xref: /freebsd/stand/libsa/zfs/zfs.c (revision 2726a7014867ad7224d09b66836c5d385f0350f4)
1 /*-
2  * Copyright (c) 2007 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  *	$FreeBSD$
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 /*
33  *	Stand-alone file reading package.
34  */
35 
36 #include <stand.h>
37 #include <sys/disk.h>
38 #include <sys/param.h>
39 #include <sys/time.h>
40 #include <sys/queue.h>
41 #include <disk.h>
42 #include <part.h>
43 #include <stddef.h>
44 #include <stdarg.h>
45 #include <string.h>
46 #include <bootstrap.h>
47 
48 #include "libzfs.h"
49 
50 #include "zfsimpl.c"
51 
52 /* Define the range of indexes to be populated with ZFS Boot Environments */
53 #define		ZFS_BE_FIRST	4
54 #define		ZFS_BE_LAST	8
55 
56 static int	zfs_open(const char *path, struct open_file *f);
57 static int	zfs_close(struct open_file *f);
58 static int	zfs_read(struct open_file *f, void *buf, size_t size, size_t *resid);
59 static off_t	zfs_seek(struct open_file *f, off_t offset, int where);
60 static int	zfs_stat(struct open_file *f, struct stat *sb);
61 static int	zfs_readdir(struct open_file *f, struct dirent *d);
62 
63 static void	zfs_bootenv_initial(const char *);
64 
65 struct devsw zfs_dev;
66 
67 struct fs_ops zfs_fsops = {
68 	"zfs",
69 	zfs_open,
70 	zfs_close,
71 	zfs_read,
72 	null_write,
73 	zfs_seek,
74 	zfs_stat,
75 	zfs_readdir
76 };
77 
78 /*
79  * In-core open file.
80  */
81 struct file {
82 	off_t		f_seekp;	/* seek pointer */
83 	dnode_phys_t	f_dnode;
84 	uint64_t	f_zap_type;	/* zap type for readdir */
85 	uint64_t	f_num_leafs;	/* number of fzap leaf blocks */
86 	zap_leaf_phys_t	*f_zap_leaf;	/* zap leaf buffer */
87 };
88 
89 static int	zfs_env_index;
90 static int	zfs_env_count;
91 
92 SLIST_HEAD(zfs_be_list, zfs_be_entry) zfs_be_head = SLIST_HEAD_INITIALIZER(zfs_be_head);
93 struct zfs_be_list *zfs_be_headp;
94 struct zfs_be_entry {
95 	char *name;
96 	SLIST_ENTRY(zfs_be_entry) entries;
97 } *zfs_be, *zfs_be_tmp;
98 
99 /*
100  * Open a file.
101  */
102 static int
103 zfs_open(const char *upath, struct open_file *f)
104 {
105 	struct zfsmount *mount = (struct zfsmount *)f->f_devdata;
106 	struct file *fp;
107 	int rc;
108 
109 	if (f->f_dev != &zfs_dev)
110 		return (EINVAL);
111 
112 	/* allocate file system specific data structure */
113 	fp = calloc(1, sizeof(struct file));
114 	if (fp == NULL)
115 		return (ENOMEM);
116 	f->f_fsdata = fp;
117 
118 	rc = zfs_lookup(mount, upath, &fp->f_dnode);
119 	fp->f_seekp = 0;
120 	if (rc) {
121 		f->f_fsdata = NULL;
122 		free(fp);
123 	}
124 	return (rc);
125 }
126 
127 static int
128 zfs_close(struct open_file *f)
129 {
130 	struct file *fp = (struct file *)f->f_fsdata;
131 
132 	dnode_cache_obj = NULL;
133 	f->f_fsdata = NULL;
134 
135 	free(fp);
136 	return (0);
137 }
138 
139 /*
140  * Copy a portion of a file into kernel memory.
141  * Cross block boundaries when necessary.
