_vdev, vdev_t *vdev) 1258 { 1259 vdev_t *v, *previous; 1260 1261 if (STAILQ_EMPTY(&top_vdev->v_children)) 1262 return (NULL); 1263 1264 previous = NULL; 1265 STAILQ_FOREACH(v, &top_vdev->v_children, v_childlink) { 1266 if (v->v_id > vdev->v_id) 1267 return (previous); 1268 1269 if (v->v_id == vdev->v_id) 1270 return (v); 1271 1272 if (v->v_id < vdev->v_id) 1273 previous = v; 1274 } 1275 return (previous); 1276 } 1277 1278 static size_t 1279 vdev_child_count(vdev_t *vdev) 1280 { 1281 vdev_t *v; 1282 size_t count; 1283 1284 count = 0; 1285 STAILQ_FOREACH(v, &vdev->v_children, v_childlink) { 1286 count++; 1287 } 1288 return (count); 1289 } 1290 1291 /* 1292 * Insert vdev into top_vdev children list. List is ordered by v_id. 1293 */ 1294 static void 1295 vdev_insert(vdev_t *top_vdev, vdev_t *vdev) 1296 { 1297 vdev_t *previous; 1298 size_t count; 1299 1300 /* 1301 * The top level vdev can appear in random order, depending how 1302 * the firmware is presenting the disk devices. 1303 * However, we will insert vdev to create list ordered by v_id, 1304 * so we can use either STAILQ_INSERT_HEAD or STAILQ_INSERT_AFTER 1305 * as STAILQ does not have insert before. 1306 */ 1307 previous = vdev_find_previous(top_vdev, vdev); 1308 1309 if (previous == NULL) { 1310 STAILQ_INSERT_HEAD(&top_vdev->v_children, vdev, v_childlink); 1311 } else if (previous->v_id == vdev->v_id) { 1312 /* 1313 * This vdev was configured from label config, 1314 * do not insert duplicate. 1315 */ 1316 return; 1317 } else { 1318 STAILQ_INSERT_AFTER(&top_vdev->v_children, previous, vdev, 1319 v_childlink); 1320 } 1321 1322 count = vdev_child_count(top_vdev); 1323 if (top_vdev->v_nchildren < count) 1324 top_vdev->v_nchildren = count; 1325 } 1326 1327 static int 1328 vdev_from_nvlist(spa_t *spa, uint64_t top_guid, const unsigned char *nvlist) 1329 { 1330 vdev_t *top_vdev, *vdev; 1331 const unsigned char *kids; 1332 int rc, nkids; 1333 1334 /* Get top vdev. */ 1335 top_vdev = vdev_find(top_guid); 1336 if (top_vdev == NULL) { 1337 rc = vdev_init(top_guid, nvlist, &top_vdev); 1338 if (rc != 0) 1339 return (rc); 1340 top_vdev->v_spa = spa; 1341 top_vdev->v_top = top_vdev; 1342 vdev_insert(spa->spa_root_vdev, top_vdev); 1343 } 1344 1345 /* Add children if there are any. */ 1346 rc = nvlist_find(nvlist, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY, 1347 &nkids, &kids); 1348 if (rc == 0) { 1349 for (int i = 0; i < nkids; i++) { 1350 uint64_t guid; 1351 1352 rc = nvlist_find(kids, ZPOOL_CONFIG_GUID, 1353 DATA_TYPE_UINT64, NULL, &guid); 1354 if (rc != 0) 1355 return (rc); 1356 rc = vdev_init(guid, kids, &vdev); 1357 if (rc != 0) 1358 return (rc); 1359 1360 vdev->v_spa = spa; 1361 vdev->v_top = top_vdev; 1362 vdev_insert(top_vdev, vdev); 1363 1364 kids = nvlist_next(kids); 1365 } 1366 } else { 1367 /* 1368 * When there are no children, nvlist_find() does return 1369 * error, reset it because leaf devices have no children. 1370 */ 1371 rc = 0; 1372 } 1373 1374 return (rc); 1375 } 1376 1377 static int 1378 vdev_init_from_label(spa_t *spa, const unsigned char *nvlist) 1379 { 1380 uint64_t pool_guid, top_guid; 1381 const unsigned char *vdevs; 1382 1383 if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64, 1384 NULL, &pool_guid) || 1385 nvlist_find(nvlist, ZPOOL_CONFIG_TOP_GUID, DATA_TYPE_UINT64, 1386 NULL, &top_guid) || 1387 nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST, 1388 NULL, &vdevs)) { 1389 printf("ZFS: can't find vdev details\n"); 1390 return (ENOENT); 1391 } 1392 1393 return (vdev_from_nvlist(spa, top_guid, vdevs)); 1394 } 1395 1396 static void 1397 vdev_set_state(vdev_t *vdev) 1398 { 1399 vdev_t *kid; 1400 int good_kids; 1401 int bad_kids; 1402 1403 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) { 1404 vdev_set_state(kid); 1405 } 1406 1407 /* 1408 * A mirror or raidz is healthy if all its kids are healthy. A 1409 * mirror is degraded if any of its kids is healthy; a raidz 1410 * is degraded if at most nparity kids are offline. 1411 */ 1412 if (STAILQ_FIRST(&vdev->v_children)) { 1413 good_kids = 0; 1414 bad_kids = 0; 1415 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) { 1416 if (kid->v_state == VDEV_STATE_HEALTHY) 1417 good_kids++; 1418 else 1419 bad_kids++; 1420 } 1421 if (bad_kids == 0) { 1422 vdev->v_state = VDEV_STATE_HEALTHY; 1423 } else { 1424 if (vdev->v_read == vdev_mirror_read) { 1425 if (good_kids) { 1426 vdev->v_state = VDEV_STATE_DEGRADED; 1427 } else { 1428 vdev->v_state = VDEV_STATE_OFFLINE; 1429 } 1430 } else if (vdev->v_read == vdev_raidz_read) { 1431 if (bad_kids > vdev->v_nparity) { 1432 vdev->v_state = VDEV_STATE_OFFLINE; 1433 } else { 1434 vdev->v_state = VDEV_STATE_DEGRADED; 1435 } 1436 } 1437 } 1438 } 1439 } 1440 1441 static int 1442 vdev_update_from_nvlist(uint64_t top_guid, const unsigned char *nvlist) 1443 { 1444 vdev_t *vdev; 1445 const unsigned char *kids; 1446 int rc, nkids; 1447 1448 /* Update top vdev. */ 1449 vdev = vdev_find(top_guid); 1450 if (vdev != NULL) 1451 vdev_set_initial_state(vdev, nvlist); 1452 1453 /* Update children if there are any. */ 1454 rc = nvlist_find(nvlist, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY, 1455 &nkids, &kids); 1456 if (rc == 0) { 1457 for (int i = 0; i < nkids; i++) { 1458 uint64_t guid; 1459 1460 rc = nvlist_find(kids, ZPOOL_CONFIG_GUID, 1461 DATA_TYPE_UINT64, NULL, &guid); 1462 if (rc != 0) 1463 break; 1464 1465 vdev = vdev_find(guid); 1466 if (vdev != NULL) 1467 vdev_set_initial_state(vdev, kids); 1468 1469 kids = nvlist_next(kids); 1470 } 1471 } else { 1472 rc = 0; 1473 } 1474 1475 return (rc); 1476 } 1477 1478 static int 1479 vdev_init_from_nvlist(spa_t *spa, const unsigned char *nvlist) 1480 { 1481 uint64_t pool_guid, vdev_children; 1482 const unsigned char *vdevs, *kids; 1483 int rc, nkids; 1484 1485 if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64, 1486 NULL, &pool_guid) || 1487 nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_CHILDREN, DATA_TYPE_UINT64, 1488 NULL, &vdev_children) || 1489 nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST, 1490 NULL, &vdevs)) { 1491 printf("ZFS: can't find vdev details\n"); 1492 return (ENOENT); 1493 } 1494 1495 /* Wrong guid?! */ 1496 if (spa->spa_guid != pool_guid) 1497 return (EINVAL); 1498 1499 spa->spa_root_vdev->v_nchildren = vdev_children; 1500 1501 rc = nvlist_find(vdevs, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY, 1502 &nkids, &kids); 1503 1504 /* 1505 * MOS config has at least one child for root vdev. 1506 */ 1507 if (rc != 0) 1508 return (rc); 1509 1510 for (int i = 0; i < nkids; i++) { 1511 uint64_t guid; 1512 vdev_t *vdev; 1513 1514 rc = nvlist_find(kids, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64, 1515 NULL, &guid); 1516 if (rc != 0) 1517 break; 1518 vdev = vdev_find(guid); 1519 /* 1520 * Top level vdev is missing, create it. 1521 */ 1522 if (vdev == NULL) 1523 rc = vdev_from_nvlist(spa, guid, kids); 1524 else 1525 rc = vdev_update_from_nvlist(guid, kids); 1526 if (rc != 0) 1527 break; 1528 kids = nvlist_next(kids); 1529 } 1530 1531 /* 1532 * Re-evaluate top-level vdev state. 