xref: /freebsd/stand/libsa/zalloc.c (revision 0edc114ac0b998b06235da32bec24d55c10206cd)
1 /*
2  * This module derived from code donated to the FreeBSD Project by
3  * Matthew Dillon <dillon@backplane.com>
4  *
5  * Copyright (c) 1998 The FreeBSD Project
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 
35 /*
36  * LIB/MEMORY/ZALLOC.C	- self contained low-overhead memory pool/allocation
37  *			  subsystem
38  *
39  *	This subsystem implements memory pools and memory allocation
40  *	routines.
41  *
42  *	Pools are managed via a linked list of 'free' areas.  Allocating
43  *	memory creates holes in the freelist, freeing memory fills them.
44  *	Since the freelist consists only of free memory areas, it is possible
45  *	to allocate the entire pool without incuring any structural overhead.
46  *
47  *	The system works best when allocating similarly-sized chunks of
48  *	memory.  Care must be taken to avoid fragmentation when
49  *	allocating/deallocating dissimilar chunks.
50  *
51  *	When a memory pool is first allocated, the entire pool is marked as
52  *	allocated.  This is done mainly because we do not want to modify any
53  *	portion of a pool's data area until we are given permission.  The
54  *	caller must explicitly deallocate portions of the pool to make them
55  *	available.
56  *
57  *	z[n]xalloc() works like z[n]alloc() but the allocation is made from
58  *	within the specified address range.  If the segment could not be
59  *	allocated, NULL is returned.  WARNING!  The address range will be
60  *	aligned to an 8 or 16 byte boundry depending on the cpu so if you
61  *	give an unaligned address range, unexpected results may occur.
62  *
63  *	If a standard allocation fails, the reclaim function will be called
64  *	to recover some space.  This usually causes other portions of the
65  *	same pool to be released.  Memory allocations at this low level
66  *	should not block but you can do that too in your reclaim function
67  *	if you want.  Reclaim does not function when z[n]xalloc() is used,
68  *	only for z[n]alloc().
69  *
70  *	Allocation and frees of 0 bytes are valid operations.
71  */
72 
73 #include "zalloc_defs.h"
74 
75 /*
76  * Objects in the pool must be aligned to at least the size of struct MemNode.
77  * They must also be aligned to MALLOCALIGN, which should normally be larger
78  * than the struct, so assert that to be so at compile time.
79  */
80 typedef char assert_align[(sizeof(struct MemNode) <= MALLOCALIGN) ? 1 : -1];
81 
82 #define	MEMNODE_SIZE_MASK	MALLOCALIGN_MASK
83 
84 /*
85  * znalloc() -	allocate memory (without zeroing) from pool.  Call reclaim
86  *		and retry if appropriate, return NULL if unable to allocate
87  *		memory.
88  */
89 
90 void *
91 znalloc(MemPool *mp, uintptr_t bytes, size_t align)
92 {
93 	MemNode **pmn;
94 	MemNode *mn;
95 
96 	/*
97 	 * align according to pool object size (can be 0).  This is
98 	 * inclusive of the MEMNODE_SIZE_MASK minimum alignment.
99 	 *
100 	*/
101 	bytes = (bytes + MEMNODE_SIZE_MASK) & ~MEMNODE_SIZE_MASK;
102 
103 	if (bytes == 0)
104 		return ((void *)-1);
105 
106 	/*
107 	 * locate freelist entry big enough to hold the object.  If all objects
108 	 * are the same size, this is a constant-time function.
109 	 */
110 
111 	if (bytes > mp->mp_Size - mp->mp_Used)
112 		return (NULL);
113 
114 	for (pmn = &mp->mp_First; (mn = *pmn) != NULL; pmn = &mn->mr_Next) {
115 		char *ptr = (char *)mn;
116 		uintptr_t dptr;
117 		char *aligned;
118 		size_t extra;
119 
120 		dptr = (uintptr_t)(ptr + MALLOCALIGN);  /* pointer to data */
121 		aligned = (char *)(roundup2(dptr, align) - MALLOCALIGN);
122 		extra = aligned - ptr;
123 
124 		if (bytes + extra > mn->mr_Bytes)
125 			continue;
126 
127 		/*
128 		 * Cut extra from head and create new memory node from reminder.
