xref: /freebsd/stand/efi/loader/main.c (revision cc893d5822aa24456c54f51e1e03570ed943d09a)
1 /*-
2  * Copyright (c) 2008-2010 Rui Paulo
3  * Copyright (c) 2006 Marcel Moolenaar
4  * Copyright (c) 2018 Netflix, Inc
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include <stand.h>
33 
34 #include <sys/disk.h>
35 #include <sys/param.h>
36 #include <sys/reboot.h>
37 #include <sys/boot.h>
38 #include <stdint.h>
39 #include <string.h>
40 #include <setjmp.h>
41 #include <disk.h>
42 
43 #include <efi.h>
44 #include <efilib.h>
45 #include <efichar.h>
46 
47 #include <uuid.h>
48 
49 #include <bootstrap.h>
50 #include <smbios.h>
51 
52 #ifdef EFI_ZFS_BOOT
53 #include <libzfs.h>
54 #include "efizfs.h"
55 #endif
56 
57 #include "loader_efi.h"
58 
59 struct arch_switch archsw;	/* MI/MD interface boundary */
60 
61 EFI_GUID acpi = ACPI_TABLE_GUID;
62 EFI_GUID acpi20 = ACPI_20_TABLE_GUID;
63 EFI_GUID devid = DEVICE_PATH_PROTOCOL;
64 EFI_GUID imgid = LOADED_IMAGE_PROTOCOL;
65 EFI_GUID mps = MPS_TABLE_GUID;
66 EFI_GUID netid = EFI_SIMPLE_NETWORK_PROTOCOL;
67 EFI_GUID smbios = SMBIOS_TABLE_GUID;
68 EFI_GUID smbios3 = SMBIOS3_TABLE_GUID;
69 EFI_GUID dxe = DXE_SERVICES_TABLE_GUID;
70 EFI_GUID hoblist = HOB_LIST_TABLE_GUID;
71 EFI_GUID lzmadecomp = LZMA_DECOMPRESSION_GUID;
72 EFI_GUID mpcore = ARM_MP_CORE_INFO_TABLE_GUID;
73 EFI_GUID esrt = ESRT_TABLE_GUID;
74 EFI_GUID memtype = MEMORY_TYPE_INFORMATION_TABLE_GUID;
75 EFI_GUID debugimg = DEBUG_IMAGE_INFO_TABLE_GUID;
76 EFI_GUID fdtdtb = FDT_TABLE_GUID;
77 EFI_GUID inputid = SIMPLE_TEXT_INPUT_PROTOCOL;
78 
79 /*
80  * Number of seconds to wait for a keystroke before exiting with failure
81  * in the event no currdev is found. -2 means always break, -1 means
82  * never break, 0 means poll once and then reboot, > 0 means wait for
83  * that many seconds. "fail_timeout" can be set in the environment as
84  * well.
85  */
86 static int fail_timeout = 5;
87 
88 /*
89  * Current boot variable
90  */
91 UINT16 boot_current;
92 
93 static bool
94 has_keyboard(void)
95 {
96 	EFI_STATUS status;
97 	EFI_DEVICE_PATH *path;
98 	EFI_HANDLE *hin, *hin_end, *walker;
99 	UINTN sz;
100 	bool retval = false;
101 
102 	/*
103 	 * Find all the handles that support the SIMPLE_TEXT_INPUT_PROTOCOL and
104 	 * do the typical dance to get the right sized buffer.
105 	 */
106 	sz = 0;
107 	hin = NULL;
108 	status = BS->LocateHandle(ByProtocol, &inputid, 0, &sz, 0);
109 	if (status == EFI_BUFFER_TOO_SMALL) {
110 		hin = (EFI_HANDLE *)malloc(sz);
111 		status = BS->LocateHandle(ByProtocol, &inputid, 0, &sz,
112 		    hin);
113 		if (EFI_ERROR(status))
114 			free(hin);
115 	}
116 	if (EFI_ERROR(status))
117 		return retval;
118 
119 	/*
120 	 * Look at each of the handles. If it supports the device path protocol,
121 	 * use it to get the device path for this handle. Then see if that
122 	 * device path matches either the USB device path for keyboards or the
123 	 * legacy device path for keyboards.
124 	 */
125 	hin_end = &hin[sz / sizeof(*hin)];
126 	for (walker = hin; walker < hin_end; walker++) {
127 		status = BS->HandleProtocol(*walker, &devid, (VOID **)&path);
128 		if (EFI_ERROR(status))
129 			continue;
130 
131 		while (!IsDevicePathEnd(path)) {
132 			/*
133 			 * Check for the ACPI keyboard node. All PNP3xx nodes
134 			 * are keyboards of different flavors. Note: It is
135 			 * unclear of there's always a keyboard node when
136 			 * there's a keyboard controller, or if there's only one
137 			 * when a keyboard is detected at boot.
138 			 */
139 			if (DevicePathType(path) == ACPI_DEVICE_PATH &&
140 			    (DevicePathSubType(path) == ACPI_DP ||
141 				DevicePathSubType(path) == ACPI_EXTENDED_DP)) {
142 				ACPI_HID_DEVICE_PATH  *acpi;
143 
144 				acpi = (ACPI_HID_DEVICE_PATH *)(void *)path;
145 				if ((EISA_ID_TO_NUM(acpi->HID) & 0xff00) == 0x300 &&
146 				    (acpi->HID & 0xffff) == PNP_EISA_ID_CONST) {
147 					retval = true;
148 					goto out;
149 				}
150 			/*
151 			 * Check for USB keyboard node, if present. Unlike a
152 			 * PS/2 keyboard, these definitely only appear when
153 			 * connected to the system.
