1 /*- 2 * Copyright (c) 2008-2010 Rui Paulo 3 * Copyright (c) 2006 Marcel Moolenaar 4 * Copyright (c) 2018 Netflix, Inc 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include <stand.h> 33 34 #include <sys/disk.h> 35 #include <sys/param.h> 36 #include <sys/reboot.h> 37 #include <sys/boot.h> 38 #include <stdint.h> 39 #include <string.h> 40 #include <setjmp.h> 41 #include <disk.h> 42 43 #include <efi.h> 44 #include <efilib.h> 45 #include <efichar.h> 46 47 #include <uuid.h> 48 49 #include <bootstrap.h> 50 #include <smbios.h> 51 52 #ifdef EFI_ZFS_BOOT 53 #include <libzfs.h> 54 #include "efizfs.h" 55 #endif 56 57 #include "loader_efi.h" 58 59 struct arch_switch archsw; /* MI/MD interface boundary */ 60 61 EFI_GUID acpi = ACPI_TABLE_GUID; 62 EFI_GUID acpi20 = ACPI_20_TABLE_GUID; 63 EFI_GUID devid = DEVICE_PATH_PROTOCOL; 64 EFI_GUID imgid = LOADED_IMAGE_PROTOCOL; 65 EFI_GUID mps = MPS_TABLE_GUID; 66 EFI_GUID netid = EFI_SIMPLE_NETWORK_PROTOCOL; 67 EFI_GUID smbios = SMBIOS_TABLE_GUID; 68 EFI_GUID smbios3 = SMBIOS3_TABLE_GUID; 69 EFI_GUID dxe = DXE_SERVICES_TABLE_GUID; 70 EFI_GUID hoblist = HOB_LIST_TABLE_GUID; 71 EFI_GUID lzmadecomp = LZMA_DECOMPRESSION_GUID; 72 EFI_GUID mpcore = ARM_MP_CORE_INFO_TABLE_GUID; 73 EFI_GUID esrt = ESRT_TABLE_GUID; 74 EFI_GUID memtype = MEMORY_TYPE_INFORMATION_TABLE_GUID; 75 EFI_GUID debugimg = DEBUG_IMAGE_INFO_TABLE_GUID; 76 EFI_GUID fdtdtb = FDT_TABLE_GUID; 77 EFI_GUID inputid = SIMPLE_TEXT_INPUT_PROTOCOL; 78 79 /* 80 * Number of seconds to wait for a keystroke before exiting with failure 81 * in the event no currdev is found. -2 means always break, -1 means 82 * never break, 0 means poll once and then reboot, > 0 means wait for 83 * that many seconds. "fail_timeout" can be set in the environment as 84 * well. 85 */ 86 static int fail_timeout = 5; 87 88 /* 89 * Current boot variable 90 */ 91 UINT16 boot_current; 92 93 static bool 94 has_keyboard(void) 95 { 96 EFI_STATUS status; 97 EFI_DEVICE_PATH *path; 98 EFI_HANDLE *hin, *hin_end, *walker; 99 UINTN sz; 100 bool retval = false; 101 102 /* 103 * Find all the handles that support the SIMPLE_TEXT_INPUT_PROTOCOL and 104 * do the typical dance to get the right sized buffer. 105 */ 106 sz = 0; 107 hin = NULL; 108 status = BS->LocateHandle(ByProtocol, &inputid, 0, &sz, 0); 109 if (status == EFI_BUFFER_TOO_SMALL) { 110 hin = (EFI_HANDLE *)malloc(sz); 111 status = BS->LocateHandle(ByProtocol, &inputid, 0, &sz, 112 hin); 113 if (EFI_ERROR(status)) 114 free(hin); 115 } 116 if (EFI_ERROR(status)) 117 return retval; 118 119 /* 120 * Look at each of the handles. If it supports the device path protocol, 121 * use it to get the device path for this handle. Then see if that 122 * device path matches either the USB device path for keyboards or the 123 * legacy device path for keyboards. 124 */ 125 hin_end = &hin[sz / sizeof(*hin)]; 126 for (walker = hin; walker < hin_end; walker++) { 127 status = BS->HandleProtocol(*walker, &devid, (VOID **)&path); 128 if (EFI_ERROR(status)) 129 continue; 130 131 while (!IsDevicePathEnd(path)) { 132 /* 133 * Check for the ACPI keyboard node. All PNP3xx nodes 134 * are keyboards of different flavors. Note: It is 135 * unclear of there's always a keyboard node when 136 * there's a keyboard controller, or if there's only one 137 * when a keyboard is detected at boot. 138 */ 139 if (DevicePathType(path) == ACPI_DEVICE_PATH && 140 (DevicePathSubType(path) == ACPI_DP || 141 DevicePathSubType(path) == ACPI_EXTENDED_DP)) { 142 ACPI_HID_DEVICE_PATH *acpi; 143 144 acpi = (ACPI_HID_DEVICE_PATH *)(void *)path; 145 if ((EISA_ID_TO_NUM(acpi->HID) & 0xff00) == 0x300 && 146 (acpi->HID & 0xffff) == PNP_EISA_ID_CONST) { 147 retval = true; 148 goto out; 149 } 150 /* 151 * Check for USB keyboard node, if present. Unlike a 152 * PS/2 keyboard, these definitely only appear when 153 * connected to the system. 154 */ 155 } else if (DevicePathType(path) == MESSAGING_DEVICE_PATH && 156 DevicePathSubType(path) == MSG_USB_CLASS_DP) { 157 USB_CLASS_DEVICE_PATH *usb; 158 159 usb = (USB_CLASS_DEVICE_PATH *)(void *)path; 160 if (usb->DeviceClass == 3 && /* HID */ 161 usb->DeviceSubClass == 1 && /* Boot devices */ 162 usb->DeviceProtocol == 1) { /* Boot keyboards */ 163 retval = true; 164 goto out; 165 } 166 } 167 path = NextDevicePathNode(path); 168 } 169 } 170 out: 171 free(hin); 172 return retval; 173 } 174 175 static void 176 set_currdev(const char *devname) 177 { 178 179 env_setenv("currdev", EV_VOLATILE, devname, efi_setcurrdev, env_nounset); 180 env_setenv("loaddev", EV_VOLATILE, devname, env_noset, env_nounset); 181 } 182 183 static void 184 set_currdev_devdesc(struct devdesc *currdev) 185 { 186 const char *devname; 187 188 devname = efi_fmtdev(currdev); 189 printf("Setting currdev to %s\n", devname); 190 set_currdev(devname); 191 } 192 193 static void 194 set_currdev_devsw(struct devsw *dev, int unit) 195 { 196 struct devdesc currdev; 197 198 currdev.d_dev = dev; 199 currdev.d_unit = unit; 200 201 set_currdev_devdesc(&currdev); 202 } 203 204 static void 205 set_currdev_pdinfo(pdinfo_t *dp) 206 { 207 208 /* 209 * Disks are special: they have partitions. if the parent 210 * pointer is non-null, we're a partition not a full disk 211 * and we need to adjust currdev appropriately. 