1 /*- 2 * Copyright (c) 2008-2010 Rui Paulo 3 * Copyright (c) 2006 Marcel Moolenaar 4 * All rights reserved. 5 * 6 * Copyright (c) 2016-2019 Netflix, Inc. written by M. Warner Losh 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <stand.h> 34 35 #include <sys/disk.h> 36 #include <sys/param.h> 37 #include <sys/reboot.h> 38 #include <sys/boot.h> 39 #include <stdint.h> 40 #include <string.h> 41 #include <setjmp.h> 42 #include <disk.h> 43 44 #include <efi.h> 45 #include <efilib.h> 46 #include <efichar.h> 47 48 #include <uuid.h> 49 50 #include <bootstrap.h> 51 #include <smbios.h> 52 53 #include "efizfs.h" 54 55 #include "loader_efi.h" 56 57 struct arch_switch archsw; /* MI/MD interface boundary */ 58 59 EFI_GUID acpi = ACPI_TABLE_GUID; 60 EFI_GUID acpi20 = ACPI_20_TABLE_GUID; 61 EFI_GUID devid = DEVICE_PATH_PROTOCOL; 62 EFI_GUID imgid = LOADED_IMAGE_PROTOCOL; 63 EFI_GUID mps = MPS_TABLE_GUID; 64 EFI_GUID netid = EFI_SIMPLE_NETWORK_PROTOCOL; 65 EFI_GUID smbios = SMBIOS_TABLE_GUID; 66 EFI_GUID smbios3 = SMBIOS3_TABLE_GUID; 67 EFI_GUID dxe = DXE_SERVICES_TABLE_GUID; 68 EFI_GUID hoblist = HOB_LIST_TABLE_GUID; 69 EFI_GUID lzmadecomp = LZMA_DECOMPRESSION_GUID; 70 EFI_GUID mpcore = ARM_MP_CORE_INFO_TABLE_GUID; 71 EFI_GUID esrt = ESRT_TABLE_GUID; 72 EFI_GUID memtype = MEMORY_TYPE_INFORMATION_TABLE_GUID; 73 EFI_GUID debugimg = DEBUG_IMAGE_INFO_TABLE_GUID; 74 EFI_GUID fdtdtb = FDT_TABLE_GUID; 75 EFI_GUID inputid = SIMPLE_TEXT_INPUT_PROTOCOL; 76 77 /* 78 * Number of seconds to wait for a keystroke before exiting with failure 79 * in the event no currdev is found. -2 means always break, -1 means 80 * never break, 0 means poll once and then reboot, > 0 means wait for 81 * that many seconds. "fail_timeout" can be set in the environment as 82 * well. 83 */ 84 static int fail_timeout = 5; 85 86 /* 87 * Current boot variable 88 */ 89 UINT16 boot_current; 90 91 /* 92 * Image that we booted from. 93 */ 94 EFI_LOADED_IMAGE *boot_img; 95 96 static bool 97 has_keyboard(void) 98 { 99 EFI_STATUS status; 100 EFI_DEVICE_PATH *path; 101 EFI_HANDLE *hin, *hin_end, *walker; 102 UINTN sz; 103 bool retval = false; 104 105 /* 106 * Find all the handles that support the SIMPLE_TEXT_INPUT_PROTOCOL and 107 * do the typical dance to get the right sized buffer. 108 */ 109 sz = 0; 110 hin = NULL; 111 status = BS->LocateHandle(ByProtocol, &inputid, 0, &sz, 0); 112 if (status == EFI_BUFFER_TOO_SMALL) { 113 hin = (EFI_HANDLE *)malloc(sz); 114 status = BS->LocateHandle(ByProtocol, &inputid, 0, &sz, 115 hin); 116 if (EFI_ERROR(status)) 117 free(hin); 118 } 119 if (EFI_ERROR(status)) 120 return retval; 121 122 /* 123 * Look at each of the handles. If it supports the device path protocol, 124 * use it to get the device path for this handle. Then see if that 125 * device path matches either the USB device path for keyboards or the 126 * legacy device path for keyboards. 127 */ 128 hin_end = &hin[sz / sizeof(*hin)]; 129 for (walker = hin; walker < hin_end; walker++) { 130 status = BS->HandleProtocol(*walker, &devid, (VOID **)&path); 131 if (EFI_ERROR(status)) 132 continue; 133 134 while (!IsDevicePathEnd(path)) { 135 /* 136 * Check for the ACPI keyboard node. All PNP3xx nodes 137 * are keyboards of different flavors. Note: It is 138 * unclear of there's always a keyboard node when 139 * there's a keyboard controller, or if there's only one 140 * when a keyboard is detected at boot. 141 */ 142 if (DevicePathType(path) == ACPI_DEVICE_PATH && 143 (DevicePathSubType(path) == ACPI_DP || 144 DevicePathSubType(path) == ACPI_EXTENDED_DP)) { 145 ACPI_HID_DEVICE_PATH *acpi; 146 147 acpi = (ACPI_HID_DEVICE_PATH *)(void *)path; 148 if ((EISA_ID_TO_NUM(acpi->HID) & 0xff00) == 0x300 && 149 (acpi->HID & 0xffff) == PNP_EISA_ID_CONST) { 150 retval = true; 151 goto out; 152 } 153 /* 154 * Check for USB keyboard node, if present. Unlike a 155 * PS/2 keyboard, these definitely only appear when 156 * connected to the system. 157 */ 158 } else if (DevicePathType(path) == MESSAGING_DEVICE_PATH && 159 DevicePathSubType(path) == MSG_USB_CLASS_DP) { 160 USB_CLASS_DEVICE_PATH *usb; 161 162 usb = (USB_CLASS_DEVICE_PATH *)(void *)path; 163 if (usb->DeviceClass == 3 && /* HID */ 164 usb->DeviceSubClass == 1 && /* Boot devices */ 165 usb->DeviceProtocol == 1) { /* Boot keyboards */ 166 retval = true; 167 goto out; 168 } 169 } 170 path = NextDevicePathNode(path); 171 } 172 } 173 out: 174 free(hin); 175 return retval; 176 } 177 178 static void 179 set_currdev(const char *devname) 180 { 181 182 env_setenv("currdev", EV_VOLATILE, devname, efi_setcurrdev, env_nounset); 183 env_setenv("loaddev", EV_VOLATILE, devname, env_noset, env_nounset); 184 } 185 186 static void 187 set_currdev_devdesc(struct devdesc *currdev) 188 { 189 const char *devname; 190 191 devname = efi_fmtdev(currdev); 192 printf("Setting currdev to %s\n", devname); 193 set_currdev(devname); 194 } 195 196 static void 197 set_currdev_devsw(struct devsw *dev, int unit) 198 { 199 struct devdesc currdev; 200 201 currdev.d_dev = dev; 202 currdev.d_unit = unit; 203 204 set_currdev_devdesc(&currdev); 205 } 206 207 static void 208 set_currdev_pdinfo(pdinfo_t *dp) 209 { 210 211 /* 212 * Disks are special: they have partitions. if the parent 213 * pointer is non-null, we're a partition not a full disk 214 * and we need to adjust currdev appropriately. 