154 			 */
155 			} else if (DevicePathType(path) == MESSAGING_DEVICE_PATH &&
156 			    DevicePathSubType(path) == MSG_USB_CLASS_DP) {
157 				USB_CLASS_DEVICE_PATH *usb;
158 
159 				usb = (USB_CLASS_DEVICE_PATH *)(void *)path;
160 				if (usb->DeviceClass == 3 && /* HID */
161 				    usb->DeviceSubClass == 1 && /* Boot devices */
162 				    usb->DeviceProtocol == 1) { /* Boot keyboards */
163 					retval = true;
164 					goto out;
165 				}
166 			}
167 			path = NextDevicePathNode(path);
168 		}
169 	}
170 out:
171 	free(hin);
172 	return retval;
173 }
174 
175 static void
176 set_currdev(const char *devname)
177 {
178 
179 	env_setenv("currdev", EV_VOLATILE, devname, efi_setcurrdev, env_nounset);
180 	env_setenv("loaddev", EV_VOLATILE, devname, env_noset, env_nounset);
181 }
182 
183 static void
184 set_currdev_devdesc(struct devdesc *currdev)
185 {
186 	const char *devname;
187 
188 	devname = efi_fmtdev(currdev);
189 	printf("Setting currdev to %s\n", devname);
190 	set_currdev(devname);
191 }
192 
193 static void
194 set_currdev_devsw(struct devsw *dev, int unit)
195 {
196 	struct devdesc currdev;
197 
198 	currdev.d_dev = dev;
199 	currdev.d_unit = unit;
200 
201 	set_currdev_devdesc(&currdev);
202 }
203 
204 static void
205 set_currdev_pdinfo(pdinfo_t *dp)
206 {
207 
208 	/*
209 	 * Disks are special: they have partitions. if the parent
210 	 * pointer is non-null, we're a partition not a full disk
211 	 * and we need to adjust currdev appropriately.
212 	 */
213 	if (dp->pd_devsw->dv_type == DEVT_DISK) {
214 		struct disk_devdesc currdev;
215 
216 		currdev.dd.d_dev = dp->pd_devsw;
217 		if (dp->pd_parent == NULL) {
218 			currdev.dd.d_unit = dp->pd_unit;
219 			currdev.d_slice = -1;
220 			currdev.d_partition = -1;
221 		} else {
222 			currdev.dd.d_unit = dp->pd_parent->pd_unit;
223 			currdev.d_slice = dp->pd_unit;
224 			currdev.d_partition = 255;	/* Assumes GPT */
225 		}
226 		set_currdev_devdesc((struct devdesc *)&currdev);
227 	} else {
228 		set_currdev_devsw(dp->pd_devsw, dp->pd_unit);
229 	}
230 }
231 
232 static bool
233 sanity_check_currdev(void)
234 {
235 	struct stat st;
236 
237 	return (stat("/boot/defaults/loader.conf", &st) == 0 ||
238 	    stat("/boot/kernel/kernel", &st) == 0);
239 }
240 
241 #ifdef EFI_ZFS_BOOT
242 static bool
243 probe_zfs_currdev(uint64_t guid)
244 {
245 	char *devname;
246 	struct zfs_devdesc currdev;
247 
248 	currdev.dd.d_dev = &zfs_dev;
249 	currdev.dd.d_unit = 0;
250 	currdev.pool_guid = guid;
251 	currdev.root_guid = 0;
252 	set_currdev_devdesc((struct devdesc *)&currdev);
253 	devname = efi_fmtdev(&currdev);
254 	init_zfs_bootenv(devname);
255 
256 	return (sanity_check_currdev());
257 }
258 #endif
259 
260 static bool
261 try_as_currdev(pdinfo_t *hd, pdinfo_t *pp)
262 {
263 	uint64_t guid;
264 
265 #ifdef EFI_ZFS_BOOT
266 	/*
267 	 * If there's a zpool on this device, try it as a ZFS
268 	 * filesystem, which has somewhat different setup than all
269 	 * other types of fs due to imperfect loader integration.
270 	 * This all stems from ZFS being both a device (zpool) and
271 	 * a filesystem, plus the boot env feature.
272 	 */
273 	if (efizfs_get_guid_by_handle(pp->pd_handle, &guid))
274 		return (probe_zfs_currdev(guid));
275 #endif
276 	/*
277 	 * All other filesystems just need the pdinfo
278 	 * initialized in the standard way.
279 	 */
280 	set_currdev_pdinfo(pp);
281 	return (sanity_check_currdev());
282 }
283 
284 /*
285  * Sometimes we get filenames that are all upper case
286  * and/or have backslashes in them. Filter all this out
287  * if it looks like we need to do so.
288  */
289 static void
290 fix_dosisms(char *p)
291 {
292 	while (*p) {
293 		if (isupper(*p))
294 			*p = tolower(*p);
295 		else if (*p == '\\')
296 			*p = '/';
297 		p++;
298 	}
299 }
300 
301 enum { BOOT_INFO_OK = 0, BAD_CHOICE = 1, NOT_SPECIFIC = 2  };
302 static int
303 match_boot_info(EFI_LOADED_IMAGE *img __unused, char *boot_info, size_t bisz)
304 {
305 	uint32_t attr;
306 	uint16_t fplen;
307 	size_t len;
308 	char *walker, *ep;
309 	EFI_DEVICE_PATH *dp, *edp, *first_dp, *last_dp;
310 	pdinfo_t *pp;
311 	CHAR16 *descr;
312 	char *kernel = NULL;
313 	FILEPATH_DEVICE_PATH  *fp;
314 	struct stat st;
315 
316 	/*
317 	 * FreeBSD encodes it's boot loading path into the boot loader
318 	 * BootXXXX variable. We look for the last one in the path
319 	 * and use that to load the kernel. However, if we only fine
320 	 * one DEVICE_PATH, then there's nothing specific and we should
321 	 * fall back.
322 	 *
323 	 * In an ideal world, we'd look at the image handle we were
324 	 * passed, match up with the loader we are and then return the
325 	 * next one in the path. This would be most flexible and cover
326 	 * many chain booting scenarios where you need to use this
327 	 * boot loader to get to the next boot loader. However, that
328 	 * doesn't work. We rarely have the path to the image booted
329 	 * (just the device) so we can't count on that. So, we do the
330 	 * enxt best thing, we look through the device path(s) passed
331 	 * in the BootXXXX varaible. If there's only one, we return
332 	 * NOT_SPECIFIC. Otherwise, we look at the last one and try to
333 	 * load that. If we can, we return BOOT_INFO_OK. Otherwise we
334 	 * return BAD_CHOICE for the caller to sort out.
335 	 */
336 	if (bisz < sizeof(attr) + sizeof(fplen) + sizeof(CHAR16))
337 		return NOT_SPECIFIC;
338 	walker = boot_info;
339 	ep = walker + bisz;
340 	memcpy(&attr, walker, sizeof(attr));
341 	walker += sizeof(attr);
342 	memcpy(&fplen, walker, sizeof(fplen));
343 	walker += sizeof(fplen);
344 	descr = (CHAR16 *)(intptr_t)walker;
345 	len = ucs2len(descr);
346 	walker += (len + 1) * sizeof(CHAR16);
347 	last_dp = first_dp = dp = (EFI_DEVICE_PATH *)walker;
348 	edp = (EFI_DEVICE_PATH *)(walker + fplen);
349 	if ((char *)edp > ep)
350 		return NOT_SPECIFIC;
351 	while (dp < edp) {
352 		last_dp = dp;
353 		dp = (EFI_DEVICE_PATH *)((char *)dp + efi_devpath_length(dp));
354 	}
355 
356 	/*
357 	 * If there's only one item in the list, then nothing was
358 	 * specified. Or if the last path doesn't have a media
359 	 * path in it. Those show up as various VenHw() nodes
360 	 * which are basically opaque to us. Don't count those
361 	 * as something specifc.