1533 */ 1534 vdev_set_state(spa->spa_root_vdev); 1535 1536 return (rc); 1537 } 1538 1539 static spa_t * 1540 spa_find_by_guid(uint64_t guid) 1541 { 1542 spa_t *spa; 1543 1544 STAILQ_FOREACH(spa, &zfs_pools, spa_link) 1545 if (spa->spa_guid == guid) 1546 return (spa); 1547 1548 return (NULL); 1549 } 1550 1551 static spa_t * 1552 spa_find_by_name(const char *name) 1553 { 1554 spa_t *spa; 1555 1556 STAILQ_FOREACH(spa, &zfs_pools, spa_link) 1557 if (strcmp(spa->spa_name, name) == 0) 1558 return (spa); 1559 1560 return (NULL); 1561 } 1562 1563 #ifdef BOOT2 1564 static spa_t * 1565 spa_get_primary(void) 1566 { 1567 1568 return (STAILQ_FIRST(&zfs_pools)); 1569 } 1570 1571 static vdev_t * 1572 spa_get_primary_vdev(const spa_t *spa) 1573 { 1574 vdev_t *vdev; 1575 vdev_t *kid; 1576 1577 if (spa == NULL) 1578 spa = spa_get_primary(); 1579 if (spa == NULL) 1580 return (NULL); 1581 vdev = spa->spa_root_vdev; 1582 if (vdev == NULL) 1583 return (NULL); 1584 for (kid = STAILQ_FIRST(&vdev->v_children); kid != NULL; 1585 kid = STAILQ_FIRST(&vdev->v_children)) 1586 vdev = kid; 1587 return (vdev); 1588 } 1589 #endif 1590 1591 static spa_t * 1592 spa_create(uint64_t guid, const char *name) 1593 { 1594 spa_t *spa; 1595 1596 if ((spa = calloc(1, sizeof(spa_t))) == NULL) 1597 return (NULL); 1598 if ((spa->spa_name = strdup(name)) == NULL) { 1599 free(spa); 1600 return (NULL); 1601 } 1602 spa->spa_guid = guid; 1603 spa->spa_root_vdev = vdev_create(guid, NULL); 1604 if (spa->spa_root_vdev == NULL) { 1605 free(spa->spa_name); 1606 free(spa); 1607 return (NULL); 1608 } 1609 spa->spa_root_vdev->v_name = strdup("root"); 1610 STAILQ_INSERT_TAIL(&zfs_pools, spa, spa_link); 1611 1612 return (spa); 1613 } 1614 1615 static const char * 1616 state_name(vdev_state_t state) 1617 { 1618 static const char *names[] = { 1619 "UNKNOWN", 1620 "CLOSED", 1621 "OFFLINE", 1622 "REMOVED", 1623 "CANT_OPEN", 1624 "FAULTED", 1625 "DEGRADED", 1626 "ONLINE" 1627 }; 1628 return (names[state]); 1629 } 1630 1631 #ifdef BOOT2 1632 1633 #define pager_printf printf 1634 1635 #else 1636 1637 static int 1638 pager_printf(const char *fmt, ...) 1639 { 1640 char line[80]; 1641 va_list args; 1642 1643 va_start(args, fmt); 1644 vsnprintf(line, sizeof(line), fmt, args); 1645 va_end(args); 1646 return (pager_output(line)); 1647 } 1648 1649 #endif 1650 1651 #define STATUS_FORMAT " %s %s\n" 1652 1653 static int 1654 print_state(int indent, const char *name, vdev_state_t state) 1655 { 1656 int i; 1657 char buf[512]; 1658 1659 buf[0] = 0; 1660 for (i = 0; i < indent; i++) 1661 strcat(buf, " "); 1662 strcat(buf, name); 1663 return (pager_printf(STATUS_FORMAT, buf, state_name(state))); 1664 } 1665 1666 static int 1667 vdev_status(vdev_t *vdev, int indent) 1668 { 1669 vdev_t *kid; 1670 int ret; 1671 1672 if (vdev->v_islog) { 1673 (void) pager_output(" logs\n"); 1674 indent++; 1675 } 1676 1677 ret = print_state(indent, vdev->v_name, vdev->v_state); 1678 if (ret != 0) 1679 return (ret); 1680 1681 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) { 1682 ret = vdev_status(kid, indent + 1); 1683 if (ret != 0) 1684 return (ret); 1685 } 1686 return (ret); 1687 } 1688 1689 static int 1690 spa_status(spa_t *spa) 1691 { 1692 static char bootfs[ZFS_MAXNAMELEN]; 1693 uint64_t rootid; 1694 vdev_list_t *vlist; 1695 vdev_t *vdev; 1696 int good_kids, bad_kids, degraded_kids, ret; 1697 vdev_state_t state; 1698 1699 ret = pager_printf(" pool: %s\n", spa->spa_name); 1700 if (ret != 0) 1701 return (ret); 1702 1703 if (zfs_get_root(spa, &rootid) == 0 && 1704 zfs_rlookup(spa, rootid, bootfs) == 0) { 1705 if (bootfs[0] == '\0') 1706 ret = pager_printf("bootfs: %s\n", spa->spa_name); 1707 else 1708 ret = pager_printf("bootfs: %s/%s\n", spa->spa_name, 1709 bootfs); 1710 if (ret != 0) 1711 return (ret); 1712 } 1713 ret = pager_printf("config:\n\n"); 1714 if (ret != 0) 1715 return (ret); 1716 ret = pager_printf(STATUS_FORMAT, "NAME", "STATE"); 1717 if (ret != 0) 1718 return (ret); 1719 1720 good_kids = 0; 1721 degraded_kids = 0; 1722 bad_kids = 0; 1723 vlist = &spa->spa_root_vdev->v_children; 1724 STAILQ_FOREACH(vdev, vlist, v_childlink) { 1725 if (vdev->v_state == VDEV_STATE_HEALTHY) 1726 good_kids++; 1727 else if (vdev->v_state == VDEV_STATE_DEGRADED) 1728 degraded_kids++; 1729 else 1730 bad_kids++; 1731 } 1732 1733 state = VDEV_STATE_CLOSED; 1734 if (good_kids > 0 && (degraded_kids + bad_kids) == 0) 1735 state = VDEV_STATE_HEALTHY; 1736 else if ((good_kids + degraded_kids) > 0) 1737 state = VDEV_STATE_DEGRADED; 1738 1739 ret = print_state(0, spa->spa_name, state); 1740 if (ret != 0) 1741 return (ret); 1742 1743 STAILQ_FOREACH(vdev, vlist, v_childlink) { 1744 ret = vdev_status(vdev, 1); 1745 if (ret != 0) 1746 return (ret); 1747 } 1748 return (ret); 1749 } 1750 1751 static int 1752 spa_all_status(void) 1753 { 1754 spa_t *spa; 1755 int first = 1, ret = 0; 1756 1757 STAILQ_FOREACH(spa, &zfs_pools, spa_link) { 1758 if (!first) { 1759 ret = pager_printf("\n"); 1760 if (ret != 0) 1761 return (ret); 1762 } 1763 first = 0; 1764 ret = spa_status(spa); 1765 if (ret != 0) 1766 return (ret); 1767 } 1768 return (ret); 1769 } 1770 1771 static uint64_t 1772 vdev_label_offset(uint64_t psize, int l, uint64_t offset) 1773 { 1774 uint64_t label_offset; 1775 1776 if (l < VDEV_LABELS / 2) 1777 label_offset = 0; 1778 else 1779 label_offset = psize - VDEV_LABELS * sizeof (vdev_label_t); 1780 1781 return (offset + l * sizeof (vdev_label_t) + label_offset); 1782 } 1783 1784 static int 1785 vdev_uberblock_compare(const uberblock_t *ub1, const uberblock_t *ub2) 1786 { 1787 unsigned int seq1 = 0; 1788 unsigned int seq2 = 0; 1789 int cmp = AVL_CMP(ub1->ub_txg, ub2->ub_txg); 1790 1791 if (cmp != 0) 1792 return (cmp); 1793 1794 cmp = AVL_CMP(ub1->ub_timestamp, ub2->ub_timestamp); 1795 if (cmp != 0) 1796 return (cmp); 1797 1798 if (MMP_VALID(ub1) && MMP_SEQ_VALID(ub1)) 1799 seq1 = MMP_SEQ(ub1); 1800 1801 if (MMP_VALID(ub2) && MMP_SEQ_VALID(ub2)) 1802 seq2 = MMP_SEQ(ub2); 1803 1804 return (AVL_CMP(seq1, seq2)); 1805 } 1806 1807 static int 1808 uberblock_verify(uberblock_t *ub) 1809 { 1810 if (ub->ub_magic == BSWAP_64((uint64_t)UBERBLOCK_MAGIC)) { 1811 byteswap_uint64_array(ub, sizeof (uberblock_t)); 1812 } 1813 1814 if (ub->ub_magic != UBERBLOCK_MAGIC || 1815 !SPA_VERSION_IS_SUPPORTED(ub->ub_version)) 1816 return (EINVAL); 1817 1818 return (0); 1819 } 1820 1821 static int 1822 vdev_label_read(vdev_t *vd, int l, void *buf, uint64_t offset, 1823 size_t size) 1824 { 1825 blkptr_t bp; 1826 off_t off; 1827 1828 off = vdev_label_offset(vd->v_psize, l, offset); 1829 1830 BP_ZERO(&bp); 1831 BP_SET_LSIZE(&bp, size); 1832 BP_SET_PSIZE(&bp, size); 1833 BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_LABEL); 1834 BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF); 1835 DVA_SET_OFFSET(BP_IDENTITY(&bp), off); 1836 ZIO_SET_CHECKSUM(&bp.blk_cksum, off, 0, 0, 0); 1837 1838 return (vdev_read_phys(vd, &bp, buf, off, size)); 1839 } 1840 1841 static unsigned char * 1842 vdev_label_read_config(vdev_t *vd, uint64_t txg) 1843 { 1844 vdev_phys_t *label; 1845 uint64_t best_txg = 0; 1846 uint64_t label_txg = 0; 1847 uint64_t asize; 1848 unsigned char *nvl; 1849 size_t nvl_size; 1850 int error; 1851 1852 label = malloc(sizeof (vdev_phys_t)); 1853 if (label == NULL) 1854 return (NULL); 1855 1856 nvl_size = VDEV_PHYS_SIZE - sizeof (zio_eck_t) - 4; 1857 nvl = malloc(nvl_size); 1858 if (nvl == NULL) 1859 goto done; 1860 1861 for (int l = 0; l < VDEV_LABELS; l++) { 1862 const unsigned char *nvlist; 1863 1864 if (vdev_label_read(vd, l, label, 1865 offsetof(vdev_label_t, vl_vdev_phys), 1866 sizeof (vdev_phys_t))) 1867 continue; 1868 1869 if (label->vp_nvlist[0] != NV_ENCODE_XDR) 1870 continue; 1871 1872 nvlist = (const unsigned char *) label->vp_nvlist + 4; 1873 error = nvlist_find(nvlist, ZPOOL_CONFIG_POOL_TXG, 1874 DATA_TYPE_UINT64, NULL, &label_txg); 1875 if (error != 0 || label_txg == 0) { 1876 memcpy(nvl, nvlist, nvl_size); 1877 goto done; 1878 } 1879 1880 if (label_txg <= txg && label_txg > best_txg) { 1881 best_txg = label_txg; 1882 memcpy(nvl, nvlist, nvl_size); 1883 1884 /* 1885 * Use asize from pool config. We need this 1886 * because we can get bad value from BIOS. 1887 */ 1888 if (nvlist_find(nvlist, ZPOOL_CONFIG_ASIZE, 1889 DATA_TYPE_UINT64, NULL, &asize) == 0) { 1890 vd->v_psize = asize + 1891 VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; 1892 } 1893 } 1894 } 1895 1896 if (best_txg == 0) { 1897 free(nvl); 1898 nvl = NULL; 1899 } 1900 done: 1901 free(label); 1902 return (nvl); 1903 } 1904 1905 static void 1906 vdev_uberblock_load(vdev_t *vd, uberblock_t *ub) 1907 { 1908 uberblock_t *buf; 1909 1910 buf = malloc(VDEV_UBERBLOCK_SIZE(vd)); 1911 if (buf == NULL) 1912 return; 1913 1914 for (int l = 0; l < VDEV_LABELS; l++) { 1915 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) { 1916 if (vdev_label_read(vd, l, buf, 1917 VDEV_UBERBLOCK_OFFSET(vd, n), 1918 VDEV_UBERBLOCK_SIZE(vd))) 1919 continue; 1920 if (uberblock_verify(buf) != 0) 1921 continue; 1922 1923 if (vdev_uberblock_compare(buf, ub) > 0) 1924 *ub = *buf; 1925 } 1926 } 1927 free(buf); 1928 } 1929 1930 static int 1931 vdev_probe(vdev_phys_read_t *_read, void *read_priv, spa_t **spap) 1932 { 1933 vdev_t vtmp; 1934 spa_t *spa; 1935 vdev_t *vdev; 1936 unsigned char *nvlist; 1937 uint64_t val; 1938 uint64_t guid, vdev_children; 1939 uint64_t pool_txg, pool_guid; 1940 const char *pool_name; 1941 const unsigned char *features; 1942 int rc; 1943 1944 /* 1945 * Load the vdev label and figure out which 1946 * uberblock is most current. 1947 */ 1948 memset(&vtmp, 0, sizeof(vtmp)); 1949 vtmp.v_phys_read = _read; 1950 vtmp.v_read_priv = read_priv; 1951 vtmp.v_psize = P2ALIGN(ldi_get_size(read_priv), 1952 (uint64_t)sizeof (vdev_label_t)); 1953 1954 /* Test for minimum device size. */ 1955 if (vtmp.v_psize < SPA_MINDEVSIZE) 1956 return (EIO); 1957 1958 nvlist = vdev_label_read_config(&vtmp, UINT64_MAX); 1959 if (nvlist == NULL) 1960 return (EIO); 1961 1962 if (nvlist_find(nvlist, ZPOOL_CONFIG_VERSION, DATA_TYPE_UINT64, 1963 NULL, &val) != 0) { 1964 free(nvlist); 1965 return (EIO); 1966 } 1967 1968 if (!SPA_VERSION_IS_SUPPORTED(val)) { 1969 printf("ZFS: unsupported ZFS version %u (should be %u)\n", 1970 (unsigned)val, (unsigned)SPA_VERSION); 1971 free(nvlist); 1972 return (EIO); 1973 } 1974 1975 /* Check ZFS features for read */ 1976 if (nvlist_find(nvlist, ZPOOL_CONFIG_FEATURES_FOR_READ, 1977 DATA_TYPE_NVLIST, NULL, &features) == 0 && 1978 nvlist_check_features_for_read(features) != 0) { 1979 free(nvlist); 1980 return (EIO); 1981 } 1982 1983 if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_STATE, DATA_TYPE_UINT64, 1984 NULL, &val) != 0) { 1985 free(nvlist); 1986 return (EIO); 1987 } 1988 1989 if (val == POOL_STATE_DESTROYED) { 1990 /* We don't boot only from destroyed pools. */ 1991 free(nvlist); 1992 return (EIO); 1993 } 1994 1995 if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_TXG, DATA_TYPE_UINT64, 1996 NULL, &pool_txg) != 0 || 1997 nvlist_find(nvlist, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64, 1998 NULL, &pool_guid) != 0 || 1999 nvlist_find(nvlist, ZPOOL_CONFIG_POOL_NAME, DATA_TYPE_STRING, 2000 NULL, &pool_name) != 0) { 2001 /* 2002 * Cache and spare devices end up here - just ignore 2003 * them. 2004 */ 2005 free(nvlist); 2006 return (EIO); 2007 } 2008 2009 /* 2010 * Create the pool if this is the first time we've seen it. 2011 */ 2012 spa = spa_find_by_guid(pool_guid); 2013 if (spa == NULL) { 2014 nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_CHILDREN, 2015 DATA_TYPE_UINT64, NULL, &vdev_children); 2016 spa = spa_create(pool_guid, pool_name); 2017 if (spa == NULL) { 2018 free(nvlist); 2019 return (ENOMEM); 2020 } 2021 spa->spa_root_vdev->v_nchildren = vdev_children; 2022 } 2023 if (pool_txg > spa->spa_txg) 2024 spa->spa_txg = pool_txg; 2025 2026 /* 2027 * Get the vdev tree and create our in-core copy of it. 2028 * If we already have a vdev with this guid, this must 2029 * be some kind of alias (overlapping slices, dangerously dedicated 2030 * disks etc). 2031 */ 2032 if (nvlist_find(nvlist, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64, 2033 NULL, &guid) != 0) { 2034 free(nvlist); 2035 return (EIO); 2036 } 2037 vdev = vdev_find(guid); 2038 /* Has this vdev already been inited? */ 2039 if (vdev && vdev->v_phys_read) { 2040 free(nvlist); 2041 return (EIO); 2042 } 2043 2044 rc = vdev_init_from_label(spa, nvlist); 2045 free(nvlist); 2046 if (rc != 0) 2047 return (rc); 2048 2049 /* 2050 * We should already have created an incomplete vdev for this 2051 * vdev. Find it and initialise it with our read proc. 2052 */ 2053 vdev = vdev_find(guid); 2054 if (vdev != NULL) { 2055 vdev->v_phys_read = _read; 2056 vdev->v_read_priv = read_priv; 2057 vdev->v_psize = vtmp.v_psize; 2058 /* 2059 * If no other state is set, mark vdev healthy. 2060 */ 2061 if (vdev->v_state == VDEV_STATE_UNKNOWN) 2062 vdev->v_state = VDEV_STATE_HEALTHY; 2063 } else { 2064 printf("ZFS: inconsistent nvlist contents\n"); 2065 return (EIO); 2066 } 2067 2068 if (vdev->v_islog) 2069 spa->spa_with_log = vdev->v_islog; 2070 2071 /* 2072 * Re-evaluate top-level vdev state. 2073 */ 2074 vdev_set_state(vdev->v_top); 2075 2076 /* 2077 * Ok, we are happy with the pool so far. Lets find 2078 * the best uberblock and then we can actually access 2079 * the contents of the pool. 2080 */ 2081 vdev_uberblock_load(vdev, &spa->spa_uberblock); 2082 2083 if (spap != NULL) 2084 *spap = spa; 2085 return (0); 2086 } 2087 2088 static int 2089 ilog2(int n) 2090 { 2091 int v; 2092 2093 for (v = 0; v < 32; v++) 2094 if (n == (1 << v)) 2095 return (v); 2096 return (-1); 2097 } 2098 2099 static int 2100 zio_read_gang(const spa_t *spa, const blkptr_t *bp, void *buf) 2101 { 2102 blkptr_t gbh_bp; 2103 zio_gbh_phys_t zio_gb; 2104 char *pbuf; 2105 int i; 2106 2107 /* Artificial BP for gang block header. */ 2108 gbh_bp = *bp; 2109 BP_SET_PSIZE(&gbh_bp, SPA_GANGBLOCKSIZE); 2110 BP_SET_LSIZE(&gbh_bp, SPA_GANGBLOCKSIZE); 2111 BP_SET_CHECKSUM(&gbh_bp, ZIO_CHECKSUM_GANG_HEADER); 2112 BP_SET_COMPRESS(&gbh_bp, ZIO_COMPRESS_OFF); 2113 for (i = 0; i < SPA_DVAS_PER_BP; i++) 2114 DVA_SET_GANG(&gbh_bp.blk_dva[i], 0); 2115 2116 /* Read gang header block using the artificial BP. */ 2117 if (zio_read(spa, &gbh_bp, &zio_gb)) 2118 return (EIO); 2119 2120 pbuf = buf; 2121 for (i = 0; i < SPA_GBH_NBLKPTRS; i++) { 2122 blkptr_t *gbp = &zio_gb.zg_blkptr[i]; 2123 2124 if (BP_IS_HOLE(gbp)) 2125 continue; 2126 if (zio_read(spa, gbp, pbuf)) 2127 return (EIO); 2128 pbuf += BP_GET_PSIZE(gbp); 2129 } 2130 2131 if (zio_checksum_verify(spa, bp, buf)) 2132 return (EIO); 2133 return (0); 2134 } 2135 2136 static int 2137 zio_read(const spa_t *spa, const blkptr_t *bp, void *buf) 2138 { 2139 int cpfunc = BP_GET_COMPRESS(bp); 2140 uint64_t align, size; 2141 void *pbuf; 2142 int i, error; 2143 2144 /* 2145 * Process data embedded in block pointer 2146 */ 2147 if (BP_IS_EMBEDDED(bp)) { 2148 ASSERT(BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA); 2149 2150 size = BPE_GET_PSIZE(bp); 2151 ASSERT(size <= BPE_PAYLOAD_SIZE); 2152 2153 if (cpfunc != ZIO_COMPRESS_OFF) 2154 pbuf = zfs_alloc(size); 2155 else 2156 pbuf = buf; 2157 2158 decode_embedded_bp_compressed(bp, pbuf); 2159 error = 0; 2160 2161 if (cpfunc != ZIO_COMPRESS_OFF) { 2162 error = zio_decompress_data(cpfunc, pbuf, 2163 size, buf, BP_GET_LSIZE(bp)); 2164 zfs_free(pbuf, size); 2165 } 2166 if (error != 0) 2167 printf("ZFS: i/o error - unable to decompress " 2168 "block pointer data, error %d\n", error); 2169 return (error); 2170 } 2171 2172 error = EIO; 2173 2174 for (i = 0; i < SPA_DVAS_PER_BP; i++) { 2175 const dva_t *dva = &bp->blk_dva[i]; 2176 vdev_t *vdev; 