215 */ 216 if (dp->pd_devsw->dv_type == DEVT_DISK) { 217 struct disk_devdesc currdev; 218 219 currdev.dd.d_dev = dp->pd_devsw; 220 if (dp->pd_parent == NULL) { 221 currdev.dd.d_unit = dp->pd_unit; 222 currdev.d_slice = D_SLICENONE; 223 currdev.d_partition = D_PARTNONE; 224 } else { 225 currdev.dd.d_unit = dp->pd_parent->pd_unit; 226 currdev.d_slice = dp->pd_unit; 227 currdev.d_partition = D_PARTISGPT; /* XXX Assumes GPT */ 228 } 229 set_currdev_devdesc((struct devdesc *)&currdev); 230 } else { 231 set_currdev_devsw(dp->pd_devsw, dp->pd_unit); 232 } 233 } 234 235 static bool 236 sanity_check_currdev(void) 237 { 238 struct stat st; 239 240 return (stat("/boot/defaults/loader.conf", &st) == 0 || 241 stat("/boot/kernel/kernel", &st) == 0); 242 } 243 244 #ifdef EFI_ZFS_BOOT 245 static bool 246 probe_zfs_currdev(uint64_t guid) 247 { 248 char *devname; 249 struct zfs_devdesc currdev; 250 251 currdev.dd.d_dev = &zfs_dev; 252 currdev.dd.d_unit = 0; 253 currdev.pool_guid = guid; 254 currdev.root_guid = 0; 255 set_currdev_devdesc((struct devdesc *)&currdev); 256 devname = efi_fmtdev(&currdev); 257 init_zfs_bootenv(devname); 258 259 return (sanity_check_currdev()); 260 } 261 #endif 262 263 static bool 264 try_as_currdev(pdinfo_t *hd, pdinfo_t *pp) 265 { 266 uint64_t guid; 267 268 #ifdef EFI_ZFS_BOOT 269 /* 270 * If there's a zpool on this device, try it as a ZFS 271 * filesystem, which has somewhat different setup than all 272 * other types of fs due to imperfect loader integration. 273 * This all stems from ZFS being both a device (zpool) and 274 * a filesystem, plus the boot env feature. 275 */ 276 if (efizfs_get_guid_by_handle(pp->pd_handle, &guid)) 277 return (probe_zfs_currdev(guid)); 278 #endif 279 /* 280 * All other filesystems just need the pdinfo 281 * initialized in the standard way. 282 */ 283 set_currdev_pdinfo(pp); 284 return (sanity_check_currdev()); 285 } 286 287 /* 288 * Sometimes we get filenames that are all upper case 289 * and/or have backslashes in them. Filter all this out 290 * if it looks like we need to do so. 291 */ 292 static void 293 fix_dosisms(char *p) 294 { 295 while (*p) { 296 if (isupper(*p)) 297 *p = tolower(*p); 298 else if (*p == '\\') 299 *p = '/'; 300 p++; 301 } 302 } 303 304 #define SIZE(dp, edp) (size_t)((intptr_t)(void *)edp - (intptr_t)(void *)dp) 305 306 enum { BOOT_INFO_OK = 0, BAD_CHOICE = 1, NOT_SPECIFIC = 2 }; 307 static int 308 match_boot_info(char *boot_info, size_t bisz) 309 { 310 uint32_t attr; 311 uint16_t fplen; 312 size_t len; 313 char *walker, *ep; 314 EFI_DEVICE_PATH *dp, *edp, *first_dp, *last_dp; 315 pdinfo_t *pp; 316 CHAR16 *descr; 317 char *kernel = NULL; 318 FILEPATH_DEVICE_PATH *fp; 319 struct stat st; 320 CHAR16 *text; 321 322 /* 323 * FreeBSD encodes it's boot loading path into the boot loader 324 * BootXXXX variable. We look for the last one in the path 325 * and use that to load the kernel. However, if we only fine 326 * one DEVICE_PATH, then there's nothing specific and we should 327 * fall back. 328 * 329 * In an ideal world, we'd look at the image handle we were 330 * passed, match up with the loader we are and then return the 331 * next one in the path. This would be most flexible and cover 332 * many chain booting scenarios where you need to use this 333 * boot loader to get to the next boot loader. However, that 334 * doesn't work. We rarely have the path to the image booted 335 * (just the device) so we can't count on that. So, we do the 336 * enxt best thing, we look through the device path(s) passed 337 * in the BootXXXX varaible. If there's only one, we return 338 * NOT_SPECIFIC. Otherwise, we look at the last one and try to 339 * load that. If we can, we return BOOT_INFO_OK. Otherwise we 340 * return BAD_CHOICE for the caller to sort out. 341 */ 342 if (bisz < sizeof(attr) + sizeof(fplen) + sizeof(CHAR16)) 343 return NOT_SPECIFIC; 344 walker = boot_info; 345 ep = walker + bisz; 346 memcpy(&attr, walker, sizeof(attr)); 347 walker += sizeof(attr); 348 memcpy(&fplen, walker, sizeof(fplen)); 349 walker += sizeof(fplen); 350 descr = (CHAR16 *)(intptr_t)walker; 351 len = ucs2len(descr); 352 walker += (len + 1) * sizeof(CHAR16); 353 last_dp = first_dp = dp = (EFI_DEVICE_PATH *)walker; 354 edp = (EFI_DEVICE_PATH *)(walker + fplen); 355 if ((char *)edp > ep) 356 return NOT_SPECIFIC; 357 while (dp < edp && SIZE(dp, edp) > sizeof(EFI_DEVICE_PATH)) { 358 text = efi_devpath_name(dp); 359 if (text != NULL) { 360 printf(" BootInfo Path: %S\n", text); 361 efi_free_devpath_name(text); 362 } 363 last_dp = dp; 364 dp = (EFI_DEVICE_PATH *)((char *)dp + efi_devpath_length(dp)); 365 } 366 367 /* 368 * If there's only one item in the list, then nothing was 369 * specified. Or if the last path doesn't have a media 370 * path in it. Those show up as various VenHw() nodes 371 * which are basically opaque to us. Don't count those 372 * as something specifc. 373 */ 374 if (last_dp == first_dp) { 375 printf("Ignoring Boot%04x: Only one DP found\n", boot_current); 376 return NOT_SPECIFIC; 377 } 378 if (efi_devpath_to_media_path(last_dp) == NULL) { 379 printf("Ignoring Boot%04x: No Media Path\n", boot_current); 380 return NOT_SPECIFIC; 381 } 382 383 /* 384 * OK. At this point we either have a good path or a bad one. 385 * Let's check. 386 */ 387 pp = efiblk_get_pdinfo_by_device_path(last_dp); 388 if (pp == NULL) { 389 printf("Ignoring Boot%04x: Device Path not found\n", boot_current); 390 return BAD_CHOICE; 391 } 392 set_currdev_pdinfo(pp); 393 if (!sanity_check_currdev()) { 394 printf("Ignoring Boot%04x: sanity check failed\n", boot_current); 395 return BAD_CHOICE; 396 } 397 398 /* 399 * OK. We've found a device that matches, next we need to check the last 400 * component of the path. If it's a file, then we set the default kernel 401 * to that. Otherwise, just use this as the default root. 402 * 403 * Reminder: we're running very early, before we've parsed the defaults 404 * file, so we may need to have a hack override. 