1 /*- 2 * Copyright (c) 1998 Robert Nordier 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms are freely 6 * permitted provided that the above copyright notice and this 7 * paragraph and the following disclaimer are duplicated in all 8 * such forms. 9 * 10 * This software is provided "AS IS" and without any express or 11 * implied warranties, including, without limitation, the implied 12 * warranties of merchantability and fitness for a particular 13 * purpose. 14 */ 15 16 #include <sys/cdefs.h> 17 __FBSDID("$FreeBSD$"); 18 19 #include "stand.h" 20 21 #include <sys/param.h> 22 #include <sys/errno.h> 23 #include <sys/diskmbr.h> 24 #ifdef GPT 25 #include <sys/gpt.h> 26 #endif 27 #include <sys/reboot.h> 28 #include <sys/queue.h> 29 30 #include <machine/bootinfo.h> 31 #include <machine/elf.h> 32 #include <machine/pc/bios.h> 33 34 #include <stdarg.h> 35 #include <stddef.h> 36 37 #include <a.out.h> 38 39 #include <btxv86.h> 40 41 #include "lib.h" 42 #include "rbx.h" 43 #include "drv.h" 44 #include "edd.h" 45 #include "cons.h" 46 #include "bootargs.h" 47 #include "paths.h" 48 49 #include "libzfs.h" 50 51 #define ARGS 0x900 52 #define NOPT 14 53 #define NDEV 3 54 55 #define BIOS_NUMDRIVES 0x475 56 #define DRV_HARD 0x80 57 #define DRV_MASK 0x7f 58 59 #define TYPE_AD 0 60 #define TYPE_DA 1 61 #define TYPE_MAXHARD TYPE_DA 62 #define TYPE_FD 2 63 64 #define DEV_GELIBOOT_BSIZE 4096 65 66 extern uint32_t _end; 67 68 #ifdef GPT 69 static const uuid_t freebsd_zfs_uuid = GPT_ENT_TYPE_FREEBSD_ZFS; 70 #endif 71 static const char optstr[NOPT] = "DhaCcdgmnpqrsv"; /* Also 'P', 'S' */ 72 static const unsigned char flags[NOPT] = { 73 RBX_DUAL, 74 RBX_SERIAL, 75 RBX_ASKNAME, 76 RBX_CDROM, 77 RBX_CONFIG, 78 RBX_KDB, 79 RBX_GDB, 80 RBX_MUTE, 81 RBX_NOINTR, 82 RBX_PAUSE, 83 RBX_QUIET, 84 RBX_DFLTROOT, 85 RBX_SINGLE, 86 RBX_VERBOSE 87 }; 88 uint32_t opts; 89 90 static const unsigned char dev_maj[NDEV] = {30, 4, 2}; 91 92 static char cmd[512]; 93 static char cmddup[512]; 94 static char kname[1024]; 95 static char rootname[256]; 96 static int comspeed = SIOSPD; 97 static struct bootinfo bootinfo; 98 static uint32_t bootdev; 99 static struct zfs_boot_args zfsargs; 100 101 vm_offset_t high_heap_base; 102 uint32_t bios_basemem, bios_extmem, high_heap_size; 103 104 static struct bios_smap smap; 105 106 /* 107 * The minimum amount of memory to reserve in bios_extmem for the heap. 108 */ 109 #define HEAP_MIN (64 * 1024 * 1024) 110 111 static char *heap_next; 112 static char *heap_end; 113 114 /* Buffers that must not span a 64k boundary. */ 115 #define READ_BUF_SIZE 8192 116 struct dmadat { 117 char rdbuf[READ_BUF_SIZE]; /* for reading large things */ 118 char secbuf[READ_BUF_SIZE]; /* for MBR/disklabel */ 119 }; 120 static struct dmadat *dmadat; 121 122 void exit(int); 123 void reboot(void); 124 static void load(void); 125 static int parse_cmd(void); 126 static void bios_getmem(void); 127 int main(void); 128 129 #ifdef LOADER_GELI_SUPPORT 130 #include "geliboot.c" 131 static char gelipw[GELI_PW_MAXLEN]; 132 static struct keybuf *gelibuf; 133 #endif 134 135 #include "zfsimpl.c" 136 137 /* 138 * Read from a dnode (which must be from a ZPL filesystem). 139 */ 140 static int 141 zfs_read(spa_t *spa, const dnode_phys_t *dnode, off_t *offp, void *start, size_t size) 142 { 143 const znode_phys_t *zp = (const znode_phys_t *) dnode->dn_bonus; 144 size_t n; 145 int rc; 146 147 n = size; 148 if (*offp + n > zp->zp_size) 149 n = zp->zp_size - *offp; 150 151 rc = dnode_read(spa, dnode, *offp, start, n); 152 if (rc) 153 return (-1); 154 *offp += n; 155 156 return (n); 157 } 158 159 /* 160 * Current ZFS pool 161 */ 162 static spa_t *spa; 163 static spa_t *primary_spa; 164 static vdev_t *primary_vdev; 165 166 /* 167 * A wrapper for dskread that doesn't have to worry about whether the 168 * buffer pointer crosses a 64k boundary. 