362 	 */
363 	if (last_dp == first_dp)
364 		return NOT_SPECIFIC;
365 	if (efi_devpath_to_media_path(last_dp) == NULL)
366 		return NOT_SPECIFIC;
367 
368 	/*
369 	 * OK. At this point we either have a good path or a bad one.
370 	 * Let's check.
371 	 */
372 	pp = efiblk_get_pdinfo_by_device_path(last_dp);
373 	if (pp == NULL)
374 		return BAD_CHOICE;
375 	set_currdev_pdinfo(pp);
376 	if (!sanity_check_currdev())
377 		return BAD_CHOICE;
378 
379 	/*
380 	 * OK. We've found a device that matches, next we need to check the last
381 	 * component of the path. If it's a file, then we set the default kernel
382 	 * to that. Otherwise, just use this as the default root.
383 	 *
384 	 * Reminder: we're running very early, before we've parsed the defaults
385 	 * file, so we may need to have a hack override.
386 	 */
387 	dp = efi_devpath_last_node(last_dp);
388 	if (DevicePathType(dp) !=  MEDIA_DEVICE_PATH ||
389 	    DevicePathSubType(dp) != MEDIA_FILEPATH_DP)
390 		return (BOOT_INFO_OK);		/* use currdir, default kernel */
391 	fp = (FILEPATH_DEVICE_PATH *)dp;
392 	ucs2_to_utf8(fp->PathName, &kernel);
393 	if (kernel == NULL)
394 		return (BAD_CHOICE);
395 	if (*kernel == '\\' || isupper(*kernel))
396 		fix_dosisms(kernel);
397 	if (stat(kernel, &st) != 0) {
398 		free(kernel);
399 		return (BAD_CHOICE);
400 	}
401 	setenv("kernel", kernel, 1);
402 	free(kernel);
403 
404 	return (BOOT_INFO_OK);
405 }
406 
407 /*
408  * Look at the passed-in boot_info, if any. If we find it then we need
409  * to see if we can find ourselves in the boot chain. If we can, and
410  * there's another specified thing to boot next, assume that the file
411  * is loaded from / and use that for the root filesystem. If can't
412  * find the specified thing, we must fail the boot. If we're last on
413  * the list, then we fallback to looking for the first available /
414  * candidate (ZFS, if there's a bootable zpool, otherwise a UFS
415  * partition that has either /boot/defaults/loader.conf on it or
416  * /boot/kernel/kernel (the default kernel) that we can use.
417  *
418  * We always fail if we can't find the right thing. However, as
419  * a concession to buggy UEFI implementations, like u-boot, if
420  * we have determined that the host is violating the UEFI boot
421  * manager protocol, we'll signal the rest of the program that
422  * a drop to the OK boot loader prompt is possible.
423  */
424 static int
425 find_currdev(EFI_LOADED_IMAGE *img, bool do_bootmgr, bool is_last,
426     char *boot_info, size_t boot_info_sz)
427 {
428 	pdinfo_t *dp, *pp;
429 	EFI_DEVICE_PATH *devpath, *copy;
430 	EFI_HANDLE h;
431 	CHAR16 *text;
432 	struct devsw *dev;
433 	int unit;
434 	uint64_t extra;
435 	int rv;
436 	char *rootdev;
437 
438 	/*
439 	 * First choice: if rootdev is already set, use that, even if
440 	 * it's wrong.
441 	 */
442 	rootdev = getenv("rootdev");
443 	if (rootdev != NULL) {
444 		printf("Setting currdev to configured rootdev %s\n", rootdev);
445 		set_currdev(rootdev);
446 		return (0);
447 	}
448 
449 	/*
450 	 * Second choice: If we can find out image boot_info, and there's
451 	 * a follow-on boot image in that boot_info, use that. In this
452 	 * case root will be the partition specified in that image and
453 	 * we'll load the kernel specified by the file path. Should there
454 	 * not be a filepath, we use the default. This filepath overrides
455 	 * loader.conf.
456 	 */
457 	if (do_bootmgr) {
458 		rv = match_boot_info(img, boot_info, boot_info_sz);
459 		switch (rv) {
460 		case BOOT_INFO_OK:	/* We found it */
461 			return (0);
462 		case BAD_CHOICE:	/* specified file not found -> error */
463 			/* XXX do we want to have an escape hatch for last in boot order? */
464 			return (ENOENT);
465 		} /* Nothing specified, try normal match */
466 	}
467 
468 #ifdef EFI_ZFS_BOOT
469 	/*
470 	 * Did efi_zfs_probe() detect the boot pool? If so, use the zpool
471 	 * it found, if it's sane. ZFS is the only thing that looks for
472 	 * disks and pools to boot. This may change in the future, however,
473 	 * if we allow specifying which pool to boot from via UEFI variables
474 	 * rather than the bootenv stuff that FreeBSD uses today.
475 	 */
476 	if (pool_guid != 0) {
477 		printf("Trying ZFS pool\n");
478 		if (probe_zfs_currdev(pool_guid))
479 			return (0);
480 	}
481 #endif /* EFI_ZFS_BOOT */
482 
483 	/*
484 	 * Try to find the block device by its handle based on the
485 	 * image we're booting. If we can't find a sane partition,
486 	 * search all the other partitions of the disk. We do not
487 	 * search other disks because it's a violation of the UEFI
488 	 * boot protocol to do so. We fail and let UEFI go on to
489 	 * the next candidate.
490 	 */
491 	dp = efiblk_get_pdinfo_by_handle(img->DeviceHandle);
492 	if (dp != NULL) {
493 		text = efi_devpath_name(dp->pd_devpath);
494 		if (text != NULL) {
495 			printf("Trying ESP: %S\n", text);
496 			efi_free_devpath_name(text);
497 		}
498 		set_currdev_pdinfo(dp);
499 		if (sanity_check_currdev())
500 			return (0);
501 		if (dp->pd_parent != NULL) {
502 			dp = dp->pd_parent;
503 			STAILQ_FOREACH(pp, &dp->pd_part, pd_link) {
504 				/*
505 				 * Roll up the ZFS special case
506 				 * for those partitions that have
507 				 * zpools on them.
