xref: /freebsd/stand/libsa/zalloc.c (revision e6bfd18d21b225af6a0ed67ceeaf1293b7b9eba5)
1 /*
2  * This module derived from code donated to the FreeBSD Project by
3  * Matthew Dillon <dillon@backplane.com>
4  *
5  * Copyright (c) 1998 The FreeBSD Project
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 
35 /*
36  * LIB/MEMORY/ZALLOC.C	- self contained low-overhead memory pool/allocation
37  *			  subsystem
38  *
39  *	This subsystem implements memory pools and memory allocation
40  *	routines.
41  *
42  *	Pools are managed via a linked list of 'free' areas.  Allocating
43  *	memory creates holes in the freelist, freeing memory fills them.
44  *	Since the freelist consists only of free memory areas, it is possible
45  *	to allocate the entire pool without incuring any structural overhead.
46  *
47  *	The system works best when allocating similarly-sized chunks of
48  *	memory.  Care must be taken to avoid fragmentation when
49  *	allocating/deallocating dissimilar chunks.
50  *
51  *	When a memory pool is first allocated, the entire pool is marked as
52  *	allocated.  This is done mainly because we do not want to modify any
53  *	portion of a pool's data area until we are given permission.  The
54  *	caller must explicitly deallocate portions of the pool to make them
55  *	available.
56  *
57  *	z[n]xalloc() works like z[n]alloc() but the allocation is made from
58  *	within the specified address range.  If the segment could not be
59  *	allocated, NULL is returned.  WARNING!  The address range will be
60  *	aligned to an 8 or 16 byte boundry depending on the cpu so if you
61  *	give an unaligned address range, unexpected results may occur.
62  *
63  *	If a standard allocation fails, the reclaim function will be called
64  *	to recover some space.  This usually causes other portions of the
65  *	same pool to be released.  Memory allocations at this low level
66  *	should not block but you can do that too in your reclaim function
67  *	if you want.  Reclaim does not function when z[n]xalloc() is used,
68  *	only for z[n]alloc().
69  *
70  *	Allocation and frees of 0 bytes are valid operations.
71  */
72 
73 #include "zalloc_defs.h"
74 
75 /*
76  * Objects in the pool must be aligned to at least the size of struct MemNode.
77  * They must also be aligned to MALLOCALIGN, which should normally be larger
78  * than the struct, so assert that to be so at compile time.
79  */
80 typedef char assert_align[(sizeof(struct MemNode) <= MALLOCALIGN) ? 1 : -1];
81 
82 #define	MEMNODE_SIZE_MASK	MALLOCALIGN_MASK
83 
84 /*
85  * znalloc() -	allocate memory (without zeroing) from pool.  Call reclaim
86  *		and retry if appropriate, return NULL if unable to allocate
87  *		memory.
88  */
89 
90 void *
91 znalloc(MemPool *mp, uintptr_t bytes, size_t align)
92 {
93 	MemNode **pmn;
94 	MemNode *mn;
95 
96 	/*
97 	 * align according to pool object size (can be 0).  This is
98 	 * inclusive of the MEMNODE_SIZE_MASK minimum alignment.
99 	 *
100 	*/
101 	bytes = (bytes + MEMNODE_SIZE_MASK) & ~MEMNODE_SIZE_MASK;
102 
103 	if (bytes == 0)
104 		return ((void *)-1);
105 
106 	/*
107 	 * locate freelist entry big enough to hold the object.  If all objects
108 	 * are the same size, this is a constant-time function.
109 	 */
110 
111 	if (bytes > mp->mp_Size - mp->mp_Used)
112 		return (NULL);
113 
114 	for (pmn = &mp->mp_First; (mn = *pmn) != NULL; pmn = &mn->mr_Next) {
115 		char *ptr = (char *)mn;
116 		uintptr_t dptr;
117 		char *aligned;
118 		size_t extra;
119 
120 		dptr = (uintptr_t)(ptr + MALLOCALIGN);  /* pointer to data */
121 		aligned = (char *)(roundup2(dptr, align) - MALLOCALIGN);
122 		extra = aligned - ptr;
123 
124 		if (bytes + extra > mn->mr_Bytes)
125 			continue;
126 
127 		/*
128 		 * Cut extra from head and create new memory node from
129 		 * remainder.
