1/* 2 * Copyright (c) 1998 Robert Nordier 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms are freely 6 * permitted provided that the above copyright notice and this 7 * paragraph and the following disclaimer are duplicated in all 8 * such forms. 9 * 10 * This software is provided "AS IS" and without any express or 11 * implied warranties, including, without limitation, the implied 12 * warranties of merchantability and fitness for a particular 13 * purpose. 14 * 15 * $FreeBSD$ 16 */ 17 18/* Memory Locations */ 19 .set MEM_REL,0x700 # Relocation address 20 .set MEM_ARG,0x900 # Arguments 21 .set MEM_ORG,0x7c00 # Origin 22 .set MEM_BUF,0x8c00 # Load area 23 .set MEM_BTX,0x9000 # BTX start 24 .set MEM_JMP,0x9010 # BTX entry point 25 .set MEM_USR,0xa000 # Client start 26 .set BDA_BOOT,0x472 # Boot howto flag 27 28/* Partition Constants */ 29 .set PRT_OFF,0x1be # Partition offset 30 .set PRT_NUM,0x4 # Partitions 31 .set PRT_BSD,0xa5 # Partition type 32 33/* Flag Bits */ 34 .set FL_PACKET,0x80 # Packet mode 35 36/* Misc. Constants */ 37 .set SIZ_PAG,0x1000 # Page size 38 .set SIZ_SEC,0x200 # Sector size 39 40 .set NSECT,0x10 41 .globl start 42 .globl xread 43 .code16 44 45start: jmp main # Start recognizably 46 47/* 48 * This is the start of a standard BIOS Parameter Block (BPB). Most bootable 49 * FAT disks have this at the start of their MBR. While normal BIOS's will 50 * work fine without this section, IBM's El Torito emulation "fixes" up the 51 * BPB by writing into the memory copy of the MBR. Rather than have data 52 * written into our xread routine, we'll define a BPB to work around it. 53 * The data marked with (T) indicates a field required for a ThinkPad to 54 * recognize the disk and (W) indicates fields written from IBM BIOS code. 55 * The use of the BPB is based on what OpenBSD and NetBSD implemented in 56 * their boot code but the required fields were determined by trial and error. 57 * 58 * Note: If additional space is needed in boot1, one solution would be to 59 * move the "prompt" message data (below) to replace the OEM ID. 60 */ 61 .org 0x03, 0x00 62oemid: .space 0x08, 0x00 # OEM ID 63 64 .org 0x0b, 0x00 65bpb: .word 512 # sector size (T) 66 .byte 0 # sectors/clustor 67 .word 0 # reserved sectors 68 .byte 0 # number of FATs 69 .word 0 # root entries 70 .word 0 # small sectors 71 .byte 0 # media type (W) 72 .word 0 # sectors/fat 73 .word 18 # sectors per track (T) 74 .word 2 # number of heads (T) 75 .long 0 # hidden sectors (W) 76 .long 0 # large sectors 77 78 .org 0x24, 0x00 79ebpb: .byte 0 # BIOS physical drive number (W) 80 81 .org 0x25,0x90 82/* 83 * Trampoline used by boot2 to call read to read data from the disk via 84 * the BIOS. Call with: 85 * 86 * %cx:%ax - long - LBA to read in 87 * %es:(%bx) - caddr_t - buffer to read data into 88 * %dl - byte - drive to read from 89 * %dh - byte - num sectors to read 90 */ 91 92xread: push %ss # Address 93 pop %ds # data 94/* 95 * Setup an EDD disk packet and pass it to read 96 */ 97xread.1: # Starting 98 pushl $0x0 # absolute 99 push %cx # block 100 push %ax # number 101 push %es # Address of 102 push %bx # transfer buffer 103 xor %ax,%ax # Number of 104 movb %dh,%al # blocks to 105 push %ax # transfer 106 push $0x10 # Size of packet 107 mov %sp,%bp # Packet pointer 108 callw read # Read from disk 109 lea 0x10(%bp),%sp # Clear stack 110 lret # To far caller 111/* 112 * Load the rest of boot2 and BTX up, copy the parts to the right locations, 113 * and start it all up. 114 */ 115 116/* 117 * Setup the segment registers to flat addressing (segment 0) and setup the 118 * stack to end just below the start of our code. 119 */ 120main: cld # String ops inc 121 xor %cx,%cx # Zero 122 mov %cx,%es # Address 123 mov %cx,%ds # data 124 mov %cx,%ss # Set up 125 mov $start,%sp # stack 126/* 127 * Relocate ourself to MEM_REL. Since %cx == 0, the inc %ch sets 128 * %cx == 0x100. Note that boot1 does not use this relocated copy 129 * of itself