212 */ 213 if (dp->pd_devsw->dv_type == DEVT_DISK) { 214 struct disk_devdesc currdev; 215 216 currdev.dd.d_dev = dp->pd_devsw; 217 if (dp->pd_parent == NULL) { 218 currdev.dd.d_unit = dp->pd_unit; 219 currdev.d_slice = -1; 220 currdev.d_partition = -1; 221 } else { 222 currdev.dd.d_unit = dp->pd_parent->pd_unit; 223 currdev.d_slice = dp->pd_unit; 224 currdev.d_partition = 255; /* Assumes GPT */ 225 } 226 set_currdev_devdesc((struct devdesc *)&currdev); 227 } else { 228 set_currdev_devsw(dp->pd_devsw, dp->pd_unit); 229 } 230 } 231 232 static bool 233 sanity_check_currdev(void) 234 { 235 struct stat st; 236 237 return (stat("/boot/defaults/loader.conf", &st) == 0 || 238 stat("/boot/kernel/kernel", &st) == 0); 239 } 240 241 #ifdef EFI_ZFS_BOOT 242 static bool 243 probe_zfs_currdev(uint64_t guid) 244 { 245 char *devname; 246 struct zfs_devdesc currdev; 247 248 currdev.dd.d_dev = &zfs_dev; 249 currdev.dd.d_unit = 0; 250 currdev.pool_guid = guid; 251 currdev.root_guid = 0; 252 set_currdev_devdesc((struct devdesc *)&currdev); 253 devname = efi_fmtdev(&currdev); 254 init_zfs_bootenv(devname); 255 256 return (sanity_check_currdev()); 257 } 258 #endif 259 260 static bool 261 try_as_currdev(pdinfo_t *hd, pdinfo_t *pp) 262 { 263 uint64_t guid; 264 265 #ifdef EFI_ZFS_BOOT 266 /* 267 * If there's a zpool on this device, try it as a ZFS 268 * filesystem, which has somewhat different setup than all 269 * other types of fs due to imperfect loader integration. 270 * This all stems from ZFS being both a device (zpool) and 271 * a filesystem, plus the boot env feature. 272 */ 273 if (efizfs_get_guid_by_handle(pp->pd_handle, &guid)) 274 return (probe_zfs_currdev(guid)); 275 #endif 276 /* 277 * All other filesystems just need the pdinfo 278 * initialized in the standard way. 279 */ 280 set_currdev_pdinfo(pp); 281 return (sanity_check_currdev()); 282 } 283 284 /* 285 * Sometimes we get filenames that are all upper case 286 * and/or have backslashes in them. Filter all this out 287 * if it looks like we need to do so. 288 */ 289 static void 290 fix_dosisms(char *p) 291 { 292 while (*p) { 293 if (isupper(*p)) 294 *p = tolower(*p); 295 else if (*p == '\\') 296 *p = '/'; 297 p++; 298 } 299 } 300 301 enum { BOOT_INFO_OK = 0, BAD_CHOICE = 1, NOT_SPECIFIC = 2 }; 302 static int 303 match_boot_info(EFI_LOADED_IMAGE *img __unused, char *boot_info, size_t bisz) 304 { 305 uint32_t attr; 306 uint16_t fplen; 307 size_t len; 308 char *walker, *ep; 309 EFI_DEVICE_PATH *dp, *edp, *first_dp, *last_dp; 310 pdinfo_t *pp; 311 CHAR16 *descr; 312 char *kernel = NULL; 313 FILEPATH_DEVICE_PATH *fp; 314 struct stat st; 315 316 /* 317 * FreeBSD encodes it's boot loading path into the boot loader 318 * BootXXXX variable. We look for the last one in the path 319 * and use that to load the kernel. However, if we only fine 320 * one DEVICE_PATH, then there's nothing specific and we should 321 * fall back. 322 * 323 * In an ideal world, we'd look at the image handle we were 324 * passed, match up with the loader we are and then return the 325 * next one in the path. This would be most flexible and cover 326 * many chain booting scenarios where you need to use this 327 * boot loader to get to the next boot loader. However, that 328 * doesn't work. We rarely have the path to the image booted 329 * (just the device) so we can't count on that. So, we do the 330 * enxt best thing, we look through the device path(s) passed 331 * in the BootXXXX varaible. If there's only one, we return 332 * NOT_SPECIFIC. Otherwise, we look at the last one and try to 333 * load that. If we can, we return BOOT_INFO_OK. Otherwise we 334 * return BAD_CHOICE for the caller to sort out. 335 */ 336 if (bisz < sizeof(attr) + sizeof(fplen) + sizeof(CHAR16)) 337 return NOT_SPECIFIC; 338 walker = boot_info; 339 ep = walker + bisz; 340 memcpy(&attr, walker, sizeof(attr)); 341 walker += sizeof(attr); 342 memcpy(&fplen, walker, sizeof(fplen)); 343 walker += sizeof(fplen); 344 descr = (CHAR16 *)(intptr_t)walker; 345 len = ucs2len(descr); 346 walker += (len + 1) * sizeof(CHAR16); 347 last_dp = first_dp = dp = (EFI_DEVICE_PATH *)walker; 348 edp = (EFI_DEVICE_PATH *)(walker + fplen); 349 if ((char *)edp > ep) 350 return NOT_SPECIFIC; 351 while (dp < edp) { 352 last_dp = dp; 353 dp = (EFI_DEVICE_PATH *)((char *)dp + efi_devpath_length(dp)); 354 } 355 356 /* 357 * If there's only one item in the list, then nothing was 358 * specified. 