130 		 */
131 
132 		if (extra != 0) {
133 			MemNode *new;
134 
135 			new = (MemNode *)aligned;
136 			new->mr_Next = mn->mr_Next;
137 			new->mr_Bytes = mn->mr_Bytes - extra;
138 
139 			/* And update current memory node */
140 			mn->mr_Bytes = extra;
141 			mn->mr_Next = new;
142 			/* In next iteration, we will get our aligned address */
143 			continue;
144 		}
145 
146 		/*
147 		 *  Cut a chunk of memory out of the beginning of this
148 		 *  block and fixup the link appropriately.
149 		 */
150 
151 		if (mn->mr_Bytes == bytes) {
152 			*pmn = mn->mr_Next;
153 		} else {
154 			mn = (MemNode *)((char *)mn + bytes);
155 			mn->mr_Next  = ((MemNode *)ptr)->mr_Next;
156 			mn->mr_Bytes = ((MemNode *)ptr)->mr_Bytes - bytes;
157 			*pmn = mn;
158 		}
159 		mp->mp_Used += bytes;
160 		return(ptr);
161 	}
162 
163 	/*
164 	 * Memory pool is full, return NULL.
165 	 */
166 
167 	return (NULL);
168 }
169 
170 /*
171  * zfree() - free previously allocated memory
172  */
173 
174 void
175 zfree(MemPool *mp, void *ptr, uintptr_t bytes)
176 {
177 	MemNode **pmn;
178 	MemNode *mn;
179 
180 	/*
181 	 * align according to pool object size (can be 0).  This is
182 	 * inclusive of the MEMNODE_SIZE_MASK minimum alignment.
183 	 */
184 	bytes = (bytes + MEMNODE_SIZE_MASK) & ~MEMNODE_SIZE_MASK;
185 
186 	if (bytes == 0)
187 		return;
188 
189 	/*
190 	 * panic if illegal pointer
191 	 */
192 
193 	if ((char *)ptr < (char *)mp->mp_Base ||
194 	    (char *)ptr + bytes > (char *)mp->mp_End ||
195 	    ((uintptr_t)ptr & MEMNODE_SIZE_MASK) != 0)
196 		panic("zfree(%p,%ju): wild pointer", ptr, (uintmax_t)bytes);
197 
198 	/*
199 	 * free the segment
200 	 */
201 	mp->mp_Used -= bytes;
202 
203 	for (pmn = &mp->mp_First; (mn = *pmn) != NULL; pmn = &mn->mr_Next) {
204 		/*
205 		 * If area between last node and current node
206 		 *  - check range
207 		 *  - check merge with next area
208 		 *  - check merge with previous area
209 		 */
210 		if ((char *)ptr <= (char *)mn) {
211 			/*
212 			 * range check
213 			 */
214 			if ((char *)ptr + bytes > (char *)mn) {
215 				panic("zfree(%p,%ju): corrupt memlist1", ptr,
216 				    (uintmax_t)bytes);
217 			}
218 
219 			/*
220 			 * merge against next area or create independent area
221 			 */
222 
223 			if ((char *)ptr + bytes == (char *)mn) {
224 				((MemNode *)ptr)->mr_Next = mn->mr_Next;
225 				((MemNode *)ptr)->mr_Bytes =
226 				    bytes + mn->mr_Bytes;
227 			} else {
228 				((MemNode *)ptr)->mr_Next = mn;
229 				((MemNode *)ptr)->mr_Bytes = bytes;
230 			}
231 			*pmn = mn = (MemNode *)ptr;
232 
233 			/*
234 			 * merge against previous area (if there is a previous
235 			 * area).