2177 vdev_list_t *vlist; 2178 uint64_t vdevid; 2179 off_t offset; 2180 2181 if (!dva->dva_word[0] && !dva->dva_word[1]) 2182 continue; 2183 2184 vdevid = DVA_GET_VDEV(dva); 2185 offset = DVA_GET_OFFSET(dva); 2186 vlist = &spa->spa_root_vdev->v_children; 2187 STAILQ_FOREACH(vdev, vlist, v_childlink) { 2188 if (vdev->v_id == vdevid) 2189 break; 2190 } 2191 if (!vdev || !vdev->v_read) 2192 continue; 2193 2194 size = BP_GET_PSIZE(bp); 2195 if (vdev->v_read == vdev_raidz_read) { 2196 align = 1ULL << vdev->v_ashift; 2197 if (P2PHASE(size, align) != 0) 2198 size = P2ROUNDUP(size, align); 2199 } 2200 if (size != BP_GET_PSIZE(bp) || cpfunc != ZIO_COMPRESS_OFF) 2201 pbuf = zfs_alloc(size); 2202 else 2203 pbuf = buf; 2204 2205 if (DVA_GET_GANG(dva)) 2206 error = zio_read_gang(spa, bp, pbuf); 2207 else 2208 error = vdev->v_read(vdev, bp, pbuf, offset, size); 2209 if (error == 0) { 2210 if (cpfunc != ZIO_COMPRESS_OFF) 2211 error = zio_decompress_data(cpfunc, pbuf, 2212 BP_GET_PSIZE(bp), buf, BP_GET_LSIZE(bp)); 2213 else if (size != BP_GET_PSIZE(bp)) 2214 bcopy(pbuf, buf, BP_GET_PSIZE(bp)); 2215 } 2216 if (buf != pbuf) 2217 zfs_free(pbuf, size); 2218 if (error == 0) 2219 break; 2220 } 2221 if (error != 0) 2222 printf("ZFS: i/o error - all block copies unavailable\n"); 2223 return (error); 2224 } 2225 2226 static int 2227 dnode_read(const spa_t *spa, const dnode_phys_t *dnode, off_t offset, 2228 void *buf, size_t buflen) 2229 { 2230 int ibshift = dnode->dn_indblkshift - SPA_BLKPTRSHIFT; 2231 int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2232 int nlevels = dnode->dn_nlevels; 2233 int i, rc; 2234 2235 if (bsize > SPA_MAXBLOCKSIZE) { 2236 printf("ZFS: I/O error - blocks larger than %llu are not " 2237 "supported\n", SPA_MAXBLOCKSIZE); 2238 return (EIO); 2239 } 2240 2241 /* 2242 * Note: bsize may not be a power of two here so we need to do an 2243 * actual divide rather than a bitshift. 2244 */ 2245 while (buflen > 0) { 2246 uint64_t bn = offset / bsize; 2247 int boff = offset % bsize; 2248 int ibn; 2249 const blkptr_t *indbp; 2250 blkptr_t bp; 2251 2252 if (bn > dnode->dn_maxblkid) 2253 return (EIO); 2254 2255 if (dnode == dnode_cache_obj && bn == dnode_cache_bn) 2256 goto cached; 2257 2258 indbp = dnode->dn_blkptr; 2259 for (i = 0; i < nlevels; i++) { 2260 /* 2261 * Copy the bp from the indirect array so that 2262 * we can re-use the scratch buffer for multi-level 2263 * objects. 2264 */ 2265 ibn = bn >> ((nlevels - i - 1) * ibshift); 2266 ibn &= ((1 << ibshift) - 1); 2267 bp = indbp[ibn]; 2268 if (BP_IS_HOLE(&bp)) { 2269 memset(dnode_cache_buf, 0, bsize); 2270 break; 2271 } 2272 rc = zio_read(spa, &bp, dnode_cache_buf); 2273 if (rc) 2274 return (rc); 2275 indbp = (const blkptr_t *) dnode_cache_buf; 2276 } 2277 dnode_cache_obj = dnode; 2278 dnode_cache_bn = bn; 2279 cached: 2280 2281 /* 2282 * The buffer contains our data block. Copy what we 2283 * need from it and loop. 2284 */ 2285 i = bsize - boff; 2286 if (i > buflen) i = buflen; 2287 memcpy(buf, &dnode_cache_buf[boff], i); 2288 buf = ((char *)buf) + i; 2289 offset += i; 2290 buflen -= i; 2291 } 2292 2293 return (0); 2294 } 2295 2296 /* 2297 * Lookup a value in a microzap directory. 2298 */ 2299 static int 2300 mzap_lookup(const mzap_phys_t *mz, size_t size, const char *name, 2301 uint64_t *value) 2302 { 2303 const mzap_ent_phys_t *mze; 2304 int chunks, i; 2305 2306 /* 2307 * Microzap objects use exactly one block. Read the whole 2308 * thing. 2309 */ 2310 chunks = size / MZAP_ENT_LEN - 1; 2311 for (i = 0; i < chunks; i++) { 2312 mze = &mz->mz_chunk[i]; 2313 if (strcmp(mze->mze_name, name) == 0) { 2314 *value = mze->mze_value; 2315 return (0); 2316 } 2317 } 2318 2319 return (ENOENT); 2320 } 2321 2322 /* 2323 * Compare a name with a zap leaf entry. Return non-zero if the name 2324 * matches. 2325 */ 2326 static int 2327 fzap_name_equal(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, 2328 const char *name) 2329 { 2330 size_t namelen; 2331 const zap_leaf_chunk_t *nc; 2332 const char *p; 2333 2334 namelen = zc->l_entry.le_name_numints; 2335 2336 nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk); 2337 p = name; 2338 while (namelen > 0) { 2339 size_t len; 2340 2341 len = namelen; 2342 if (len > ZAP_LEAF_ARRAY_BYTES) 2343 len = ZAP_LEAF_ARRAY_BYTES; 2344 if (memcmp(p, nc->l_array.la_array, len)) 2345 return (0); 2346 p += len; 2347 namelen -= len; 2348 nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next); 2349 } 2350 2351 return (1); 2352 } 2353 2354 /* 2355 * Extract a uint64_t value from a zap leaf entry. 2356 */ 2357 static uint64_t 2358 fzap_leaf_value(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc) 2359 { 2360 const zap_leaf_chunk_t *vc; 2361 int i; 2362 uint64_t value; 2363 const uint8_t *p; 2364 2365 vc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_value_chunk); 2366 for (i = 0, value = 0, p = vc->l_array.la_array; i < 8; i++) { 2367 value = (value << 8) | p[i]; 2368 } 2369 2370 return (value); 2371 } 2372 2373 static void 2374 stv(int len, void *addr, uint64_t value) 2375 { 2376 switch (len) { 2377 case 1: 2378 *(uint8_t *)addr = value; 2379 return; 2380 case 2: 2381 *(uint16_t *)addr = value; 2382 return; 2383 case 4: 2384 *(uint32_t *)addr = value; 2385 return; 2386 case 8: 2387 *(uint64_t *)addr = value; 2388 return; 2389 } 2390 } 2391 2392 /* 2393 * Extract a array from a zap leaf entry. 2394 */ 2395 static void 2396 fzap_leaf_array(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, 2397 uint64_t integer_size, uint64_t num_integers, void *buf) 2398 { 2399 uint64_t array_int_len = zc->l_entry.le_value_intlen; 2400 uint64_t value = 0; 2401 uint64_t *u64 = buf; 2402 char *p = buf; 2403 int len = MIN(zc->l_entry.le_value_numints, num_integers); 2404 int chunk = zc->l_entry.le_value_chunk; 2405 int byten = 0; 2406 2407 if (integer_size == 8 && len == 1) { 2408 *u64 = fzap_leaf_value(zl, zc); 2409 return; 2410 } 2411 2412 while (len > 0) { 2413 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(zl, chunk).l_array; 2414 int i; 2415 2416 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(zl)); 2417 for (i = 0; i < ZAP_LEAF_ARRAY_BYTES && len > 0; i++) { 2418 value = (value << 8) | la->la_array[i]; 2419 byten++; 2420 if (byten == array_int_len) { 2421 stv(integer_size, p, value); 2422 byten = 0; 2423 len--; 2424 if (len == 0) 2425 return; 2426 p += integer_size; 2427 } 2428 } 2429 chunk = la->la_next; 2430 } 2431 } 2432 2433 static int 2434 fzap_check_size(uint64_t integer_size, uint64_t num_integers) 2435 { 2436 2437 switch (integer_size) { 2438 case 1: 2439 case 2: 2440 case 4: 2441 case 8: 2442 break; 2443 default: 2444 return (EINVAL); 2445 } 2446 2447 if (integer_size * num_integers > ZAP_MAXVALUELEN) 2448 return (E2BIG); 2449 2450 return (0); 2451 } 2452 2453 static void 2454 zap_leaf_free(zap_leaf_t *leaf) 2455 { 2456 free(leaf->l_phys); 2457 free(leaf); 2458 } 2459 2460 static int 2461 zap_get_leaf_byblk(fat_zap_t *zap, uint64_t blk, zap_leaf_t **lp) 2462 { 2463 int bs = FZAP_BLOCK_SHIFT(zap); 2464 int err; 2465 2466 *lp = malloc(sizeof(**lp)); 2467 if (*lp == NULL) 2468 return (ENOMEM); 2469 2470 (*lp)->l_bs = bs; 2471 (*lp)->l_phys = malloc(1 << bs); 2472 2473 if ((*lp)->l_phys == NULL) { 2474 free(*lp); 2475 return (ENOMEM); 2476 } 2477 err = dnode_read(zap->zap_spa, zap->zap_dnode, blk << bs, (*lp)->l_phys, 2478 1 << bs); 2479 if (err != 0) { 2480 zap_leaf_free(*lp); 2481 } 2482 return (err); 2483 } 2484 2485 static int 2486 zap_table_load(fat_zap_t *zap, zap_table_phys_t *tbl, uint64_t idx, 2487 uint64_t *valp) 2488 { 2489 int bs = FZAP_BLOCK_SHIFT(zap); 2490 uint64_t blk = idx >> (bs - 3); 2491 uint64_t off = idx & ((1 << (bs - 3)) - 1); 2492 uint64_t *buf; 2493 int rc; 2494 2495 buf = malloc(1 << zap->zap_block_shift); 2496 if (buf == NULL) 2497 return (ENOMEM); 2498 rc = dnode_read(zap->zap_spa, zap->zap_dnode, (tbl->zt_blk + blk) << bs, 2499 buf, 1 << zap->zap_block_shift); 2500 if (rc == 0) 2501 *valp = buf[off]; 2502 free(buf); 2503 return (rc); 2504 } 2505 2506 static int 2507 zap_idx_to_blk(fat_zap_t *zap, uint64_t idx, uint64_t *valp) 2508 { 2509 if (zap->zap_phys->zap_ptrtbl.zt_numblks == 0) { 2510 *valp = ZAP_EMBEDDED_PTRTBL_ENT(zap, idx); 2511 return (0); 2512 } else { 2513 return (zap_table_load(zap, &zap->zap_phys->zap_ptrtbl, 2514 idx, valp)); 2515 } 2516 } 2517 2518 #define ZAP_HASH_IDX(hash, n) (((n) == 0) ? 