1 /*- 2 * Copyright (c) 2008-2010 Rui Paulo 3 * Copyright (c) 2006 Marcel Moolenaar 4 * All rights reserved. 5 * 6 * Copyright (c) 2016-2019 Netflix, Inc. written by M. Warner Losh 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <stand.h> 34 35 #include <sys/disk.h> 36 #include <sys/param.h> 37 #include <sys/reboot.h> 38 #include <sys/boot.h> 39 #include <stdint.h> 40 #include <string.h> 41 #include <setjmp.h> 42 #include <disk.h> 43 44 #include <efi.h> 45 #include <efilib.h> 46 #include <efichar.h> 47 48 #include <uuid.h> 49 50 #include <bootstrap.h> 51 #include <smbios.h> 52 53 #include "efizfs.h" 54 55 #include "loader_efi.h" 56 57 struct arch_switch archsw; /* MI/MD interface boundary */ 58 59 EFI_GUID acpi = ACPI_TABLE_GUID; 60 EFI_GUID acpi20 = ACPI_20_TABLE_GUID; 61 EFI_GUID devid = DEVICE_PATH_PROTOCOL; 62 EFI_GUID imgid = LOADED_IMAGE_PROTOCOL; 63 EFI_GUID mps = MPS_TABLE_GUID; 64 EFI_GUID netid = EFI_SIMPLE_NETWORK_PROTOCOL; 65 EFI_GUID smbios = SMBIOS_TABLE_GUID; 66 EFI_GUID smbios3 = SMBIOS3_TABLE_GUID; 67 EFI_GUID dxe = DXE_SERVICES_TABLE_GUID; 68 EFI_GUID hoblist = HOB_LIST_TABLE_GUID; 69 EFI_GUID lzmadecomp = LZMA_DECOMPRESSION_GUID; 70 EFI_GUID mpcore = ARM_MP_CORE_INFO_TABLE_GUID; 71 EFI_GUID esrt = ESRT_TABLE_GUID; 72 EFI_GUID memtype = MEMORY_TYPE_INFORMATION_TABLE_GUID; 73 EFI_GUID debugimg = DEBUG_IMAGE_INFO_TABLE_GUID; 74 EFI_GUID fdtdtb = FDT_TABLE_GUID; 75 EFI_GUID inputid = SIMPLE_TEXT_INPUT_PROTOCOL; 76 77 /* 78 * Number of seconds to wait for a keystroke before exiting with failure 79 * in the event no currdev is found. -2 means always break, -1 means 80 * never break, 0 means poll once and then reboot, > 0 means wait for 81 * that many seconds. "fail_timeout" can be set in the environment as 82 * well. 83 */ 84 static int fail_timeout = 5; 85 86 /* 87 * Current boot variable 88 */ 89 UINT16 boot_current; 90 91 /* 92 * Image that we booted from. 93 */ 94 EFI_LOADED_IMAGE *boot_img; 95 96 static bool 97 has_keyboard(void) 98 { 99 EFI_STATUS status; 100 EFI_DEVICE_PATH *path; 101 EFI_HANDLE *hin, *hin_end, *walker; 102 UINTN sz; 103 bool retval = false; 104 105 /* 106 * Find all the handles that support the SIMPLE_TEXT_INPUT_PROTOCOL and 107 * do the typical dance to get the right sized buffer. 108 */ 109 sz = 0; 110 hin = NULL; 111 status = BS->LocateHandle(ByProtocol, &inputid, 0, &sz, 0); 112 if (status == EFI_BUFFER_TOO_SMALL) { 113 hin = (EFI_HANDLE *)malloc(sz); 114 status = BS->LocateHandle(ByProtocol, &inputid, 0, &sz, 115 hin); 116 if (EFI_ERROR(status)) 117 free(hin); 118 } 119 if (EFI_ERROR(status)) 120 return retval; 121 122 /* 123 * Look at each of the handles. If it supports the device path protocol, 124 * use it to get the device path for this handle. Then see if that 125 * device path matches either the USB device path for keyboards or the 126 * legacy device path for keyboards. 127 */ 128 hin_end = &hin[sz / sizeof(*hin)]; 129 for (walker = hin; walker < hin_end; walker++) { 130 status = BS->HandleProtocol(*walker, &devid, (VOID **)&path); 131 if (EFI_ERROR(status)) 132 continue; 133 134 while (!IsDevicePathEnd(path)) { 135 /* 136 * Check for the ACPI keyboard node. All PNP3xx nodes 137 * are keyboards of different flavors. Note: It is 138 * unclear of there's always a keyboard node when 139 * there's a keyboard controller, or if there's only one 140 * when a keyboard is detected at boot. 141 */ 142 if (DevicePathType(path) == ACPI_DEVICE_PATH && 143 (DevicePathSubType(path) == ACPI_DP || 144 DevicePathSubType(path) == ACPI_EXTENDED_DP)) { 145 ACPI_HID_DEVICE_PATH *acpi; 146 147 acpi = (ACPI_HID_DEVICE_PATH *)(void *)path; 148 if ((EISA_ID_TO_NUM(acpi->HID) & 0xff00) == 0x300 && 149 (acpi->HID & 0xffff) == PNP_EISA_ID_CONST) { 150 retval = true; 151 goto out; 152 } 153 /* 154 * Check for USB keyboard node, if present. Unlike a 155 * PS/2 keyboard, these definitely only appear when 156 * connected to the system. 157 */ 158 } else if (DevicePathType(path) == MESSAGING_DEVICE_PATH && 159 DevicePathSubType(path) == MSG_USB_CLASS_DP) { 160 USB_CLASS_DEVICE_PATH *usb; 161 162 usb = (USB_CLASS_DEVICE_PATH *)(void *)path; 163 if (usb->DeviceClass == 3 && /* HID */ 164 usb->DeviceSubClass == 1 && /* Boot devices */ 165 usb->DeviceProtocol == 1) { /* Boot keyboards */ 166 retval = true; 167 goto out; 168 } 169 } 170 path = NextDevicePathNode(path); 171 } 172 } 173 out: 174 free(hin); 175 return retval; 176 } 177 178 static void 179 set_currdev(const char *devname) 180 { 181 182 env_setenv("currdev", EV_VOLATILE, devname, efi_setcurrdev, env_nounset); 183 env_setenv("loaddev", EV_VOLATILE, devname, env_noset, env_nounset); 184 } 185 186 static void 187 set_currdev_devdesc(struct devdesc *currdev) 188 { 189 const char *devname; 190 191 devname = efi_fmtdev(currdev); 192 printf("Setting currdev to %s\n", devname); 193 set_currdev(devname); 194 } 195 196 static void 197 set_currdev_devsw(struct devsw *dev, int unit) 198 { 199 struct devdesc currdev; 200 201 currdev.d_dev = dev; 202 currdev.d_unit = unit; 203 204 set_currdev_devdesc(&currdev); 205 } 206 207 static void 208 set_currdev_pdinfo(pdinfo_t *dp) 209 { 210 211 /* 212 * Disks are special: they have partitions. if the parent 213 * pointer is non-null, we're a partition not a full disk 214 * and we need to adjust currdev appropriately. 