142  */
143 static int
144 zfs_read(struct open_file *f, void *start, size_t size, size_t *resid	/* out */)
145 {
146 	const spa_t *spa = ((struct zfsmount *)f->f_devdata)->spa;
147 	struct file *fp = (struct file *)f->f_fsdata;
148 	struct stat sb;
149 	size_t n;
150 	int rc;
151 
152 	rc = zfs_stat(f, &sb);
153 	if (rc)
154 		return (rc);
155 	n = size;
156 	if (fp->f_seekp + n > sb.st_size)
157 		n = sb.st_size - fp->f_seekp;
158 
159 	rc = dnode_read(spa, &fp->f_dnode, fp->f_seekp, start, n);
160 	if (rc)
161 		return (rc);
162 
163 	if (0) {
164 	    int i;
165 	    for (i = 0; i < n; i++)
166 		putchar(((char*) start)[i]);
167 	}
168 	fp->f_seekp += n;
169 	if (resid)
170 		*resid = size - n;
171 
172 	return (0);
173 }
174 
175 static off_t
176 zfs_seek(struct open_file *f, off_t offset, int where)
177 {
178 	struct file *fp = (struct file *)f->f_fsdata;
179 
180 	switch (where) {
181 	case SEEK_SET:
182 		fp->f_seekp = offset;
183 		break;
184 	case SEEK_CUR:
185 		fp->f_seekp += offset;
186 		break;
187 	case SEEK_END:
188 	    {
189 		struct stat sb;
190 		int error;
191 
192 		error = zfs_stat(f, &sb);
193 		if (error != 0) {
194 			errno = error;
195 			return (-1);
196 		}
197 		fp->f_seekp = sb.st_size - offset;
198 		break;
199 	    }
200 	default:
201 		errno = EINVAL;
202 		return (-1);
203 	}
204 	return (fp->f_seekp);
205 }
206 
207 static int
208 zfs_stat(struct open_file *f, struct stat *sb)
209 {
210 	const spa_t *spa = ((struct zfsmount *)f->f_devdata)->spa;
211 	struct file *fp = (struct file *)f->f_fsdata;
212 
213 	return (zfs_dnode_stat(spa, &fp->f_dnode, sb));
214 }
215 
216 static int
217 zfs_readdir(struct open_file *f, struct dirent *d)
218 {
219 	const spa_t *spa = ((struct zfsmount *)f->f_devdata)->spa;
220 	struct file *fp = (struct file *)f->f_fsdata;
221 	mzap_ent_phys_t mze;
222 	struct stat sb;
223 	size_t bsize = fp->f_dnode.dn_datablkszsec << SPA_MINBLOCKSHIFT;
224 	int rc;
225 
226 	rc = zfs_stat(f, &sb);
227 	if (rc)
228 		return (rc);
229 	if (!S_ISDIR(sb.st_mode))
230 		return (ENOTDIR);
231 
232 	/*
233 	 * If this is the first read, get the zap type.
234 	 */
235 	if (fp->f_seekp == 0) {
236 		rc = dnode_read(spa, &fp->f_dnode,
237 				0, &fp->f_zap_type, sizeof(fp->f_zap_type));
238 		if (rc)
239 			return (rc);
240 
241 		if (fp->f_zap_type == ZBT_MICRO) {
242 			fp->f_seekp = offsetof(mzap_phys_t, mz_chunk);
243 		} else {
244 			rc = dnode_read(spa, &fp->f_dnode,
245 					offsetof(zap_phys_t, zap_num_leafs),
246 					&fp->f_num_leafs,
247 					sizeof(fp->f_num_leafs));
248 			if (rc)
249 				return (rc);
250 
251 			fp->f_seekp = bsize;
252 			fp->f_zap_leaf = malloc(bsize);
253 			if (fp->f_zap_leaf == NULL)
254 				return (ENOMEM);
255 			rc = dnode_read(spa, &fp->f_dnode,
256 					fp->f_seekp,
257 					fp->f_zap_leaf,
258 					bsize);
259 			if (rc)
260 				return (rc);
261 		}
262 	}
263 
264 	if (fp->f_zap_type == ZBT_MICRO) {
265 	mzap_next:
266 		if (fp->f_seekp >= bsize)
267 			return (ENOENT);
268 
269 		rc = dnode_read(spa, &fp->f_dnode,
270 				fp->f_seekp, &mze, sizeof(mze));
271 		if (rc)
272 			return (rc);
273 		fp->f_seekp += sizeof(mze);
274 
275 		if (!mze.mze_name[0])
276 			goto mzap_next;
277 
278 		d->d_fileno = ZFS_DIRENT_OBJ(mze.mze_value);
279 		d->d_type = ZFS_DIRENT_TYPE(mze.mze_value);
280 		strcpy(d->d_name, mze.mze_name);
281 		d->d_namlen = strlen(d->d_name);
282 		return (0);
283 	} else {
284 		zap_leaf_t zl;
285 		zap_leaf_chunk_t *zc, *nc;
286 		int chunk;
287 		size_t namelen;
288 		char *p;
289 		uint64_t value;
290 
291 		/*
292 		 * Initialise this so we can use the ZAP size
293 		 * calculating macros.
294 		 */
295 		zl.l_bs = ilog2(bsize);
296 		zl.l_phys = fp->f_zap_leaf;
297 
298 		/*
299 		 * Figure out which chunk we are currently looking at
300 		 * and consider seeking to the next leaf. We use the
301 		 * low bits of f_seekp as a simple chunk index.