0 : ((hash) >> (64 - (n)))) 2519 static int 2520 zap_deref_leaf(fat_zap_t *zap, uint64_t h, zap_leaf_t **lp) 2521 { 2522 uint64_t idx, blk; 2523 int err; 2524 2525 idx = ZAP_HASH_IDX(h, zap->zap_phys->zap_ptrtbl.zt_shift); 2526 err = zap_idx_to_blk(zap, idx, &blk); 2527 if (err != 0) 2528 return (err); 2529 return (zap_get_leaf_byblk(zap, blk, lp)); 2530 } 2531 2532 #define CHAIN_END 0xffff /* end of the chunk chain */ 2533 #define LEAF_HASH(l, h) \ 2534 ((ZAP_LEAF_HASH_NUMENTRIES(l)-1) & \ 2535 ((h) >> \ 2536 (64 - ZAP_LEAF_HASH_SHIFT(l) - (l)->l_phys->l_hdr.lh_prefix_len))) 2537 #define LEAF_HASH_ENTPTR(l, h) (&(l)->l_phys->l_hash[LEAF_HASH(l, h)]) 2538 2539 static int 2540 zap_leaf_lookup(zap_leaf_t *zl, uint64_t hash, const char *name, 2541 uint64_t integer_size, uint64_t num_integers, void *value) 2542 { 2543 int rc; 2544 uint16_t *chunkp; 2545 struct zap_leaf_entry *le; 2546 2547 /* 2548 * Make sure this chunk matches our hash. 2549 */ 2550 if (zl->l_phys->l_hdr.lh_prefix_len > 0 && 2551 zl->l_phys->l_hdr.lh_prefix != 2552 hash >> (64 - zl->l_phys->l_hdr.lh_prefix_len)) 2553 return (EIO); 2554 2555 rc = ENOENT; 2556 for (chunkp = LEAF_HASH_ENTPTR(zl, hash); 2557 *chunkp != CHAIN_END; chunkp = &le->le_next) { 2558 zap_leaf_chunk_t *zc; 2559 uint16_t chunk = *chunkp; 2560 2561 le = ZAP_LEAF_ENTRY(zl, chunk); 2562 if (le->le_hash != hash) 2563 continue; 2564 zc = &ZAP_LEAF_CHUNK(zl, chunk); 2565 if (fzap_name_equal(zl, zc, name)) { 2566 if (zc->l_entry.le_value_intlen > integer_size) { 2567 rc = EINVAL; 2568 } else { 2569 fzap_leaf_array(zl, zc, integer_size, 2570 num_integers, value); 2571 rc = 0; 2572 } 2573 break; 2574 } 2575 } 2576 return (rc); 2577 } 2578 2579 /* 2580 * Lookup a value in a fatzap directory. 2581 */ 2582 static int 2583 fzap_lookup(const spa_t *spa, const dnode_phys_t *dnode, zap_phys_t *zh, 2584 const char *name, uint64_t integer_size, uint64_t num_integers, 2585 void *value) 2586 { 2587 int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2588 fat_zap_t z; 2589 zap_leaf_t *zl; 2590 uint64_t hash; 2591 int rc; 2592 2593 if (zh->zap_magic != ZAP_MAGIC) 2594 return (EIO); 2595 2596 if ((rc = fzap_check_size(integer_size, num_integers)) != 0) 2597 return (rc); 2598 2599 z.zap_block_shift = ilog2(bsize); 2600 z.zap_phys = zh; 2601 z.zap_spa = spa; 2602 z.zap_dnode = dnode; 2603 2604 hash = zap_hash(zh->zap_salt, name); 2605 rc = zap_deref_leaf(&z, hash, &zl); 2606 if (rc != 0) 2607 return (rc); 2608 2609 rc = zap_leaf_lookup(zl, hash, name, integer_size, num_integers, value); 2610 2611 zap_leaf_free(zl); 2612 return (rc); 2613 } 2614 2615 /* 2616 * Lookup a name in a zap object and return its value as a uint64_t. 2617 */ 2618 static int 2619 zap_lookup(const spa_t *spa, const dnode_phys_t *dnode, const char *name, 2620 uint64_t integer_size, uint64_t num_integers, void *value) 2621 { 2622 int rc; 2623 zap_phys_t *zap; 2624 size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2625 2626 zap = malloc(size); 2627 if (zap == NULL) 2628 return (ENOMEM); 2629 2630 rc = dnode_read(spa, dnode, 0, zap, size); 2631 if (rc) 2632 goto done; 2633 2634 switch (zap->zap_block_type) { 2635 case ZBT_MICRO: 2636 rc = mzap_lookup((const mzap_phys_t *)zap, size, name, value); 2637 break; 2638 case ZBT_HEADER: 2639 rc = fzap_lookup(spa, dnode, zap, name, integer_size, 2640 num_integers, value); 2641 break; 2642 default: 2643 printf("ZFS: invalid zap_type=%" PRIx64 "\n", 2644 zap->zap_block_type); 2645 rc = EIO; 2646 } 2647 done: 2648 free(zap); 2649 return (rc); 2650 } 2651 2652 /* 2653 * List a microzap directory. 2654 */ 2655 static int 2656 mzap_list(const mzap_phys_t *mz, size_t size, 2657 int (*callback)(const char *, uint64_t)) 2658 { 2659 const mzap_ent_phys_t *mze; 2660 int chunks, i, rc; 2661 2662 /* 2663 * Microzap objects use exactly one block. Read the whole 2664 * thing. 2665 */ 2666 rc = 0; 2667 chunks = size / MZAP_ENT_LEN - 1; 2668 for (i = 0; i < chunks; i++) { 2669 mze = &mz->mz_chunk[i]; 2670 if (mze->mze_name[0]) { 2671 rc = callback(mze->mze_name, mze->mze_value); 2672 if (rc != 0) 2673 break; 2674 } 2675 } 2676 2677 return (rc); 2678 } 2679 2680 /* 2681 * List a fatzap directory. 2682 */ 2683 static int 2684 fzap_list(const spa_t *spa, const dnode_phys_t *dnode, zap_phys_t *zh, 2685 int (*callback)(const char *, uint64_t)) 2686 { 2687 int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2688 fat_zap_t z; 2689 uint64_t i; 2690 int j, rc; 2691 2692 if (zh->zap_magic != ZAP_MAGIC) 2693 return (EIO); 2694 2695 z.zap_block_shift = ilog2(bsize); 2696 z.zap_phys = zh; 2697 2698 /* 2699 * This assumes that the leaf blocks start at block 1. The 2700 * documentation isn't exactly clear on this. 2701 */ 2702 zap_leaf_t zl; 2703 zl.l_bs = z.zap_block_shift; 2704 zl.l_phys = malloc(bsize); 2705 if (zl.l_phys == NULL) 2706 return (ENOMEM); 2707 2708 for (i = 0; i < zh->zap_num_leafs; i++) { 2709 off_t off = ((off_t)(i + 1)) << zl.l_bs; 2710 char name[256], *p; 2711 uint64_t value; 2712 2713 if (dnode_read(spa, dnode, off, zl.l_phys, bsize)) { 2714 free(zl.l_phys); 2715 return (EIO); 2716 } 2717 2718 for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) { 2719 zap_leaf_chunk_t *zc, *nc; 2720 int namelen; 2721 2722 zc = &ZAP_LEAF_CHUNK(&zl, j); 2723 if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY) 2724 continue; 2725 namelen = zc->l_entry.le_name_numints; 2726 if (namelen > sizeof(name)) 2727 namelen = sizeof(name); 2728 2729 /* 2730 * Paste the name back together. 2731 */ 2732 nc = &ZAP_LEAF_CHUNK(&zl, zc->l_entry.le_name_chunk); 2733 p = name; 2734 while (namelen > 0) { 2735 int len; 2736 len = namelen; 2737 if (len > ZAP_LEAF_ARRAY_BYTES) 2738 len = ZAP_LEAF_ARRAY_BYTES; 2739 memcpy(p, nc->l_array.la_array, len); 2740 p += len; 2741 namelen -= len; 2742 nc = &ZAP_LEAF_CHUNK(&zl, nc->l_array.la_next); 2743 } 2744 2745 /* 2746 * Assume the first eight bytes of the value are 2747 * a uint64_t. 2748 */ 2749 value = fzap_leaf_value(&zl, zc); 2750 2751 /* printf("%s 0x%jx\n", name, (uintmax_t)value); */ 2752 rc = callback((const char *)name, value); 2753 if (rc != 0) { 2754 free(zl.l_phys); 2755 return (rc); 2756 } 2757 } 2758 } 2759 2760 free(zl.l_phys); 2761 return (0); 2762 } 2763 2764 static int zfs_printf(const char *name, uint64_t value __unused) 2765 { 2766 2767 printf("%s\n", name); 2768 2769 return (0); 2770 } 2771 2772 /* 2773 * List a zap directory. 