215 */ 216 if (dp->pd_devsw->dv_type == DEVT_DISK) { 217 struct disk_devdesc currdev; 218 219 currdev.dd.d_dev = dp->pd_devsw; 220 if (dp->pd_parent == NULL) { 221 currdev.dd.d_unit = dp->pd_unit; 222 currdev.d_slice = D_SLICENONE; 223 currdev.d_partition = D_PARTNONE; 224 } else { 225 currdev.dd.d_unit = dp->pd_parent->pd_unit; 226 currdev.d_slice = dp->pd_unit; 227 currdev.d_partition = D_PARTISGPT; /* XXX Assumes GPT */ 228 } 229 set_currdev_devdesc((struct devdesc *)&currdev); 230 } else { 231 set_currdev_devsw(dp->pd_devsw, dp->pd_unit); 232 } 233 } 234 235 static bool 236 sanity_check_currdev(void) 237 { 238 struct stat st; 239 240 return (stat("/boot/defaults/loader.conf", &st) == 0 || 241 stat("/boot/kernel/kernel", &st) == 0); 242 } 243 244 #ifdef EFI_ZFS_BOOT 245 static bool 246 probe_zfs_currdev(uint64_t guid) 247 { 248 char *devname; 249 struct zfs_devdesc currdev; 250 251 currdev.dd.d_dev = &zfs_dev; 252 currdev.dd.d_unit = 0; 253 currdev.pool_guid = guid; 254 currdev.root_guid = 0; 255 set_currdev_devdesc((struct devdesc *)&currdev); 256 devname = efi_fmtdev(&currdev); 257 init_zfs_bootenv(devname); 258 259 return (sanity_check_currdev()); 260 } 261 #endif 262 263 static bool 264 try_as_currdev(pdinfo_t *hd, pdinfo_t *pp) 265 { 266 uint64_t guid; 267 268 #ifdef EFI_ZFS_BOOT 269 /* 270 * If there's a zpool on this device, try it as a ZFS 271 * filesystem, which has somewhat different setup than all 272 * other types of fs due to imperfect loader integration. 273 * This all stems from ZFS being both a device (zpool) and 274 * a filesystem, plus the boot env feature. 275 */ 276 if (efizfs_get_guid_by_handle(pp->pd_handle, &guid)) 277 return (probe_zfs_currdev(guid)); 278 #endif 279 /* 280 * All other filesystems just need the pdinfo 281 * initialized in the standard way. 282 */ 283 set_currdev_pdinfo(pp); 284 return (sanity_check_currdev()); 285 } 286 287 /* 288 * Sometimes we get filenames that are all upper case 289 * and/or have backslashes in them. Filter all this out 290 * if it looks like we need to do so. 291 */ 292 static void 293 fix_dosisms(char *p) 294 { 295 while (*p) { 296 if (isupper(*p)) 297 *p = tolower(*p); 298 else if (*p == '\\') 299 *p = '/'; 300 p++; 301 } 302 } 303 304 #define SIZE(dp, edp) (size_t)((intptr_t)(void *)edp - (intptr_t)(void *)dp) 305 306 enum { BOOT_INFO_OK = 0, BAD_CHOICE = 1, NOT_SPECIFIC = 2 }; 307 static int 308 match_boot_info(char *boot_info, size_t bisz) 309 { 310 uint32_t attr; 311 uint16_t fplen; 312 size_t len; 313 char *walker, *ep; 314 EFI_DEVICE_PATH *dp, *edp, *first_dp, *last_dp; 315 pdinfo_t *pp; 316 CHAR16 *descr; 317 char *kernel = NULL; 318 FILEPATH_DEVICE_PATH *fp; 319 struct stat st; 320 CHAR16 *text; 321 322 /* 323 * FreeBSD encodes it's boot loading path into the boot loader 324 * BootXXXX variable. We look for the last one in the path 325 * and use that to load the kernel. However, if we only fine 326 * one DEVICE_PATH, then there's nothing specific and we should 327 * fall back. 328 * 329 * In an ideal world, we'd look at the image handle we were 330 * passed, match up with the loader we are and then return the 331 * next one in the path. This would be most flexible and cover 332 * many chain booting scenarios where you need to use this 333 * boot loader to get to the next boot loader. However, that 334 * doesn't work. We rarely have the path to the image booted 335 * (just the device) so we can't count on that. So, we do the 336 * enxt best thing, we look through the device path(s) passed 337 * in the BootXXXX varaible. If there's only one, we return 338 * NOT_SPECIFIC. Otherwise, we look at the last one and try to 339 * load that. If we can, we return BOOT_INFO_OK. Otherwise we 340 * return BAD_CHOICE for the caller to sort out. 341 */ 342 if (bisz < sizeof(attr) + sizeof(fplen) + sizeof(CHAR16)) 343 return NOT_SPECIFIC; 344 walker = boot_info; 345 ep = walker + bisz; 346 memcpy(&attr, walker, sizeof(attr)); 347 walker += sizeof(attr); 348 memcpy(&fplen, walker, sizeof(fplen)); 349 walker += sizeof(fplen); 350 descr = (CHAR16 *)(intptr_t)walker; 351 len = ucs2len(descr); 352 walker += (len + 1) * sizeof(CHAR16); 353 last_dp = first_dp = dp = (EFI_DEVICE_PATH *)walker; 354 edp = (EFI_DEVICE_PATH *)(walker + fplen); 355 if ((char *)edp > ep) 356 return NOT_SPECIFIC; 357 while (dp < edp && SIZE(dp, edp) > sizeof(EFI_DEVICE_PATH)) { 358 text = efi_devpath_name(dp); 359 if (text != NULL) { 360 printf(" BootInfo Path: %S\n", text); 361 efi_free_devpath_name(text); 362 } 363 last_dp = dp; 364 dp = (EFI_DEVICE_PATH *)((char *)dp + efi_devpath_length(dp)); 365 } 366 367 /* 368 * If there's only one item in the list, then nothing was 369 * specified. Or if the last path doesn't have a media 370 * path in it. Those show up as various VenHw() nodes 371 * which are basically opaque to us. Don't count those 372 * as something specifc. 