302 		 */
303 	fzap_next:
304 		chunk = fp->f_seekp & (bsize - 1);
305 		if (chunk == ZAP_LEAF_NUMCHUNKS(&zl)) {
306 			fp->f_seekp = rounddown2(fp->f_seekp, bsize) + bsize;
307 			chunk = 0;
308 
309 			/*
310 			 * Check for EOF and read the new leaf.
311 			 */
312 			if (fp->f_seekp >= bsize * fp->f_num_leafs)
313 				return (ENOENT);
314 
315 			rc = dnode_read(spa, &fp->f_dnode,
316 					fp->f_seekp,
317 					fp->f_zap_leaf,
318 					bsize);
319 			if (rc)
320 				return (rc);
321 		}
322 
323 		zc = &ZAP_LEAF_CHUNK(&zl, chunk);
324 		fp->f_seekp++;
325 		if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY)
326 			goto fzap_next;
327 
328 		namelen = zc->l_entry.le_name_numints;
329 		if (namelen > sizeof(d->d_name))
330 			namelen = sizeof(d->d_name);
331 
332 		/*
333 		 * Paste the name back together.
334 		 */
335 		nc = &ZAP_LEAF_CHUNK(&zl, zc->l_entry.le_name_chunk);
336 		p = d->d_name;
337 		while (namelen > 0) {
338 			int len;
339 			len = namelen;
340 			if (len > ZAP_LEAF_ARRAY_BYTES)
341 				len = ZAP_LEAF_ARRAY_BYTES;
342 			memcpy(p, nc->l_array.la_array, len);
343 			p += len;
344 			namelen -= len;
345 			nc = &ZAP_LEAF_CHUNK(&zl, nc->l_array.la_next);
346 		}
347 		d->d_name[sizeof(d->d_name) - 1] = 0;
348 
349 		/*
350 		 * Assume the first eight bytes of the value are
351 		 * a uint64_t.
352 		 */
353 		value = fzap_leaf_value(&zl, zc);
354 
355 		d->d_fileno = ZFS_DIRENT_OBJ(value);
356 		d->d_type = ZFS_DIRENT_TYPE(value);
357 		d->d_namlen = strlen(d->d_name);
358 
359 		return (0);
360 	}
361 }
362 
363 static int
364 vdev_read(vdev_t *vdev, void *priv, off_t offset, void *buf, size_t bytes)
365 {
366 	int fd, ret;
367 	size_t res, head, tail, total_size, full_sec_size;
368 	unsigned secsz, do_tail_read;
369 	off_t start_sec;
370 	char *outbuf, *bouncebuf;
371 
372 	fd = (uintptr_t) priv;
373 	outbuf = (char *) buf;
374 	bouncebuf = NULL;
375 
376 	ret = ioctl(fd, DIOCGSECTORSIZE, &secsz);
377 	if (ret != 0)
378 		return (ret);
379 
380 	/*
381 	 * Handling reads of arbitrary offset and size - multi-sector case
382 	 * and single-sector case.
383 	 *
384 	 *                        Multi-sector Case
385 	 *                (do_tail_read = true if tail > 0)
386 	 *
387 	 *   |<----------------------total_size--------------------->|
388 	 *   |                                                       |
389 	 *   |<--head-->|<--------------bytes------------>|<--tail-->|
390 	 *   |          |                                 |          |
391 	 *   |          |       |<~full_sec_size~>|       |          |
392 	 *   +------------------+                 +------------------+
393 	 *   |          |0101010|     .  .  .     |0101011|          |
394 	 *   +------------------+                 +------------------+
395 	 *         start_sec                         start_sec + n
396 	 *
397 	 *
398 	 *                      Single-sector Case
399 	 *                    (do_tail_read = false)
400 	 *
401 	 *              |<------total_size = secsz----->|
402 	 *              |                               |
403 	 *              |<-head->|<---bytes--->|<-tail->|
404 	 *              +-------------------------------+
405 	 *              |        |0101010101010|        |
406 	 *              +-------------------------------+
407 	 *                          start_sec
408 	 */
409 	start_sec = offset / secsz;
410 	head = offset % secsz;
411 	total_size = roundup2(head + bytes, secsz);
412 	tail = total_size - (head + bytes);
413 	do_tail_read = ((tail > 0) && (head + bytes > secsz));
414 	full_sec_size = total_size;
415 	if (head > 0)
416 		full_sec_size -= secsz;
417 	if (do_tail_read)
418 		full_sec_size -= secsz;
419 
420 	/* Return of partial sector data requires a bounce buffer. */
421 	if ((head > 0) || do_tail_read || bytes < secsz) {
422 		bouncebuf = malloc(secsz);
423 		if (bouncebuf == NULL) {
424 			printf("vdev_read: out of memory\n");
425 			return (ENOMEM);
426 		}
427 	}
428 
429 	if (lseek(fd, start_sec * secsz, SEEK_SET) == -1) {
430 		ret = errno;
431 		goto error;
432 	}
433 
434 	/* Partial data return from first sector */
435 	if (head > 0) {
436 		res = read(fd, bouncebuf, secsz);
437 		if (res != secsz) {
438 			ret = EIO;
439 			goto error;
440 		}
441 		memcpy(outbuf, bouncebuf + head, min(secsz - head, bytes));
442 		outbuf += min(secsz - head, bytes);
443 	}
444 
445 	/*
446 	 * Full data return from read sectors.