359 */ 360 if (last_dp == first_dp) 361 return NOT_SPECIFIC; 362 363 /* 364 * OK. At this point we either have a good path or a bad one. 365 * Let's check. 366 */ 367 pp = efiblk_get_pdinfo_by_device_path(last_dp); 368 if (pp == NULL) 369 return BAD_CHOICE; 370 set_currdev_pdinfo(pp); 371 if (!sanity_check_currdev()) 372 return BAD_CHOICE; 373 374 /* 375 * OK. We've found a device that matches, next we need to check the last 376 * component of the path. If it's a file, then we set the default kernel 377 * to that. Otherwise, just use this as the default root. 378 * 379 * Reminder: we're running very early, before we've parsed the defaults 380 * file, so we may need to have a hack override. 381 */ 382 dp = efi_devpath_last_node(last_dp); 383 if (DevicePathType(dp) != MEDIA_DEVICE_PATH || 384 DevicePathSubType(dp) != MEDIA_FILEPATH_DP) 385 return (BOOT_INFO_OK); /* use currdir, default kernel */ 386 fp = (FILEPATH_DEVICE_PATH *)dp; 387 ucs2_to_utf8(fp->PathName, &kernel); 388 if (kernel == NULL) 389 return (BAD_CHOICE); 390 if (*kernel == '\\' || isupper(*kernel)) 391 fix_dosisms(kernel); 392 if (stat(kernel, &st) != 0) { 393 free(kernel); 394 return (BAD_CHOICE); 395 } 396 setenv("kernel", kernel, 1); 397 free(kernel); 398 399 return (BOOT_INFO_OK); 400 } 401 402 /* 403 * Look at the passed-in boot_info, if any. If we find it then we need 404 * to see if we can find ourselves in the boot chain. If we can, and 405 * there's another specified thing to boot next, assume that the file 406 * is loaded from / and use that for the root filesystem. If can't 407 * find the specified thing, we must fail the boot. If we're last on 408 * the list, then we fallback to looking for the first available / 409 * candidate (ZFS, if there's a bootable zpool, otherwise a UFS 410 * partition that has either /boot/defaults/loader.conf on it or 411 * /boot/kernel/kernel (the default kernel) that we can use. 412 * 413 * We always fail if we can't find the right thing. However, as 414 * a concession to buggy UEFI implementations, like u-boot, if 415 * we have determined that the host is violating the UEFI boot 416 * manager protocol, we'll signal the rest of the program that 417 * a drop to the OK boot loader prompt is possible. 418 */ 419 static int 420 find_currdev(EFI_LOADED_IMAGE *img, bool do_bootmgr, bool is_last, 421 char *boot_info, size_t boot_info_sz) 422 { 423 pdinfo_t *dp, *pp; 424 EFI_DEVICE_PATH *devpath, *copy; 425 EFI_HANDLE h; 426 CHAR16 *text; 427 struct devsw *dev; 428 int unit; 429 uint64_t extra; 430 int rv; 431 char *rootdev; 432 433 /* 434 * First choice: if rootdev is already set, use that, even if 435 * it's wrong. 436 */ 437 rootdev = getenv("rootdev"); 438 if (rootdev != NULL) { 439 printf("Setting currdev to configured rootdev %s\n", rootdev); 440 set_currdev(rootdev); 441 return (0); 442 } 443 444 /* 445 * Second choice: If we can find out image boot_info, and there's 446 * a follow-on boot image in that boot_info, use that. In this 447 * case root will be the partition specified in that image and 448 * we'll load the kernel specified by the file path. Should there 449 * not be a filepath, we use the default. This filepath overrides 450 * loader.conf. 451 */ 452 if (do_bootmgr) { 453 rv = match_boot_info(img, boot_info, boot_info_sz); 454 switch (rv) { 455 case BOOT_INFO_OK: /* We found it */ 456 return (0); 457 case BAD_CHOICE: /* specified file not found -> error */ 458 /* XXX do we want to have an escape hatch for last in boot order? */ 459 return (ENOENT); 460 } /* Nothing specified, try normal match */ 461 } 462 463 #ifdef EFI_ZFS_BOOT 464 /* 465 * Did efi_zfs_probe() detect the boot pool? If so, use the zpool 466 * it found, if it's sane. ZFS is the only thing that looks for 467 * disks and pools to boot. This may change in the future, however, 468 * if we allow specifying which pool to boot from via UEFI variables 469 * rather than the bootenv stuff that FreeBSD uses today. 470 */ 471 if (pool_guid != 0) { 472 printf("Trying ZFS pool\n"); 473 if (probe_zfs_currdev(pool_guid)) 474 return (0); 475 } 476 #endif /* EFI_ZFS_BOOT */ 477 478 /* 479 * Try to find the block device by its handle based on the 480 * image we're booting. If we can't find a sane partition, 481 * search all the other partitions of the disk. We do not 482 * search other disks because it's a violation of the UEFI 483 * boot protocol to do so. We fail and let UEFI go on to 484 * the next candidate. 