373 */ 374 if (last_dp == first_dp) { 375 printf("Ignoring Boot%04x: Only one DP found\n", boot_current); 376 return NOT_SPECIFIC; 377 } 378 if (efi_devpath_to_media_path(last_dp) == NULL) { 379 printf("Ignoring Boot%04x: No Media Path\n", boot_current); 380 return NOT_SPECIFIC; 381 } 382 383 /* 384 * OK. At this point we either have a good path or a bad one. 385 * Let's check. 386 */ 387 pp = efiblk_get_pdinfo_by_device_path(last_dp); 388 if (pp == NULL) { 389 printf("Ignoring Boot%04x: Device Path not found\n", boot_current); 390 return BAD_CHOICE; 391 } 392 set_currdev_pdinfo(pp); 393 if (!sanity_check_currdev()) { 394 printf("Ignoring Boot%04x: sanity check failed\n", boot_current); 395 return BAD_CHOICE; 396 } 397 398 /* 399 * OK. We've found a device that matches, next we need to check the last 400 * component of the path. If it's a file, then we set the default kernel 401 * to that. Otherwise, just use this as the default root. 402 * 403 * Reminder: we're running very early, before we've parsed the defaults 404 * file, so we may need to have a hack override. 405 */ 406 dp = efi_devpath_last_node(last_dp); 407 if (DevicePathType(dp) != MEDIA_DEVICE_PATH || 408 DevicePathSubType(dp) != MEDIA_FILEPATH_DP) { 409 printf("Using Boot%04x for root partition\n", boot_current); 410 return (BOOT_INFO_OK); /* use currdir, default kernel */ 411 } 412 fp = (FILEPATH_DEVICE_PATH *)dp; 413 ucs2_to_utf8(fp->PathName, &kernel); 414 if (kernel == NULL) { 415 printf("Not using Boot%04x: can't decode kernel\n", boot_current); 416 return (BAD_CHOICE); 417 } 418 if (*kernel == '\\' || isupper(*kernel)) 419 fix_dosisms(kernel); 420 if (stat(kernel, &st) != 0) { 421 free(kernel); 422 printf("Not using Boot%04x: can't find %s\n", boot_current, 423 kernel); 424 return (BAD_CHOICE); 425 } 426 setenv("kernel", kernel, 1); 427 free(kernel); 428 text = efi_devpath_name(last_dp); 429 if (text) { 430 printf("Using Boot%04x %S + %s\n", boot_current, text, 431 kernel); 432 efi_free_devpath_name(text); 433 } 434 435 return (BOOT_INFO_OK); 436 } 437 438 /* 439 * Look at the passed-in boot_info, if any. If we find it then we need 440 * to see if we can find ourselves in the boot chain. If we can, and 441 * there's another specified thing to boot next, assume that the file 442 * is loaded from / and use that for the root filesystem. If can't 443 * find the specified thing, we must fail the boot. If we're last on 444 * the list, then we fallback to looking for the first available / 445 * candidate (ZFS, if there's a bootable zpool, otherwise a UFS 446 * partition that has either /boot/defaults/loader.conf on it or 447 * /boot/kernel/kernel (the default kernel) that we can use. 448 * 449 * We always fail if we can't find the right thing. However, as 450 * a concession to buggy UEFI implementations, like u-boot, if 451 * we have determined that the host is violating the UEFI boot 452 * manager protocol, we'll signal the rest of the program that 453 * a drop to the OK boot loader prompt is possible. 454 */ 455 static int 456 find_currdev(bool do_bootmgr, bool is_last, 457 char *boot_info, size_t boot_info_sz) 458 { 459 pdinfo_t *dp, *pp; 460 EFI_DEVICE_PATH *devpath, *copy; 461 EFI_HANDLE h; 462 CHAR16 *text; 463 struct devsw *dev; 464 int unit; 465 uint64_t extra; 466 int rv; 467 char *rootdev; 468 469 /* 470 * First choice: if rootdev is already set, use that, even if 471 * it's wrong. 472 */ 473 rootdev = getenv("rootdev"); 474 if (rootdev != NULL) { 475 printf("Setting currdev to configured rootdev %s\n", rootdev); 476 set_currdev(rootdev); 477 return (0); 478 } 479 480 /* 481 * Second choice: If we can find out image boot_info, and there's 482 * a follow-on boot image in that boot_info, use that. In this 483 * case root will be the partition specified in that image and 484 * we'll load the kernel specified by the file path. Should there 485 * not be a filepath, we use the default. This filepath overrides 486 * loader.conf. 487 */ 488 if (do_bootmgr) { 489 rv = match_boot_info(boot_info, boot_info_sz); 490 switch (rv) { 491 case BOOT_INFO_OK: /* We found it */ 492 return (0); 493 case BAD_CHOICE: /* specified file not found -> error */ 494 /* XXX do we want to have an escape hatch for last in boot order? */ 495 return (ENOENT); 496 } /* Nothing specified, try normal match */ 497 } 498 499 #ifdef EFI_ZFS_BOOT 500 /* 501 * Did efi_zfs_probe() detect the boot pool? If so, use the zpool 502 * it found, if it's sane. ZFS is the only thing that looks for 503 * disks and pools to boot. This may change in the future, however, 504 * if we allow specifying which pool to boot from via UEFI variables 505 * rather than the bootenv stuff that FreeBSD uses today. 506 */ 507 if (pool_guid != 0) { 508 printf("Trying ZFS pool\n"); 509 if (probe_zfs_currdev(pool_guid)) 510 return (0); 511 } 512 #endif /* EFI_ZFS_BOOT */ 513 514 /* 515 * Try to find the block device by its handle based on the 516 * image we're booting. If we can't find a sane partition, 517 * search all the other partitions of the disk. We do not 518 * search other disks because it's a violation of the UEFI 519 * boot protocol to do so. We fail and let UEFI go on to 520 * the next candidate. 