508 				 */
509 				if (try_as_currdev(dp, pp))
510 					return (0);
511 			}
512 		}
513 	} else {
514 		printf("Can't find device by handle\n");
515 	}
516 
517 	/*
518 	 * Try the device handle from our loaded image first.  If that
519 	 * fails, use the device path from the loaded image and see if
520 	 * any of the nodes in that path match one of the enumerated
521 	 * handles. Currently, this handle list is only for netboot.
522 	 */
523 	if (efi_handle_lookup(img->DeviceHandle, &dev, &unit, &extra) == 0) {
524 		set_currdev_devsw(dev, unit);
525 		if (sanity_check_currdev())
526 			return (0);
527 	}
528 
529 	copy = NULL;
530 	devpath = efi_lookup_image_devpath(IH);
531 	while (devpath != NULL) {
532 		h = efi_devpath_handle(devpath);
533 		if (h == NULL)
534 			break;
535 
536 		free(copy);
537 		copy = NULL;
538 
539 		if (efi_handle_lookup(h, &dev, &unit, &extra) == 0) {
540 			set_currdev_devsw(dev, unit);
541 			if (sanity_check_currdev())
542 				return (0);
543 		}
544 
545 		devpath = efi_lookup_devpath(h);
546 		if (devpath != NULL) {
547 			copy = efi_devpath_trim(devpath);
548 			devpath = copy;
549 		}
550 	}
551 	free(copy);
552 
553 	return (ENOENT);
554 }
555 
556 static bool
557 interactive_interrupt(const char *msg)
558 {
559 	time_t now, then, last;
560 
561 	last = 0;
562 	now = then = getsecs();
563 	printf("%s\n", msg);
564 	if (fail_timeout == -2)		/* Always break to OK */
565 		return (true);
566 	if (fail_timeout == -1)		/* Never break to OK */
567 		return (false);
568 	do {
569 		if (last != now) {
570 			printf("press any key to interrupt reboot in %d seconds\r",
571 			    fail_timeout - (int)(now - then));
572 			last = now;
573 		}
574 
575 		/* XXX no pause or timeout wait for char */
576 		if (ischar())
577 			return (true);
578 		now = getsecs();
579 	} while (now - then < fail_timeout);
580 	return (false);
581 }
582 
583 static int
584 parse_args(int argc, CHAR16 *argv[])
585 {
586 	int i, j, howto;
587 	bool vargood;
588 	char var[128];
589 
590 	/*
591 	 * Parse the args to set the console settings, etc
592 	 * boot1.efi passes these in, if it can read /boot.config or /boot/config
593 	 * or iPXE may be setup to pass these in. Or the optional argument in the
594 	 * boot environment was used to pass these arguments in (in which case
595 	 * neither /boot.config nor /boot/config are consulted).
596 	 *
597 	 * Loop through the args, and for each one that contains an '=' that is
598 	 * not the first character, add it to the environment.  This allows
599 	 * loader and kernel env vars to be passed on the command line.  Convert
600 	 * args from UCS-2 to ASCII (16 to 8 bit) as they are copied (though this
601 	 * method is flawed for non-ASCII characters).
602 	 */
603 	howto = 0;
604 	for (i = 1; i < argc; i++) {
605 		cpy16to8(argv[i], var, sizeof(var));
606 		howto |= boot_parse_arg(var);
607 	}
608 
609 	return (howto);
610 }
611 
612 /*
613  * Parse ConOut (the list of consoles active) and see if we can find a
614  * serial port and/or a video port. It would be nice to also walk the
615  * ACPI name space to map the UID for the serial port to a port. The
616  * latter is especially hard.
617  */
618 static int
619 parse_uefi_con_out(void)
620 {
621 	int how, rv;
622 	int vid_seen = 0, com_seen = 0, seen = 0;
623 	size_t sz;
624 	char buf[4096], *ep;
625 	EFI_DEVICE_PATH *node;
626 	ACPI_HID_DEVICE_PATH  *acpi;
627 	UART_DEVICE_PATH  *uart;
628 	bool pci_pending;
629 
630 	how = 0;
631 	sz = sizeof(buf);
632 	rv = efi_global_getenv("ConOut", buf, &sz);
633 	if (rv != EFI_SUCCESS)
634 		goto out;
635 	ep = buf + sz;
636 	node = (EFI_DEVICE_PATH *)buf;
637 	while ((char *)node < ep) {
638 		pci_pending = false;
639 		if (DevicePathType(node) == ACPI_DEVICE_PATH &&
640 		    DevicePathSubType(node) == ACPI_DP) {
641 			/* Check for Serial node */
642 			acpi = (void *)node;
643 			if (EISA_ID_TO_NUM(acpi->HID) == 0x501)
644 				com_seen = ++seen;
645 		} else if (DevicePathType(node) == MESSAGING_DEVICE_PATH &&
646 		    DevicePathSubType(node) == MSG_UART_DP) {
647 			char bd[16];
648 
649 			uart = (void *)node;
650 			snprintf(bd, sizeof(bd), "%d", uart->BaudRate);
651 			setenv("efi_com_speed", bd, 1);
652 		} else if (DevicePathType(node) == ACPI_DEVICE_PATH &&
653 		    DevicePathSubType(node) == ACPI_ADR_DP) {
654 			/* Check for AcpiAdr() Node for video */
655 			vid_seen = ++seen;
656 		} else if (DevicePathType(node) == HARDWARE_DEVICE_PATH &&
657 		    DevicePathSubType(node) == HW_PCI_DP) {
658 			/*
659 			 * Note, vmware fusion has a funky console device
660 			 *	PciRoot(0x0)/Pci(0xf,0x0)
661 			 * which we can only detect at the end since we also
662 			 * have to cope with:
663 			 *	PciRoot(0x0)/Pci(0x1f,0x0)/Serial(0x1)
664 			 * so only match it if it's last.
665 			 */
666 			pci_pending = true;
667 		}
668 		node = NextDevicePathNode(node); /* Skip the end node */
669 	}
670 	if (pci_pending && vid_seen == 0)
671 		vid_seen = ++seen;
672 
673 	/*
674 	 * Truth table for RB_MULTIPLE | RB_SERIAL
675 	 * Value		Result
676 	 * 0			Use only video console
677 	 * RB_SERIAL		Use only serial console
678 	 * RB_MULTIPLE		Use both video and serial console
679 	 *			(but video is primary so gets rc messages)
680 	 * both			Use both video and serial console
681 	 *			(but serial is primary so gets rc messages)
682 	 *
683 	 * Try to honor this as best we can. If only one of serial / video
684 	 * found, then use that. Otherwise, use the first one we found.