2774 */ 2775 static int 2776 zap_list(const spa_t *spa, const dnode_phys_t *dnode) 2777 { 2778 zap_phys_t *zap; 2779 size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2780 int rc; 2781 2782 zap = malloc(size); 2783 if (zap == NULL) 2784 return (ENOMEM); 2785 2786 rc = dnode_read(spa, dnode, 0, zap, size); 2787 if (rc == 0) { 2788 if (zap->zap_block_type == ZBT_MICRO) 2789 rc = mzap_list((const mzap_phys_t *)zap, size, 2790 zfs_printf); 2791 else 2792 rc = fzap_list(spa, dnode, zap, zfs_printf); 2793 } 2794 free(zap); 2795 return (rc); 2796 } 2797 2798 static int 2799 objset_get_dnode(const spa_t *spa, const objset_phys_t *os, uint64_t objnum, 2800 dnode_phys_t *dnode) 2801 { 2802 off_t offset; 2803 2804 offset = objnum * sizeof(dnode_phys_t); 2805 return dnode_read(spa, &os->os_meta_dnode, offset, 2806 dnode, sizeof(dnode_phys_t)); 2807 } 2808 2809 /* 2810 * Lookup a name in a microzap directory. 2811 */ 2812 static int 2813 mzap_rlookup(const mzap_phys_t *mz, size_t size, char *name, uint64_t value) 2814 { 2815 const mzap_ent_phys_t *mze; 2816 int chunks, i; 2817 2818 /* 2819 * Microzap objects use exactly one block. Read the whole 2820 * thing. 2821 */ 2822 chunks = size / MZAP_ENT_LEN - 1; 2823 for (i = 0; i < chunks; i++) { 2824 mze = &mz->mz_chunk[i]; 2825 if (value == mze->mze_value) { 2826 strcpy(name, mze->mze_name); 2827 return (0); 2828 } 2829 } 2830 2831 return (ENOENT); 2832 } 2833 2834 static void 2835 fzap_name_copy(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, char *name) 2836 { 2837 size_t namelen; 2838 const zap_leaf_chunk_t *nc; 2839 char *p; 2840 2841 namelen = zc->l_entry.le_name_numints; 2842 2843 nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk); 2844 p = name; 2845 while (namelen > 0) { 2846 size_t len; 2847 len = namelen; 2848 if (len > ZAP_LEAF_ARRAY_BYTES) 2849 len = ZAP_LEAF_ARRAY_BYTES; 2850 memcpy(p, nc->l_array.la_array, len); 2851 p += len; 2852 namelen -= len; 2853 nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next); 2854 } 2855 2856 *p = '\0'; 2857 } 2858 2859 static int 2860 fzap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, zap_phys_t *zh, 2861 char *name, uint64_t value) 2862 { 2863 int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2864 fat_zap_t z; 2865 uint64_t i; 2866 int j, rc; 2867 2868 if (zh->zap_magic != ZAP_MAGIC) 2869 return (EIO); 2870 2871 z.zap_block_shift = ilog2(bsize); 2872 z.zap_phys = zh; 2873 2874 /* 2875 * This assumes that the leaf blocks start at block 1. The 2876 * documentation isn't exactly clear on this. 2877 */ 2878 zap_leaf_t zl; 2879 zl.l_bs = z.zap_block_shift; 2880 zl.l_phys = malloc(bsize); 2881 if (zl.l_phys == NULL) 2882 return (ENOMEM); 2883 2884 for (i = 0; i < zh->zap_num_leafs; i++) { 2885 off_t off = ((off_t)(i + 1)) << zl.l_bs; 2886 2887 rc = dnode_read(spa, dnode, off, zl.l_phys, bsize); 2888 if (rc != 0) 2889 goto done; 2890 2891 for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) { 2892 zap_leaf_chunk_t *zc; 2893 2894 zc = &ZAP_LEAF_CHUNK(&zl, j); 2895 if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY) 2896 continue; 2897 if (zc->l_entry.le_value_intlen != 8 || 2898 zc->l_entry.le_value_numints != 1) 2899 continue; 2900 2901 if (fzap_leaf_value(&zl, zc) == value) { 2902 fzap_name_copy(&zl, zc, name); 2903 goto done; 2904 } 2905 } 2906 } 2907 2908 rc = ENOENT; 2909 done: 2910 free(zl.l_phys); 2911 return (rc); 2912 } 2913 2914 static int 2915 zap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, char *name, 2916 uint64_t value) 2917 { 2918 zap_phys_t *zap; 2919 size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; 2920 int rc; 2921 2922 zap = malloc(size); 2923 if (zap == NULL) 2924 return (ENOMEM); 2925 2926 rc = dnode_read(spa, dnode, 0, zap, size); 2927 if (rc == 0) { 2928 if (zap->zap_block_type == ZBT_MICRO) 2929 rc = mzap_rlookup((const mzap_phys_t *)zap, size, 2930 name, value); 2931 else 2932 rc = fzap_rlookup(spa, dnode, zap, name, value); 2933 } 2934 free(zap); 2935 return (rc); 2936 } 2937 2938 static int 2939 zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result) 2940 { 2941 char name[256]; 2942 char component[256]; 2943 uint64_t dir_obj, parent_obj, child_dir_zapobj; 2944 dnode_phys_t child_dir_zap, dataset, dir, parent; 2945 dsl_dir_phys_t *dd; 2946 dsl_dataset_phys_t *ds; 2947 char *p; 2948 int len; 2949 2950 p = &name[sizeof(name) - 1]; 2951 *p = '\0'; 2952 2953 if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) { 2954 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum); 2955 return (EIO); 2956 } 2957 ds = (dsl_dataset_phys_t *)&dataset.dn_bonus; 2958 dir_obj = ds->ds_dir_obj; 2959 2960 for (;;) { 2961 if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir) != 0) 2962 return (EIO); 2963 dd = (dsl_dir_phys_t *)&dir.dn_bonus; 2964 2965 /* Actual loop condition. */ 2966 parent_obj = dd->dd_parent_obj; 2967 if (parent_obj == 0) 2968 break; 2969 2970 if (objset_get_dnode(spa, &spa->spa_mos, parent_obj, 2971 &parent) != 0) 2972 return (EIO); 2973 dd = (dsl_dir_phys_t *)&parent.dn_bonus; 2974 child_dir_zapobj = dd->dd_child_dir_zapobj; 2975 if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, 2976 &child_dir_zap) != 0) 2977 return (EIO); 2978 if (zap_rlookup(spa, &child_dir_zap, component, dir_obj) != 0) 2979 return (EIO); 2980 2981 len = strlen(component); 2982 p -= len; 2983 memcpy(p, component, len); 2984 --p; 2985 *p = '/'; 2986 2987 /* Actual loop iteration. */ 2988 dir_obj = parent_obj; 2989 } 2990 2991 if (*p != '\0') 2992 ++p; 2993 strcpy(result, p); 2994 2995 return (0); 2996 } 2997 2998 static int 2999 zfs_lookup_dataset(const spa_t *spa, const char *name, uint64_t *objnum) 3000 { 3001 char element[256]; 3002 uint64_t dir_obj, child_dir_zapobj; 3003 dnode_phys_t child_dir_zap, dir; 3004 dsl_dir_phys_t *dd; 3005 const char *p, *q; 3006 3007 if (objset_get_dnode(spa, &spa->spa_mos, 3008 DMU_POOL_DIRECTORY_OBJECT, &dir)) 3009 return (EIO); 3010 if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET, sizeof (dir_obj), 3011 1, &dir_obj)) 3012 return (EIO); 3013 3014 p = name; 3015 for (;;) { 3016 if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir)) 3017 return (EIO); 3018 dd = (dsl_dir_phys_t *)&dir.dn_bonus; 3019 3020 while (*p == '/') 3021 p++; 3022 /* Actual loop condition #1. */ 3023 if (*p == '\0') 3024 break; 3025 3026 q = strchr(p, '/'); 3027 if (q) { 3028 memcpy(element, p, q - p); 3029 element[q - p] = '\0'; 3030 p = q + 1; 3031 } else { 3032 strcpy(element, p); 3033 p += strlen(p); 3034 } 3035 3036 child_dir_zapobj = dd->dd_child_dir_zapobj; 3037 if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, 3038 &child_dir_zap) != 0) 3039 return (EIO); 3040 3041 /* Actual loop condition #2. */ 3042 if (zap_lookup(spa, &child_dir_zap, element, sizeof (dir_obj), 3043 1, &dir_obj) != 0) 3044 return (ENOENT); 3045 } 3046 3047 *objnum = dd->dd_head_dataset_obj; 3048 return (0); 3049 } 3050 3051 #ifndef BOOT2 3052 static int 3053 zfs_list_dataset(const spa_t *spa, uint64_t objnum/*, int pos, char *entry*/) 3054 { 3055 uint64_t dir_obj, child_dir_zapobj; 3056 dnode_phys_t child_dir_zap, dir, dataset; 3057 dsl_dataset_phys_t *ds; 3058 dsl_dir_phys_t *dd; 3059 3060 if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) { 3061 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum); 3062 return (EIO); 3063 } 3064 ds = (dsl_dataset_phys_t *)&dataset.dn_bonus; 3065 dir_obj = ds->ds_dir_obj; 3066 3067 if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir)) { 3068 printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj); 3069 return (EIO); 3070 } 3071 dd = (dsl_dir_phys_t *)&dir.dn_bonus; 3072 3073 child_dir_zapobj = dd->dd_child_dir_zapobj; 3074 if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, 3075 &child_dir_zap) != 0) { 3076 printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj); 3077 return (EIO); 3078 } 3079 3080 return (zap_list(spa, &child_dir_zap) != 0); 3081 } 3082 3083 int 3084 