521 */ 522 dp = efiblk_get_pdinfo_by_handle(boot_img->DeviceHandle); 523 if (dp != NULL) { 524 text = efi_devpath_name(dp->pd_devpath); 525 if (text != NULL) { 526 printf("Trying ESP: %S\n", text); 527 efi_free_devpath_name(text); 528 } 529 set_currdev_pdinfo(dp); 530 if (sanity_check_currdev()) 531 return (0); 532 if (dp->pd_parent != NULL) { 533 pdinfo_t *espdp = dp; 534 dp = dp->pd_parent; 535 STAILQ_FOREACH(pp, &dp->pd_part, pd_link) { 536 /* Already tried the ESP */ 537 if (espdp == pp) 538 continue; 539 /* 540 * Roll up the ZFS special case 541 * for those partitions that have 542 * zpools on them. 543 */ 544 text = efi_devpath_name(pp->pd_devpath); 545 if (text != NULL) { 546 printf("Trying: %S\n", text); 547 efi_free_devpath_name(text); 548 } 549 if (try_as_currdev(dp, pp)) 550 return (0); 551 } 552 } 553 } 554 555 /* 556 * Try the device handle from our loaded image first. If that 557 * fails, use the device path from the loaded image and see if 558 * any of the nodes in that path match one of the enumerated 559 * handles. Currently, this handle list is only for netboot. 560 */ 561 if (efi_handle_lookup(boot_img->DeviceHandle, &dev, &unit, &extra) == 0) { 562 set_currdev_devsw(dev, unit); 563 if (sanity_check_currdev()) 564 return (0); 565 } 566 567 copy = NULL; 568 devpath = efi_lookup_image_devpath(IH); 569 while (devpath != NULL) { 570 h = efi_devpath_handle(devpath); 571 if (h == NULL) 572 break; 573 574 free(copy); 575 copy = NULL; 576 577 if (efi_handle_lookup(h, &dev, &unit, &extra) == 0) { 578 set_currdev_devsw(dev, unit); 579 if (sanity_check_currdev()) 580 return (0); 581 } 582 583 devpath = efi_lookup_devpath(h); 584 if (devpath != NULL) { 585 copy = efi_devpath_trim(devpath); 586 devpath = copy; 587 } 588 } 589 free(copy); 590 591 return (ENOENT); 592 } 593 594 static bool 595 interactive_interrupt(const char *msg) 596 { 597 time_t now, then, last; 598 599 last = 0; 600 now = then = getsecs(); 601 printf("%s\n", msg); 602 if (fail_timeout == -2) /* Always break to OK */ 603 return (true); 604 if (fail_timeout == -1) /* Never break to OK */ 605 return (false); 606 do { 607 if (last != now) { 608 printf("press any key to interrupt reboot in %d seconds\r", 609 fail_timeout - (int)(now - then)); 610 last = now; 611 } 612 613 /* XXX no pause or timeout wait for char */ 614 if (ischar()) 615 return (true); 616 now = getsecs(); 617 } while (now - then < fail_timeout); 618 return (false); 619 } 620 621 static int 622 parse_args(int argc, CHAR16 *argv[]) 623 { 624 int i, j, howto; 625 bool vargood; 626 char var[128]; 627 628 /* 629 * Parse the args to set the console settings, etc 630 * boot1.efi passes these in, if it can read /boot.config or /boot/config 631 * or iPXE may be setup to pass these in. Or the optional argument in the 632 * boot environment was used to pass these arguments in (in which case 633 * neither /boot.config nor /boot/config are consulted). 634 * 635 * Loop through the args, and for each one that contains an '=' that is 636 * not the first character, add it to the environment. This allows 637 * loader and kernel env vars to be passed on the command line. Convert 638 * args from UCS-2 to ASCII (16 to 8 bit) as they are copied (though this 639 * method is flawed for non-ASCII characters). 640 */ 641 howto = 0; 642 for (i = 1; i < argc; i++) { 643 cpy16to8(argv[i], var, sizeof(var)); 644 howto |= boot_parse_arg(var); 645 } 646 647 return (howto); 648 } 649 650 static void 651 setenv_int(const char *key, int val) 652 { 653 char buf[20]; 654 655 snprintf(buf, sizeof(buf), "%d", val); 656 setenv(key, buf, 1); 657 } 658 659 /* 660 * Parse ConOut (the list of consoles active) and see if we can find a 661 * serial port and/or a video port. It would be nice to also walk the 662 * ACPI name space to map the UID for the serial port to a port. The 663 * latter is especially hard. 664 */ 665 static int 666 parse_uefi_con_out(void) 667 { 668 int how, rv; 669 int vid_seen = 0, com_seen = 0, seen = 0; 670 size_t sz; 671 char buf[4096], *ep; 672 EFI_DEVICE_PATH *node; 673 ACPI_HID_DEVICE_PATH *acpi; 674 UART_DEVICE_PATH *uart; 675 bool pci_pending; 676 677 how = 0; 678 sz = sizeof(buf); 679 rv = efi_global_getenv("ConOut", buf, &sz); 680 if (rv != EFI_SUCCESS) 681 goto out; 682 ep = buf + sz; 683 node = (EFI_DEVICE_PATH *)buf; 684 while ((char *)node < ep) { 685 pci_pending = false; 686 if (DevicePathType(node) == ACPI_DEVICE_PATH && 687 DevicePathSubType(node) == ACPI_DP) { 688 /* Check for Serial node */ 689 acpi = (void *)node; 690 if (EISA_ID_TO_NUM(acpi->HID) == 0x501) { 691 setenv_int("efi_8250_uid", acpi->UID); 692 com_seen = ++seen; 693 } 694 } else if (DevicePathType(node) == MESSAGING_DEVICE_PATH && 695 DevicePathSubType(node) == MSG_UART_DP) { 696 697 uart = (void *)node; 698 setenv_int("efi_com_speed", uart->BaudRate); 699 } else if (DevicePathType(node) == ACPI_DEVICE_PATH && 700 DevicePathSubType(node) == ACPI_ADR_DP) { 701 /* Check for AcpiAdr() Node for video */ 702 vid_seen = ++seen; 703 } else if (DevicePathType(node) == HARDWARE_DEVICE_PATH && 704 DevicePathSubType(node) == HW_PCI_DP) { 