405 */ 406 dp = efi_devpath_last_node(last_dp); 407 if (DevicePathType(dp) != MEDIA_DEVICE_PATH || 408 DevicePathSubType(dp) != MEDIA_FILEPATH_DP) { 409 printf("Using Boot%04x for root partition\n", boot_current); 410 return (BOOT_INFO_OK); /* use currdir, default kernel */ 411 } 412 fp = (FILEPATH_DEVICE_PATH *)dp; 413 ucs2_to_utf8(fp->PathName, &kernel); 414 if (kernel == NULL) { 415 printf("Not using Boot%04x: can't decode kernel\n", boot_current); 416 return (BAD_CHOICE); 417 } 418 if (*kernel == '\\' || isupper(*kernel)) 419 fix_dosisms(kernel); 420 if (stat(kernel, &st) != 0) { 421 free(kernel); 422 printf("Not using Boot%04x: can't find %s\n", boot_current, 423 kernel); 424 return (BAD_CHOICE); 425 } 426 setenv("kernel", kernel, 1); 427 free(kernel); 428 text = efi_devpath_name(last_dp); 429 if (text) { 430 printf("Using Boot%04x %S + %s\n", boot_current, text, 431 kernel); 432 efi_free_devpath_name(text); 433 } 434 435 return (BOOT_INFO_OK); 436 } 437 438 /* 439 * Look at the passed-in boot_info, if any. If we find it then we need 440 * to see if we can find ourselves in the boot chain. If we can, and 441 * there's another specified thing to boot next, assume that the file 442 * is loaded from / and use that for the root filesystem. If can't 443 * find the specified thing, we must fail the boot. If we're last on 444 * the list, then we fallback to looking for the first available / 445 * candidate (ZFS, if there's a bootable zpool, otherwise a UFS 446 * partition that has either /boot/defaults/loader.conf on it or 447 * /boot/kernel/kernel (the default kernel) that we can use. 448 * 449 * We always fail if we can't find the right thing. However, as 450 * a concession to buggy UEFI implementations, like u-boot, if 451 * we have determined that the host is violating the UEFI boot 452 * manager protocol, we'll signal the rest of the program that 453 * a drop to the OK boot loader prompt is possible. 454 */ 455 static int 456 find_currdev(bool do_bootmgr, bool is_last, 457 char *boot_info, size_t boot_info_sz) 458 { 459 pdinfo_t *dp, *pp; 460 EFI_DEVICE_PATH *devpath, *copy; 461 EFI_HANDLE h; 462 CHAR16 *text; 463 struct devsw *dev; 464 int unit; 465 uint64_t extra; 466 int rv; 467 char *rootdev; 468 469 /* 470 * First choice: if rootdev is already set, use that, even if 471 * it's wrong. 472 */ 473 rootdev = getenv("rootdev"); 474 if (rootdev != NULL) { 475 printf(" Setting currdev to configured rootdev %s\n", 476 rootdev); 477 set_currdev(rootdev); 478 return (0); 479 } 480 481 /* 482 * Second choice: If uefi_rootdev is set, translate that UEFI device 483 * path to the loader's internal name and use that. 484 */ 485 do { 486 rootdev = getenv("uefi_rootdev"); 487 if (rootdev == NULL) 488 break; 489 devpath = efi_name_to_devpath(rootdev); 490 if (devpath == NULL) 491 break; 492 dp = efiblk_get_pdinfo_by_device_path(devpath); 493 efi_devpath_free(devpath); 494 if (dp == NULL) 495 break; 496 printf(" Setting currdev to UEFI path %s\n", 497 rootdev); 498 set_currdev_pdinfo(dp); 499 return (0); 500 } while (0); 501 502 /* 503 * Third choice: If we can find out image boot_info, and there's 504 * a follow-on boot image in that boot_info, use that. In this 505 * case root will be the partition specified in that image and 506 * we'll load the kernel specified by the file path. Should there 507 * not be a filepath, we use the default. This filepath overrides 508 * loader.conf. 509 */ 510 if (do_bootmgr) { 511 rv = match_boot_info(boot_info, boot_info_sz); 512 switch (rv) { 513 case BOOT_INFO_OK: /* We found it */ 514 return (0); 515 case BAD_CHOICE: /* specified file not found -> error */ 516 /* XXX do we want to have an escape hatch for last in boot order? */ 517 return (ENOENT); 518 } /* Nothing specified, try normal match */ 519 } 520 521 #ifdef EFI_ZFS_BOOT 522 /* 523 * Did efi_zfs_probe() detect the boot pool? If so, use the zpool 524 * it found, if it's sane. ZFS is the only thing that looks for 525 * disks and pools to boot. This may change in the future, however, 526 * if we allow specifying which pool to boot from via UEFI variables 527 * rather than the bootenv stuff that FreeBSD uses today. 528 */ 529 if (pool_guid != 0) { 530 printf("Trying ZFS pool\n"); 531 if (probe_zfs_currdev(pool_guid)) 532 return (0); 533 } 534 #endif /* EFI_ZFS_BOOT */ 535 536 /* 537 * Try to find the block device by its handle based on the 538 * image we're booting. If we can't find a sane partition, 539 * search all the other partitions of the disk. We do not 540 * search other disks because it's a violation of the UEFI 541 * boot protocol to do so. We fail and let UEFI go on to 542 * the next candidate. 543 */ 544 dp = efiblk_get_pdinfo_by_handle(boot_img->DeviceHandle); 545 if (dp != NULL) { 546 text = efi_devpath_name(dp->pd_devpath); 547 if (text != NULL) { 548 printf("Trying ESP: %S\n", text); 549 efi_free_devpath_name(text); 550 } 551 set_currdev_pdinfo(dp); 552 if (sanity_check_currdev()) 553 return (0); 554 if (dp->pd_parent != NULL) { 555 pdinfo_t *espdp = dp; 556 dp = dp->pd_parent; 557 STAILQ_FOREACH(pp, &dp->pd_part, pd_link) { 558 /* Already tried the ESP */ 559 if (espdp == pp) 560 continue; 561 /* 562 * Roll up the ZFS special case 563 * for those partitions that have 564 * zpools on them. 565 */ 566 text = efi_devpath_name(pp->pd_devpath); 567 if (text != NULL) { 568 printf("Trying: %S\n", text); 569 efi_free_devpath_name(text); 570 } 571 if (try_as_currdev(dp, pp)) 572 return (0); 573 } 574 } 575 } 576 577 /* 578 * Try the device handle from our loaded image first. If that 579 * fails, use the device path from the loaded image and see if 580 * any of the nodes in that path match one of the enumerated 581 * handles. Currently, this handle list is only for netboot. 