zfs_callback_dataset(const spa_t *spa, uint64_t objnum, 3085 int (*callback)(const char *, uint64_t)) 3086 { 3087 uint64_t dir_obj, child_dir_zapobj; 3088 dnode_phys_t child_dir_zap, dir, dataset; 3089 dsl_dataset_phys_t *ds; 3090 dsl_dir_phys_t *dd; 3091 zap_phys_t *zap; 3092 size_t size; 3093 int err; 3094 3095 err = objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset); 3096 if (err != 0) { 3097 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum); 3098 return (err); 3099 } 3100 ds = (dsl_dataset_phys_t *)&dataset.dn_bonus; 3101 dir_obj = ds->ds_dir_obj; 3102 3103 err = objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir); 3104 if (err != 0) { 3105 printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj); 3106 return (err); 3107 } 3108 dd = (dsl_dir_phys_t *)&dir.dn_bonus; 3109 3110 child_dir_zapobj = dd->dd_child_dir_zapobj; 3111 err = objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, 3112 &child_dir_zap); 3113 if (err != 0) { 3114 printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj); 3115 return (err); 3116 } 3117 3118 size = child_dir_zap.dn_datablkszsec << SPA_MINBLOCKSHIFT; 3119 zap = malloc(size); 3120 if (zap != NULL) { 3121 err = dnode_read(spa, &child_dir_zap, 0, zap, size); 3122 if (err != 0) 3123 goto done; 3124 3125 if (zap->zap_block_type == ZBT_MICRO) 3126 err = mzap_list((const mzap_phys_t *)zap, size, 3127 callback); 3128 else 3129 err = fzap_list(spa, &child_dir_zap, zap, callback); 3130 } else { 3131 err = ENOMEM; 3132 } 3133 done: 3134 free(zap); 3135 return (err); 3136 } 3137 #endif 3138 3139 /* 3140 * Find the object set given the object number of its dataset object 3141 * and return its details in *objset 3142 */ 3143 static int 3144 zfs_mount_dataset(const spa_t *spa, uint64_t objnum, objset_phys_t *objset) 3145 { 3146 dnode_phys_t dataset; 3147 dsl_dataset_phys_t *ds; 3148 3149 if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) { 3150 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum); 3151 return (EIO); 3152 } 3153 3154 ds = (dsl_dataset_phys_t *)&dataset.dn_bonus; 3155 if (zio_read(spa, &ds->ds_bp, objset)) { 3156 printf("ZFS: can't read object set for dataset %ju\n", 3157 (uintmax_t)objnum); 3158 return (EIO); 3159 } 3160 3161 return (0); 3162 } 3163 3164 /* 3165 * Find the object set pointed to by the BOOTFS property or the root 3166 * dataset if there is none and return its details in *objset 3167 */ 3168 static int 3169 zfs_get_root(const spa_t *spa, uint64_t *objid) 3170 { 3171 dnode_phys_t dir, propdir; 3172 uint64_t props, bootfs, root; 3173 3174 *objid = 0; 3175 3176 /* 3177 * Start with the MOS directory object. 3178 */ 3179 if (objset_get_dnode(spa, &spa->spa_mos, 3180 DMU_POOL_DIRECTORY_OBJECT, &dir)) { 3181 printf("ZFS: can't read MOS object directory\n"); 3182 return (EIO); 3183 } 3184 3185 /* 3186 * Lookup the pool_props and see if we can find a bootfs. 3187 */ 3188 if (zap_lookup(spa, &dir, DMU_POOL_PROPS, 3189 sizeof(props), 1, &props) == 0 && 3190 objset_get_dnode(spa, &spa->spa_mos, props, &propdir) == 0 && 3191 zap_lookup(spa, &propdir, "bootfs", 3192 sizeof(bootfs), 1, &bootfs) == 0 && bootfs != 0) { 3193 *objid = bootfs; 3194 return (0); 3195 } 3196 /* 3197 * Lookup the root dataset directory 3198 */ 3199 if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET, 3200 sizeof(root), 1, &root) || 3201 objset_get_dnode(spa, &spa->spa_mos, root, &dir)) { 3202 printf("ZFS: can't find root dsl_dir\n"); 3203 return (EIO); 3204 } 3205 3206 /* 3207 * Use the information from the dataset directory's bonus buffer 3208 * to find the dataset object and from that the object set itself. 3209 */ 3210 dsl_dir_phys_t *dd = (dsl_dir_phys_t *)&dir.dn_bonus; 3211 *objid = dd->dd_head_dataset_obj; 3212 return (0); 3213 } 3214 3215 static int 3216 zfs_mount(const spa_t *spa, uint64_t rootobj, struct zfsmount *mount) 3217 { 3218 3219 mount->spa = spa; 3220 3221 /* 3222 * Find the root object set if not explicitly provided 3223 */ 3224 if (rootobj == 0 && zfs_get_root(spa, &rootobj)) { 3225 printf("ZFS: can't find root filesystem\n"); 3226 return (EIO); 3227 } 3228 3229 if (zfs_mount_dataset(spa, rootobj, &mount->objset)) { 3230 printf("ZFS: can't open root filesystem\n"); 3231 return (EIO); 3232 } 3233 3234 mount->rootobj = rootobj; 3235 3236 return (0); 3237 } 3238 3239 /* 3240 * callback function for feature name checks. 3241 */ 3242 static int 3243 check_feature(const char *name, uint64_t value) 3244 { 3245 int i; 3246 3247 if (value == 0) 3248 return (0); 3249 if (name[0] == '\0') 3250 return (0); 3251 3252 for (i = 0; features_for_read[i] != NULL; i++) { 3253 if (strcmp(name, features_for_read[i]) == 0) 3254 return (0); 3255 } 3256 printf("ZFS: unsupported feature: %s\n", name); 3257 return (EIO); 3258 } 3259 3260 /* 3261 * Checks whether the MOS features that are active are supported. 3262 */ 3263 static int 3264 check_mos_features(const spa_t *spa) 3265 { 3266 dnode_phys_t dir; 3267 zap_phys_t *zap; 3268 uint64_t objnum; 3269 size_t size; 3270 int rc; 3271 3272 if ((rc = objset_get_dnode(spa, &spa->spa_mos, DMU_OT_OBJECT_DIRECTORY, 3273 &dir)) != 0) 3274 return (rc); 3275 if ((rc = zap_lookup(spa, &dir, DMU_POOL_FEATURES_FOR_READ, 3276 sizeof (objnum), 1, &objnum)) != 0) { 3277 /* 3278 * It is older pool without features. As we have already 3279 * tested the label, just return without raising the error. 3280 */ 3281 return (0); 3282 } 3283 3284 if ((rc = objset_get_dnode(spa, &spa->spa_mos, objnum, &dir)) != 0) 3285 return (rc); 3286 3287 if (dir.dn_type != DMU_OTN_ZAP_METADATA) 3288 return (EIO); 3289 3290 size = dir.dn_datablkszsec << SPA_MINBLOCKSHIFT; 3291 zap = malloc(size); 3292 if (zap == NULL) 3293 return (ENOMEM); 3294 3295 if (dnode_read(spa, &dir, 0, zap, size)) { 3296 free(zap); 3297 return (EIO); 3298 } 3299 3300 if (zap->zap_block_type == ZBT_MICRO) 3301 rc = mzap_list((const mzap_phys_t *)zap, size, check_feature); 3302 else 3303 rc = fzap_list(spa, &dir, zap, check_feature); 3304 3305 free(zap); 3306 return (rc); 3307 } 3308 3309 static int 3310 load_nvlist(spa_t *spa, uint64_t obj, unsigned char **value) 3311 { 3312 dnode_phys_t dir; 3313 size_t size; 3314 int rc; 3315 unsigned char *nv; 3316 3317 *value = NULL; 3318 if ((rc = objset_get_dnode(spa, &spa->spa_mos, obj, &dir)) != 0) 3319 return (rc); 3320 if (dir.dn_type != DMU_OT_PACKED_NVLIST && 3321 dir.dn_bonustype != DMU_OT_PACKED_NVLIST_SIZE) { 3322 return (EIO); 3323 } 3324 3325 if (dir.dn_bonuslen != sizeof (uint64_t)) 3326 return (EIO); 3327 3328 size = *(uint64_t *)DN_BONUS(&dir); 3329 nv = malloc(size); 3330 if (nv == NULL) 3331 return (ENOMEM); 3332 3333 rc = dnode_read(spa, &dir, 0, nv, size); 3334 if (rc != 0) { 3335 free(nv); 3336 nv = NULL; 3337 return (rc); 3338 } 3339 *value = nv; 3340 return (rc); 3341 } 3342 3343 static int 3344 zfs_spa_init(spa_t *spa) 3345 { 3346 dnode_phys_t dir; 3347 uint64_t config_object; 3348 unsigned char *nvlist; 3349 int rc; 3350 3351 if (zio_read(spa, &spa->spa_uberblock.ub_rootbp, &spa->spa_mos)) { 3352 printf("ZFS: can't read MOS of pool %s\n", spa->spa_name); 3353 return (EIO); 3354 } 3355 if (spa->spa_mos.os_type != DMU_OST_META) { 3356 printf("ZFS: corrupted MOS of pool %s\n", spa->spa_name); 3357 return (EIO); 3358 } 3359 3360 if (objset_get_dnode(spa, &spa->spa_mos, DMU_POOL_DIRECTORY_OBJECT, 3361 &dir)) { 3362 printf("ZFS: failed to read pool %s directory object\n", 3363 spa->spa_name); 3364 return (EIO); 3365 } 3366 /* this is allowed to fail, older pools do not have salt */ 3367 rc = zap_lookup(spa, &dir, DMU_POOL_CHECKSUM_SALT, 1, 3368 sizeof (spa->spa_cksum_salt.zcs_bytes), 3369 spa->spa_cksum_salt.zcs_bytes); 3370 3371 rc = check_mos_features(spa); 3372 if (rc != 0) { 3373 printf("ZFS: pool %s is not supported\n", spa->spa_name); 3374 return (rc); 3375 } 3376 3377 rc = zap_lookup(spa, &dir, DMU_POOL_CONFIG, 3378 sizeof (config_object), 1, &config_object); 3379 if (rc != 0) { 3380 printf("ZFS: can not read MOS %s\n", DMU_POOL_CONFIG); 3381 return (EIO); 3382 } 3383 rc = load_nvlist(spa, config_object, &nvlist); 3384 if (rc != 0) 3385 return (rc); 3386 3387 /* 3388 * Update vdevs from MOS config. Note, we do skip encoding bytes 3389 * here. See also vdev_label_read_config(). 