169 */ 170 static int 171 vdev_read(void *xvdev, void *priv, off_t off, void *buf, size_t bytes) 172 { 173 char *p; 174 daddr_t lba, alignlba; 175 off_t diff; 176 unsigned int nb, alignnb; 177 struct dsk *dsk = (struct dsk *) priv; 178 179 if ((off & (DEV_BSIZE - 1)) || (bytes & (DEV_BSIZE - 1))) 180 return -1; 181 182 p = buf; 183 lba = off / DEV_BSIZE; 184 lba += dsk->start; 185 /* 186 * Align reads to 4k else 4k sector GELIs will not decrypt. 187 * Round LBA down to nearest multiple of DEV_GELIBOOT_BSIZE bytes. 188 */ 189 alignlba = rounddown2(off, DEV_GELIBOOT_BSIZE) / DEV_BSIZE; 190 /* 191 * The read must be aligned to DEV_GELIBOOT_BSIZE bytes relative to the 192 * start of the GELI partition, not the start of the actual disk. 193 */ 194 alignlba += dsk->start; 195 diff = (lba - alignlba) * DEV_BSIZE; 196 197 while (bytes > 0) { 198 nb = bytes / DEV_BSIZE; 199 /* 200 * Ensure that the read size plus the leading offset does not 201 * exceed the size of the read buffer. 202 */ 203 if (nb > (READ_BUF_SIZE - diff) / DEV_BSIZE) 204 nb = (READ_BUF_SIZE - diff) / DEV_BSIZE; 205 /* 206 * Round the number of blocks to read up to the nearest multiple 207 * of DEV_GELIBOOT_BSIZE. 208 */ 209 alignnb = roundup2(nb * DEV_BSIZE + diff, DEV_GELIBOOT_BSIZE) 210 / DEV_BSIZE; 211 212 if (drvread(dsk, dmadat->rdbuf, alignlba, alignnb)) 213 return -1; 214 #ifdef LOADER_GELI_SUPPORT 215 /* decrypt */ 216 if (is_geli(dsk) == 0) { 217 if (geli_read(dsk, ((alignlba - dsk->start) * 218 DEV_BSIZE), dmadat->rdbuf, alignnb * DEV_BSIZE)) 219 return (-1); 220 } 221 #endif 222 memcpy(p, dmadat->rdbuf + diff, nb * DEV_BSIZE); 223 p += nb * DEV_BSIZE; 224 lba += nb; 225 alignlba += alignnb; 226 bytes -= nb * DEV_BSIZE; 227 /* Don't need the leading offset after the first block. */ 228 diff = 0; 229 } 230 231 return 0; 232 } 233 /* Match the signature exactly due to signature madness */ 234 static int 235 vdev_read2(vdev_t *vdev, void *priv, off_t off, void *buf, size_t bytes) 236 { 237 return vdev_read(vdev, priv, off, buf, bytes); 238 } 239 240 241 static int 242 vdev_write(vdev_t *vdev, void *priv, off_t off, void *buf, size_t bytes) 243 { 244 char *p; 245 daddr_t lba; 246 unsigned int nb; 247 struct dsk *dsk = (struct dsk *) priv; 248 249 if ((off & (DEV_BSIZE - 1)) || (bytes & (DEV_BSIZE - 1))) 250 return -1; 251 252 p = buf; 253 lba = off / DEV_BSIZE; 254 lba += dsk->start; 255 while (bytes > 0) { 256 nb = bytes / DEV_BSIZE; 257 if (nb > READ_BUF_SIZE / DEV_BSIZE) 258 nb = READ_BUF_SIZE / DEV_BSIZE; 259 memcpy(dmadat->rdbuf, p, nb * DEV_BSIZE); 260 if (drvwrite(dsk, dmadat->rdbuf, lba, nb)) 261 return -1; 262 p += nb * DEV_BSIZE; 263 lba += nb; 264 bytes -= nb * DEV_BSIZE; 265 } 266 267 return 0; 268 } 269 270 static int 271 xfsread(const dnode_phys_t *dnode, off_t *offp, void *buf, size_t nbyte) 272 { 273 if ((size_t)zfs_read(spa, dnode, offp, buf, nbyte) != nbyte) { 274 printf("Invalid format\n"); 275 return -1; 276 } 277 return 0; 278 } 279 280 /* 281 * Read Pad2 (formerly "Boot Block Header") area of the first 282 * vdev label of the given vdev. 283 */ 284 static int 285 vdev_read_pad2(vdev_t *vdev, char *buf, size_t size) 286 { 287 blkptr_t bp; 288 char *tmp = zap_scratch; 289 off_t off = offsetof(vdev_label_t, vl_pad2); 290 291 if (size > VDEV_PAD_SIZE) 292 size = VDEV_PAD_SIZE; 293 294 BP_ZERO(&bp); 295 