485 */ 486 dp = efiblk_get_pdinfo_by_handle(img->DeviceHandle); 487 if (dp != NULL) { 488 text = efi_devpath_name(dp->pd_devpath); 489 if (text != NULL) { 490 printf("Trying ESP: %S\n", text); 491 efi_free_devpath_name(text); 492 } 493 set_currdev_pdinfo(dp); 494 if (sanity_check_currdev()) 495 return (0); 496 if (dp->pd_parent != NULL) { 497 dp = dp->pd_parent; 498 STAILQ_FOREACH(pp, &dp->pd_part, pd_link) { 499 /* 500 * Roll up the ZFS special case 501 * for those partitions that have 502 * zpools on them. 503 */ 504 if (try_as_currdev(dp, pp)) 505 return (0); 506 } 507 } 508 } else { 509 printf("Can't find device by handle\n"); 510 } 511 512 /* 513 * Try the device handle from our loaded image first. If that 514 * fails, use the device path from the loaded image and see if 515 * any of the nodes in that path match one of the enumerated 516 * handles. Currently, this handle list is only for netboot. 517 */ 518 if (efi_handle_lookup(img->DeviceHandle, &dev, &unit, &extra) == 0) { 519 set_currdev_devsw(dev, unit); 520 if (sanity_check_currdev()) 521 return (0); 522 } 523 524 copy = NULL; 525 devpath = efi_lookup_image_devpath(IH); 526 while (devpath != NULL) { 527 h = efi_devpath_handle(devpath); 528 if (h == NULL) 529 break; 530 531 free(copy); 532 copy = NULL; 533 534 if (efi_handle_lookup(h, &dev, &unit, &extra) == 0) { 535 set_currdev_devsw(dev, unit); 536 if (sanity_check_currdev()) 537 return (0); 538 } 539 540 devpath = efi_lookup_devpath(h); 541 if (devpath != NULL) { 542 copy = efi_devpath_trim(devpath); 543 devpath = copy; 544 } 545 } 546 free(copy); 547 548 return (ENOENT); 549 } 550 551 static bool 552 interactive_interrupt(const char *msg) 553 { 554 time_t now, then, last; 555 556 last = 0; 557 now = then = getsecs(); 558 printf("%s\n", msg); 559 if (fail_timeout == -2) /* Always break to OK */ 560 return (true); 561 if (fail_timeout == -1) /* Never break to OK */ 562 return (false); 563 do { 564 if (last != now) { 565 printf("press any key to interrupt reboot in %d seconds\r", 566 fail_timeout - (int)(now - then)); 567 last = now; 568 } 569 570 /* XXX no pause or timeout wait for char */ 571 if (ischar()) 572 return (true); 573 now = getsecs(); 574 } while (now - then < fail_timeout); 575 return (false); 576 } 577 578 static int 579 parse_args(int argc, CHAR16 *argv[]) 580 { 581 int i, j, howto; 582 bool vargood; 583 char var[128]; 584 585 /* 586 * Parse the args to set the console settings, etc 587 * boot1.efi passes these in, if it can read /boot.config or /boot/config 588 * or iPXE may be setup to pass these in. Or the optional argument in the 589 * boot environment was used to pass these arguments in (in which case 590 * neither /boot.config nor /boot/config are consulted). 591 * 592 * Loop through the args, and for each one that contains an '=' that is 593 * not the first character, add it to the environment. This allows 594 * loader and kernel env vars to be passed on the command line. Convert 595 * args from UCS-2 to ASCII (16 to 8 bit) as they are copied (though this 596 * method is flawed for non-ASCII characters). 597 */ 598 howto = 0; 599 for (i = 1; i < argc; i++) { 600 cpy16to8(argv[i], var, sizeof(var)); 601 howto |= boot_parse_arg(var); 602 } 603 604 return (howto); 605 } 606 607 /* 608 * Parse ConOut (the list of consoles active) and see if we can find a 609 * serial port and/or a video port. It would be nice to also walk the 610 * ACPI name space to map the UID for the serial port to a port. The 611 * latter is especially hard. 612 */ 613 static int 614 parse_uefi_con_out(void) 615 { 616 int how, rv; 617 int vid_seen = 0, com_seen = 0, seen = 0; 618 size_t sz; 619 char buf[4096], *ep; 620 EFI_DEVICE_PATH *node; 621 ACPI_HID_DEVICE_PATH *acpi; 622 UART_DEVICE_PATH *uart; 623 bool pci_pending; 624 625 how = 0; 626 sz = sizeof(buf); 627 rv = efi_global_getenv("ConOut", buf, &sz); 628 if (rv != EFI_SUCCESS) 629 goto out; 630 ep = buf + sz; 631 node = (EFI_DEVICE_PATH *)buf; 632 while ((char *)node < ep) { 633 pci_pending = false; 634 if (DevicePathType(node) == ACPI_DEVICE_PATH && 635 DevicePathSubType(node) == ACPI_DP) { 636 /* Check for Serial node */ 637 acpi = (void *)node; 638 if (EISA_ID_TO_NUM(acpi->HID) == 0x501) 639 com_seen = ++seen; 640 } else if (DevicePathType(node) == MESSAGING_DEVICE_PATH && 641 DevicePathSubType(node) == MSG_UART_DP) { 642 char bd[16]; 643 644 uart = (void *)node; 645 snprintf(bd, sizeof(bd), "%d", uart->BaudRate); 646 setenv("efi_com_speed", bd, 1); 647 } else if (DevicePathType(node) == ACPI_DEVICE_PATH && 648 DevicePathSubType(node) == ACPI_ADR_DP) { 649 /* Check for AcpiAdr() Node for video */ 650 vid_seen = ++seen; 651 } else if (DevicePathType(node) == HARDWARE_DEVICE_PATH && 652 DevicePathSubType(node) == HW_PCI_DP) { 653 /* 654 * Note, vmware fusion has a funky console device 655 * PciRoot(0x0)/Pci(0xf,0x0) 656 * which we can only detect at the end since we also 657 * have to cope with: 658 * PciRoot(0x0)/Pci(0x1f,0x0)/Serial(0x1) 659 * so only match it if it's last. 660 */ 661 pci_pending = true; 662 } 663 node = NextDevicePathNode(node); /* Skip the end node */ 664 } 665 if (pci_pending && vid_seen == 0) 666 vid_seen = ++seen; 667 668 /* 669 * Truth table for RB_MULTIPLE | RB_SERIAL 670 * Value Result 671 * 0 Use only video console 672 * RB_SERIAL Use only serial console 673 * RB_MULTIPLE Use both video and serial console 674 * (but video is primary so gets rc messages) 675 * both Use both video and serial console 676 * (but serial is primary so gets rc messages) 677 * 678 * Try to honor this as best we can. If only one of serial / video 679 * found, then use that. Otherwise, use the first one we found. 