705 /* 706 * Note, vmware fusion has a funky console device 707 * PciRoot(0x0)/Pci(0xf,0x0) 708 * which we can only detect at the end since we also 709 * have to cope with: 710 * PciRoot(0x0)/Pci(0x1f,0x0)/Serial(0x1) 711 * so only match it if it's last. 712 */ 713 pci_pending = true; 714 } 715 node = NextDevicePathNode(node); /* Skip the end node */ 716 } 717 if (pci_pending && vid_seen == 0) 718 vid_seen = ++seen; 719 720 /* 721 * Truth table for RB_MULTIPLE | RB_SERIAL 722 * Value Result 723 * 0 Use only video console 724 * RB_SERIAL Use only serial console 725 * RB_MULTIPLE Use both video and serial console 726 * (but video is primary so gets rc messages) 727 * both Use both video and serial console 728 * (but serial is primary so gets rc messages) 729 * 730 * Try to honor this as best we can. If only one of serial / video 731 * found, then use that. Otherwise, use the first one we found. 732 * This also implies if we found nothing, default to video. 733 */ 734 how = 0; 735 if (vid_seen && com_seen) { 736 how |= RB_MULTIPLE; 737 if (com_seen < vid_seen) 738 how |= RB_SERIAL; 739 } else if (com_seen) 740 how |= RB_SERIAL; 741 out: 742 return (how); 743 } 744 745 EFI_STATUS 746 main(int argc, CHAR16 *argv[]) 747 { 748 EFI_GUID *guid; 749 int howto, i, uhowto; 750 UINTN k; 751 bool has_kbd, is_last; 752 char *s; 753 EFI_DEVICE_PATH *imgpath; 754 CHAR16 *text; 755 EFI_STATUS rv; 756 size_t sz, bosz = 0, bisz = 0; 757 UINT16 boot_order[100]; 758 char boot_info[4096]; 759 char buf[32]; 760 bool uefi_boot_mgr; 761 762 archsw.arch_autoload = efi_autoload; 763 archsw.arch_getdev = efi_getdev; 764 archsw.arch_copyin = efi_copyin; 765 archsw.arch_copyout = efi_copyout; 766 archsw.arch_readin = efi_readin; 767 archsw.arch_zfs_probe = efi_zfs_probe; 768 769 /* Get our loaded image protocol interface structure. */ 770 BS->HandleProtocol(IH, &imgid, (VOID**)&boot_img); 771 772 /* 773 * Chicken-and-egg problem; we want to have console output early, but 774 * some console attributes may depend on reading from eg. the boot 775 * device, which we can't do yet. We can use printf() etc. once this is 776 * done. So, we set it to the efi console, then call console init. This 777 * gets us printf early, but also primes the pump for all future console 778 * changes to take effect, regardless of where they come from. 779 */ 780 setenv("console", "efi", 1); 781 cons_probe(); 782 783 /* Init the time source */ 784 efi_time_init(); 785 786 /* 787 * Initialise the block cache. Set the upper limit. 788 */ 789 bcache_init(32768, 512); 790 791 /* 792 * Scan the BLOCK IO MEDIA handles then 793 * march through the device switch probing for things. 794 */ 795 i = efipart_inithandles(); 796 if (i != 0 && i != ENOENT) { 797 printf("efipart_inithandles failed with ERRNO %d, expect " 798 "failures\n", i); 799 } 800 801 for (i = 0; devsw[i] != NULL; i++) 802 if (devsw[i]->dv_init != NULL) 803 (devsw[i]->dv_init)(); 804 805 /* 806 * Detect console settings two different ways: one via the command 807 * args (eg -h) or via the UEFI ConOut variable. 808 */ 809 has_kbd = has_keyboard(); 810 howto = parse_args(argc, argv); 811 if (!has_kbd && (howto & RB_PROBE)) 812 howto |= RB_SERIAL | RB_MULTIPLE; 813 howto &= ~RB_PROBE; 814 uhowto = parse_uefi_con_out(); 815 816 /* 817 * We now have two notions of console. howto should be viewed as 818 * overrides. If console is already set, don't set it again. 819 */ 820 #define VIDEO_ONLY 0 821 #define SERIAL_ONLY RB_SERIAL 822 #define VID_SER_BOTH RB_MULTIPLE 823 #define SER_VID_BOTH (RB_SERIAL | RB_MULTIPLE) 824 #define CON_MASK (RB_SERIAL | RB_MULTIPLE) 825 if (strcmp(getenv("console"), "efi") == 0) { 826 if ((howto & CON_MASK) == 0) { 827 /* No override, uhowto is controlling and efi cons is perfect */ 828 howto = howto | (uhowto & CON_MASK); 829 } else if ((howto & CON_MASK) == (uhowto & CON_MASK)) { 830 /* override matches what UEFI told us, efi console is perfect */ 831 } else if ((uhowto & (CON_MASK)) != 0) { 832 /* 833 * We detected a serial console on ConOut. All possible 834 * overrides include serial. We can't really override what efi 835 * gives us, so we use it knowing it's the best choice. 836 */ 837 /* Do nothing */ 838 } else { 839 /* 840 * We detected some kind of serial in the override, but ConOut 841 * has no serial, so we have to sort out which case it really is. 842 */ 843 switch (howto & CON_MASK) { 844 case SERIAL_ONLY: 845 setenv("console", "comconsole", 1); 846 break; 847 case VID_SER_BOTH: 848 setenv("console", "efi comconsole", 1); 849 break; 850 case SER_VID_BOTH: 851 setenv("console", "comconsole efi", 1); 852 break; 853 /* case VIDEO_ONLY can't happen -- it's the first if above */ 854 } 855 } 856 } 857 858 /* 859 * howto is set now how we want to export the flags to the kernel, so 860 * set the env based on it. 861 */ 862 boot_howto_to_env(howto); 863 864 if (efi_copy_init()) { 865 printf("failed to allocate staging area\n"); 866 return (EFI_BUFFER_TOO_SMALL); 867 } 868 869 if ((s = getenv("fail_timeout")) != NULL) 870 fail_timeout = strtol(s, NULL, 10); 871 872 printf("%s\n", bootprog_info); 873 printf(" Command line arguments:"); 874 for (i = 0; i < argc; i++) 875 printf(" %S", argv[i]); 876 printf("\n"); 877 878 printf(" EFI version: %d.