BP_SET_LSIZE(&bp, VDEV_PAD_SIZE); 296 BP_SET_PSIZE(&bp, VDEV_PAD_SIZE); 297 BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_LABEL); 298 BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF); 299 DVA_SET_OFFSET(BP_IDENTITY(&bp), off); 300 if (vdev_read_phys(vdev, &bp, tmp, off, 0)) 301 return (EIO); 302 memcpy(buf, tmp, size); 303 return (0); 304 } 305 306 static int 307 vdev_clear_pad2(vdev_t *vdev) 308 { 309 char *zeroes = zap_scratch; 310 uint64_t *end; 311 off_t off = offsetof(vdev_label_t, vl_pad2); 312 313 memset(zeroes, 0, VDEV_PAD_SIZE); 314 end = (uint64_t *)(zeroes + VDEV_PAD_SIZE); 315 /* ZIO_CHECKSUM_LABEL magic and pre-calcualted checksum for all zeros */ 316 end[-5] = 0x0210da7ab10c7a11; 317 end[-4] = 0x97f48f807f6e2a3f; 318 end[-3] = 0xaf909f1658aacefc; 319 end[-2] = 0xcbd1ea57ff6db48b; 320 end[-1] = 0x6ec692db0d465fab; 321 if (vdev_write(vdev, vdev->v_read_priv, off, zeroes, VDEV_PAD_SIZE)) 322 return (EIO); 323 return (0); 324 } 325 326 static void 327 bios_getmem(void) 328 { 329 uint64_t size; 330 331 /* Parse system memory map */ 332 v86.ebx = 0; 333 do { 334 v86.ctl = V86_FLAGS; 335 v86.addr = 0x15; /* int 0x15 function 0xe820*/ 336 v86.eax = 0xe820; 337 v86.ecx = sizeof(struct bios_smap); 338 v86.edx = SMAP_SIG; 339 v86.es = VTOPSEG(&smap); 340 v86.edi = VTOPOFF(&smap); 341 v86int(); 342 if (V86_CY(v86.efl) || (v86.eax != SMAP_SIG)) 343 break; 344 /* look for a low-memory segment that's large enough */ 345 if ((smap.type == SMAP_TYPE_MEMORY) && (smap.base == 0) && 346 (smap.length >= (512 * 1024))) 347 bios_basemem = smap.length; 348 /* look for the first segment in 'extended' memory */ 349 if ((smap.type == SMAP_TYPE_MEMORY) && (smap.base == 0x100000)) { 350 bios_extmem = smap.length; 351 } 352 353 /* 354 * Look for the largest segment in 'extended' memory beyond 355 * 1MB but below 4GB. 356 */ 357 if ((smap.type == SMAP_TYPE_MEMORY) && (smap.base > 0x100000) && 358 (smap.base < 0x100000000ull)) { 359 size = smap.length; 360 361 /* 362 * If this segment crosses the 4GB boundary, truncate it. 363 */ 364 if (smap.base + size > 0x100000000ull) 365 size = 0x100000000ull - smap.base; 366 367 if (size > high_heap_size) { 368 high_heap_size = size; 369 high_heap_base = smap.base; 370 } 371 } 372 } while (v86.ebx != 0); 373 374 /* Fall back to the old compatibility function for base memory */ 375 if (bios_basemem == 0) { 376 v86.ctl = 0; 377 v86.addr = 0x12; /* int 0x12 */ 378 v86int(); 379 380 bios_basemem = (v86.eax & 0xffff) * 1024; 381 } 382 383 /* Fall back through several compatibility functions for extended memory */ 384 if (bios_extmem == 0) { 385 v86.ctl = V86_FLAGS; 386 v86.addr = 0x15; /* int 0x15 function 0xe801*/ 387 v86.eax = 0xe801; 388 v86int(); 389 if (!V86_CY(v86.efl)) { 390 bios_extmem = ((v86.ecx & 0xffff) + ((v86.edx & 0xffff) * 64)) * 1024; 391 } 392 } 393 if (bios_extmem == 0) { 394 v86.ctl = 0; 395 v86.addr = 0x15; /* int 0x15 function 0x88*/ 396 v86.eax = 0x8800; 397 v86int(); 398 bios_extmem = (v86.eax & 0xffff) * 1024; 399 } 400 401 /* 402 * If we have extended memory and did not find a suitable heap 403 * region in the SMAP, use the last 3MB of 'extended' memory as a 404 * high heap candidate. 