680 * This also implies if we found nothing, default to video. 681 */ 682 how = 0; 683 if (vid_seen && com_seen) { 684 how |= RB_MULTIPLE; 685 if (com_seen < vid_seen) 686 how |= RB_SERIAL; 687 } else if (com_seen) 688 how |= RB_SERIAL; 689 out: 690 return (how); 691 } 692 693 EFI_STATUS 694 main(int argc, CHAR16 *argv[]) 695 { 696 EFI_GUID *guid; 697 int howto, i, uhowto; 698 UINTN k; 699 bool has_kbd, is_last; 700 char *s; 701 EFI_DEVICE_PATH *imgpath; 702 CHAR16 *text; 703 EFI_STATUS rv; 704 size_t sz, bosz = 0, bisz = 0; 705 UINT16 boot_order[100]; 706 char boot_info[4096]; 707 EFI_LOADED_IMAGE *img; 708 char buf[32]; 709 bool uefi_boot_mgr; 710 711 archsw.arch_autoload = efi_autoload; 712 archsw.arch_getdev = efi_getdev; 713 archsw.arch_copyin = efi_copyin; 714 archsw.arch_copyout = efi_copyout; 715 archsw.arch_readin = efi_readin; 716 #ifdef EFI_ZFS_BOOT 717 /* Note this needs to be set before ZFS init. */ 718 archsw.arch_zfs_probe = efi_zfs_probe; 719 #endif 720 721 /* Get our loaded image protocol interface structure. */ 722 BS->HandleProtocol(IH, &imgid, (VOID**)&img); 723 724 #ifdef EFI_ZFS_BOOT 725 /* Tell ZFS probe code where we booted from */ 726 efizfs_set_preferred(img->DeviceHandle); 727 #endif 728 /* Init the time source */ 729 efi_time_init(); 730 731 has_kbd = has_keyboard(); 732 733 /* 734 * XXX Chicken-and-egg problem; we want to have console output 735 * early, but some console attributes may depend on reading from 736 * eg. the boot device, which we can't do yet. We can use 737 * printf() etc. once this is done. 738 */ 739 setenv("console", "efi", 1); 740 cons_probe(); 741 742 /* 743 * Initialise the block cache. Set the upper limit. 744 */ 745 bcache_init(32768, 512); 746 747 howto = parse_args(argc, argv); 748 if (!has_kbd && (howto & RB_PROBE)) 749 howto |= RB_SERIAL | RB_MULTIPLE; 750 howto &= ~RB_PROBE; 751 uhowto = parse_uefi_con_out(); 752 753 /* 754 * We now have two notions of console. howto should be viewed as 755 * overrides. If console is already set, don't set it again. 756 */ 757 #define VIDEO_ONLY 0 758 #define SERIAL_ONLY RB_SERIAL 759 #define VID_SER_BOTH RB_MULTIPLE 760 #define SER_VID_BOTH (RB_SERIAL | RB_MULTIPLE) 761 #define CON_MASK (RB_SERIAL | RB_MULTIPLE) 762 if (strcmp(getenv("console"), "efi") == 0) { 763 if ((howto & CON_MASK) == 0) { 764 /* No override, uhowto is controlling and efi cons is perfect */ 765 howto = howto | (uhowto & CON_MASK); 766 setenv("console", "efi", 1); 767 } else if ((howto & CON_MASK) == (uhowto & CON_MASK)) { 768 /* override matches what UEFI told us, efi console is perfect */ 769 setenv("console", "efi", 1); 770 } else if ((uhowto & (CON_MASK)) != 0) { 771 /* 772 * We detected a serial console on ConOut. All possible 773 * overrides include serial. We can't really override what efi 774 * gives us, so we use it knowing it's the best choice. 775 */ 776 setenv("console", "efi", 1); 777 } else { 778 /* 779 * We detected some kind of serial in the override, but ConOut 780 * has no serial, so we have to sort out which case it really is. 781 */ 782 switch (howto & CON_MASK) { 783 case SERIAL_ONLY: 784 setenv("console", "comconsole", 1); 785 break; 786 case VID_SER_BOTH: 787 setenv("console", "efi comconsole", 1); 788 break; 789 case SER_VID_BOTH: 790 setenv("console", "comconsole efi", 1); 791 break; 792 /* case VIDEO_ONLY can't happen -- it's the first if above */ 793 } 794 } 795 } 796 /* 797 * howto is set now how we want to export the flags to the kernel, so 798 * set the env based on it. 799 */ 800 boot_howto_to_env(howto); 801 802 if (efi_copy_init()) { 803 printf("failed to allocate staging area\n"); 804 return (EFI_BUFFER_TOO_SMALL); 805 } 806 807 if ((s = getenv("fail_timeout")) != NULL) 808 fail_timeout = strtol(s, NULL, 10); 809 810 /* 811 * Scan the BLOCK IO MEDIA handles then 812 * march through the device switch probing for things. 813 */ 814 if ((i = efipart_inithandles()) == 0) { 815 for (i = 0; devsw[i] != NULL; i++) 816 if (devsw[i]->dv_init != NULL) 817 (devsw[i]->dv_init)(); 818 } else 819 printf("efipart_inithandles failed %d, expect failures", i); 820 821 printf("%s\n", bootprog_info); 822 printf(" Command line arguments:"); 823 for (i = 0; i < argc; i++) 824 printf(" %S", argv[i]); 825 printf("\n"); 826 827 printf(" EFI version: %d.