447 	 * Note, there is still corner case where we read
448 	 * from sector boundary, but less than sector size, e.g. reading 512B
449 	 * from 4k sector.
450 	 */
451 	if (full_sec_size > 0) {
452 		if (bytes < full_sec_size) {
453 			res = read(fd, bouncebuf, secsz);
454 			if (res != secsz) {
455 				ret = EIO;
456 				goto error;
457 			}
458 			memcpy(outbuf, bouncebuf, bytes);
459 		} else {
460 			res = read(fd, outbuf, full_sec_size);
461 			if (res != full_sec_size) {
462 				ret = EIO;
463 				goto error;
464 			}
465 			outbuf += full_sec_size;
466 		}
467 	}
468 
469 	/* Partial data return from last sector */
470 	if (do_tail_read) {
471 		res = read(fd, bouncebuf, secsz);
472 		if (res != secsz) {
473 			ret = EIO;
474 			goto error;
475 		}
476 		memcpy(outbuf, bouncebuf, secsz - tail);
477 	}
478 
479 	ret = 0;
480 error:
481 	free(bouncebuf);
482 	return (ret);
483 }
484 
485 static int
486 zfs_dev_init(void)
487 {
488 	spa_t *spa;
489 	spa_t *next;
490 	spa_t *prev;
491 
492 	zfs_init();
493 	if (archsw.arch_zfs_probe == NULL)
494 		return (ENXIO);
495 	archsw.arch_zfs_probe();
496 
497 	prev = NULL;
498 	spa = STAILQ_FIRST(&zfs_pools);
499 	while (spa != NULL) {
500 		next = STAILQ_NEXT(spa, spa_link);
501 		if (zfs_spa_init(spa)) {
502 			if (prev == NULL)
503 				STAILQ_REMOVE_HEAD(&zfs_pools, spa_link);
504 			else
505 				STAILQ_REMOVE_AFTER(&zfs_pools, prev, spa_link);
506 		} else
507 			prev = spa;
508 		spa = next;
509 	}
510 	return (0);
511 }
512 
513 struct zfs_probe_args {
514 	int		fd;
515 	const char	*devname;
516 	uint64_t	*pool_guid;
517 	u_int		secsz;
518 };
519 
520 static int
521 zfs_diskread(void *arg, void *buf, size_t blocks, uint64_t offset)
522 {
523 	struct zfs_probe_args *ppa;
524 
525 	ppa = (struct zfs_probe_args *)arg;
526 	return (vdev_read(NULL, (void *)(uintptr_t)ppa->fd,
527 	    offset * ppa->secsz, buf, blocks * ppa->secsz));
528 }
529 
530 static int
531 zfs_probe(int fd, uint64_t *pool_guid)
532 {
533 	spa_t *spa;
534 	int ret;
535 
536 	spa = NULL;
537 	ret = vdev_probe(vdev_read, (void *)(uintptr_t)fd, &spa);
538 	if (ret == 0 && pool_guid != NULL)
539 		*pool_guid = spa->spa_guid;
540 	return (ret);
541 }
542 
543 static int
544 zfs_probe_partition(void *arg, const char *partname,
545     const struct ptable_entry *part)
546 {
547 	struct zfs_probe_args *ppa, pa;
548 	struct ptable *table;
549 	char devname[32];
550 	int ret;
551 
552 	/* Probe only freebsd-zfs and freebsd partitions */
553 	if (part->type != PART_FREEBSD &&
554 	    part->type != PART_FREEBSD_ZFS)
555 		return (0);
556 
557 	ppa = (struct zfs_probe_args *)arg;
558 	strncpy(devname, ppa->devname, strlen(ppa->devname) - 1);
559 	devname[strlen(ppa->devname) - 1] = '\0';
560 	sprintf(devname, "%s%s:", devname, partname);
561 	pa.fd = open(devname, O_RDONLY);
562 	if (pa.fd == -1)
563 		return (0);
564 	ret = zfs_probe(pa.fd, ppa->pool_guid);
565 	if (ret == 0)
566 		return (0);
567 	/* Do we have BSD label here? */
568 	if (part->type == PART_FREEBSD) {
569 		pa.devname = devname;
570 		pa.pool_guid = ppa->pool_guid;
571 		pa.secsz = ppa->secsz;
572 		table = ptable_open(&pa, part->end - part->start + 1,
573 		    ppa->secsz, zfs_diskread);
574 		if (table != NULL) {
575 			ptable_iterate(table, &pa, zfs_probe_partition);
576 			ptable_close(table);
577 		}
578 	}
579 	close(pa.fd);
580 	return (0);
581 }
582 
583 int
584 zfs_probe_dev(const char *devname, uint64_t *pool_guid)
585 {
586 	struct disk_devdesc *dev;
587 	struct ptable *table;
588 	struct zfs_probe_args pa;
589 	uint64_t mediasz;
590 	int ret;
591 
592 	if (pool_guid)
593 		*pool_guid = 0;
594 	pa.fd = open(devname, O_RDONLY);
595 	if (pa.fd == -1)
596 		return (ENXIO);
597 	/*
598 	 * We will not probe the whole disk, we can not boot from such
599 	 * disks and some systems will misreport the disk sizes and will
600 	 * hang while accessing the disk.