582 */ 583 if (efi_handle_lookup(boot_img->DeviceHandle, &dev, &unit, &extra) == 0) { 584 set_currdev_devsw(dev, unit); 585 if (sanity_check_currdev()) 586 return (0); 587 } 588 589 copy = NULL; 590 devpath = efi_lookup_image_devpath(IH); 591 while (devpath != NULL) { 592 h = efi_devpath_handle(devpath); 593 if (h == NULL) 594 break; 595 596 free(copy); 597 copy = NULL; 598 599 if (efi_handle_lookup(h, &dev, &unit, &extra) == 0) { 600 set_currdev_devsw(dev, unit); 601 if (sanity_check_currdev()) 602 return (0); 603 } 604 605 devpath = efi_lookup_devpath(h); 606 if (devpath != NULL) { 607 copy = efi_devpath_trim(devpath); 608 devpath = copy; 609 } 610 } 611 free(copy); 612 613 return (ENOENT); 614 } 615 616 static bool 617 interactive_interrupt(const char *msg) 618 { 619 time_t now, then, last; 620 621 last = 0; 622 now = then = getsecs(); 623 printf("%s\n", msg); 624 if (fail_timeout == -2) /* Always break to OK */ 625 return (true); 626 if (fail_timeout == -1) /* Never break to OK */ 627 return (false); 628 do { 629 if (last != now) { 630 printf("press any key to interrupt reboot in %d seconds\r", 631 fail_timeout - (int)(now - then)); 632 last = now; 633 } 634 635 /* XXX no pause or timeout wait for char */ 636 if (ischar()) 637 return (true); 638 now = getsecs(); 639 } while (now - then < fail_timeout); 640 return (false); 641 } 642 643 static int 644 parse_args(int argc, CHAR16 *argv[]) 645 { 646 int i, j, howto; 647 bool vargood; 648 char var[128]; 649 650 /* 651 * Parse the args to set the console settings, etc 652 * boot1.efi passes these in, if it can read /boot.config or /boot/config 653 * or iPXE may be setup to pass these in. Or the optional argument in the 654 * boot environment was used to pass these arguments in (in which case 655 * neither /boot.config nor /boot/config are consulted). 656 * 657 * Loop through the args, and for each one that contains an '=' that is 658 * not the first character, add it to the environment. This allows 659 * loader and kernel env vars to be passed on the command line. Convert 660 * args from UCS-2 to ASCII (16 to 8 bit) as they are copied (though this 661 * method is flawed for non-ASCII characters). 662 */ 663 howto = 0; 664 for (i = 1; i < argc; i++) { 665 cpy16to8(argv[i], var, sizeof(var)); 666 howto |= boot_parse_arg(var); 667 } 668 669 return (howto); 670 } 671 672 static void 673 setenv_int(const char *key, int val) 674 { 675 char buf[20]; 676 677 snprintf(buf, sizeof(buf), "%d", val); 678 setenv(key, buf, 1); 679 } 680 681 /* 682 * Parse ConOut (the list of consoles active) and see if we can find a 683 * serial port and/or a video port. It would be nice to also walk the 684 * ACPI name space to map the UID for the serial port to a port. The 685 * latter is especially hard. 686 */ 687 static int 688 parse_uefi_con_out(void) 689 { 690 int how, rv; 691 int vid_seen = 0, com_seen = 0, seen = 0; 692 size_t sz; 693 char buf[4096], *ep; 694 EFI_DEVICE_PATH *node; 695 ACPI_HID_DEVICE_PATH *acpi; 696 UART_DEVICE_PATH *uart; 697 bool pci_pending; 698 699 how = 0; 700 sz = sizeof(buf); 701 rv = efi_global_getenv("ConOut", buf, &sz); 702 if (rv != EFI_SUCCESS) 703 goto out; 704 ep = buf + sz; 705 node = (EFI_DEVICE_PATH *)buf; 706 while ((char *)node < ep) { 707 pci_pending = false; 708 if (DevicePathType(node) == ACPI_DEVICE_PATH && 709 DevicePathSubType(node) == ACPI_DP) { 710 /* Check for Serial node */ 711 acpi = (void *)node; 712 if (EISA_ID_TO_NUM(acpi->HID) == 0x501) { 713 setenv_int("efi_8250_uid", acpi->UID); 714 com_seen = ++seen; 715 } 716 } else if (DevicePathType(node) == MESSAGING_DEVICE_PATH && 717 DevicePathSubType(node) == MSG_UART_DP) { 718 719 uart = (void *)node; 720 setenv_int("efi_com_speed", uart->BaudRate); 721 } else if (DevicePathType(node) == ACPI_DEVICE_PATH && 722 DevicePathSubType(node) == ACPI_ADR_DP) { 723 /* Check for AcpiAdr() Node for video */ 724 vid_seen = ++seen; 725 } else if (DevicePathType(node) == HARDWARE_DEVICE_PATH && 726 DevicePathSubType(node) == HW_PCI_DP) { 727 /* 728 * Note, vmware fusion has a funky console device 729 * PciRoot(0x0)/Pci(0xf,0x0) 730 * which we can only detect at the end since we also 731 * have to cope with: 732 * PciRoot(0x0)/Pci(0x1f,0x0)/Serial(0x1) 733 * so only match it if it's last. 734 */ 735 pci_pending = true; 736 } 737 node = NextDevicePathNode(node); /* Skip the end node */ 738 } 739 if (pci_pending && vid_seen == 0) 740 vid_seen = ++seen; 741 742 /* 743 * Truth table for RB_MULTIPLE | RB_SERIAL 744 * Value Result 745 * 0 Use only video console 746 * RB_SERIAL Use only serial console 747 * RB_MULTIPLE Use both video and serial console 748 * (but video is primary so gets rc messages) 749 * both Use both video and serial console 750 * (but serial is primary so gets rc messages) 751 * 752 * Try to honor this as best we can. If only one of serial / video 753 * found, then use that. Otherwise, use the first one we found. 754 * This also implies if we found nothing, default to video. 