3390 */ 3391 rc = vdev_init_from_nvlist(spa, nvlist + 4); 3392 free(nvlist); 3393 return (rc); 3394 } 3395 3396 static int 3397 zfs_dnode_stat(const spa_t *spa, dnode_phys_t *dn, struct stat *sb) 3398 { 3399 3400 if (dn->dn_bonustype != DMU_OT_SA) { 3401 znode_phys_t *zp = (znode_phys_t *)dn->dn_bonus; 3402 3403 sb->st_mode = zp->zp_mode; 3404 sb->st_uid = zp->zp_uid; 3405 sb->st_gid = zp->zp_gid; 3406 sb->st_size = zp->zp_size; 3407 } else { 3408 sa_hdr_phys_t *sahdrp; 3409 int hdrsize; 3410 size_t size = 0; 3411 void *buf = NULL; 3412 3413 if (dn->dn_bonuslen != 0) 3414 sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn); 3415 else { 3416 if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0) { 3417 blkptr_t *bp = DN_SPILL_BLKPTR(dn); 3418 int error; 3419 3420 size = BP_GET_LSIZE(bp); 3421 buf = zfs_alloc(size); 3422 error = zio_read(spa, bp, buf); 3423 if (error != 0) { 3424 zfs_free(buf, size); 3425 return (error); 3426 } 3427 sahdrp = buf; 3428 } else { 3429 return (EIO); 3430 } 3431 } 3432 hdrsize = SA_HDR_SIZE(sahdrp); 3433 sb->st_mode = *(uint64_t *)((char *)sahdrp + hdrsize + 3434 SA_MODE_OFFSET); 3435 sb->st_uid = *(uint64_t *)((char *)sahdrp + hdrsize + 3436 SA_UID_OFFSET); 3437 sb->st_gid = *(uint64_t *)((char *)sahdrp + hdrsize + 3438 SA_GID_OFFSET); 3439 sb->st_size = *(uint64_t *)((char *)sahdrp + hdrsize + 3440 SA_SIZE_OFFSET); 3441 if (buf != NULL) 3442 zfs_free(buf, size); 3443 } 3444 3445 return (0); 3446 } 3447 3448 static int 3449 zfs_dnode_readlink(const spa_t *spa, dnode_phys_t *dn, char *path, size_t psize) 3450 { 3451 int rc = 0; 3452 3453 if (dn->dn_bonustype == DMU_OT_SA) { 3454 sa_hdr_phys_t *sahdrp = NULL; 3455 size_t size = 0; 3456 void *buf = NULL; 3457 int hdrsize; 3458 char *p; 3459 3460 if (dn->dn_bonuslen != 0) 3461 sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn); 3462 else { 3463 blkptr_t *bp; 3464 3465 if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) == 0) 3466 return (EIO); 3467 bp = DN_SPILL_BLKPTR(dn); 3468 3469 size = BP_GET_LSIZE(bp); 3470 buf = zfs_alloc(size); 3471 rc = zio_read(spa, bp, buf); 3472 if (rc != 0) { 3473 zfs_free(buf, size); 3474 return (rc); 3475 } 3476 sahdrp = buf; 3477 } 3478 hdrsize = SA_HDR_SIZE(sahdrp); 3479 p = (char *)((uintptr_t)sahdrp + hdrsize + SA_SYMLINK_OFFSET); 3480 memcpy(path, p, psize); 3481 if (buf != NULL) 3482 zfs_free(buf, size); 3483 return (0); 3484 } 3485 /* 3486 * Second test is purely to silence bogus compiler 3487 * warning about accessing past the end of dn_bonus. 3488 */ 3489 if (psize + sizeof(znode_phys_t) <= dn->dn_bonuslen && 3490 sizeof(znode_phys_t) <= sizeof(dn->dn_bonus)) { 3491 memcpy(path, &dn->dn_bonus[sizeof(znode_phys_t)], psize); 3492 } else { 3493 rc = dnode_read(spa, dn, 0, path, psize); 3494 } 3495 return (rc); 3496 } 3497 3498 struct obj_list { 3499 uint64_t objnum; 3500 STAILQ_ENTRY(obj_list) entry; 3501 }; 3502 3503 /* 3504 * Lookup a file and return its dnode. 3505 */ 3506 static int 3507 zfs_lookup(const struct zfsmount *mount, const char *upath, dnode_phys_t *dnode) 3508 { 3509 int rc; 3510 uint64_t objnum; 3511 const spa_t *spa; 3512 dnode_phys_t dn; 3513 const char *p, *q; 3514 char element[256]; 3515 char path[1024]; 3516 int symlinks_followed = 0; 3517 struct stat sb; 3518 struct obj_list *entry, *tentry; 3519 STAILQ_HEAD(, obj_list) on_cache = STAILQ_HEAD_INITIALIZER(on_cache); 3520 3521 spa = mount->spa; 3522 if (mount->objset.os_type != DMU_OST_ZFS) { 3523 printf("ZFS: unexpected object set type %ju\n", 3524 (uintmax_t)mount->objset.os_type); 3525 return (EIO); 3526 } 3527 3528 if ((entry = malloc(sizeof(struct obj_list))) == NULL) 3529 return (ENOMEM); 3530 3531 /* 3532 * Get the root directory dnode. 3533 */ 3534 rc = objset_get_dnode(spa, &mount->objset, MASTER_NODE_OBJ, &dn); 3535 if (rc) { 3536 free(entry); 3537 return (rc); 3538 } 3539 3540 rc = zap_lookup(spa, &dn, ZFS_ROOT_OBJ, sizeof(objnum), 1, &objnum); 3541 if (rc) { 3542 free(entry); 3543 return (rc); 3544 } 3545 entry->objnum = objnum; 3546 STAILQ_INSERT_HEAD(&on_cache, entry, entry); 3547 3548 rc = objset_get_dnode(spa, &mount->objset, objnum, &dn); 3549 if (rc != 0) 3550 goto done; 3551 3552 p = upath; 3553 while (p && *p) { 3554 rc = objset_get_dnode(spa, &mount->objset, objnum, &dn); 3555 if (rc != 0) 3556 goto done; 3557 3558 while (*p == '/') 3559 p++; 3560 if (*p == '\0') 3561 break; 3562 q = p; 3563 while (*q != '\0' && *q != '/') 3564 q++; 3565 3566 /* skip dot */ 3567 if (p + 1 == q && p[0] == '.') { 3568 p++; 3569 continue; 3570 } 3571 /* double dot */ 3572 if (p + 2 == q && p[0] == '.' && p[1] == '.') { 3573 p += 2; 3574 if (STAILQ_FIRST(&on_cache) == 3575 STAILQ_LAST(&on_cache, obj_list, entry)) { 3576 rc = ENOENT; 3577 goto done; 3578 } 3579 entry = STAILQ_FIRST(&on_cache); 3580 STAILQ_REMOVE_HEAD(&on_cache, entry); 3581 free(entry); 3582 objnum = (STAILQ_FIRST(&on_cache))->objnum; 3583 continue; 3584 } 3585 if (q - p + 1 > sizeof(element)) { 3586 rc = ENAMETOOLONG; 3587 goto done; 3588 } 3589 memcpy(element, p, q - p); 3590 element[q - p] = 0; 3591 p = q; 3592 3593 if ((rc = zfs_dnode_stat(spa, &dn, &sb)) != 0) 3594 goto done; 3595 if (!S_ISDIR(sb.st_mode)) { 3596 rc = ENOTDIR; 3597 goto done; 3598 } 3599 3600 rc = zap_lookup(spa, &dn, element, sizeof (objnum), 1, &objnum); 3601 if (rc) 3602 goto done; 3603 objnum = ZFS_DIRENT_OBJ(objnum); 3604 3605 if ((entry = malloc(sizeof(struct obj_list))) == NULL) { 3606 rc = ENOMEM; 3607 goto done; 3608 } 3609 entry->objnum = objnum; 3610 STAILQ_INSERT_HEAD(&on_cache, entry, entry); 3611 rc = objset_get_dnode(spa, &mount->objset, objnum, &dn); 3612 if (rc) 3613 goto done; 3614 3615 /* 3616 * Check for symlink. 3617 */ 3618 rc = zfs_dnode_stat(spa, &dn, &sb); 3619 if (rc) 3620 goto done; 3621 if (S_ISLNK(sb.st_mode)) { 3622 if (symlinks_followed > 10) { 3623 rc = EMLINK; 3624 goto done; 3625 } 3626 symlinks_followed++; 3627 3628 /* 3629 * Read the link value and copy the tail of our 3630 * current path onto the end. 3631 */ 3632 if (sb.st_size + strlen(p) + 1 > sizeof(path)) { 3633 rc = ENAMETOOLONG; 3634 goto done; 3635 } 3636 strcpy(&path[sb.st_size], p); 3637 3638 rc = zfs_dnode_readlink(spa, &dn, path, sb.st_size); 3639 if (rc != 0) 3640 goto done; 3641 3642 /* 3643 * Restart with the new path, starting either at 3644 * the root or at the parent depending whether or 3645 * not the link is relative. 3646 */ 3647 p = path; 3648 if (*p == '/') { 3649 while (STAILQ_FIRST(&on_cache) != 3650 STAILQ_LAST(&on_cache, obj_list, entry)) { 3651 entry = STAILQ_FIRST(&on_cache); 3652 STAILQ_REMOVE_HEAD(&on_cache, entry); 3653 free(entry); 3654 } 3655 } else { 3656 entry = STAILQ_FIRST(&on_cache); 3657 STAILQ_REMOVE_HEAD(&on_cache, entry); 3658 free(entry); 3659 } 3660 objnum = (STAILQ_FIRST(&on_cache))->objnum; 3661 } 3662 } 3663 3664 *dnode = dn; 3665 done: 3666 STAILQ_FOREACH_SAFE(entry, &on_cache, entry, tentry) 3667 free(entry); 3668 return (rc); 3669 } 3670