405 */ 406 if (bios_extmem >= HEAP_MIN && high_heap_size < HEAP_MIN) { 407 high_heap_size = HEAP_MIN; 408 high_heap_base = bios_extmem + 0x100000 - HEAP_MIN; 409 } 410 } 411 412 /* 413 * Try to detect a device supported by the legacy int13 BIOS 414 */ 415 static int 416 int13probe(int drive) 417 { 418 v86.ctl = V86_FLAGS; 419 v86.addr = 0x13; 420 v86.eax = 0x800; 421 v86.edx = drive; 422 v86int(); 423 424 if (!V86_CY(v86.efl) && /* carry clear */ 425 ((v86.edx & 0xff) != (drive & DRV_MASK))) { /* unit # OK */ 426 if ((v86.ecx & 0x3f) == 0) { /* absurd sector size */ 427 return(0); /* skip device */ 428 } 429 return (1); 430 } 431 return(0); 432 } 433 434 /* 435 * We call this when we find a ZFS vdev - ZFS consumes the dsk 436 * structure so we must make a new one. 437 */ 438 static struct dsk * 439 copy_dsk(struct dsk *dsk) 440 { 441 struct dsk *newdsk; 442 443 newdsk = malloc(sizeof(struct dsk)); 444 *newdsk = *dsk; 445 return (newdsk); 446 } 447 448 /* 449 * Get disk size from eax=0x800 and 0x4800. We need to probe both 450 * because 0x4800 may not be available and we would like to get more 451 * or less correct disk size - if it is possible at all. 452 * Note we do not really want to touch drv.c because that code is shared 453 * with boot2 and we can not afford to grow that code. 454 */ 455 static uint64_t 456 drvsize_ext(struct dsk *dskp) 457 { 458 uint64_t size, tmp; 459 int cyl, hds, sec; 460 461 v86.ctl = V86_FLAGS; 462 v86.addr = 0x13; 463 v86.eax = 0x800; 464 v86.edx = dskp->drive; 465 v86int(); 466 467 /* Don't error out if we get bad sector number, try EDD as well */ 468 if (V86_CY(v86.efl) || /* carry set */ 469 (v86.edx & 0xff) <= (unsigned)(dskp->drive & 0x7f)) /* unit # bad */ 470 return (0); 471 cyl = ((v86.ecx & 0xc0) << 2) + ((v86.ecx & 0xff00) >> 8) + 1; 472 /* Convert max head # -> # of heads */ 473 hds = ((v86.edx & 0xff00) >> 8) + 1; 474 sec = v86.ecx & 0x3f; 475 476 size = (uint64_t)cyl * hds * sec; 477 478 /* Determine if we can use EDD with this device. */ 479 v86.ctl = V86_FLAGS; 480 v86.addr = 0x13; 481 v86.eax = 0x4100; 482 v86.edx = dskp->drive; 483 v86.ebx = 0x55aa; 484 v86int(); 485 if (V86_CY(v86.efl) || /* carry set */ 486 (v86.ebx & 0xffff) != 0xaa55 || /* signature */ 487 (v86.ecx & EDD_INTERFACE_FIXED_DISK) == 0) 488 return (size); 489 490 tmp = drvsize(dskp); 491 if (tmp > size) 492 size = tmp; 493 494 return (size); 495 } 496 497 /* 498 * The "layered" ioctl to read disk/partition size. Unfortunately 499 * the zfsboot case is hardest, because we do not have full software 500 * stack available, so we need to do some manual work here. 501 */ 502 uint64_t 503 ldi_get_size(void *priv) 504 { 505 struct dsk *dskp = priv; 506 uint64_t size = dskp->size; 507 508 if (dskp->start == 0) 509 size = drvsize_ext(dskp); 510 511 return (size * DEV_BSIZE); 512 } 513 514 static void 515 probe_drive(struct dsk *dsk) 516 { 517 #ifdef GPT 518 struct gpt_hdr hdr; 519 struct gpt_ent *ent; 520 unsigned part, entries_per_sec; 521 daddr_t slba; 522 #endif 523 #if defined(GPT) || defined(LOADER_GELI_SUPPORT) 524 daddr_t elba; 525 #endif 526 527 struct dos_partition *dp; 528 char *sec; 529 unsigned i; 530 531 /* 532 * If we find a vdev on the whole disk, stop here. 533 */ 534 if (vdev_probe(vdev_read2, dsk, NULL) == 0) 535 return; 536 537 #ifdef LOADER_GELI_SUPPORT 538 /* 539 * Taste the disk, if it is GELI encrypted, decrypt it and check to see if 540 * it is a usable vdev then. Otherwise dig 541 * out the partition table and probe each slice/partition 542 * in turn for a vdev or GELI encrypted vdev. 543 */ 544 elba = drvsize_ext(dsk); 545 if (elba > 0) { 546 elba--; 547 } 548 if (geli_taste(vdev_read, dsk, elba) == 0) { 549 if (geli_havekey(dsk) == 0 || geli_passphrase(gelipw, dsk->unit, 550 ':', 0, dsk) == 0) { 551 if (vdev_probe(vdev_read2, dsk, NULL) == 0) { 552 return; 553 } 554 } 555 } 556 #endif /* LOADER_GELI_SUPPORT */ 557 558 sec = dmadat->secbuf; 559 dsk->start = 0; 560 561 #ifdef GPT 562 /* 563 * First check