755 */ 756 how = 0; 757 if (vid_seen && com_seen) { 758 how |= RB_MULTIPLE; 759 if (com_seen < vid_seen) 760 how |= RB_SERIAL; 761 } else if (com_seen) 762 how |= RB_SERIAL; 763 out: 764 return (how); 765 } 766 767 void 768 parse_loader_efi_config(EFI_HANDLE h, const char *env_fn) 769 { 770 pdinfo_t *dp; 771 struct stat st; 772 int fd = -1; 773 char *env = NULL; 774 775 dp = efiblk_get_pdinfo_by_handle(h); 776 if (dp == NULL) 777 return; 778 set_currdev_pdinfo(dp); 779 if (stat(env_fn, &st) != 0) 780 return; 781 fd = open(env_fn, O_RDONLY); 782 if (fd == -1) 783 return; 784 env = malloc(st.st_size + 1); 785 if (env == NULL) 786 goto out; 787 if (read(fd, env, st.st_size) != st.st_size) 788 goto out; 789 env[st.st_size] = '\0'; 790 boot_parse_cmdline(env); 791 out: 792 free(env); 793 close(fd); 794 } 795 796 static void 797 read_loader_env(const char *name, char *def_fn, bool once) 798 { 799 UINTN len; 800 char *fn, *freeme = NULL; 801 802 len = 0; 803 fn = def_fn; 804 if (efi_freebsd_getenv(name, NULL, &len) == EFI_BUFFER_TOO_SMALL) { 805 freeme = fn = malloc(len + 1); 806 if (fn != NULL) { 807 if (efi_freebsd_getenv(name, fn, &len) != EFI_SUCCESS) { 808 free(fn); 809 fn = NULL; 810 printf( 811 "Can't fetch FreeBSD::%s we know is there\n", name); 812 } else { 813 /* 814 * if tagged as 'once' delete the env variable so we 815 * only use it once. 816 */ 817 if (once) 818 efi_freebsd_delenv(name); 819 /* 820 * We malloced 1 more than len above, then redid the call. 821 * so now we have room at the end of the string to NUL terminate 822 * it here, even if the typical idium would have '- 1' here to 823 * not overflow. len should be the same on return both times. 824 */ 825 fn[len] = '\0'; 826 } 827 } else { 828 printf( 829 "Can't allocate %d bytes to fetch FreeBSD::%s env var\n", 830 len, name); 831 } 832 } 833 if (fn) { 834 printf(" Reading loader env vars from %s\n", fn); 835 parse_loader_efi_config(boot_img->DeviceHandle, fn); 836 } 837 } 838 839 840 841 EFI_STATUS 842 main(int argc, CHAR16 *argv[]) 843 { 844 EFI_GUID *guid; 845 int howto, i, uhowto; 846 UINTN k; 847 bool has_kbd, is_last; 848 char *s; 849 EFI_DEVICE_PATH *imgpath; 850 CHAR16 *text; 851 EFI_STATUS rv; 852 size_t sz, bosz = 0, bisz = 0; 853 UINT16 boot_order[100]; 854 char boot_info[4096]; 855 char buf[32]; 856 bool uefi_boot_mgr; 857 858 archsw.arch_autoload = efi_autoload; 859 archsw.arch_getdev = efi_getdev; 860 archsw.arch_copyin = efi_copyin; 861 archsw.arch_copyout = efi_copyout; 862 archsw.arch_readin = efi_readin; 863 archsw.arch_zfs_probe = efi_zfs_probe; 864 865 /* Get our loaded image protocol interface structure. */ 866 BS->HandleProtocol(IH, &imgid, (VOID**)&boot_img); 867 868 /* 869 * Chicken-and-egg problem; we want to have console output early, but 870 * some console attributes may depend on reading from eg. the boot 871 * device, which we can't do yet. We can use printf() etc. once this is 872 * done. So, we set it to the efi console, then call console init. This 873 * gets us printf early, but also primes the pump for all future console 874 * changes to take effect, regardless of where they come from. 875 */ 876 setenv("console", "efi", 1); 877 cons_probe(); 878 879 /* Init the time source */ 880 efi_time_init(); 881 882 /* 883 * Initialise the block cache. Set the upper limit. 884 */ 885 bcache_init(32768, 512); 886 887 /* 888 * Scan the BLOCK IO MEDIA handles then 889 * march through the device switch probing for things. 890 */ 891 i = efipart_inithandles(); 892 if (i != 0 && i != ENOENT) { 893 printf("efipart_inithandles failed with ERRNO %d, expect " 894 "failures\n", i); 895 } 896 897 for (i = 0; devsw[i] != NULL; i++) 898 if (devsw[i]->dv_init != NULL) 899 (devsw[i]->dv_init)(); 900 901 /* 902 * Detect console settings two different ways: one via the command 903 * args (eg -h) or via the UEFI ConOut variable. 904 */ 905 has_kbd = has_keyboard(); 906 howto = parse_args(argc, argv); 907 if (!has_kbd && (howto & RB_PROBE)) 908 howto |= RB_SERIAL | RB_MULTIPLE; 909 howto &= ~RB_PROBE; 910 uhowto = parse_uefi_con_out(); 911 912 /* 913 * Scan the BLOCK IO MEDIA handles then 914 * march through the device switch probing for things. 915 */ 916 i = efipart_inithandles(); 917 if (i != 0 && i != ENOENT) { 918 printf("efipart_inithandles failed with ERRNO %d, expect " 919 "failures\n", i); 920 } 921 922 for (i = 0; devsw[i] != NULL; i++) 923 if (devsw[i]->dv_init != NULL) 924 (devsw[i]->dv_init)(); 925 926 /* 927 * Read additional environment variables from the boot device's 928 * "LoaderEnv" file. Any boot loader environment variable may be set 929 * there, which are subtly different than loader.conf variables. Only 930 * the 'simple' ones may be set so things like foo_load="YES" won't work 931 * for two reasons. First, the parser is simplistic and doesn't grok 932 * quotes. Second, because the variables that cause an action to happen 933 * are parsed by the lua, 4th or whatever code that's not yet 934 * loaded. This is relative to the root directory when loader.efi is 935 * loaded off the UFS root drive (when chain booted), or from the ESP 936 * when directly loaded by the BIOS. 937 * 938 * We also read in NextLoaderEnv if it was specified. This allows next boot 939 * functionality to be implemented and to override anything in LoaderEnv. 940 */ 941 read_loader_env("LoaderEnv", "/efi/freebsd/loader.env", false); 942 read_loader_env("NextLoaderEnv", NULL, true); 943 944 /* 945 * We now have two notions of console. howto should be viewed as 946 * overrides. If console is already set, don't set it again. 