while loading boot2; however, BTX reclaims the memory 130 * used by boot1 during its initialization. As a result, boot2 uses 131 * xread from the relocated copy. 132 */ 133 mov %sp,%si # Source 134 mov $MEM_REL,%di # Destination 135 incb %ch # Word count 136 rep # Copy 137 movsw # code 138/* 139 * If we are on a hard drive, then load the MBR and look for the first 140 * FreeBSD slice. We use the fake partition entry below that points to 141 * the MBR when we call nread. The first pass looks for the first active 142 * FreeBSD slice. The second pass looks for the first non-active FreeBSD 143 * slice if the first one fails. 144 */ 145 mov $part4,%si # Partition 146 cmpb $0x80,%dl # Hard drive? 147 jb main.4 # No 148 movb $0x1,%dh # Block count 149 callw nread # Read MBR 150 mov $0x1,%cx # Two passes 151main.1: mov $MEM_BUF+PRT_OFF,%si # Partition table 152 movb $0x1,%dh # Partition 153main.2: cmpb $PRT_BSD,0x4(%si) # Our partition type? 154 jne main.3 # No 155 jcxz main.5 # If second pass 156 testb $0x80,(%si) # Active? 157 jnz main.5 # Yes 158main.3: add $0x10,%si # Next entry 159 incb %dh # Partition 160 cmpb $0x1+PRT_NUM,%dh # In table? 161 jb main.2 # Yes 162 dec %cx # Do two 163 jcxz main.1 # passes 164/* 165 * If we get here, we didn't find any FreeBSD slices at all, so print an 166 * error message and die. 167 */ 168 mov $msg_part,%si # Message 169 jmp error # Error 170/* 171 * Floppies use partition 0 of drive 0. 172 */ 173main.4: xor %dx,%dx # Partition:drive 174/* 175 * Ok, we have a slice and drive in %dx now, so use that to locate and load 176 * boot2. %si references the start of the slice we are looking for, so go 177 * ahead and load up the first 16 sectors (boot1 + boot2) from that. When 178 * we read it in, we conveniently use 0x8c00 as our transfer buffer. Thus, 179 * boot1 ends up at 0x8c00, and boot2 starts at 0x8c00 + 0x200 = 0x8e00. 180 * The first part of boot2 is the disklabel, which is 0x200 bytes long. 181 * The second part is BTX, which is thus loaded into 0x9000, which is where 182 * it also runs from. The boot2.bin binary starts right after the end of 183 * BTX, so we have to figure out where the start of it is and then move the 184 * binary to 0xc000. Normally, BTX clients start at MEM_USR, or 0xa000, but 185 * when we use btxld to create boot2, we use an entry point of 0x2000. That 186 * entry point is relative to MEM_USR; thus boot2.bin starts at 0xc000. 187 */ 188main.5: mov %dx,MEM_ARG # Save args 189 movb $NSECT,%dh # Sector count 190 callw nread # Read disk 191 mov $MEM_BTX,%bx # BTX 192 mov 0xa(%bx),%si # Get BTX length and set 193 add %bx,%si # %si to start of boot2.bin 194 mov $MEM_USR+SIZ_PAG*2,%di # Client page 2 195 mov $MEM_BTX+(NSECT-1)*SIZ_SEC,%cx # Byte 196 sub %si,%cx # count 197 rep # Relocate 198 movsb # client 199 200/* 201 * Enable A20 so we can access memory above 1 meg. 202 * Use the zero-valued %cx as a timeout for embedded hardware which do not 203 * have a keyboard controller. 204 */ 205seta20: cli # Disable interrupts 206seta20.1: dec %cx # Timeout? 207 jz seta20.3 # Yes 208 inb $0x64,%al # Get status 209 testb $0x2,%al # Busy? 210 jnz seta20.1 # Yes 211 movb $0xd1,%al # Command: Write 212 outb %al,$0x64 # output port 213seta20.2: inb $0x64,%al # Get status 214 testb $0x2,%al # Busy? 215 jnz seta20.2 # Yes 216 movb $0xdf,%al # Enable 217 outb %al,$0x60 # A20 218seta20.3: sti # Enable interrupts 219 220 jmp start+MEM_JMP-MEM_ORG # Start BTX 221 222 223/* 224 * Trampoline used to call read from within boot1. 225 */ 226nread: mov $MEM_BUF,%bx # Transfer buffer 227 mov 0x8(%si),%ax # Get 228 mov 0xa(%si),%cx # LBA 229 push %cs # Read from 230 callw xread.1 # disk 231 jnc return # If success, return 232 mov $msg_read,%si # Otherwise, set the error 233 # message and fall through to 234 # the error routine 235/* 236 * Print out the error message pointed to by %ds:(%si) followed 237 * by a prompt, wait for a keypress, and then reboot the machine. 