685 	 * This also implies if we found nothing, default to video.
686 	 */
687 	how = 0;
688 	if (vid_seen && com_seen) {
689 		how |= RB_MULTIPLE;
690 		if (com_seen < vid_seen)
691 			how |= RB_SERIAL;
692 	} else if (com_seen)
693 		how |= RB_SERIAL;
694 out:
695 	return (how);
696 }
697 
698 EFI_STATUS
699 main(int argc, CHAR16 *argv[])
700 {
701 	EFI_GUID *guid;
702 	int howto, i, uhowto;
703 	UINTN k;
704 	bool has_kbd, is_last;
705 	char *s;
706 	EFI_DEVICE_PATH *imgpath;
707 	CHAR16 *text;
708 	EFI_STATUS rv;
709 	size_t sz, bosz = 0, bisz = 0;
710 	UINT16 boot_order[100];
711 	char boot_info[4096];
712 	EFI_LOADED_IMAGE *img;
713 	char buf[32];
714 	bool uefi_boot_mgr;
715 
716 	archsw.arch_autoload = efi_autoload;
717 	archsw.arch_getdev = efi_getdev;
718 	archsw.arch_copyin = efi_copyin;
719 	archsw.arch_copyout = efi_copyout;
720 	archsw.arch_readin = efi_readin;
721 #ifdef EFI_ZFS_BOOT
722 	/* Note this needs to be set before ZFS init. */
723 	archsw.arch_zfs_probe = efi_zfs_probe;
724 #endif
725 
726         /* Get our loaded image protocol interface structure. */
727 	BS->HandleProtocol(IH, &imgid, (VOID**)&img);
728 
729 #ifdef EFI_ZFS_BOOT
730 	/* Tell ZFS probe code where we booted from */
731 	efizfs_set_preferred(img->DeviceHandle);
732 #endif
733 	/* Init the time source */
734 	efi_time_init();
735 
736 	has_kbd = has_keyboard();
737 
738 	/*
739 	 * XXX Chicken-and-egg problem; we want to have console output
740 	 * early, but some console attributes may depend on reading from
741 	 * eg. the boot device, which we can't do yet.  We can use
742 	 * printf() etc. once this is done.
743 	 */
744 	setenv("console", "efi", 1);
745 	cons_probe();
746 
747 	/*
748 	 * Initialise the block cache. Set the upper limit.
749 	 */
750 	bcache_init(32768, 512);
751 
752 	howto = parse_args(argc, argv);
753 	if (!has_kbd && (howto & RB_PROBE))
754 		howto |= RB_SERIAL | RB_MULTIPLE;
755 	howto &= ~RB_PROBE;
756 	uhowto = parse_uefi_con_out();
757 
758 	/*
759 	 * We now have two notions of console. howto should be viewed as
760 	 * overrides. If console is already set, don't set it again.
761 	 */
762 #define	VIDEO_ONLY	0
763 #define	SERIAL_ONLY	RB_SERIAL
764 #define	VID_SER_BOTH	RB_MULTIPLE
765 #define	SER_VID_BOTH	(RB_SERIAL | RB_MULTIPLE)
766 #define	CON_MASK	(RB_SERIAL | RB_MULTIPLE)
767 	if (strcmp(getenv("console"), "efi") == 0) {
768 		if ((howto & CON_MASK) == 0) {
769 			/* No override, uhowto is controlling and efi cons is perfect */
770 			howto = howto | (uhowto & CON_MASK);
771 			setenv("console", "efi", 1);
772 		} else if ((howto & CON_MASK) == (uhowto & CON_MASK)) {
773 			/* override matches what UEFI told us, efi console is perfect */
774 			setenv("console", "efi", 1);
775 		} else if ((uhowto & (CON_MASK)) != 0) {
776 			/*
777 			 * We detected a serial console on ConOut. All possible
778 			 * overrides include serial. We can't really override what efi
779 			 * gives us, so we use it knowing it's the best choice.
780 			 */
781 			setenv("console", "efi", 1);
782 		} else {
783 			/*
784 			 * We detected some kind of serial in the override, but ConOut
785 			 * has no serial, so we have to sort out which case it really is.
786 			 */
787 			switch (howto & CON_MASK) {
788 			case SERIAL_ONLY:
789 				setenv("console", "comconsole", 1);
790 				break;
791 			case VID_SER_BOTH:
792 				setenv("console", "efi comconsole", 1);
793 				break;
794 			case SER_VID_BOTH:
795 				setenv("console", "comconsole efi", 1);
796 				break;
797 				/* case VIDEO_ONLY can't happen -- it's the first if above */
798 			}
799 		}
800 	}
801 	/*
802 	 * howto is set now how we want to export the flags to the kernel, so
803 	 * set the env based on it.
804 	 */
805 	boot_howto_to_env(howto);
806 
807 	if (efi_copy_init()) {
808 		printf("failed to allocate staging area\n");
809 		return (EFI_BUFFER_TOO_SMALL);
810 	}
811 
812 	if ((s = getenv("fail_timeout")) != NULL)
813 		fail_timeout = strtol(s, NULL, 10);
814 
815 	/*
816 	 * Scan the BLOCK IO MEDIA handles then
817 	 * march through the device switch probing for things.