for GPT. 564 */ 565 if (drvread(dsk, sec, 1, 1)) { 566 return; 567 } 568 memcpy(&hdr, sec, sizeof(hdr)); 569 if (memcmp(hdr.hdr_sig, GPT_HDR_SIG, sizeof(hdr.hdr_sig)) != 0 || 570 hdr.hdr_lba_self != 1 || hdr.hdr_revision < 0x00010000 || 571 hdr.hdr_entsz < sizeof(*ent) || DEV_BSIZE % hdr.hdr_entsz != 0) { 572 goto trymbr; 573 } 574 575 /* 576 * Probe all GPT partitions for the presence of ZFS pools. We 577 * return the spa_t for the first we find (if requested). This 578 * will have the effect of booting from the first pool on the 579 * disk. 580 * 581 * If no vdev is found, GELI decrypting the device and try again 582 */ 583 entries_per_sec = DEV_BSIZE / hdr.hdr_entsz; 584 slba = hdr.hdr_lba_table; 585 elba = slba + hdr.hdr_entries / entries_per_sec; 586 while (slba < elba) { 587 dsk->start = 0; 588 if (drvread(dsk, sec, slba, 1)) 589 return; 590 for (part = 0; part < entries_per_sec; part++) { 591 ent = (struct gpt_ent *)(sec + part * hdr.hdr_entsz); 592 if (memcmp(&ent->ent_type, &freebsd_zfs_uuid, 593 sizeof(uuid_t)) == 0) { 594 dsk->start = ent->ent_lba_start; 595 dsk->size = ent->ent_lba_end - ent->ent_lba_start + 1; 596 dsk->slice = part + 1; 597 dsk->part = 255; 598 if (vdev_probe(vdev_read2, dsk, NULL) == 0) { 599 /* 600 * This slice had a vdev. We need a new dsk 601 * structure now since the vdev now owns this one. 602 */ 603 dsk = copy_dsk(dsk); 604 } 605 #ifdef LOADER_GELI_SUPPORT 606 else if (geli_taste(vdev_read, dsk, ent->ent_lba_end - 607 ent->ent_lba_start) == 0) { 608 if (geli_havekey(dsk) == 0 || geli_passphrase(gelipw, 609 dsk->unit, 'p', dsk->slice, dsk) == 0) { 610 /* 611 * This slice has GELI, check it for ZFS. 612 */ 613 if (vdev_probe(vdev_read2, dsk, NULL) == 0) { 614 /* 615 * This slice had a vdev. We need a new dsk 616 * structure now since the vdev now owns this one. 617 */ 618 dsk = copy_dsk(dsk); 619 } 620 break; 621 } 622 } 623 #endif /* LOADER_GELI_SUPPORT */ 624 } 625 } 626 slba++; 627 } 628 return; 629 trymbr: 630 #endif /* GPT */ 631 632 if (drvread(dsk, sec, DOSBBSECTOR, 1)) 633 return; 634 dp = (void *)(sec + DOSPARTOFF); 635 636 for (i = 0; i < NDOSPART; i++) { 637 if (!dp[i].dp_typ) 638 continue; 639 dsk->start = dp[i].dp_start; 640 dsk->size = dp[i].dp_size; 641 dsk->slice = i + 1; 642 if (vdev_probe(vdev_read2, dsk, NULL) == 0) { 643 dsk = copy_dsk(dsk); 644 } 645 #ifdef LOADER_GELI_SUPPORT 646 else if (geli_taste(vdev_read, dsk, dp[i].dp_size - 647 dp[i].dp_start) == 0) { 648 if (geli_havekey(dsk) == 0 || geli_passphrase(gelipw, dsk->unit, 649 's', i, dsk) == 0) { 650 /* 651 * This slice has GELI, check it for ZFS. 652 */ 653 if (vdev_probe(vdev_read2, dsk, NULL) == 0) { 654 /* 655 * This slice had a vdev. We need a new dsk 656 * structure now since the vdev now owns this one. 657 */ 658 dsk = copy_dsk(dsk); 659 } 660 break; 661 } 662 } 663 #endif /* LOADER_GELI_SUPPORT */ 664 } 665 } 666 667 int 668 main(void) 669 { 670 dnode_phys_t dn; 671 off_t off; 672 struct dsk *dsk; 673 int autoboot, i; 674 int nextboot; 675 int rc; 676 677 dmadat = (void *)(roundup2(__base + (int32_t)&_end, 0x10000) - __base); 678 679 bios_getmem(); 680 681 if (high_heap_size > 0) { 682 heap_end = PTOV(high_heap_base + high_heap_size); 683 heap_next = PTOV(high_heap_base); 684 } else { 685 heap_next = (char *)dmadat + sizeof(*dmadat); 686 heap_end = (char *)PTOV(bios_basemem); 687 } 688 setheap(heap_next, heap_end); 689 690 dsk = malloc(sizeof(struct dsk)); 691 dsk->drive = *(uint8_t *)PTOV(ARGS); 692 dsk->type = dsk->drive & DRV_HARD ? TYPE_AD : TYPE_FD; 693 dsk->unit = dsk->drive & DRV_MASK; 694 dsk->slice = *(uint8_t *)PTOV(ARGS + 1) + 1; 695 dsk->part = 0; 696 dsk->start = 0; 697 dsk->size = 0; 698 699 bootinfo.bi_version = BOOTINFO_VERSION; 700 bootinfo.bi_size = sizeof(bootinfo); 701 bootinfo.bi_basemem = bios_basemem / 1024; 702 bootinfo.bi_extmem = bios_extmem / 1024; 703 bootinfo.bi_memsizes_valid++; 704 bootinfo.bi_bios_dev = dsk->drive; 705 706 bootdev = MAKEBOOTDEV(dev_maj[dsk->type], 707 dsk->slice, dsk->unit, dsk->part); 708 709 /* Process configuration file */ 710 711 autoboot = 1; 712 713 #ifdef LOADER_GELI_SUPPORT 714 geli_init(); 715 #endif 716 zfs_init(); 717 718 /* 719 * Probe the boot drive first - we will try to boot from whatever 720 * pool we find on that drive. 721 */ 722 probe_drive(dsk); 723 724 /* 725 * Probe the rest of the drives that the bios knows about. This 726 * will find any other available pools and it may fill in missing 727 * vdevs for the boot pool. 728 */ 729 #ifndef VIRTUALBOX 730 for (i = 0; i < *(unsigned char *)PTOV(BIOS_NUMDRIVES); i++) 731 #else 732 for (i = 0; i < MAXBDDEV; i++) 733 #endif 734 { 735 if ((i | DRV_HARD) == *(uint8_t *)PTOV(ARGS)) 736 continue; 737 738 if (!int13probe(i | DRV_HARD)) 739 break; 740 741 dsk = malloc(sizeof(struct dsk)); 742 dsk->drive = i | DRV_HARD; 743 dsk->type = dsk->drive & TYPE_AD; 744 dsk->unit = i; 745 dsk->slice = 0; 746 dsk->part = 0; 747 dsk->start = 0; 748 dsk->size = 0; 749 probe_drive(dsk); 750 } 751 752 /* 753 * The first discovered pool, if any, is the pool. 754 */ 755 spa = spa_get_primary(); 756 if (!spa) { 757 printf("%s: No ZFS pools located, can't boot\n", BOOTPROG); 758 for (;;) 759 ; 760 } 761 762 primary_spa = spa; 763 primary_vdev = spa_get_primary_vdev(spa); 764 765 nextboot = 0; 766 rc = vdev_read_pad2(primary_vdev, cmd, sizeof(cmd)); 767 if (vdev_clear_pad2(primary_vdev)) 768 printf("failed to clear pad2 area of primary vdev\n"); 769 if (rc == 0) { 770 if (*cmd) { 771 /* 772 * We could find an old-style ZFS Boot Block header here. 773 * Simply ignore it. 774 */ 775 if (*(uint64_t *)cmd != 0x2f5b007b10c) { 776 /* 777 * Note that parse() is destructive to cmd[] and we also want 778 * to honor RBX_QUIET option that could be present in cmd[]. 779 */ 780 nextboot = 1; 781 memcpy(cmddup, cmd, sizeof(cmd)); 782 if (parse_cmd()) { 783 printf("failed to parse pad2 area of primary vdev\n"); 784 reboot(); 785 } 786 if (!OPT_CHECK(RBX_QUIET)) 787 printf("zfs nextboot: %s\n", cmddup); 788 } 789 /* Do not process this command twice */ 790 *cmd = 0; 791 } 792 } else 793 printf("failed to read pad2 area of primary vdev\n"); 794 795 /* Mount ZFS only if it's not already mounted via nextboot parsing. */ 796 if (zfsmount.spa == NULL && 797 (zfs_spa_init(spa) != 0 || zfs_mount(spa, 0, &zfsmount) != 0)) { 798 printf("%s: failed to mount default pool %s\n", 799 BOOTPROG, spa->spa_name); 800 autoboot = 0; 801 } else if (zfs_lookup(&zfsmount, PATH_CONFIG, &dn) == 0 || 802 zfs_lookup(&zfsmount, PATH_DOTCONFIG, &dn) == 0) { 803 off = 0; 804 zfs_read(spa, &dn, &off, cmd, sizeof(cmd)); 805 } 806 807 if (*cmd) { 808 /* 809 * Note that parse_cmd() is destructive to cmd[] and we also want 810 * to honor RBX_QUIET option that could be present in cmd[]. 811 */ 812 memcpy(cmddup, cmd, sizeof(cmd)); 813 if (parse_cmd()) 814 autoboot = 0; 815 if (!OPT_CHECK(RBX_QUIET)) 816 printf("%s: %s\n", PATH_CONFIG, cmddup); 817 /* Do not process this command twice */ 818 *cmd = 0; 819 } 820 821 /* Do not risk waiting at the prompt forever. */ 822 if (nextboot && !autoboot) 823 reboot(); 824 825 /* 826 * Try to exec /boot/loader. If interrupted by a keypress, 827 * or in case of failure, try to load a kernel directly instead. 