947 */ 948 #define VIDEO_ONLY 0 949 #define SERIAL_ONLY RB_SERIAL 950 #define VID_SER_BOTH RB_MULTIPLE 951 #define SER_VID_BOTH (RB_SERIAL | RB_MULTIPLE) 952 #define CON_MASK (RB_SERIAL | RB_MULTIPLE) 953 if (strcmp(getenv("console"), "efi") == 0) { 954 if ((howto & CON_MASK) == 0) { 955 /* No override, uhowto is controlling and efi cons is perfect */ 956 howto = howto | (uhowto & CON_MASK); 957 } else if ((howto & CON_MASK) == (uhowto & CON_MASK)) { 958 /* override matches what UEFI told us, efi console is perfect */ 959 } else if ((uhowto & (CON_MASK)) != 0) { 960 /* 961 * We detected a serial console on ConOut. All possible 962 * overrides include serial. We can't really override what efi 963 * gives us, so we use it knowing it's the best choice. 964 */ 965 /* Do nothing */ 966 } else { 967 /* 968 * We detected some kind of serial in the override, but ConOut 969 * has no serial, so we have to sort out which case it really is. 970 */ 971 switch (howto & CON_MASK) { 972 case SERIAL_ONLY: 973 setenv("console", "comconsole", 1); 974 break; 975 case VID_SER_BOTH: 976 setenv("console", "efi comconsole", 1); 977 break; 978 case SER_VID_BOTH: 979 setenv("console", "comconsole efi", 1); 980 break; 981 /* case VIDEO_ONLY can't happen -- it's the first if above */ 982 } 983 } 984 } 985 986 /* 987 * howto is set now how we want to export the flags to the kernel, so 988 * set the env based on it. 989 */ 990 boot_howto_to_env(howto); 991 992 if (efi_copy_init()) { 993 printf("failed to allocate staging area\n"); 994 return (EFI_BUFFER_TOO_SMALL); 995 } 996 997 if ((s = getenv("fail_timeout")) != NULL) 998 fail_timeout = strtol(s, NULL, 10); 999 1000 printf("%s\n", bootprog_info); 1001 printf(" Command line arguments:"); 1002 for (i = 0; i < argc; i++) 1003 printf(" %S", argv[i]); 1004 printf("\n"); 1005 1006 printf(" EFI version: %d.%02d\n", ST->Hdr.Revision >> 16, 1007 ST->Hdr.Revision & 0xffff); 1008 printf(" EFI Firmware: %S (rev %d.%02d)\n", ST->FirmwareVendor, 1009 ST->FirmwareRevision >> 16, ST->FirmwareRevision & 0xffff); 1010 printf(" Console: %s (%#x)\n", getenv("console"), howto); 1011 1012 /* Determine the devpath of our image so we can prefer it. */ 1013 text = efi_devpath_name(boot_img->FilePath); 1014 if (text != NULL) { 1015 printf(" Load Path: %S\n", text); 1016 efi_setenv_freebsd_wcs("LoaderPath", text); 1017 efi_free_devpath_name(text); 1018 } 1019 1020 rv = BS->HandleProtocol(boot_img->DeviceHandle, &devid, (void **)&imgpath); 1021 if (rv == EFI_SUCCESS) { 1022 text = efi_devpath_name(imgpath); 1023 if (text != NULL) { 1024 printf(" Load Device: %S\n", text); 1025 efi_setenv_freebsd_wcs("LoaderDev", text); 1026 efi_free_devpath_name(text); 1027 } 1028 } 1029 1030 if (getenv("uefi_ignore_boot_mgr") != NULL) { 1031 printf(" Ignoring UEFI boot manager\n"); 1032 uefi_boot_mgr = false; 1033 } else { 1034 uefi_boot_mgr = true; 1035 boot_current = 0; 1036 sz = sizeof(boot_current); 1037 rv = efi_global_getenv("BootCurrent", &boot_current, &sz); 1038 if (rv == EFI_SUCCESS) 1039 printf(" BootCurrent: %04x\n", boot_current); 1040 else { 1041 boot_current = 0xffff; 1042 uefi_boot_mgr = false; 1043 } 1044 1045 sz = sizeof(boot_order); 1046 rv = efi_global_getenv("BootOrder", &boot_order, &sz); 1047 if (rv == EFI_SUCCESS) { 1048 printf(" BootOrder:"); 1049 for (i = 0; i < sz / sizeof(boot_order[0]); i++) 1050 printf(" %04x%s", boot_order[i], 1051 boot_order[i] == boot_current ? "[*]" : ""); 1052 printf("\n"); 1053 is_last = boot_order[(sz / sizeof(boot_order[0])) - 1] == boot_current; 1054 bosz = sz; 1055 } else if (uefi_boot_mgr) { 1056 /* 1057 * u-boot doesn't set BootOrder, but otherwise participates in the 1058 * boot manager protocol. So we fake it here and don't consider it 1059 * a failure. 1060 */ 1061 bosz = sizeof(boot_order[0]); 1062 boot_order[0] = boot_current; 1063 is_last = true; 1064 } 1065 } 1066 1067 /* 1068 * Next, find the boot info structure the UEFI boot manager is 1069 * supposed to setup. We need this so we can walk through it to 1070 * find where we are in the booting process and what to try to 1071 * boot next. 1072 */ 1073 if (uefi_boot_mgr) { 1074 snprintf(buf, sizeof(buf), "Boot%04X", boot_current); 1075 sz = sizeof(boot_info); 1076 rv = efi_global_getenv(buf, &boot_info, &sz); 1077 if (rv == EFI_SUCCESS) 1078 bisz = sz; 1079 else 1080 uefi_boot_mgr = false; 1081 } 1082 1083 /* 1084 * Disable the watchdog timer. By default the boot manager sets 1085 * the timer to 5 minutes before invoking a boot option. If we 1086 * want to return to the boot manager, we have to disable the 1087 * watchdog timer and since we're an interactive program, we don't 1088 * want to wait until the user types "quit". The timer may have 1089 * fired by then. We don't care if this fails. It does not prevent 1090 * normal functioning in any way... 1091 */ 1092 BS->SetWatchdogTimer(0, 0, 0, NULL); 1093 1094 /* 1095 * Initialize the trusted/forbidden certificates from UEFI. 1096 * They will be later used to verify the manifest(s), 1097 * which should contain hashes of verified files. 1098 * This needs to be initialized before any configuration files 1099 * are loaded. 1100 */ 1101 #ifdef EFI_SECUREBOOT 1102 ve_efi_init(); 1103 #endif 1104 1105 /* 1106 * Try and find a good currdev based on the image that was booted. 1107 * It might be desirable here to have a short pause to allow falling 1108 * through to the boot loader instead of returning instantly to follow 1109 * the boot protocol and also allow an escape hatch for users wishing 1110 * to try something different. 