818 	 */
819 	if ((i = efipart_inithandles()) == 0) {
820 		for (i = 0; devsw[i] != NULL; i++)
821 			if (devsw[i]->dv_init != NULL)
822 				(devsw[i]->dv_init)();
823 	} else
824 		printf("efipart_inithandles failed %d, expect failures", i);
825 
826 	printf("%s\n", bootprog_info);
827 	printf("   Command line arguments:");
828 	for (i = 0; i < argc; i++)
829 		printf(" %S", argv[i]);
830 	printf("\n");
831 
832 	printf("   EFI version: %d.%02d\n", ST->Hdr.Revision >> 16,
833 	    ST->Hdr.Revision & 0xffff);
834 	printf("   EFI Firmware: %S (rev %d.%02d)\n", ST->FirmwareVendor,
835 	    ST->FirmwareRevision >> 16, ST->FirmwareRevision & 0xffff);
836 
837 
838 	/* Determine the devpath of our image so we can prefer it. */
839 	text = efi_devpath_name(img->FilePath);
840 	if (text != NULL) {
841 		printf("   Load Path: %S\n", text);
842 		efi_setenv_freebsd_wcs("LoaderPath", text);
843 		efi_free_devpath_name(text);
844 	}
845 
846 	rv = BS->HandleProtocol(img->DeviceHandle, &devid, (void **)&imgpath);
847 	if (rv == EFI_SUCCESS) {
848 		text = efi_devpath_name(imgpath);
849 		if (text != NULL) {
850 			printf("   Load Device: %S\n", text);
851 			efi_setenv_freebsd_wcs("LoaderDev", text);
852 			efi_free_devpath_name(text);
853 		}
854 	}
855 
856 	uefi_boot_mgr = true;
857 	boot_current = 0;
858 	sz = sizeof(boot_current);
859 	rv = efi_global_getenv("BootCurrent", &boot_current, &sz);
860 	if (rv == EFI_SUCCESS)
861 		printf("   BootCurrent: %04x\n", boot_current);
862 	else {
863 		boot_current = 0xffff;
864 		uefi_boot_mgr = false;
865 	}
866 
867 	sz = sizeof(boot_order);
868 	rv = efi_global_getenv("BootOrder", &boot_order, &sz);
869 	if (rv == EFI_SUCCESS) {
870 		printf("   BootOrder:");
871 		for (i = 0; i < sz / sizeof(boot_order[0]); i++)
872 			printf(" %04x%s", boot_order[i],
873 			    boot_order[i] == boot_current ? "[*]" : "");
874 		printf("\n");
875 		is_last = boot_order[(sz / sizeof(boot_order[0])) - 1] == boot_current;
876 		bosz = sz;
877 	} else if (uefi_boot_mgr) {
878 		/*
879 		 * u-boot doesn't set BootOrder, but otherwise participates in the
880 		 * boot manager protocol. So we fake it here and don't consider it
881 		 * a failure.
882 		 */
883 		bosz = sizeof(boot_order[0]);
884 		boot_order[0] = boot_current;
885 		is_last = true;
886 	}
887 
888 	/*
889 	 * Next, find the boot info structure the UEFI boot manager is
890 	 * supposed to setup. We need this so we can walk through it to
891 	 * find where we are in the booting process and what to try to
892 	 * boot next.
893 	 */
894 	if (uefi_boot_mgr) {
895 		snprintf(buf, sizeof(buf), "Boot%04X", boot_current);
896 		sz = sizeof(boot_info);
897 		rv = efi_global_getenv(buf, &boot_info, &sz);
898 		if (rv == EFI_SUCCESS)
899 			bisz = sz;
900 		else
901 			uefi_boot_mgr = false;
902 	}
903 
904 	/*
905 	 * Disable the watchdog timer. By default the boot manager sets
906 	 * the timer to 5 minutes before invoking a boot option. If we
907 	 * want to return to the boot manager, we have to disable the
908 	 * watchdog timer and since we're an interactive program, we don't
909 	 * want to wait until the user types "quit". The timer may have
910 	 * fired by then. We don't care if this fails. It does not prevent
911 	 * normal functioning in any way...
912 	 */
913 	BS->SetWatchdogTimer(0, 0, 0, NULL);
914 
915 	/*
916 	 * Try and find a good currdev based on the image that was booted.
917 	 * It might be desirable here to have a short pause to allow falling
918 	 * through to the boot loader instead of returning instantly to follow
919 	 * the boot protocol and also allow an escape hatch for users wishing
920 	 * to try something different.
921 	 */
922 	if (find_currdev(img, uefi_boot_mgr, is_last, boot_info, bisz) != 0)
923 		if (!interactive_interrupt("Failed to find bootable partition"))
924 			return (EFI_NOT_FOUND);
925 
926 	efi_init_environment();
927 
928 #if !defined(__arm__)
929 	for (k = 0; k < ST->NumberOfTableEntries; k++) {
930 		guid = &ST->ConfigurationTable[k].VendorGuid;
931 		if (!memcmp(guid, &smbios, sizeof(EFI_GUID))) {
932 			char buf[40];
933 
934 			snprintf(buf, sizeof(buf), "%p",
935 			    ST->ConfigurationTable[k].VendorTable);
936 			setenv("hint.smbios.0.mem", buf, 1);
937 			smbios_detect(ST->ConfigurationTable[k].VendorTable);
938 			break;
939 		}
940 	}
941 #endif
942 
943 	interact();			/* doesn't return */
944 
945 	return (EFI_SUCCESS);		/* keep compiler happy */
946 }
947 
948 COMMAND_SET(reboot, "reboot", "reboot the system", command_reboot);
949 
950 static int
951 command_reboot(int argc, char *argv[])
952 {
953 	int i;
954 
955 	for (i = 0; devsw[i] != NULL; ++i)
956 		if (devsw[i]->dv_cleanup != NULL)
957 			(devsw[i]->dv_cleanup)();
958 
959 	RS->ResetSystem(EfiResetCold, EFI_SUCCESS, 0, NULL);
960 
961 	/* NOTREACHED */
962 	return (CMD_ERROR);
963 }
964 
965 COMMAND_SET(quit, "quit", "exit the loader", command_quit);
966 
967 static int
968 command_quit(int argc, char *argv[])
969 {
970 	exit(0);
971 	return (CMD_OK);
972 }
973 
974 COMMAND_SET(memmap, "memmap", "print memory map", command_memmap);
975 
976 static int
977 command_memmap(int argc, char *argv[])
978 {
979 	UINTN sz;
980 	EFI_MEMORY_DESCRIPTOR *map, *p;
981 	UINTN key, dsz;
982 	UINT32 dver;
983 	EFI_STATUS status;
984 	int i, ndesc;
985 	char line[80];
986 	static char *types[] = {
987 	    "Reserved",
988 	    "LoaderCode",
989 	    "LoaderData",
990 	    "BootServicesCode",
991 	    "BootServicesData",
992 	    "RuntimeServicesCode",
993 	    "RuntimeServicesData",
994 	    "ConventionalMemory",
995 	    "UnusableMemory",
996 	    "ACPIReclaimMemory",
997 	    "ACPIMemoryNVS",
998 	    "MemoryMappedIO",
999 	    "MemoryMappedIOPortSpace",
1000 	    "PalCode"
1001 	};
1002 
1003 	sz = 0;
1004 	status = BS->GetMemoryMap(&sz, 0, &key, &dsz, &dver);
1005 	if (status != EFI_BUFFER_TOO_SMALL) {