236 			 */
237 
238 			if (pmn != &mp->mp_First) {
239 				if ((char *)pmn + ((MemNode*)pmn)->mr_Bytes ==
240 				    (char *)ptr) {
241 					((MemNode *)pmn)->mr_Next = mn->mr_Next;
242 					((MemNode *)pmn)->mr_Bytes +=
243 					    mn->mr_Bytes;
244 					mn = (MemNode *)pmn;
245 				}
246 			}
247 			return;
248 		}
249 		if ((char *)ptr < (char *)mn + mn->mr_Bytes) {
250 			panic("zfree(%p,%ju): corrupt memlist2", ptr,
251 			    (uintmax_t)bytes);
252 		}
253 	}
254 	/*
255 	 * We are beyond the last MemNode, append new MemNode.  Merge against
256 	 * previous area if possible.
257 	 */
258 	if (pmn == &mp->mp_First ||
259 	    (char *)pmn + ((MemNode *)pmn)->mr_Bytes != (char *)ptr) {
260 		((MemNode *)ptr)->mr_Next = NULL;
261 		((MemNode *)ptr)->mr_Bytes = bytes;
262 		*pmn = (MemNode *)ptr;
263 		mn = (MemNode *)ptr;
264 	} else {
265 		((MemNode *)pmn)->mr_Bytes += bytes;
266 		mn = (MemNode *)pmn;
267 	}
268 }
269 
270 /*
271  * zextendPool() - extend memory pool to cover additional space.
272  *
273  *		   Note: the added memory starts out as allocated, you
274  *		   must free it to make it available to the memory subsystem.
275  *
276  *		   Note: mp_Size may not reflect (mp_End - mp_Base) range
277  *		   due to other parts of the system doing their own sbrk()
278  *		   calls.
279  */
280 
281 void
282 zextendPool(MemPool *mp, void *base, uintptr_t bytes)
283 {
284 	if (mp->mp_Size == 0) {
285 		mp->mp_Base = base;
286 		mp->mp_Used = bytes;
287 		mp->mp_End = (char *)base + bytes;
288 		mp->mp_Size = bytes;
289 	} else {
290 		void *pend = (char *)mp->mp_Base + mp->mp_Size;
291 
292 		if (base < mp->mp_Base) {
293 			mp->mp_Size += (char *)mp->mp_Base - (char *)base;
294 			mp->mp_Used += (char *)mp->mp_Base - (char *)base;
295 			mp->mp_Base = base;
296 		}
297 		base = (char *)base + bytes;
298 		if (base > pend) {
299 			mp->mp_Size += (char *)base - (char *)pend;
300 			mp->mp_Used += (char *)base - (char *)pend;
301 			mp->mp_End = (char *)base;
302 		}
303 	}
304 }
305 
306 #ifdef ZALLOCDEBUG
307 
308 void
309 zallocstats(MemPool *mp)
310 {
311 	int abytes = 0;
312 	int hbytes = 0;
313 	int fcount = 0;
314 	MemNode *mn;
315 
316 	printf("%d bytes reserved", (int)mp->mp_Size);
317 
318 	mn = mp->mp_First;
319 
320 	if ((void *)mn != (void *)mp->mp_Base) {
321 		abytes += (char *)mn - (char *)mp->mp_Base;
322 	}
323 
324 	while (mn != NULL) {
325 		if ((char *)mn + mn->mr_Bytes != mp->mp_End) {
326 			hbytes += mn->mr_Bytes;
327 			++fcount;
328 		}
329 		if (mn->mr_Next != NULL) {
330 			abytes += (char *)mn->mr_Next -
331 			    ((char *)mn + mn->mr_Bytes);
332 		}
333 		mn = mn->mr_Next;
334 	}
335 	printf(" %d bytes allocated\n%d fragments (%d bytes fragmented)\n",
336 	    abytes, fcount, hbytes);
337 }
338 
339 #endif
340