129 		 */
130 
131 		if (extra != 0) {
132 			MemNode *new;
133 
134 			new = (MemNode *)aligned;
135 			new->mr_Next = mn->mr_Next;
136 			new->mr_Bytes = mn->mr_Bytes - extra;
137 
138 			/* And update current memory node */
139 			mn->mr_Bytes = extra;
140 			mn->mr_Next = new;
141 			/* In next iteration, we will get our aligned address */
142 			continue;
143 		}
144 
145 		/*
146 		 *  Cut a chunk of memory out of the beginning of this
147 		 *  block and fixup the link appropriately.
148 		 */
149 
150 		if (mn->mr_Bytes == bytes) {
151 			*pmn = mn->mr_Next;
152 		} else {
153 			mn = (MemNode *)((char *)mn + bytes);
154 			mn->mr_Next  = ((MemNode *)ptr)->mr_Next;
155 			mn->mr_Bytes = ((MemNode *)ptr)->mr_Bytes - bytes;
156 			*pmn = mn;
157 		}
158 		mp->mp_Used += bytes;
159 		return(ptr);
160 	}
161 
162 	/*
163 	 * Memory pool is full, return NULL.
164 	 */
165 
166 	return (NULL);
167 }
168 
169 /*
170  * zfree() - free previously allocated memory
171  */
172 
173 void
174 zfree(MemPool *mp, void *ptr, uintptr_t bytes)
175 {
176 	MemNode **pmn;
177 	MemNode *mn;
178 
179 	/*
180 	 * align according to pool object size (can be 0).  This is
181 	 * inclusive of the MEMNODE_SIZE_MASK minimum alignment.
182 	 */
183 	bytes = (bytes + MEMNODE_SIZE_MASK) & ~MEMNODE_SIZE_MASK;
184 
185 	if (bytes == 0)
186 		return;
187 
188 	/*
189 	 * panic if illegal pointer
190 	 */
191 
192 	if ((char *)ptr < (char *)mp->mp_Base ||
193 	    (char *)ptr + bytes > (char *)mp->mp_End ||
194 	    ((uintptr_t)ptr & MEMNODE_SIZE_MASK) != 0)
195 		panic("zfree(%p,%ju): wild pointer", ptr, (uintmax_t)bytes);
196 
197 	/*
198 	 * free the segment
199 	 */
200 	mp->mp_Used -= bytes;
201 
202 	for (pmn = &mp->mp_First; (mn = *pmn) != NULL; pmn = &mn->mr_Next) {
203 		/*
204 		 * If area between last node and current node
205 		 *  - check range
206 		 *  - check merge with next area
207 		 *  - check merge with previous area
208 		 */
209 		if ((char *)ptr <= (char *)mn) {
210 			/*
211 			 * range check
212 			 */
213 			if ((char *)ptr + bytes > (char *)mn) {
214 				panic("zfree(%p,%ju): corrupt memlist1", ptr,
215 				    (uintmax_t)bytes);
216 			}
217 
218 			/*
219 			 * merge against next area or create independant area
220 			 */
221 
222 			if ((char *)ptr + bytes == (char *)mn) {
223 				((MemNode *)ptr)->mr_Next = mn->mr_Next;
224 				((MemNode *)ptr)->mr_Bytes =
225 				    bytes + mn->mr_Bytes;
226 			} else {
227 				((MemNode *)ptr)->mr_Next = mn;
228 				((MemNode *)ptr)->mr_Bytes = bytes;
229 			}
230 			*pmn = mn = (MemNode *)ptr;
231 
232 			/*
233 			 * merge against previous area (if there is a previous
234 			 * area).