1006 		printf("Can't determine memory map size\n");
1007 		return (CMD_ERROR);
1008 	}
1009 	map = malloc(sz);
1010 	status = BS->GetMemoryMap(&sz, map, &key, &dsz, &dver);
1011 	if (EFI_ERROR(status)) {
1012 		printf("Can't read memory map\n");
1013 		return (CMD_ERROR);
1014 	}
1015 
1016 	ndesc = sz / dsz;
1017 	snprintf(line, sizeof(line), "%23s %12s %12s %8s %4s\n",
1018 	    "Type", "Physical", "Virtual", "#Pages", "Attr");
1019 	pager_open();
1020 	if (pager_output(line)) {
1021 		pager_close();
1022 		return (CMD_OK);
1023 	}
1024 
1025 	for (i = 0, p = map; i < ndesc;
1026 	     i++, p = NextMemoryDescriptor(p, dsz)) {
1027 		printf("%23s %012jx %012jx %08jx ", types[p->Type],
1028 		    (uintmax_t)p->PhysicalStart, (uintmax_t)p->VirtualStart,
1029 		    (uintmax_t)p->NumberOfPages);
1030 		if (p->Attribute & EFI_MEMORY_UC)
1031 			printf("UC ");
1032 		if (p->Attribute & EFI_MEMORY_WC)
1033 			printf("WC ");
1034 		if (p->Attribute & EFI_MEMORY_WT)
1035 			printf("WT ");
1036 		if (p->Attribute & EFI_MEMORY_WB)
1037 			printf("WB ");
1038 		if (p->Attribute & EFI_MEMORY_UCE)
1039 			printf("UCE ");
1040 		if (p->Attribute & EFI_MEMORY_WP)
1041 			printf("WP ");
1042 		if (p->Attribute & EFI_MEMORY_RP)
1043 			printf("RP ");
1044 		if (p->Attribute & EFI_MEMORY_XP)
1045 			printf("XP ");
1046 		if (pager_output("\n"))
1047 			break;
1048 	}
1049 
1050 	pager_close();
1051 	return (CMD_OK);
1052 }
1053 
1054 COMMAND_SET(configuration, "configuration", "print configuration tables",
1055     command_configuration);
1056 
1057 static const char *
1058 guid_to_string(EFI_GUID *guid)
1059 {
1060 	static char buf[40];
1061 
1062 	sprintf(buf, "%08x-%04x-%04x-%02x%02x-%02x%02x%02x%02x%02x%02x",
1063 	    guid->Data1, guid->Data2, guid->Data3, guid->Data4[0],
1064 	    guid->Data4[1], guid->Data4[2], guid->Data4[3], guid->Data4[4],
1065 	    guid->Data4[5], guid->Data4[6], guid->Data4[7]);
1066 	return (buf);
1067 }
1068 
1069 static int
1070 command_configuration(int argc, char *argv[])
1071 {
1072 	char line[80];
1073 	UINTN i;
1074 
1075 	snprintf(line, sizeof(line), "NumberOfTableEntries=%lu\n",
1076 		(unsigned long)ST->NumberOfTableEntries);
1077 	pager_open();
1078 	if (pager_output(line)) {
1079 		pager_close();
1080 		return (CMD_OK);
1081 	}
1082 
1083 	for (i = 0; i < ST->NumberOfTableEntries; i++) {
1084 		EFI_GUID *guid;
1085 
1086 		printf("  ");
1087 		guid = &ST->ConfigurationTable[i].VendorGuid;
1088 		if (!memcmp(guid, &mps, sizeof(EFI_GUID)))
1089 			printf("MPS Table");
1090 		else if (!memcmp(guid, &acpi, sizeof(EFI_GUID)))
1091 			printf("ACPI Table");
1092 		else if (!memcmp(guid, &acpi20, sizeof(EFI_GUID)))
1093 			printf("ACPI 2.0 Table");
1094 		else if (!memcmp(guid, &smbios, sizeof(EFI_GUID)))
1095 			printf("SMBIOS Table %p",
1096 			    ST->ConfigurationTable[i].VendorTable);
1097 		else if (!memcmp(guid, &smbios3, sizeof(EFI_GUID)))
1098 			printf("SMBIOS3 Table");
1099 		else if (!memcmp(guid, &dxe, sizeof(EFI_GUID)))
1100 			printf("DXE Table");
1101 		else if (!memcmp(guid, &hoblist, sizeof(EFI_GUID)))
1102 			printf("HOB List Table");
1103 		else if (!memcmp(guid, &lzmadecomp, sizeof(EFI_GUID)))
1104 			printf("LZMA Compression");
1105 		else if (!memcmp(guid, &mpcore, sizeof(EFI_GUID)))
1106 			printf("ARM MpCore Information Table");
1107 		else if (!memcmp(guid, &esrt, sizeof(EFI_GUID)))
1108 			printf("ESRT Table");
1109 		else if (!memcmp(guid, &memtype, sizeof(EFI_GUID)))
1110 			printf("Memory Type Information Table");
1111 		else if (!memcmp(guid, &debugimg, sizeof(EFI_GUID)))
1112 			printf("Debug Image Info Table");
1113 		else if (!memcmp(guid, &fdtdtb, sizeof(EFI_GUID)))
1114 			printf("FDT Table");
1115 		else
1116 			printf("Unknown Table (%s)", guid_to_string(guid));
1117 		snprintf(line, sizeof(line), " at %p\n",
1118 		    ST->ConfigurationTable[i].VendorTable);
1119 		if (pager_output(line))
1120 			break;
1121 	}
1122 
1123 	pager_close();
1124 	return (CMD_OK);
1125 }
1126 
1127 
1128 COMMAND_SET(mode, "mode", "change or display EFI text modes", command_mode);
1129 
1130 static int
1131 command_mode(int argc, char *argv[])
1132 {
1133 	UINTN cols, rows;
1134 	unsigned int mode;
1135 	int i;
1136 	char *cp;
1137 	char rowenv[8];
1138 	EFI_STATUS status;
1139 	SIMPLE_TEXT_OUTPUT_INTERFACE *conout;
1140 	extern void HO(void);
1141 
1142 	conout = ST->ConOut;
1143 
1144 	if (argc > 1) {
1145 		mode = strtol(argv[1], &cp, 0);
1146 		if (cp[0] != '\0') {
1147 			printf("Invalid mode\n");
1148 			return (CMD_ERROR);
1149 		}
1150 		status = conout->QueryMode(conout, mode, &cols, &rows);
1151 		if (EFI_ERROR(status)) {
1152 			printf("invalid mode %d\n", mode);
1153 			return (CMD_ERROR);
1154 		}
1155 		status = conout->SetMode(conout, mode);
1156 		if (EFI_ERROR(status)) {
1157 			printf("couldn't set mode %d\n", mode);
1158 			return (CMD_ERROR);
1159 		}
1160 		sprintf(rowenv, "%u", (unsigned)rows);
1161 		setenv("LINES", rowenv, 1);
1162 		HO();		/* set cursor */
1163 		return (CMD_OK);
1164 	}
1165 
1166 	printf("Current mode: %d\n", conout->Mode->Mode);
1167 	for (i = 0; i <= conout->Mode->MaxMode; i++) {
1168 		status = conout->QueryMode(conout, i, &cols, &rows);
1169 		if (EFI_ERROR(status))
1170 			continue;
1171 		printf("Mode %d: %u columns, %u rows\n", i, (unsigned)cols,
1172 		    (unsigned)rows);
1173 	}
1174 
1175 	if (i != 0)
1176 		printf("Select a mode with the command \"mode <number>\"\n");
1177 
1178 	return (CMD_OK);
1179 }
1180 
1181 #ifdef LOADER_FDT_SUPPORT
1182 extern int command_fdt_internal(int argc, char *argv[]);
1183 
1184 /*
1185  * Since proper fdt command handling function is defined in fdt_loader_cmd.c,
1186  * and declaring it as extern is in contradiction with COMMAND_SET() macro
1187  * (which uses static pointer), we're defining wrapper function, which
1188  * calls the proper fdt handling routine.