828 */ 829 830 if (autoboot && !*kname) { 831 memcpy(kname, PATH_LOADER_ZFS, sizeof(PATH_LOADER_ZFS)); 832 if (!keyhit(3)) { 833 load(); 834 memcpy(kname, PATH_KERNEL, sizeof(PATH_KERNEL)); 835 } 836 } 837 838 /* Present the user with the boot2 prompt. */ 839 840 for (;;) { 841 if (!autoboot || !OPT_CHECK(RBX_QUIET)) { 842 printf("\nFreeBSD/x86 boot\n"); 843 if (zfs_rlookup(spa, zfsmount.rootobj, rootname) != 0) 844 printf("Default: %s/<0x%llx>:%s\n" 845 "boot: ", 846 spa->spa_name, zfsmount.rootobj, kname); 847 else if (rootname[0] != '\0') 848 printf("Default: %s/%s:%s\n" 849 "boot: ", 850 spa->spa_name, rootname, kname); 851 else 852 printf("Default: %s:%s\n" 853 "boot: ", 854 spa->spa_name, kname); 855 } 856 if (ioctrl & IO_SERIAL) 857 sio_flush(); 858 if (!autoboot || keyhit(5)) 859 getstr(cmd, sizeof(cmd)); 860 else if (!autoboot || !OPT_CHECK(RBX_QUIET)) 861 putchar('\n'); 862 autoboot = 0; 863 if (parse_cmd()) 864 putchar('\a'); 865 else 866 load(); 867 } 868 } 869 870 /* XXX - Needed for btxld to link the boot2 binary; do not remove. */ 871 void 872 exit(int x) 873 { 874 __exit(x); 875 } 876 877 void 878 reboot(void) 879 { 880 __exit(0); 881 } 882 883 static void 884 load(void) 885 { 886 union { 887 struct exec ex; 888 Elf32_Ehdr eh; 889 } hdr; 890 static Elf32_Phdr ep[2]; 891 static Elf32_Shdr es[2]; 892 caddr_t p; 893 dnode_phys_t dn; 894 off_t off; 895 uint32_t addr, x; 896 int fmt, i, j; 897 898 if (zfs_lookup(&zfsmount, kname, &dn)) { 899 printf("\nCan't find %s\n", kname); 900 return; 901 } 902 off = 0; 903 if (xfsread(&dn, &off, &hdr, sizeof(hdr))) 904 return; 905 if (N_GETMAGIC(hdr.ex) == ZMAGIC) 906 fmt = 0; 907 else if (IS_ELF(hdr.eh)) 908 fmt = 1; 909 else { 910 printf("Invalid %s\n", "format"); 911 return; 912 } 913 if (fmt == 0) { 914 addr = hdr.ex.a_entry & 0xffffff; 915 p = PTOV(addr); 916 off = PAGE_SIZE; 917 if (xfsread(&dn, &off, p, hdr.ex.a_text)) 918 return; 919 p += roundup2(hdr.ex.a_text, PAGE_SIZE); 920 if (xfsread(&dn, &off, p, hdr.ex.a_data)) 921 return; 922 p += hdr.ex.a_data + roundup2(hdr.ex.a_bss, PAGE_SIZE); 923 bootinfo.bi_symtab = VTOP(p); 924 memcpy(p, &hdr.ex.a_syms, sizeof(hdr.ex.a_syms)); 925 p += sizeof(hdr.ex.a_syms); 926 if (hdr.ex.a_syms) { 927 if (xfsread(&dn, &off, p, hdr.ex.a_syms)) 928 return; 929 p += hdr.ex.a_syms; 930 if (xfsread(&dn, &off, p, sizeof(int))) 931 return; 932 x = *(uint32_t *)p; 933 p += sizeof(int); 934 x -= sizeof(int); 935 if (xfsread(&dn, &off, p, x)) 936 return; 937 p += x; 938 } 939 } else { 940 off = hdr.eh.e_phoff; 941 for (j = i = 0; i < hdr.eh.e_phnum && j < 2; i++) { 942 if (xfsread(&dn, &off, ep + j, sizeof(ep[0]))) 943 return; 944 if (ep[j].p_type == PT_LOAD) 945 j++; 946 } 947 for (i = 0; i < 2; i++) { 948 p = PTOV(ep[i].p_paddr & 0xffffff); 949 off = ep[i].p_offset; 950 if (xfsread(&dn, &off, p, ep[i].p_filesz)) 951 return; 952 } 953 p += roundup2(ep[1].p_memsz, PAGE_SIZE); 954 bootinfo.bi_symtab = VTOP(p); 955 if (hdr.eh.e_shnum == hdr.eh.e_shstrndx + 3) { 956 off = hdr.eh.e_shoff + sizeof(es[0]) * 957 (hdr.eh.e_shstrndx + 1); 958 if (xfsread(&dn, &off, &es, sizeof(es))) 959 return; 960 for (i = 0; i < 2; i++) { 961 memcpy(p, &es[i].sh_size, sizeof(es[i].sh_size)); 962 p += sizeof(es[i].sh_size); 963 off = es[i].sh_offset; 964 if (xfsread(&dn, &off, p, es[i].sh_size)) 965 return; 966 p += es[i].sh_size; 967 } 968 } 969 addr = hdr.eh.e_entry & 0xffffff; 970 } 971 bootinfo.bi_esymtab = VTOP(p); 972 bootinfo.bi_kernelname = VTOP(kname); 973 zfsargs.size = sizeof(zfsargs); 974 zfsargs.pool = zfsmount.spa->spa_guid; 975 