%02d\n", ST->Hdr.Revision >> 16, 828 ST->Hdr.Revision & 0xffff); 829 printf(" EFI Firmware: %S (rev %d.%02d)\n", ST->FirmwareVendor, 830 ST->FirmwareRevision >> 16, ST->FirmwareRevision & 0xffff); 831 832 833 /* Determine the devpath of our image so we can prefer it. */ 834 text = efi_devpath_name(img->FilePath); 835 if (text != NULL) { 836 printf(" Load Path: %S\n", text); 837 efi_setenv_freebsd_wcs("LoaderPath", text); 838 efi_free_devpath_name(text); 839 } 840 841 rv = BS->HandleProtocol(img->DeviceHandle, &devid, (void **)&imgpath); 842 if (rv == EFI_SUCCESS) { 843 text = efi_devpath_name(imgpath); 844 if (text != NULL) { 845 printf(" Load Device: %S\n", text); 846 efi_setenv_freebsd_wcs("LoaderDev", text); 847 efi_free_devpath_name(text); 848 } 849 } 850 851 uefi_boot_mgr = true; 852 boot_current = 0; 853 sz = sizeof(boot_current); 854 rv = efi_global_getenv("BootCurrent", &boot_current, &sz); 855 if (rv == EFI_SUCCESS) 856 printf(" BootCurrent: %04x\n", boot_current); 857 else { 858 boot_current = 0xffff; 859 uefi_boot_mgr = false; 860 } 861 862 sz = sizeof(boot_order); 863 rv = efi_global_getenv("BootOrder", &boot_order, &sz); 864 if (rv == EFI_SUCCESS) { 865 printf(" BootOrder:"); 866 for (i = 0; i < sz / sizeof(boot_order[0]); i++) 867 printf(" %04x%s", boot_order[i], 868 boot_order[i] == boot_current ? "[*]" : ""); 869 printf("\n"); 870 is_last = boot_order[(sz / sizeof(boot_order[0])) - 1] == boot_current; 871 bosz = sz; 872 } else if (uefi_boot_mgr) { 873 /* 874 * u-boot doesn't set BootOrder, but otherwise participates in the 875 * boot manager protocol. So we fake it here and don't consider it 876 * a failure. 877 */ 878 bosz = sizeof(boot_order[0]); 879 boot_order[0] = boot_current; 880 is_last = true; 881 } 882 883 /* 884 * Next, find the boot info structure the UEFI boot manager is 885 * supposed to setup. We need this so we can walk through it to 886 * find where we are in the booting process and what to try to 887 * boot next. 888 */ 889 if (uefi_boot_mgr) { 890 snprintf(buf, sizeof(buf), "Boot%04X", boot_current); 891 sz = sizeof(boot_info); 892 rv = efi_global_getenv(buf, &boot_info, &sz); 893 if (rv == EFI_SUCCESS) 894 bisz = sz; 895 else 896 uefi_boot_mgr = false; 897 } 898 899 /* 900 * Disable the watchdog timer. By default the boot manager sets 901 * the timer to 5 minutes before invoking a boot option. If we 902 * want to return to the boot manager, we have to disable the 903 * watchdog timer and since we're an interactive program, we don't 904 * want to wait until the user types "quit". The timer may have 905 * fired by then. We don't care if this fails. It does not prevent 906 * normal functioning in any way... 907 */ 908 BS->SetWatchdogTimer(0, 0, 0, NULL); 909 910 /* 911 * Try and find a good currdev based on the image that was booted. 912 * It might be desirable here to have a short pause to allow falling 913 * through to the boot loader instead of returning instantly to follow 914 * the boot protocol and also allow an escape hatch for users wishing 915 * to try something different. 916 */ 917 if (find_currdev(img, uefi_boot_mgr, is_last, boot_info, bisz) != 0) 918 if (!interactive_interrupt("Failed to find bootable partition")) 919 return (EFI_NOT_FOUND); 920 921 efi_init_environment(); 922 923 #if !defined(__arm__) 924 for (k = 0; k < ST->NumberOfTableEntries; k++) { 925 guid = &ST->ConfigurationTable[k].VendorGuid; 926 if (!memcmp(guid, &smbios, sizeof(EFI_GUID))) { 927 char buf[40]; 928 929 snprintf(buf, sizeof(buf), "%p", 930 ST->ConfigurationTable[k].VendorTable); 931 setenv("hint.smbios.0.mem", buf, 1); 932 smbios_detect(ST->ConfigurationTable[k].VendorTable); 933 break; 934 } 935 } 936 #endif 937 938 interact(); /* doesn't return */ 939 940 return (EFI_SUCCESS); /* keep compiler happy */ 941 } 942 943 COMMAND_SET(reboot, "reboot", "reboot the system", command_reboot); 944 945 static int 946 command_reboot(int argc, char *argv[]) 947 { 948 int i; 949 950 for (i = 0; devsw[i] != NULL; ++i) 951 if (devsw[i]->dv_cleanup != NULL) 952 (devsw[i]->dv_cleanup)(); 953 954 RS->ResetSystem(EfiResetCold, EFI_SUCCESS, 0, NULL); 955 956 /* NOTREACHED */ 957 return (CMD_ERROR); 958 } 959 960 COMMAND_SET(quit, "quit", "exit the loader", command_quit); 961 962 static int 963 command_quit(int argc, char *argv[]) 964 { 965 exit(0); 966 return (CMD_OK); 967 } 968 969 COMMAND_SET(memmap, "memmap", "print memory map", command_memmap); 970 971 static int 972 command_memmap(int argc, char *argv[]) 973 { 974 UINTN sz; 975 EFI_MEMORY_DESCRIPTOR *map, *p; 976 UINTN key, dsz; 977 UINT32 dver; 978 EFI_STATUS status; 979 int i, ndesc; 980 char line[80]; 981 