238 */ 239error: callw putstr # Display message 240 mov $prompt,%si # Display 241 callw putstr # prompt 242 xorb %ah,%ah # BIOS: Get 243 int $0x16 # keypress 244 movw $0x1234, BDA_BOOT # Do a warm boot 245 ljmp $0xf000,$0xfff0 # reboot the machine 246/* 247 * Display a null-terminated string using the BIOS output. 248 */ 249putstr.0: mov $0x7,%bx # Page:attribute 250 movb $0xe,%ah # BIOS: Display 251 int $0x10 # character 252putstr: lodsb # Get char 253 testb %al,%al # End of string? 254 jne putstr.0 # No 255 256/* 257 * Overused return code. ereturn is used to return an error from the 258 * read function. Since we assume putstr succeeds, we (ab)use the 259 * same code when we return from putstr. 260 */ 261ereturn: movb $0x1,%ah # Invalid 262 stc # argument 263return: retw # To caller 264/* 265 * Reads sectors from the disk. If EDD is enabled, then check if it is 266 * installed and use it if it is. If it is not installed or not enabled, then 267 * fall back to using CHS. Since we use a LBA, if we are using CHS, we have to 268 * fetch the drive parameters from the BIOS and divide it out ourselves. 269 * Call with: 270 * 271 * %dl - byte - drive number 272 * stack - 10 bytes - EDD Packet 273 */ 274read: testb $FL_PACKET,%cs:MEM_REL+flags-start # LBA support enabled? 275 jz read.1 # No, use CHS 276 cmpb $0x80,%dl # Hard drive? 277 jb read.1 # No, use CHS 278 mov $0x55aa,%bx # Magic 279 push %dx # Save 280 movb $0x41,%ah # BIOS: Check 281 int $0x13 # extensions present 282 pop %dx # Restore 283 jc read.1 # If error, use CHS 284 cmp $0xaa55,%bx # Magic? 285 jne read.1 # No, so use CHS 286 testb $0x1,%cl # Packet interface? 287 jz read.1 # No, so use CHS 288 mov %bp,%si # Disk packet 289 movb $0x42,%ah # BIOS: Extended 290 int $0x13 # read 291 retw # To caller 292read.1: push %dx # Save 293 movb $0x8,%ah # BIOS: Get drive 294 int $0x13 # parameters 295 movb %dh,%ch # Max head number 296 pop %dx # Restore 297 jc return # If error 298 andb $0x3f,%cl # Sectors per track 299 jz ereturn # If zero 300 cli # Disable interrupts 301 mov 0x8(%bp),%eax # Get LBA 302 push %dx # Save 303 movzbl %cl,%ebx # Divide by 304 xor %edx,%edx # sectors 305 div %ebx # per track 306 movb %ch,%bl # Max head number 307 movb %dl,%ch # Sector number 308 inc %bx # Divide by 309 xorb %dl,%dl # number 310 div %ebx # of heads 311 movb %dl,%bh # Head number 312 pop %dx # Restore 313 cmpl $0x3ff,%eax # Cylinder number supportable? 314 sti # Enable interrupts 315 ja ereturn # No, return an error 316 xchgb %al,%ah # Set up cylinder 317 rorb $0x2,%al # number 318 orb %ch,%al # Merge 319 inc %ax # sector 320 xchg %ax,%cx # number 321 movb %bh,%dh # Head number 322 subb %ah,%al # Sectors this track 323 mov 0x2(%bp),%ah # Blocks to read 324 cmpb %ah,%al # To read 325 jb read.2 # this 326#ifdef TRACK_AT_A_TIME 327 movb %ah,%al # track 328#else 329 movb $1,%al # one sector 330#endif 331read.2: mov $0x5,%di # Try count 332read.3: les 0x4(%bp),%bx # Transfer buffer 333 push %ax # Save 334 movb $0x2,%ah # BIOS: Read 335 int $0x13 # from disk 336 pop %bx # Restore 337 jnc read.4 # If success 338 dec %di # Retry? 339 jz read.6 # No 340 xorb %ah,%ah # BIOS: Reset 341 int $0x13 # disk system 342 xchg %bx,%ax # Block count 343 jmp read.3 # Continue 344read.4: movzbw %bl,%ax # Sectors read 345 add %ax,0x8(%bp) # Adjust 346 jnc read.5 # LBA, 347 incw 0xa(%bp) # transfer 348read.5: shlb %bl # buffer 349 add %bl,0x5(%bp) # pointer, 350 sub %al,0x2(%bp) # block count 351 ja read.1 # If not done 352read.6: retw # To caller 353 354/* Messages */ 355 356msg_read: .asciz "Read" 357msg_part: .asciz "Boot" 358 359prompt: .asciz " error\r\n" 360 361flags: .byte FLAGS # Flags 362 363 .org PRT_OFF,0x90 364 365/* Partition table */ 366 367 .fill 0x30,0x1,0x0 368part4: .byte 0x80, 0x00, 0x01, 0x00 369 .byte 0xa5, 0xfe, 0xff, 0xff 370 .byte 0x00, 0x00, 0x00, 0x00 371 .byte 0x50, 0xc3, 0x00, 0x00 # 50000 sectors long, bleh 372 373 .word 0xaa55 # Magic number 374