%02d\n", ST->Hdr.Revision >> 16, 879 ST->Hdr.Revision & 0xffff); 880 printf(" EFI Firmware: %S (rev %d.%02d)\n", ST->FirmwareVendor, 881 ST->FirmwareRevision >> 16, ST->FirmwareRevision & 0xffff); 882 printf(" Console: %s (%#x)\n", getenv("console"), howto); 883 884 /* Determine the devpath of our image so we can prefer it. */ 885 text = efi_devpath_name(boot_img->FilePath); 886 if (text != NULL) { 887 printf(" Load Path: %S\n", text); 888 efi_setenv_freebsd_wcs("LoaderPath", text); 889 efi_free_devpath_name(text); 890 } 891 892 rv = BS->HandleProtocol(boot_img->DeviceHandle, &devid, (void **)&imgpath); 893 if (rv == EFI_SUCCESS) { 894 text = efi_devpath_name(imgpath); 895 if (text != NULL) { 896 printf(" Load Device: %S\n", text); 897 efi_setenv_freebsd_wcs("LoaderDev", text); 898 efi_free_devpath_name(text); 899 } 900 } 901 902 uefi_boot_mgr = true; 903 boot_current = 0; 904 sz = sizeof(boot_current); 905 rv = efi_global_getenv("BootCurrent", &boot_current, &sz); 906 if (rv == EFI_SUCCESS) 907 printf(" BootCurrent: %04x\n", boot_current); 908 else { 909 boot_current = 0xffff; 910 uefi_boot_mgr = false; 911 } 912 913 sz = sizeof(boot_order); 914 rv = efi_global_getenv("BootOrder", &boot_order, &sz); 915 if (rv == EFI_SUCCESS) { 916 printf(" BootOrder:"); 917 for (i = 0; i < sz / sizeof(boot_order[0]); i++) 918 printf(" %04x%s", boot_order[i], 919 boot_order[i] == boot_current ? "[*]" : ""); 920 printf("\n"); 921 is_last = boot_order[(sz / sizeof(boot_order[0])) - 1] == boot_current; 922 bosz = sz; 923 } else if (uefi_boot_mgr) { 924 /* 925 * u-boot doesn't set BootOrder, but otherwise participates in the 926 * boot manager protocol. So we fake it here and don't consider it 927 * a failure. 928 */ 929 bosz = sizeof(boot_order[0]); 930 boot_order[0] = boot_current; 931 is_last = true; 932 } 933 934 /* 935 * Next, find the boot info structure the UEFI boot manager is 936 * supposed to setup. We need this so we can walk through it to 937 * find where we are in the booting process and what to try to 938 * boot next. 939 */ 940 if (uefi_boot_mgr) { 941 snprintf(buf, sizeof(buf), "Boot%04X", boot_current); 942 sz = sizeof(boot_info); 943 rv = efi_global_getenv(buf, &boot_info, &sz); 944 if (rv == EFI_SUCCESS) 945 bisz = sz; 946 else 947 uefi_boot_mgr = false; 948 } 949 950 /* 951 * Disable the watchdog timer. By default the boot manager sets 952 * the timer to 5 minutes before invoking a boot option. If we 953 * want to return to the boot manager, we have to disable the 954 * watchdog timer and since we're an interactive program, we don't 955 * want to wait until the user types "quit". The timer may have 956 * fired by then. We don't care if this fails. It does not prevent 957 * normal functioning in any way... 958 */ 959 BS->SetWatchdogTimer(0, 0, 0, NULL); 960 961 /* 962 * Initialize the trusted/forbidden certificates from UEFI. 963 * They will be later used to verify the manifest(s), 964 * which should contain hashes of verified files. 965 * This needs to be initialized before any configuration files 966 * are loaded. 967 */ 968 #ifdef EFI_SECUREBOOT 969 ve_efi_init(); 970 #endif 971 972 /* 973 * Try and find a good currdev based on the image that was booted. 974 * It might be desirable here to have a short pause to allow falling 975 * through to the boot loader instead of returning instantly to follow 976 * the boot protocol and also allow an escape hatch for users wishing 977 * to try something different. 978 */ 979 if (find_currdev(uefi_boot_mgr, is_last, boot_info, bisz) != 0) 980 if (!interactive_interrupt("Failed to find bootable partition")) 981 return (EFI_NOT_FOUND); 982 983 efi_init_environment(); 984 985 #if !defined(__arm__) 986 for (k = 0; k < ST->NumberOfTableEntries; k++) { 987 guid = &ST->ConfigurationTable[k].VendorGuid; 988 if (!memcmp(guid, &smbios, sizeof(EFI_GUID))) { 989 char buf[40]; 990 991 snprintf(buf, sizeof(buf), "%p", 992 ST->ConfigurationTable[k].VendorTable); 993 setenv("hint.smbios.0.mem", buf, 1); 994 smbios_detect(ST->ConfigurationTable[k].VendorTable); 995 break; 996 } 997 } 998 #endif 999 1000 interact(); /* doesn't return */ 1001 1002 return (EFI_SUCCESS); /* keep compiler happy */ 1003 } 1004 1005 COMMAND_SET(poweroff, "poweroff", "power off the system", command_poweroff); 1006 1007 static int 1008 command_poweroff(int argc __unused, char *argv[] __unused) 1009 { 1010 int i; 1011 1012 for (i = 0; devsw[i] != NULL; ++i) 1013 if (devsw[i]->dv_cleanup != NULL) 1014 (devsw[i]->dv_cleanup)(); 1015 1016 RS->ResetSystem(EfiResetShutdown, EFI_SUCCESS, 0, NULL); 1017 1018 /* NOTREACHED */ 1019 return (CMD_ERROR); 1020 } 1021 1022 COMMAND_SET(reboot, "reboot", "reboot the system", command_reboot); 1023 1024 static int 1025 command_reboot(int argc, char *argv[]) 1026 { 1027 int i; 1028 1029 for (i = 0; devsw[i] != NULL; ++i) 1030 if (devsw[i]->dv_cleanup != NULL) 1031 (devsw[i]->dv_cleanup)(); 1032 1033 RS->ResetSystem(EfiResetCold, EFI_SUCCESS, 0, NULL); 1034 1035 /* NOTREACHED */ 1036 return (CMD_ERROR); 1037 } 1038 1039 COMMAND_SET(quit, "quit", "exit the loader", command_quit); 1040 1041 static int 1042 command_quit(int argc, char *argv[]) 1043 { 1044 exit(0); 1045 return (CMD_OK); 1046 } 1047 1048 COMMAND_SET(memmap, "memmap", "print memory map", command_memmap); 1049 1050 static int 1051 command_memmap(int argc __unused, char *argv[] __unused) 1052 { 1053 UINTN sz; 1054 EFI_MEMORY_DESCRIPTOR *map, *p; 1055 UINTN key, dsz; 1056 UINT32 dver; 1057 EFI_STATUS status; 1058 int i, ndesc; 1059 char line[80]; 1060 1061 sz = 0; 1062 status = BS->GetMemoryMap(&sz, 0, &key, &dsz, &dver); 1063 if (status != EFI_BUFFER_TOO_SMALL) { 1064 printf("Can't determine memory map size\n"); 1065 return (CMD_ERROR); 1066 } 1067 map = malloc(sz); 1068 status = BS->GetMemoryMap(&sz, map, &key, &dsz, &dver); 1069 if (EFI_ERROR(status)) { 1070 printf("Can't read memory map\n"); 1071 return (CMD_ERROR); 1072 } 1073 1074 ndesc = sz / dsz; 1075 snprintf(line, sizeof(line), "%23s %12s %12s %8s %4s\n", 1076 "Type", "Physical", "Virtual", "#Pages", "Attr"); 1077 pager_open(); 1078 if (pager_output(line)) { 1079 pager_close(); 1080 return (CMD_OK); 1081 } 1082 1083 for (i = 0, p = map; i < ndesc; 1084 i++, p = NextMemoryDescriptor(p, dsz)) { 1085 snprintf(line, sizeof(line), "%23s %012jx %012jx %08jx ", 1086 efi_memory_type(p->Type), (uintmax_t)p->PhysicalStart, 1087 (uintmax_t)p->VirtualStart, (uintmax_t)p->NumberOfPages); 1088 if (pager_output(line)) 1089 break; 1090 1091 if (p->Attribute & EFI_MEMORY_UC) 1092 printf("UC "); 1093 if (p->Attribute & EFI_MEMORY_WC) 1094 printf("WC "); 1095 if (p->Attribute & EFI_MEMORY_WT) 1096 printf("WT "); 1097 if (p->Attribute & EFI_MEMORY_WB) 1098 printf("WB "); 1099 if (p->Attribute & EFI_MEMORY_UCE) 1100 printf("UCE "); 1101 if (p->Attribute & EFI_MEMORY_WP) 1102 printf("WP "); 1103 if (p->Attribute & EFI_MEMORY_RP) 1104 printf("RP "); 1105 if (p->Attribute & EFI_MEMORY_XP) 1106 printf("XP "); 1107 if (p->Attribute & EFI_MEMORY_NV) 1108 printf("NV "); 1109 if (p->Attribute & EFI_MEMORY_MORE_RELIABLE) 1110 printf("MR "); 1111 if (p->Attribute & EFI_MEMORY_RO) 1112 printf("RO "); 1113 if (pager_output("\n")) 1114 break; 1115 } 1116 1117 pager_close(); 1118 return (CMD_OK); 1119 } 1120 1121 COMMAND_SET(configuration, "configuration", "print configuration tables", 1122 command_configuration); 1123 1124 static int 1125 command_configuration(int argc, char *argv[]) 1126 { 1127 UINTN i; 1128 char *name; 1129 1130 printf("NumberOfTableEntries=%lu\n", 1131 (unsigned long)ST->NumberOfTableEntries); 1132 1133 for (i = 0; i < ST->NumberOfTableEntries; i++) { 1134 EFI_GUID *guid; 1135 1136 printf(" "); 1137 guid = &ST->ConfigurationTable[i].VendorGuid; 1138 1139 if (efi_guid_to_name(guid, &name) == true) { 1140 printf(name); 1141 free(name); 1142 } else { 1143 printf("Error while translating UUID to name"); 1144 } 1145 printf(" at %p\n", ST->ConfigurationTable[i].VendorTable); 1146 } 1147 1148 return (CMD_OK); 1149 } 1150 1151 1152 COMMAND_SET(mode, "mode", "change or display EFI text modes", command_mode); 1153 1154 static int 1155 command_mode(int argc, char *argv[]) 1156 { 1157 UINTN cols, rows; 1158 unsigned int mode; 1159 int i; 1160 char *cp; 1161 char rowenv[8]; 1162 EFI_STATUS status; 1163 SIMPLE_TEXT_OUTPUT_INTERFACE *conout; 1164 extern void HO(void); 1165 1166 conout = ST->ConOut; 1167 1168 if (argc > 1) { 1169 mode = strtol(argv[1], &cp, 0); 1170 if (cp[0] != '\0') { 1171 printf("Invalid mode\n"); 1172 return (CMD_ERROR); 1173 } 1174 status = conout->QueryMode(conout, mode, &cols, &rows); 1175 if (EFI_ERROR(status)) { 1176 printf("invalid mode %d\n", mode); 1177 return (CMD_ERROR); 1178 } 1179 status = conout->SetMode(conout, mode); 1180 if (EFI_ERROR(status)) { 1181 printf("couldn't set mode %d\n", mode); 1182 return (CMD_ERROR); 1183 } 1184 sprintf(rowenv, "%u", (unsigned)rows); 1185 setenv("LINES", rowenv, 1); 1186 HO(); /* set cursor */ 1187 return (CMD_OK); 1188 } 1189 1190 printf("Current mode: %d\n", conout->Mode->Mode); 1191 for (i = 0; i <= conout->Mode->MaxMode; i++) { 1192 status = conout->QueryMode(conout, i, &cols, &rows); 1193 if (EFI_ERROR(status)) 1194 continue; 1195 printf("Mode %d: %u columns, %u rows\n", i, (unsigned)cols, 1196 (unsigned)rows); 1197 } 1198 1199 if (i != 0) 1200 printf("Select a mode with the command \"mode <number>\"\n"); 1201 1202 return (CMD_OK); 1203 } 1204 1205 COMMAND_SET(lsefi, "lsefi", "list EFI handles", command_lsefi); 1206 1207 static int 1208 command_lsefi(int argc __unused, char *argv[] __unused) 1209 { 1210 char *name; 1211 EFI_HANDLE *buffer = NULL; 1212 EFI_HANDLE handle; 1213 UINTN bufsz = 0, i, j; 1214 EFI_STATUS status; 1215 int ret = 0; 1216 1217 status = BS->LocateHandle(AllHandles, NULL, NULL, &bufsz, buffer); 1218 if (status != EFI_BUFFER_TOO_SMALL) { 1219 snprintf(command_errbuf, sizeof (command_errbuf), 1220 "unexpected error: %lld", (long long)status); 1221 return (CMD_ERROR); 1222 } 1223 if ((buffer = malloc(bufsz)) == NULL) { 1224 sprintf(command_errbuf, "out of memory"); 1225 return (CMD_ERROR); 1226 } 1227 1228 status = BS->LocateHandle(AllHandles, NULL, NULL, &bufsz, buffer); 1229 if (EFI_ERROR(status)) { 1230 free(buffer); 1231 snprintf(command_errbuf, sizeof (command_errbuf), 1232 "LocateHandle() error: %lld", (long long)status); 1233 return (CMD_ERROR); 1234 } 1235 1236 pager_open(); 1237 for (i = 0; i < (bufsz / sizeof (EFI_HANDLE)); i++) { 1238 UINTN nproto = 0; 1239 EFI_GUID **protocols = NULL; 1240 1241 handle = buffer[i]; 1242 printf("Handle %p", handle); 1243 if (pager_output("\n")) 1244 break; 1245 /* device path */ 1246 1247 status = BS->ProtocolsPerHandle(handle, &protocols, &nproto); 1248 if (EFI_ERROR(status)) { 1249 snprintf(command_errbuf, sizeof (command_errbuf), 1250 "ProtocolsPerHandle() error: %lld", 1251 (long long)status); 1252 continue; 1253 } 1254 1255 for (j = 0; j < nproto; j++) { 1256 if (efi_guid_to_name(protocols[j], &name) == true) { 1257 printf(" %s", name); 1258 free(name); 1259 } else { 1260 printf("Error while translating UUID to name"); 1261 } 1262 if ((ret = pager_output("\n")) != 0) 1263 break; 1264 } 1265 BS->FreePool(protocols); 1266 if (ret != 0) 1267 break; 1268 } 1269 pager_close(); 1270 free(buffer); 1271 return (CMD_OK); 1272 } 1273 1274 #ifdef LOADER_FDT_SUPPORT 1275 extern int command_fdt_internal(int argc, char *argv[]); 1276 1277 /* 1278 * Since proper fdt command handling function is defined in fdt_loader_cmd.c, 1279 * and declaring it as extern is in contradiction with COMMAND_SET() macro 1280 * (which uses static pointer), we're defining wrapper function, which 1281 * calls the proper fdt handling routine. 1282 */ 1283 static int 1284 command_fdt(int argc, char *argv[]) 1285 { 1286 1287 return (command_fdt_internal(argc, argv)); 1288 } 1289 1290 COMMAND_SET(fdt, "fdt", "flattened device tree handling", command_fdt); 1291 #endif 1292 1293 /* 1294 * Chain load another efi loader. 1295 */ 1296 static int 1297 command_chain(int argc, char *argv[]) 1298 { 1299 EFI_GUID LoadedImageGUID = LOADED_IMAGE_PROTOCOL; 1300 EFI_HANDLE loaderhandle; 1301 EFI_LOADED_IMAGE *loaded_image; 1302 EFI_STATUS status; 1303 struct stat st; 1304 struct devdesc *dev; 1305 char *name, *path; 1306 void *buf; 1307 int fd; 1308 1309 if (argc < 2) { 1310 command_errmsg = "wrong number of arguments"; 1311 return (CMD_ERROR); 1312 } 1313 1314 name = argv[1]; 1315 1316 if ((fd = open(name, O_RDONLY)) < 0) { 1317 command_errmsg = "no such file"; 1318 return (CMD_ERROR); 1319 } 1320 1321 if (fstat(fd, &st) < -1) { 1322 command_errmsg = "stat failed"; 1323 close(fd); 1324 return (CMD_ERROR); 1325 } 1326 1327 status = BS->AllocatePool(EfiLoaderCode, (UINTN)st.st_size, &buf); 1328 if (status != EFI_SUCCESS) { 1329 command_errmsg = "failed to allocate buffer"; 1330 close(fd); 1331 return (CMD_ERROR); 1332 } 1333 if (read(fd, buf, st.st_size) != st.st_size) { 1334 command_errmsg = "error while reading the file"; 1335 (void)BS->FreePool(buf); 1336 close(fd); 1337 return (CMD_ERROR); 1338 } 1339 close(fd); 1340 status = BS->LoadImage(FALSE, IH, NULL, buf, st.st_size, &loaderhandle); 1341 (void)BS->FreePool(buf); 1342 if (status != EFI_SUCCESS) { 1343 command_errmsg = "LoadImage failed"; 1344 return (CMD_ERROR); 1345 } 1346 status = BS->HandleProtocol(loaderhandle, &LoadedImageGUID, 1347 (void **)&loaded_image); 1348 1349 if (argc > 2) { 1350 int i, len = 0; 1351 CHAR16 *argp; 1352 1353 for (i = 2; i < argc; i++) 1354 len += strlen(argv[i]) + 1; 1355 1356 len *= sizeof (*argp); 1357 loaded_image->LoadOptions = argp = malloc (len); 1358 loaded_image->LoadOptionsSize = len; 1359 for (i = 2; i < argc; i++) { 1360 char *ptr = argv[i]; 1361 while (*ptr) 1362 *(argp++) = *(ptr++); 1363 *(argp++) = ' '; 1364 } 1365 *(--argv) = 0; 1366 } 1367 1368 if (efi_getdev((void **)&dev, name, (const char **)&path) == 0) { 1369 #ifdef EFI_ZFS_BOOT 1370 struct zfs_devdesc *z_dev; 1371 #endif 1372 struct disk_devdesc *d_dev; 1373 pdinfo_t *hd, *pd; 1374 1375 switch (dev->d_dev->dv_type) { 1376 #ifdef EFI_ZFS_BOOT 1377 case DEVT_ZFS: 1378 z_dev = (struct zfs_devdesc *)dev; 1379 loaded_image->DeviceHandle = 1380 efizfs_get_handle_by_guid(z_dev->pool_guid); 1381 break; 1382 #endif 1383 case DEVT_NET: 1384 loaded_image->DeviceHandle = 1385 efi_find_handle(dev->d_dev, dev->d_unit); 1386 break; 1387 default: 1388 hd = efiblk_get_pdinfo(dev); 1389 if (STAILQ_EMPTY(&hd->pd_part)) { 1390 loaded_image->DeviceHandle = hd->pd_handle; 1391 break; 1392 } 1393 d_dev = (struct disk_devdesc *)dev; 1394 STAILQ_FOREACH(pd, &hd->pd_part, pd_link) { 1395 /* 1396 * d_partition should be 255 1397 */ 1398 if (pd->pd_unit == (uint32_t)d_dev->d_slice) { 1399 loaded_image->DeviceHandle = 1400 pd->pd_handle; 1401 break; 1402 } 1403 } 1404 break; 1405 } 1406 } 1407 1408 dev_cleanup(); 1409 status = BS->StartImage(loaderhandle, NULL, NULL); 1410 if (status != EFI_SUCCESS) { 1411 command_errmsg = "StartImage failed"; 1412 free(loaded_image->LoadOptions); 1413 loaded_image->LoadOptions = NULL; 1414 status = BS->UnloadImage(loaded_image); 1415 return (CMD_ERROR); 1416 } 1417 1418 return (CMD_ERROR); /* not reached */ 1419 } 1420 1421 COMMAND_SET(chain, "chain", "chain load file", command_chain); 1422