235 			 */
236 
237 			if (pmn != &mp->mp_First) {
238 				if ((char *)pmn + ((MemNode*)pmn)->mr_Bytes ==
239 				    (char *)ptr) {
240 					((MemNode *)pmn)->mr_Next = mn->mr_Next;
241 					((MemNode *)pmn)->mr_Bytes +=
242 					    mn->mr_Bytes;
243 					mn = (MemNode *)pmn;
244 				}
245 			}
246 			return;
247 		}
248 		if ((char *)ptr < (char *)mn + mn->mr_Bytes) {
249 			panic("zfree(%p,%ju): corrupt memlist2", ptr,
250 			    (uintmax_t)bytes);
251 		}
252 	}
253 	/*
254 	 * We are beyond the last MemNode, append new MemNode.  Merge against
255 	 * previous area if possible.
256 	 */
257 	if (pmn == &mp->mp_First ||
258 	    (char *)pmn + ((MemNode *)pmn)->mr_Bytes != (char *)ptr) {
259 		((MemNode *)ptr)->mr_Next = NULL;
260 		((MemNode *)ptr)->mr_Bytes = bytes;
261 		*pmn = (MemNode *)ptr;
262 		mn = (MemNode *)ptr;
263 	} else {
264 		((MemNode *)pmn)->mr_Bytes += bytes;
265 		mn = (MemNode *)pmn;
266 	}
267 }
268 
269 /*
270  * zextendPool() - extend memory pool to cover additional space.
271  *
272  *		   Note: the added memory starts out as allocated, you
273  *		   must free it to make it available to the memory subsystem.
274  *
275  *		   Note: mp_Size may not reflect (mp_End - mp_Base) range
276  *		   due to other parts of the system doing their own sbrk()
277  *		   calls.
278  */
279 
280 void
281 zextendPool(MemPool *mp, void *base, uintptr_t bytes)
282 {
283 	if (mp->mp_Size == 0) {
284 		mp->mp_Base = base;
285 		mp->mp_Used = bytes;
286 		mp->mp_End = (char *)base + bytes;
287 		mp->mp_Size = bytes;
288 	} else {
289 		void *pend = (char *)mp->mp_Base + mp->mp_Size;
290 
291 		if (base < mp->mp_Base) {
292 			mp->mp_Size += (char *)mp->mp_Base - (char *)base;
293 			mp->mp_Used += (char *)mp->mp_Base - (char *)base;
294 			mp->mp_Base = base;
295 		}
296 		base = (char *)base + bytes;
297 		if (base > pend) {
298 			mp->mp_Size += (char *)base - (char *)pend;
299 			mp->mp_Used += (char *)base - (char *)pend;
300 			mp->mp_End = (char *)base;
301 		}
302 	}
303 }
304 
305 #ifdef ZALLOCDEBUG
306 
307 void
308 zallocstats(MemPool *mp)
309 {
310 	int abytes = 0;
311 	int hbytes = 0;
312 	int fcount = 0;
313 	MemNode *mn;
314 
315 	printf("%d bytes reserved", (int)mp->mp_Size);
316 
317 	mn = mp->mp_First;
318 
319 	if ((void *)mn != (void *)mp->mp_Base) {
320 		abytes += (char *)mn - (char *)mp->mp_Base;
321 	}
322 
323 	while (mn != NULL) {
324 		if ((char *)mn + mn->mr_Bytes != mp->mp_End) {
325 			hbytes += mn->mr_Bytes;
326 			++fcount;
327 		}
328 		if (mn->mr_Next != NULL) {
329 			abytes += (char *)mn->mr_Next -
330 			    ((char *)mn + mn->mr_Bytes);
331 		}
332 		mn = mn->mr_Next;
333 	}
334 	printf(" %d bytes allocated\n%d fragments (%d bytes fragmented)\n",
335 	    abytes, fcount, hbytes);
336 }
337 
338 #endif
339