zfsargs.root = zfsmount.rootobj; 976 zfsargs.primary_pool = primary_spa->spa_guid; 977 #ifdef LOADER_GELI_SUPPORT 978 explicit_bzero(gelipw, sizeof(gelipw)); 979 gelibuf = malloc(sizeof(struct keybuf) + (GELI_MAX_KEYS * sizeof(struct keybuf_ent))); 980 geli_fill_keybuf(gelibuf); 981 zfsargs.notapw = '\0'; 982 zfsargs.keybuf_sentinel = KEYBUF_SENTINEL; 983 zfsargs.keybuf = gelibuf; 984 #else 985 zfsargs.gelipw[0] = '\0'; 986 #endif 987 if (primary_vdev != NULL) 988 zfsargs.primary_vdev = primary_vdev->v_guid; 989 else 990 printf("failed to detect primary vdev\n"); 991 __exec((caddr_t)addr, RB_BOOTINFO | (opts & RBX_MASK), 992 bootdev, 993 KARGS_FLAGS_ZFS | KARGS_FLAGS_EXTARG, 994 (uint32_t) spa->spa_guid, 995 (uint32_t) (spa->spa_guid >> 32), 996 VTOP(&bootinfo), 997 zfsargs); 998 } 999 1000 static int 1001 zfs_mount_ds(char *dsname) 1002 { 1003 uint64_t newroot; 1004 spa_t *newspa; 1005 char *q; 1006 1007 q = strchr(dsname, '/'); 1008 if (q) 1009 *q++ = '\0'; 1010 newspa = spa_find_by_name(dsname); 1011 if (newspa == NULL) { 1012 printf("\nCan't find ZFS pool %s\n", dsname); 1013 return -1; 1014 } 1015 1016 if (zfs_spa_init(newspa)) 1017 return -1; 1018 1019 newroot = 0; 1020 if (q) { 1021 if (zfs_lookup_dataset(newspa, q, &newroot)) { 1022 printf("\nCan't find dataset %s in ZFS pool %s\n", 1023 q, newspa->spa_name); 1024 return -1; 1025 } 1026 } 1027 if (zfs_mount(newspa, newroot, &zfsmount)) { 1028 printf("\nCan't mount ZFS dataset\n"); 1029 return -1; 1030 } 1031 spa = newspa; 1032 return (0); 1033 } 1034 1035 static int 1036 parse_cmd(void) 1037 { 1038 char *arg = cmd; 1039 char *ep, *p, *q; 1040 const char *cp; 1041 int c, i, j; 1042 1043 while ((c = *arg++)) { 1044 if (c == ' ' || c == '\t' || c == '\n') 1045 continue; 1046 for (p = arg; *p && *p != '\n' && *p != ' ' && *p != '\t'; p++); 1047 ep = p; 1048 if (*p) 1049 *p++ = 0; 1050 if (c == '-') { 1051 while ((c = *arg++)) { 1052 if (c == 'P') { 1053 if (*(uint8_t *)PTOV(0x496) & 0x10) { 1054 cp = "yes"; 1055 } else { 1056 opts |= OPT_SET(RBX_DUAL) | OPT_SET(RBX_SERIAL); 1057 cp = "no"; 1058 } 1059 printf("Keyboard: %s\n", cp); 1060 continue; 1061 } else if (c == 'S') { 1062 j = 0; 1063 while ((unsigned int)(i = *arg++ - '0') <= 9) 1064 j = j * 10 + i; 1065 if (j > 0 && i == -'0') { 1066 comspeed = j; 1067 break; 1068 } 1069 /* Fall through to error below ('S' not in optstr[]). */ 1070 } 1071 for (i = 0; c != optstr[i]; i++) 1072 if (i == NOPT - 1) 1073 return -1; 1074 opts ^= OPT_SET(flags[i]); 1075 } 1076 ioctrl = OPT_CHECK(RBX_DUAL) ? (IO_SERIAL|IO_KEYBOARD) : 1077 OPT_CHECK(RBX_SERIAL) ? IO_SERIAL : IO_KEYBOARD; 1078 if (ioctrl & IO_SERIAL) { 1079 if (sio_init(115200 / comspeed) != 0) 1080 ioctrl &= ~IO_SERIAL; 1081 } 1082 } if (c == '?') { 1083 dnode_phys_t dn; 1084 1085 if (zfs_lookup(&zfsmount, arg, &dn) == 0) { 1086 zap_list(spa, &dn); 1087 } 1088 return -1; 1089 } else { 1090 arg--; 1091 1092 /* 1093 * Report pool status if the comment is 'status'. Lets 1094 * hope no-one wants to load /status as a kernel. 1095 */ 1096 if (!strcmp(arg, "status")) { 1097 spa_all_status(); 1098 return -1; 1099 } 1100 1101 /* 1102 * If there is "zfs:" prefix simply ignore it. 1103 */ 1104 if (strncmp(arg, "zfs:", 4) == 0) 1105 arg += 4; 1106 1107 /* 1108 * If there is a colon, switch pools. 1109 */ 1110 q = strchr(arg, ':'); 1111 if (q) { 1112 *q++ = '\0'; 1113 if (zfs_mount_ds(arg) != 0) 1114 return -1; 1115 arg = q; 1116 } 1117 if ((i = ep - arg)) { 1118 if ((size_t)i >= sizeof(kname)) 1119 return -1; 1120 memcpy(kname, arg, i + 1); 1121 } 1122 } 1123 arg = p; 1124 } 1125 return 0; 1126 } 1127