static char *types[] = { 982 "Reserved", 983 "LoaderCode", 984 "LoaderData", 985 "BootServicesCode", 986 "BootServicesData", 987 "RuntimeServicesCode", 988 "RuntimeServicesData", 989 "ConventionalMemory", 990 "UnusableMemory", 991 "ACPIReclaimMemory", 992 "ACPIMemoryNVS", 993 "MemoryMappedIO", 994 "MemoryMappedIOPortSpace", 995 "PalCode" 996 }; 997 998 sz = 0; 999 status = BS->GetMemoryMap(&sz, 0, &key, &dsz, &dver); 1000 if (status != EFI_BUFFER_TOO_SMALL) { 1001 printf("Can't determine memory map size\n"); 1002 return (CMD_ERROR); 1003 } 1004 map = malloc(sz); 1005 status = BS->GetMemoryMap(&sz, map, &key, &dsz, &dver); 1006 if (EFI_ERROR(status)) { 1007 printf("Can't read memory map\n"); 1008 return (CMD_ERROR); 1009 } 1010 1011 ndesc = sz / dsz; 1012 snprintf(line, sizeof(line), "%23s %12s %12s %8s %4s\n", 1013 "Type", "Physical", "Virtual", "#Pages", "Attr"); 1014 pager_open(); 1015 if (pager_output(line)) { 1016 pager_close(); 1017 return (CMD_OK); 1018 } 1019 1020 for (i = 0, p = map; i < ndesc; 1021 i++, p = NextMemoryDescriptor(p, dsz)) { 1022 printf("%23s %012jx %012jx %08jx ", types[p->Type], 1023 (uintmax_t)p->PhysicalStart, (uintmax_t)p->VirtualStart, 1024 (uintmax_t)p->NumberOfPages); 1025 if (p->Attribute & EFI_MEMORY_UC) 1026 printf("UC "); 1027 if (p->Attribute & EFI_MEMORY_WC) 1028 printf("WC "); 1029 if (p->Attribute & EFI_MEMORY_WT) 1030 printf("WT "); 1031 if (p->Attribute & EFI_MEMORY_WB) 1032 printf("WB "); 1033 if (p->Attribute & EFI_MEMORY_UCE) 1034 printf("UCE "); 1035 if (p->Attribute & EFI_MEMORY_WP) 1036 printf("WP "); 1037 if (p->Attribute & EFI_MEMORY_RP) 1038 printf("RP "); 1039 if (p->Attribute & EFI_MEMORY_XP) 1040 printf("XP "); 1041 if (pager_output("\n")) 1042 break; 1043 } 1044 1045 pager_close(); 1046 return (CMD_OK); 1047 } 1048 1049 COMMAND_SET(configuration, "configuration", "print configuration tables", 1050 command_configuration); 1051 1052 static const char * 1053 guid_to_string(EFI_GUID *guid) 1054 { 1055 static char buf[40]; 1056 1057 sprintf(buf, "%08x-%04x-%04x-%02x%02x-%02x%02x%02x%02x%02x%02x", 1058 guid->Data1, guid->Data2, guid->Data3, guid->Data4[0], 1059 guid->Data4[1], guid->Data4[2], guid->Data4[3], guid->Data4[4], 1060 guid->Data4[5], guid->Data4[6], guid->Data4[7]); 1061 return (buf); 1062 } 1063 1064 static int 1065 command_configuration(int argc, char *argv[]) 1066 { 1067 char line[80]; 1068 UINTN i; 1069 1070 snprintf(line, sizeof(line), "NumberOfTableEntries=%lu\n", 1071 (unsigned long)ST->NumberOfTableEntries); 1072 pager_open(); 1073 if (pager_output(line)) { 1074 pager_close(); 1075 return (CMD_OK); 1076 } 1077 1078 for (i = 0; i < ST->NumberOfTableEntries; i++) { 1079 EFI_GUID *guid; 1080 1081 printf(" "); 1082 guid = &ST->ConfigurationTable[i].VendorGuid; 1083 if (!memcmp(guid, &mps, sizeof(EFI_GUID))) 1084 printf("MPS Table"); 1085 else if (!memcmp(guid, &acpi, sizeof(EFI_GUID))) 1086 printf("ACPI Table"); 1087 else if (!memcmp(guid, &acpi20, sizeof(EFI_GUID))) 1088 printf("ACPI 2.0 Table"); 1089 else if (!memcmp(guid, &smbios, sizeof(EFI_GUID))) 1090 printf("SMBIOS Table %p", 1091 ST->ConfigurationTable[i].VendorTable); 1092 else if (!memcmp(guid, &smbios3, sizeof(EFI_GUID))) 1093 printf("SMBIOS3 Table"); 1094 else if (!memcmp(guid, &dxe, sizeof(EFI_GUID))) 1095 printf("DXE Table"); 1096 else if (!memcmp(guid, &hoblist, sizeof(EFI_GUID))) 1097 printf("HOB List Table"); 1098 else if (!memcmp(guid, &lzmadecomp, sizeof(EFI_GUID))) 1099 printf("LZMA Compression"); 1100 else if (!memcmp(guid, &mpcore, sizeof(EFI_GUID))) 1101 printf("ARM MpCore Information Table"); 1102 else if (!memcmp(guid, &esrt, sizeof(EFI_GUID))) 1103 printf("ESRT Table"); 1104 else if (!memcmp(guid, &memtype, sizeof(EFI_GUID))) 1105 printf("Memory Type Information Table"); 1106 else if (!memcmp(guid, &debugimg, sizeof(EFI_GUID))) 1107 printf("Debug Image Info Table"); 1108 else if (!memcmp(guid, &fdtdtb, sizeof(EFI_GUID))) 1109 printf("FDT Table"); 1110 else 1111 printf("Unknown Table (%s)", guid_to_string(guid)); 1112 snprintf(line, sizeof(line), " at %p\n", 1113 ST->ConfigurationTable[i].VendorTable); 1114 if (pager_output(line)) 1115 break; 1116 } 1117 1118 pager_close(); 1119 return (CMD_OK); 1120 } 1121 1122 1123 COMMAND_SET(mode, "mode", "change or display EFI text modes", command_mode); 1124 1125 static int 1126 command_mode(int argc, char *argv[]) 1127 { 1128 UINTN cols, rows; 1129 unsigned int mode; 1130 int i; 1131 char *cp; 1132 char rowenv[8]; 1133 EFI_STATUS status; 1134 SIMPLE_TEXT_OUTPUT_INTERFACE *conout; 1135 extern void HO(void); 1136 1137 conout = ST->ConOut; 1138 1139 if (argc > 1) { 1140 mode = strtol(argv[1], &cp, 0); 1141 if (cp[0] != '\0') { 1142 printf("Invalid mode\n"); 1143 return (CMD_ERROR); 1144 } 1145 status = conout->QueryMode(conout, mode, &cols, &rows); 