601 	 */
602 	if (archsw.arch_getdev((void **)&dev, devname, NULL) == 0) {
603 		int partition = dev->d_partition;
604 		int slice = dev->d_slice;
605 
606 		free(dev);
607 		if (partition != D_PARTNONE && slice != D_SLICENONE) {
608 			ret = zfs_probe(pa.fd, pool_guid);
609 			if (ret == 0)
610 				return (0);
611 		}
612 	}
613 
614 	/* Probe each partition */
615 	ret = ioctl(pa.fd, DIOCGMEDIASIZE, &mediasz);
616 	if (ret == 0)
617 		ret = ioctl(pa.fd, DIOCGSECTORSIZE, &pa.secsz);
618 	if (ret == 0) {
619 		pa.devname = devname;
620 		pa.pool_guid = pool_guid;
621 		table = ptable_open(&pa, mediasz / pa.secsz, pa.secsz,
622 		    zfs_diskread);
623 		if (table != NULL) {
624 			ptable_iterate(table, &pa, zfs_probe_partition);
625 			ptable_close(table);
626 		}
627 	}
628 	close(pa.fd);
629 	if (pool_guid && *pool_guid == 0)
630 		ret = ENXIO;
631 	return (ret);
632 }
633 
634 /*
635  * Print information about ZFS pools
636  */
637 static int
638 zfs_dev_print(int verbose)
639 {
640 	spa_t *spa;
641 	char line[80];
642 	int ret = 0;
643 
644 	if (STAILQ_EMPTY(&zfs_pools))
645 		return (0);
646 
647 	printf("%s devices:", zfs_dev.dv_name);
648 	if ((ret = pager_output("\n")) != 0)
649 		return (ret);
650 
651 	if (verbose) {
652 		return (spa_all_status());
653 	}
654 	STAILQ_FOREACH(spa, &zfs_pools, spa_link) {
655 		snprintf(line, sizeof(line), "    zfs:%s\n", spa->spa_name);
656 		ret = pager_output(line);
657 		if (ret != 0)
658 			break;
659 	}
660 	return (ret);
661 }
662 
663 /*
664  * Attempt to open the pool described by (dev) for use by (f).
665  */
666 static int
667 zfs_dev_open(struct open_file *f, ...)
668 {
669 	va_list		args;
670 	struct zfs_devdesc	*dev;
671 	struct zfsmount	*mount;
672 	spa_t		*spa;
673 	int		rv;
674 
675 	va_start(args, f);
676 	dev = va_arg(args, struct zfs_devdesc *);
677 	va_end(args);
678 
679 	if (dev->pool_guid == 0)
680 		spa = STAILQ_FIRST(&zfs_pools);
681 	else
682 		spa = spa_find_by_guid(dev->pool_guid);
683 	if (!spa)
684 		return (ENXIO);
685 	mount = malloc(sizeof(*mount));
686 	if (mount == NULL)
687 		rv = ENOMEM;
688 	else
689 		rv = zfs_mount(spa, dev->root_guid, mount);
690 	if (rv != 0) {
691 		free(mount);
692 		return (rv);
693 	}
694 	if (mount->objset.os_type != DMU_OST_ZFS) {
695 		printf("Unexpected object set type %ju\n",
696 		    (uintmax_t)mount->objset.os_type);
697 		free(mount);
698 		return (EIO);
699 	}
700 	f->f_devdata = mount;
701 	free(dev);
702 	return (0);
703 }
704 
705 static int
706 zfs_dev_close(struct open_file *f)
707 {
708 
709 	free(f->f_devdata);
710 	f->f_devdata = NULL;
711 	return (0);
712 }
713 
714 static int
715 zfs_dev_strategy(void *devdata, int rw, daddr_t dblk, size_t size, char *buf, size_t *rsize)
716 {
717 
718 	return (ENOSYS);
719 }
720 
721 struct devsw zfs_dev = {
722 	.dv_name = "zfs",
723 	.dv_type = DEVT_ZFS,
724 	.dv_init = zfs_dev_init,
725 	.dv_strategy = zfs_dev_strategy,
726 	.dv_open = zfs_dev_open,
727 	.dv_close = zfs_dev_close,
728 	.dv_ioctl = noioctl,
729 	.dv_print = zfs_dev_print,
730 	.dv_cleanup = NULL
731 };
732 
733 int
734 zfs_parsedev(struct zfs_devdesc *dev, const char *devspec, const char **path)
735 {
736 	static char	rootname[ZFS_MAXNAMELEN];