1189  */
1190 static int
1191 command_fdt(int argc, char *argv[])
1192 {
1193 
1194 	return (command_fdt_internal(argc, argv));
1195 }
1196 
1197 COMMAND_SET(fdt, "fdt", "flattened device tree handling", command_fdt);
1198 #endif
1199 
1200 /*
1201  * Chain load another efi loader.
1202  */
1203 static int
1204 command_chain(int argc, char *argv[])
1205 {
1206 	EFI_GUID LoadedImageGUID = LOADED_IMAGE_PROTOCOL;
1207 	EFI_HANDLE loaderhandle;
1208 	EFI_LOADED_IMAGE *loaded_image;
1209 	EFI_STATUS status;
1210 	struct stat st;
1211 	struct devdesc *dev;
1212 	char *name, *path;
1213 	void *buf;
1214 	int fd;
1215 
1216 	if (argc < 2) {
1217 		command_errmsg = "wrong number of arguments";
1218 		return (CMD_ERROR);
1219 	}
1220 
1221 	name = argv[1];
1222 
1223 	if ((fd = open(name, O_RDONLY)) < 0) {
1224 		command_errmsg = "no such file";
1225 		return (CMD_ERROR);
1226 	}
1227 
1228 	if (fstat(fd, &st) < -1) {
1229 		command_errmsg = "stat failed";
1230 		close(fd);
1231 		return (CMD_ERROR);
1232 	}
1233 
1234 	status = BS->AllocatePool(EfiLoaderCode, (UINTN)st.st_size, &buf);
1235 	if (status != EFI_SUCCESS) {
1236 		command_errmsg = "failed to allocate buffer";
1237 		close(fd);
1238 		return (CMD_ERROR);
1239 	}
1240 	if (read(fd, buf, st.st_size) != st.st_size) {
1241 		command_errmsg = "error while reading the file";
1242 		(void)BS->FreePool(buf);
1243 		close(fd);
1244 		return (CMD_ERROR);
1245 	}
1246 	close(fd);
1247 	status = BS->LoadImage(FALSE, IH, NULL, buf, st.st_size, &loaderhandle);
1248 	(void)BS->FreePool(buf);
1249 	if (status != EFI_SUCCESS) {
1250 		command_errmsg = "LoadImage failed";
1251 		return (CMD_ERROR);
1252 	}
1253 	status = BS->HandleProtocol(loaderhandle, &LoadedImageGUID,
1254 	    (void **)&loaded_image);
1255 
1256 	if (argc > 2) {
1257 		int i, len = 0;
1258 		CHAR16 *argp;
1259 
1260 		for (i = 2; i < argc; i++)
1261 			len += strlen(argv[i]) + 1;
1262 
1263 		len *= sizeof (*argp);
1264 		loaded_image->LoadOptions = argp = malloc (len);
1265 		loaded_image->LoadOptionsSize = len;
1266 		for (i = 2; i < argc; i++) {
1267 			char *ptr = argv[i];
1268 			while (*ptr)
1269 				*(argp++) = *(ptr++);
1270 			*(argp++) = ' ';
1271 		}
1272 		*(--argv) = 0;
1273 	}
1274 
1275 	if (efi_getdev((void **)&dev, name, (const char **)&path) == 0) {
1276 #ifdef EFI_ZFS_BOOT
1277 		struct zfs_devdesc *z_dev;
1278 #endif
1279 		struct disk_devdesc *d_dev;
1280 		pdinfo_t *hd, *pd;
1281 
1282 		switch (dev->d_dev->dv_type) {
1283 #ifdef EFI_ZFS_BOOT
1284 		case DEVT_ZFS:
1285 			z_dev = (struct zfs_devdesc *)dev;
1286 			loaded_image->DeviceHandle =
1287 			    efizfs_get_handle_by_guid(z_dev->pool_guid);
1288 			break;
1289 #endif
1290 		case DEVT_NET:
1291 			loaded_image->DeviceHandle =
1292 			    efi_find_handle(dev->d_dev, dev->d_unit);
1293 			break;
1294 		default:
1295 			hd = efiblk_get_pdinfo(dev);
1296 			if (STAILQ_EMPTY(&hd->pd_part)) {
1297 				loaded_image->DeviceHandle = hd->pd_handle;
1298 				break;
1299 			}
1300 			d_dev = (struct disk_devdesc *)dev;
1301 			STAILQ_FOREACH(pd, &hd->pd_part, pd_link) {
1302 				/*
1303 				 * d_partition should be 255
1304 				 */
1305 				if (pd->pd_unit == (uint32_t)d_dev->d_slice) {
1306 					loaded_image->DeviceHandle =
1307 					    pd->pd_handle;
1308 					break;
1309 				}
1310 			}
1311 			break;
1312 		}
1313 	}
1314 
1315 	dev_cleanup();
1316 	status = BS->StartImage(loaderhandle, NULL, NULL);
1317 	if (status != EFI_SUCCESS) {
1318 		command_errmsg = "StartImage failed";
1319 		free(loaded_image->LoadOptions);
1320 		loaded_image->LoadOptions = NULL;
1321 		status = BS->UnloadImage(loaded_image);
1322 		return (CMD_ERROR);
1323 	}
1324 
1325 	return (CMD_ERROR);	/* not reached */
1326 }
1327 
1328 COMMAND_SET(chain, "chain", "chain load file", command_chain);
1329