1146 if (EFI_ERROR(status)) { 1147 printf("invalid mode %d\n", mode); 1148 return (CMD_ERROR); 1149 } 1150 status = conout->SetMode(conout, mode); 1151 if (EFI_ERROR(status)) { 1152 printf("couldn't set mode %d\n", mode); 1153 return (CMD_ERROR); 1154 } 1155 sprintf(rowenv, "%u", (unsigned)rows); 1156 setenv("LINES", rowenv, 1); 1157 HO(); /* set cursor */ 1158 return (CMD_OK); 1159 } 1160 1161 printf("Current mode: %d\n", conout->Mode->Mode); 1162 for (i = 0; i <= conout->Mode->MaxMode; i++) { 1163 status = conout->QueryMode(conout, i, &cols, &rows); 1164 if (EFI_ERROR(status)) 1165 continue; 1166 printf("Mode %d: %u columns, %u rows\n", i, (unsigned)cols, 1167 (unsigned)rows); 1168 } 1169 1170 if (i != 0) 1171 printf("Select a mode with the command \"mode <number>\"\n"); 1172 1173 return (CMD_OK); 1174 } 1175 1176 #ifdef LOADER_FDT_SUPPORT 1177 extern int command_fdt_internal(int argc, char *argv[]); 1178 1179 /* 1180 * Since proper fdt command handling function is defined in fdt_loader_cmd.c, 1181 * and declaring it as extern is in contradiction with COMMAND_SET() macro 1182 * (which uses static pointer), we're defining wrapper function, which 1183 * calls the proper fdt handling routine. 1184 */ 1185 static int 1186 command_fdt(int argc, char *argv[]) 1187 { 1188 1189 return (command_fdt_internal(argc, argv)); 1190 } 1191 1192 COMMAND_SET(fdt, "fdt", "flattened device tree handling", command_fdt); 1193 #endif 1194 1195 /* 1196 * Chain load another efi loader. 1197 */ 1198 static int 1199 command_chain(int argc, char *argv[]) 1200 { 1201 EFI_GUID LoadedImageGUID = LOADED_IMAGE_PROTOCOL; 1202 EFI_HANDLE loaderhandle; 1203 EFI_LOADED_IMAGE *loaded_image; 1204 EFI_STATUS status; 1205 struct stat st; 1206 struct devdesc *dev; 1207 char *name, *path; 1208 void *buf; 1209 int fd; 1210 1211 if (argc < 2) { 1212 command_errmsg = "wrong number of arguments"; 1213 return (CMD_ERROR); 1214 } 1215 1216 name = argv[1]; 1217 1218 if ((fd = open(name, O_RDONLY)) < 0) { 1219 command_errmsg = "no such file"; 1220 return (CMD_ERROR); 1221 } 1222 1223 if (fstat(fd, &st) < -1) { 1224 command_errmsg = "stat failed"; 1225 close(fd); 1226 return (CMD_ERROR); 1227 } 1228 1229 status = BS->AllocatePool(EfiLoaderCode, (UINTN)st.st_size, &buf); 1230 if (status != EFI_SUCCESS) { 1231 command_errmsg = "failed to allocate buffer"; 1232 close(fd); 1233 return (CMD_ERROR); 1234 } 1235 if (read(fd, buf, st.st_size) != st.st_size) { 1236 command_errmsg = "error while reading the file"; 1237 (void)BS->FreePool(buf); 1238 close(fd); 1239 return (CMD_ERROR); 1240 } 1241 close(fd); 1242 status = BS->LoadImage(FALSE, IH, NULL, buf, st.st_size, &loaderhandle); 1243 (void)BS->FreePool(buf); 1244 if (status != EFI_SUCCESS) { 1245 command_errmsg = "LoadImage failed"; 1246 return (CMD_ERROR); 1247 } 1248 status = BS->HandleProtocol(loaderhandle, &LoadedImageGUID, 1249 (void **)&loaded_image); 1250 1251 if (argc > 2) { 1252 int i, len = 0; 1253 CHAR16 *argp; 1254 1255 for (i = 2; i < argc; i++) 1256 len += strlen(argv[i]) + 1; 1257 1258 len *= sizeof (*argp); 1259 loaded_image->LoadOptions = argp = malloc (len); 1260 loaded_image->LoadOptionsSize = len; 1261 for (i = 2; i < argc; i++) { 1262 char *ptr = argv[i]; 1263 while (*ptr) 1264 *(argp++) = *(ptr++); 1265 *(argp++) = ' '; 1266 } 1267 *(--argv) = 0; 1268 } 1269 1270 if (efi_getdev((void **)&dev, name, (const char **)&path) == 0) { 1271 #ifdef EFI_ZFS_BOOT 1272 struct zfs_devdesc *z_dev; 1273 #endif 1274 struct disk_devdesc *d_dev; 1275 pdinfo_t *hd, *pd; 1276 1277 switch (dev->d_dev->dv_type) { 1278 #ifdef EFI_ZFS_BOOT 1279 case DEVT_ZFS: 1280 z_dev = (struct zfs_devdesc *)dev; 1281 loaded_image->DeviceHandle = 1282 efizfs_get_handle_by_guid(z_dev->pool_guid); 1283 break; 1284 #endif 1285 case DEVT_NET: 1286 loaded_image->DeviceHandle = 1287 efi_find_handle(dev->d_dev, dev->d_unit); 1288 break; 1289 default: 1290 hd = efiblk_get_pdinfo(dev); 1291 if (STAILQ_EMPTY(&hd->pd_part)) { 1292 loaded_image->DeviceHandle = hd->pd_handle; 1293 break; 1294 } 1295 d_dev = (struct disk_devdesc *)dev; 1296 STAILQ_FOREACH(pd, &hd->pd_part, pd_link) { 1297 /* 1298 * d_partition should be 255 1299 */ 1300 if (pd->pd_unit == (uint32_t)d_dev->d_slice) { 1301 loaded_image->DeviceHandle = 1302 pd->pd_handle; 1303 break; 1304 } 1305 } 1306 break; 1307 } 1308 } 1309 1310 dev_cleanup(); 1311 status = BS->StartImage(loaderhandle, NULL, NULL); 1312 if (status != EFI_SUCCESS) { 1313 command_errmsg = "StartImage failed"; 1314 free(loaded_image->LoadOptions); 1315 loaded_image->LoadOptions = NULL; 1316 status = BS->UnloadImage(loaded_image); 1317 return (CMD_ERROR); 1318 } 1319 1320 return (CMD_ERROR); /* not reached */ 1321 } 1322 1323 COMMAND_SET(chain, "chain", "chain load file", command_chain); 1324