737 	static char	poolname[ZFS_MAXNAMELEN];
738 	spa_t		*spa;
739 	const char	*end;
740 	const char	*np;
741 	const char	*sep;
742 	int		rv;
743 
744 	np = devspec;
745 	if (*np != ':')
746 		return (EINVAL);
747 	np++;
748 	end = strrchr(np, ':');
749 	if (end == NULL)
750 		return (EINVAL);
751 	sep = strchr(np, '/');
752 	if (sep == NULL || sep >= end)
753 		sep = end;
754 	memcpy(poolname, np, sep - np);
755 	poolname[sep - np] = '\0';
756 	if (sep < end) {
757 		sep++;
758 		memcpy(rootname, sep, end - sep);
759 		rootname[end - sep] = '\0';
760 	}
761 	else
762 		rootname[0] = '\0';
763 
764 	spa = spa_find_by_name(poolname);
765 	if (!spa)
766 		return (ENXIO);
767 	dev->pool_guid = spa->spa_guid;
768 	rv = zfs_lookup_dataset(spa, rootname, &dev->root_guid);
769 	if (rv != 0)
770 		return (rv);
771 	if (path != NULL)
772 		*path = (*end == '\0') ? end : end + 1;
773 	dev->dd.d_dev = &zfs_dev;
774 	return (0);
775 }
776 
777 char *
778 zfs_fmtdev(void *vdev)
779 {
780 	static char		rootname[ZFS_MAXNAMELEN];
781 	static char		buf[2 * ZFS_MAXNAMELEN + 8];
782 	struct zfs_devdesc	*dev = (struct zfs_devdesc *)vdev;
783 	spa_t			*spa;
784 
785 	buf[0] = '\0';
786 	if (dev->dd.d_dev->dv_type != DEVT_ZFS)
787 		return (buf);
788 
789 	/* Do we have any pools? */
790 	spa = STAILQ_FIRST(&zfs_pools);
791 	if (spa == NULL)
792 		return (buf);
793 
794 	if (dev->pool_guid == 0)
795 		dev->pool_guid = spa->spa_guid;
796 	else
797 		spa = spa_find_by_guid(dev->pool_guid);
798 
799 	if (spa == NULL) {
800 		printf("ZFS: can't find pool by guid\n");
801 		return (buf);
802 	}
803 	if (dev->root_guid == 0 && zfs_get_root(spa, &dev->root_guid)) {
804 		printf("ZFS: can't find root filesystem\n");
805 		return (buf);
806 	}
807 	if (zfs_rlookup(spa, dev->root_guid, rootname)) {
808 		printf("ZFS: can't find filesystem by guid\n");
809 		return (buf);
810 	}
811 
812 	if (rootname[0] == '\0')
813 		sprintf(buf, "%s:%s:", dev->dd.d_dev->dv_name, spa->spa_name);
814 	else
815 		sprintf(buf, "%s:%s/%s:", dev->dd.d_dev->dv_name, spa->spa_name,
816 		    rootname);
817 	return (buf);
818 }
819 
820 int
821 zfs_list(const char *name)
822 {
823 	static char	poolname[ZFS_MAXNAMELEN];
824 	uint64_t	objid;
825 	spa_t		*spa;
826 	const char	*dsname;
827 	int		len;
828 	int		rv;
829 
830 	len = strlen(name);
831 	dsname = strchr(name, '/');
832 	if (dsname != NULL) {
833 		len = dsname - name;
834 		dsname++;
835 	} else
836 		dsname = "";
837 	memcpy(poolname, name, len);
838 	poolname[len] = '\0';
839 
840 	spa = spa_find_by_name(poolname);
841 	if (!spa)
842 		return (ENXIO);
843 	rv = zfs_lookup_dataset(spa, dsname, &objid);
844 	if (rv != 0)
845 		return (rv);
846 
847 	return (zfs_list_dataset(spa, objid));
848 }
849 
850 void
851 init_zfs_bootenv(const char *currdev_in)
852 {
853 	char *beroot, *currdev;
854 	int currdev_len;
855 
856 	currdev = NULL;
857 	currdev_len = strlen(currdev_in);
858 	if (currdev_len == 0)
859 		return;
860 	if (strncmp(currdev_in, "zfs:", 4) != 0)
861 		return;
862 	currdev = strdup(currdev_in);
863 	if (currdev == NULL)
864 		return;
865 	/* Remove the trailing : */
866 	currdev[currdev_len - 1] = '\0';
867 	setenv("zfs_be_active", currdev, 1);
868 	setenv("zfs_be_currpage", "1", 1);
869 	/* Remove the last element (current bootenv) */
870 	beroot = strrchr(currdev, '/');
871 	if (beroot != NULL)
872 		beroot[0] = '\0';
873 	beroot = strchr(currdev, ':') + 1;
874 	setenv("zfs_be_root", beroot, 1);
875 	zfs_bootenv_initial(beroot);
876 	free(currdev);
877 }
878 
879 static void
880 zfs_bootenv_initial(const char *name)
881 {
882 	char		poolname[ZFS_MAXNAMELEN], *dsname;
883 	char envname[32], envval[256];
884 	uint64_t	objid;
885 	spa_t		*spa;
886 	int		bootenvs_idx, len, rv;
887 
888 	SLIST_INIT(&zfs_be_head);
889 	zfs_env_count = 0;
890 	len = strlen(name);
891 	dsname = strchr(name, '/');
892 	if (dsname != NULL) {
893 		len = dsname - name;
894 		dsname++;
895 	} else
896 		dsname = "";
897 	strlcpy(poolname, name, len + 1);
898 	spa = spa_find_by_name(poolname);
899 	if (spa == NULL)
900 		return;
901 	rv = zfs_lookup_dataset(spa, dsname, &objid);
902 	if (rv != 0)
903 		return;
904 	rv = zfs_callback_dataset(spa, objid, zfs_belist_add);
905 	bootenvs_idx = 0;
906 	/* Populate the initial environment variables */
907 	SLIST_FOREACH_SAFE(zfs_be, &zfs_be_head, entries, zfs_be_tmp) {
908 		/* Enumerate all bootenvs for general usage */
909 		snprintf(envname, sizeof(envname), "bootenvs[%d]", bootenvs_idx);
910 		snprintf(envval, sizeof(envval), "zfs:%s/%s", name, zfs_be->name);
911 		rv = setenv(envname, envval, 1);
912 		if (rv != 0)
913 			break;
914 		bootenvs_idx++;
915 	}
916 	snprintf(envval, sizeof(envval), "%d", bootenvs_idx);
917 	setenv("bootenvs_count", envval, 1);
918 
919 	/* Clean up the SLIST of ZFS BEs */
920 	while (!SLIST_EMPTY(&zfs_be_head)) {
921 		zfs_be = SLIST_FIRST(&zfs_be_head);
922 		SLIST_REMOVE_HEAD(&zfs_be_head, entries);
923 		free(zfs_be->name);
924 		free(zfs_be);
925 	}
926 
927 	return;
928 
929 }
930 
931 int
932 zfs_bootenv(const char *name)
933 {
934 	static char	poolname[ZFS_MAXNAMELEN], *dsname, *root;
935 	char		becount[4];
936 	uint64_t	objid;
937 	spa_t		*spa;
938 	int		len, rv, pages, perpage, currpage;
939 
940 	if (name == NULL)
941 		return (EINVAL);
942 	if ((root = getenv("zfs_be_root")) == NULL)
943 		return (EINVAL);
944 
945 	if (strcmp(name, root) != 0) {
946 		if (setenv("zfs_be_root", name, 1) != 0)
947 			return (ENOMEM);
948 	}
949 
950 	SLIST_INIT(&zfs_be_head);
951 	zfs_env_count = 0;
952 	len = strlen(name);
953 	dsname = strchr(name, '/');
954 	if (dsname != NULL) {
955 		len = dsname - name;
956 		dsname++;
957 	} else
958 		dsname = "";
959 	memcpy(poolname, name, len);
960 	poolname[len] = '\0';
961 
962 	spa = spa_find_by_name(poolname);
963 	if (!spa)
964 		return (ENXIO);
965 	rv = zfs_lookup_dataset(spa, dsname, &objid);
966 	if (rv != 0)
967 		return (rv);
968 	rv = zfs_callback_dataset(spa, objid, zfs_belist_add);
969 
970 	/* Calculate and store the number of pages of BEs */
971 	perpage = (ZFS_BE_LAST - ZFS_BE_FIRST + 1);
972 	pages = (zfs_env_count / perpage) + ((zfs_env_count % perpage) > 0 ? 1 : 0);
973 	snprintf(becount, 4, "%d", pages);
974 	if (setenv("zfs_be_pages", becount, 1) != 0)
975 		return (ENOMEM);
976 
977 	/* Roll over the page counter if it has exceeded the maximum */
978 	currpage = strtol(getenv("zfs_be_currpage"), NULL, 10);
979 	if (currpage > pages) {
980 		if (setenv("zfs_be_currpage", "1", 1) != 0)
981 			return (ENOMEM);
982 	}
983 
984 	/* Populate the menu environment variables */
985 	zfs_set_env();
986 
987 	/* Clean up the SLIST of ZFS BEs */
988 	while (!SLIST_EMPTY(&zfs_be_head)) {
989 		zfs_be = SLIST_FIRST(&zfs_be_head);
990 		SLIST_REMOVE_HEAD(&zfs_be_head, entries);
991 		free(zfs_be->name);
992 		free(zfs_be);
993 	}
994 
995 	return (rv);
996 }
997 
998 int
999 zfs_belist_add(const char *name, uint64_t value __unused)
1000 {
1001 
1002 	/* Skip special datasets that start with a $ character */
1003 	if (strncmp(name, "$", 1) == 0) {
1004 		return (0);
1005 	}
1006 	/* Add the boot environment to the head of the SLIST */
1007 	zfs_be = malloc(sizeof(struct zfs_be_entry));
1008 	if (zfs_be == NULL) {
1009 		return (ENOMEM);
1010 	}
1011 	zfs_be->name = strdup(name);
1012 	if (zfs_be->name == NULL) {
1013 		free(zfs_be);
1014 		return (ENOMEM);
1015 	}
1016 	SLIST_INSERT_HEAD(&zfs_be_head, zfs_be, entries);
1017 	zfs_env_count++;
1018 
1019 	return (0);
1020 }
1021 
1022 int
1023 zfs_set_env(void)
1024 {
1025 	char envname[32], envval[256];
1026 	char *beroot, *pagenum;
1027 	int rv, page, ctr;
1028 
1029 	beroot = getenv("zfs_be_root");
1030 	if (beroot == NULL) {
1031 		return (1);
1032 	}
1033 
1034 	pagenum = getenv("zfs_be_currpage");
1035 	if (pagenum != NULL) {
1036 		page = strtol(pagenum, NULL, 10);
1037 	} else {
1038 		page = 1;
1039 	}
1040 
1041 	ctr = 1;
1042 	rv = 0;
1043 	zfs_env_index = ZFS_BE_FIRST;
1044 	SLIST_FOREACH_SAFE(zfs_be, &zfs_be_head, entries, zfs_be_tmp) {
1045 		/* Skip to the requested page number */
1046 		if (ctr <= ((ZFS_BE_LAST - ZFS_BE_FIRST + 1) * (page - 1))) {
1047 			ctr++;
1048 			continue;
1049 		}
1050 
1051 		snprintf(envname, sizeof(envname), "bootenvmenu_caption[%d]", zfs_env_index);
1052 		snprintf(envval, sizeof(envval), "%s", zfs_be->name);
1053 		rv = setenv(envname, envval, 1);
1054 		if (rv != 0) {
1055 			break;
1056 		}
1057 
1058 		snprintf(envname, sizeof(envname), "bootenvansi_caption[%d]", zfs_env_index);
1059 		rv = setenv(envname, envval, 1);
1060 		if (rv != 0){
1061 			break;
1062 		}
1063 
1064 		snprintf(envname, sizeof(envname), "bootenvmenu_command[%d]", zfs_env_index);
1065 		rv = setenv(envname, "set_bootenv", 1);
1066 		if (rv != 0){
1067 			break;
1068 		}
1069 
1070 		snprintf(envname, sizeof(envname), "bootenv_root[%d]", zfs_env_index);
1071 		snprintf(envval, sizeof(envval), "zfs:%s/%s", beroot, zfs_be->name);
1072 		rv = setenv(envname, envval, 1);
1073 		if (rv != 0){
1074 			break;
1075 		}
1076 
1077 		zfs_env_index++;
1078 		if (zfs_env_index > ZFS_BE_LAST) {
1079 			break;
1080 		}
1081 
1082 	}
1083 
1084 	for (; zfs_env_index <= ZFS_BE_LAST; zfs_env_index++) {
1085 		snprintf(envname, sizeof(envname), "bootenvmenu_caption[%d]", zfs_env_index);
1086 		(void)unsetenv(envname);
1087 		snprintf(envname, sizeof(envname), "bootenvansi_caption[%d]", zfs_env_index);
1088 		(void)unsetenv(envname);
1089 		snprintf(envname, sizeof(envname), "bootenvmenu_command[%d]", zfs_env_index);
1090 		(void)unsetenv(envname);
1091 		snprintf(envname, sizeof(envname), "bootenv_root[%d]", zfs_env_index);
1092 		(void)unsetenv(envname);
1093 	}
1094 
1095 	return (rv);
1096 }
1097