1111 */ 1112 if (find_currdev(uefi_boot_mgr, is_last, boot_info, bisz) != 0) 1113 if (uefi_boot_mgr && 1114 !interactive_interrupt("Failed to find bootable partition")) 1115 return (EFI_NOT_FOUND); 1116 1117 efi_init_environment(); 1118 1119 #if !defined(__arm__) 1120 for (k = 0; k < ST->NumberOfTableEntries; k++) { 1121 guid = &ST->ConfigurationTable[k].VendorGuid; 1122 if (!memcmp(guid, &smbios, sizeof(EFI_GUID))) { 1123 char buf[40]; 1124 1125 snprintf(buf, sizeof(buf), "%p", 1126 ST->ConfigurationTable[k].VendorTable); 1127 setenv("hint.smbios.0.mem", buf, 1); 1128 smbios_detect(ST->ConfigurationTable[k].VendorTable); 1129 break; 1130 } 1131 } 1132 #endif 1133 1134 interact(); /* doesn't return */ 1135 1136 return (EFI_SUCCESS); /* keep compiler happy */ 1137 } 1138 1139 COMMAND_SET(poweroff, "poweroff", "power off the system", command_poweroff); 1140 1141 static int 1142 command_poweroff(int argc __unused, char *argv[] __unused) 1143 { 1144 int i; 1145 1146 for (i = 0; devsw[i] != NULL; ++i) 1147 if (devsw[i]->dv_cleanup != NULL) 1148 (devsw[i]->dv_cleanup)(); 1149 1150 RS->ResetSystem(EfiResetShutdown, EFI_SUCCESS, 0, NULL); 1151 1152 /* NOTREACHED */ 1153 return (CMD_ERROR); 1154 } 1155 1156 COMMAND_SET(reboot, "reboot", "reboot the system", command_reboot); 1157 1158 static int 1159 command_reboot(int argc, char *argv[]) 1160 { 1161 int i; 1162 1163 for (i = 0; devsw[i] != NULL; ++i) 1164 if (devsw[i]->dv_cleanup != NULL) 1165 (devsw[i]->dv_cleanup)(); 1166 1167 RS->ResetSystem(EfiResetCold, EFI_SUCCESS, 0, NULL); 1168 1169 /* NOTREACHED */ 1170 return (CMD_ERROR); 1171 } 1172 1173 COMMAND_SET(quit, "quit", "exit the loader", command_quit); 1174 1175 static int 1176 command_quit(int argc, char *argv[]) 1177 { 1178 exit(0); 1179 return (CMD_OK); 1180 } 1181 1182 COMMAND_SET(memmap, "memmap", "print memory map", command_memmap); 1183 1184 static int 1185 command_memmap(int argc __unused, char *argv[] __unused) 1186 { 1187 UINTN sz; 1188 EFI_MEMORY_DESCRIPTOR *map, *p; 1189 UINTN key, dsz; 1190 UINT32 dver; 1191 EFI_STATUS status; 1192 int i, ndesc; 1193 char line[80]; 1194 1195 sz = 0; 1196 status = BS->GetMemoryMap(&sz, 0, &key, &dsz, &dver); 1197 if (status != EFI_BUFFER_TOO_SMALL) { 1198 printf("Can't determine memory map size\n"); 1199 return (CMD_ERROR); 1200 } 1201 map = malloc(sz); 1202 status = BS->GetMemoryMap(&sz, map, &key, &dsz, &dver); 1203 if (EFI_ERROR(status)) { 1204 printf("Can't read memory map\n"); 1205 return (CMD_ERROR); 1206 } 1207 1208 ndesc = sz / dsz; 1209 snprintf(line, sizeof(line), "%23s %12s %12s %8s %4s\n", 1210 "Type", "Physical", "Virtual", "#Pages", "Attr"); 1211 pager_open(); 1212 if (pager_output(line)) { 1213 pager_close(); 1214 return (CMD_OK); 1215 } 1216 1217 for (i = 0, p = map; i < ndesc; 1218 i++, p = NextMemoryDescriptor(p, dsz)) { 1219 snprintf(line, sizeof(line), "%23s %012jx %012jx %08jx ", 1220 efi_memory_type(p->Type), (uintmax_t)p->PhysicalStart, 1221 (uintmax_t)p->VirtualStart, (uintmax_t)p->NumberOfPages); 1222 if (pager_output(line)) 1223 break; 1224 1225 if (p->Attribute & EFI_MEMORY_UC) 1226 printf("UC "); 1227 if (p->Attribute & EFI_MEMORY_WC) 1228 printf("WC "); 1229 if (p->Attribute & EFI_MEMORY_WT) 1230 printf("WT "); 1231 if (p->Attribute & EFI_MEMORY_WB) 1232 printf("WB "); 1233 if (p->Attribute & EFI_MEMORY_UCE) 1234 printf("UCE "); 1235 if (p->Attribute & EFI_MEMORY_WP) 1236 printf("WP "); 1237 if (p->Attribute & EFI_MEMORY_RP) 1238 printf("RP "); 1239 if (p->Attribute & EFI_MEMORY_XP) 1240 printf("XP "); 1241 if (p->Attribute & EFI_MEMORY_NV) 1242 printf("NV "); 1243 if (p->Attribute & EFI_MEMORY_MORE_RELIABLE) 1244 printf("MR "); 1245 if (p->Attribute & EFI_MEMORY_RO) 1246 printf("RO "); 1247 if (pager_output("\n")) 1248 break; 1249 } 1250 1251 pager_close(); 1252 return (CMD_OK); 1253 } 1254 1255 COMMAND_SET(configuration, "configuration", "print configuration tables", 1256 command_configuration); 1257 1258 static int 1259 command_configuration(int argc, char *argv[]) 1260 { 1261 UINTN i; 1262 char *name; 1263 1264 printf("NumberOfTableEntries=%lu\n", 1265 (unsigned long)ST->NumberOfTableEntries); 1266 1267 for (i = 0; i < ST->NumberOfTableEntries; i++) { 1268 EFI_GUID *guid; 1269 1270 printf(" "); 1271 guid = &ST->ConfigurationTable[i].VendorGuid; 1272 1273 if (efi_guid_to_name(guid, &name) == true) { 1274 printf(name); 1275 free(name); 1276 } else { 1277 printf("Error while translating UUID to name"); 1278 } 1279 printf(" at %p\n", ST->ConfigurationTable[i].VendorTable); 1280 } 1281 1282 return (CMD_OK); 1283 } 1284 1285 1286 COMMAND_SET(mode, "mode", "change or display EFI text modes", command_mode); 1287 1288 static int 1289 command_mode(int argc, char *argv[]) 1290 { 1291 UINTN cols, rows; 1292 unsigned int mode; 1293 int i; 1294 char *cp; 1295 char rowenv[8]; 1296 EFI_STATUS status; 1297 SIMPLE_TEXT_OUTPUT_INTERFACE *conout; 1298 extern void HO(void); 1299 1300 conout = ST->ConOut; 1301 1302 if (argc > 1) { 1303 mode = strtol(argv[1], &cp, 0); 1304 if (cp[0] != '\0') { 1305 printf("Invalid mode\n"); 1306 return (CMD_ERROR); 1307 } 1308 status = conout->QueryMode(conout, mode, &cols, &rows); 1309 if (EFI_ERROR(status)) { 1310 printf("invalid mode %d\n", mode); 1311 return (CMD_ERROR); 1312 } 1313 status = conout->SetMode(conout, mode); 1314 if (EFI_ERROR(status)) { 1315 printf("couldn't set mode %d\n", mode); 1316 return (CMD_ERROR); 1317 } 1318 sprintf(rowenv, "%u", (unsigned)rows); 1319 setenv("LINES", rowenv, 1); 1320 HO(); /* set cursor */ 1321 return (CMD_OK); 1322 } 1323 1324 printf("Current mode: %d\n", conout->Mode->Mode); 1325 for (i = 0; i <= conout->Mode->MaxMode; i++) { 1326 status = conout->QueryMode(conout, i, &cols, &rows); 1327 if (EFI_ERROR(status)) 1328 continue; 1329 printf("Mode %d: %u columns, %u rows\n", i, (unsigned)cols, 1330 (unsigned)rows); 1331 } 1332 1333 if (i != 0) 1334 printf("Select a mode with the command \"mode <number>\"\n"); 1335 1336 return (CMD_OK); 1337 } 1338 1339 COMMAND_SET(lsefi, "lsefi", "list EFI handles", command_lsefi); 1340 1341 static int 1342 command_lsefi(int argc __unused, char *argv[] __unused) 1343 { 1344 char *name; 1345 EFI_HANDLE *buffer = NULL; 1346 EFI_HANDLE handle; 1347 UINTN bufsz = 0, i, j; 1348 EFI_STATUS status; 1349 int ret = 0; 1350 1351 status = BS->LocateHandle(AllHandles, NULL, NULL, &bufsz, buffer); 1352 if (status != EFI_BUFFER_TOO_SMALL) { 1353 snprintf(command_errbuf, sizeof (command_errbuf), 1354 "unexpected error: %lld", (long long)status); 1355 return (CMD_ERROR); 1356 } 1357 if ((buffer = malloc(bufsz)) == NULL) { 1358 sprintf(command_errbuf, "out of memory"); 1359 return (CMD_ERROR); 1360 } 1361 1362 status = BS->LocateHandle(AllHandles, NULL, NULL, &bufsz, buffer); 1363 if (EFI_ERROR(status)) { 1364 free(buffer); 1365 snprintf(command_errbuf, sizeof (command_errbuf), 1366 "LocateHandle() error: %lld", (long long)status); 1367 return (CMD_ERROR); 1368 } 1369 1370 pager_open(); 1371 for (i = 0; i < (bufsz / sizeof (EFI_HANDLE)); i++) { 1372 UINTN nproto = 0; 1373 EFI_GUID **protocols = NULL; 1374 1375 handle = buffer[i]; 1376 printf("Handle %p", handle); 1377 if (pager_output("\n")) 1378 break; 1379 /* device path */ 1380 1381 status = BS->ProtocolsPerHandle(handle, &protocols, &nproto); 1382 if (EFI_ERROR(status)) { 1383 snprintf(command_errbuf, sizeof (command_errbuf), 1384 "ProtocolsPerHandle() error: %lld", 1385 (long long)status); 1386 continue; 1387 } 1388 1389 for (j = 0; j < nproto; j++) { 1390 if (efi_guid_to_name(protocols[j], &name) == true) { 1391 printf(" %s", name); 1392 free(name); 1393 } else { 1394 printf("Error while translating UUID to name"); 1395 } 1396 if ((ret = pager_output("\n")) != 0) 1397 break; 1398 } 1399 BS->FreePool(protocols); 1400 if (ret != 0) 1401 break; 1402 } 1403 pager_close(); 1404 free(buffer); 1405 return (CMD_OK); 1406 } 1407 1408 #ifdef LOADER_FDT_SUPPORT 1409 extern int command_fdt_internal(int argc, char *argv[]); 1410 1411 /* 1412 * Since proper fdt command handling function is defined in fdt_loader_cmd.c, 1413 * and declaring it as extern is in contradiction with COMMAND_SET() macro 1414 * (which uses static pointer), we're defining wrapper function, which 1415 * calls the proper fdt handling routine. 1416 */ 1417 static int 1418 command_fdt(int argc, char *argv[]) 1419 { 1420 1421 return (command_fdt_internal(argc, argv)); 1422 } 1423 1424 COMMAND_SET(fdt, "fdt", "flattened device tree handling", command_fdt); 1425 #endif 1426 1427 /* 1428 * Chain load another efi loader. 1429 */ 1430 static int 1431 command_chain(int argc, char *argv[]) 1432 { 1433 EFI_GUID LoadedImageGUID = LOADED_IMAGE_PROTOCOL; 1434 EFI_HANDLE loaderhandle; 1435 EFI_LOADED_IMAGE *loaded_image; 1436 EFI_STATUS status; 1437 struct stat st; 1438 struct devdesc *dev; 1439 char *name, *path; 1440 void *buf; 1441 int fd; 1442 1443 if (argc < 2) { 1444 command_errmsg = "wrong number of arguments"; 1445 return (CMD_ERROR); 1446 } 1447 1448 name = argv[1]; 1449 1450 if ((fd = open(name, O_RDONLY)) < 0) { 1451 command_errmsg = "no such file"; 1452 return (CMD_ERROR); 1453 } 1454 1455 if (fstat(fd, &st) < -1) { 1456 command_errmsg = "stat failed"; 1457 close(fd); 1458 return (CMD_ERROR); 1459 } 1460 1461 status = BS->AllocatePool(EfiLoaderCode, (UINTN)st.st_size, &buf); 1462 if (status != EFI_SUCCESS) { 1463 command_errmsg = "failed to allocate buffer"; 1464 close(fd); 1465 return (CMD_ERROR); 1466 } 1467 if (read(fd, buf, st.st_size) != st.st_size) { 1468 command_errmsg = "error while reading the file"; 1469 (void)BS->FreePool(buf); 1470 close(fd); 1471 return (CMD_ERROR); 1472 } 1473 close(fd); 1474 status = BS->LoadImage(FALSE, IH, NULL, buf, st.st_size, &loaderhandle); 1475 (void)BS->FreePool(buf); 1476 if (status != EFI_SUCCESS) { 1477 command_errmsg = "LoadImage failed"; 1478 return (CMD_ERROR); 1479 } 1480 status = BS->HandleProtocol(loaderhandle, &LoadedImageGUID, 1481 (void **)&loaded_image); 1482 1483 if (argc > 2) { 1484 int i, len = 0; 1485 CHAR16 *argp; 1486 1487 for (i = 2; i < argc; i++) 1488 len += strlen(argv[i]) + 1; 1489 1490 len *= sizeof (*argp); 1491 loaded_image->LoadOptions = argp = malloc (len); 1492 loaded_image->LoadOptionsSize = len; 1493 for (i = 2; i < argc; i++) { 1494 char *ptr = argv[i]; 1495 while (*ptr) 1496 *(argp++) = *(ptr++); 1497 *(argp++) = ' '; 1498 } 1499 *(--argv) = 0; 1500 } 1501 1502 if (efi_getdev((void **)&dev, name, (const char **)&path) == 0) { 1503 #ifdef EFI_ZFS_BOOT 1504 struct zfs_devdesc *z_dev; 1505 #endif 1506 struct disk_devdesc *d_dev; 1507 pdinfo_t *hd, *pd; 1508 1509 switch (dev->d_dev->dv_type) { 1510 #ifdef EFI_ZFS_BOOT 1511 case DEVT_ZFS: 1512 z_dev = (struct zfs_devdesc *)dev; 1513 loaded_image->DeviceHandle = 1514 efizfs_get_handle_by_guid(z_dev->pool_guid); 1515 break; 1516 #endif 1517 case DEVT_NET: 1518 loaded_image->DeviceHandle = 1519 efi_find_handle(dev->d_dev, dev->d_unit); 1520 break; 1521 default: 1522 hd = efiblk_get_pdinfo(dev); 1523 if (STAILQ_EMPTY(&hd->pd_part)) { 1524 loaded_image->DeviceHandle = hd->pd_handle; 1525 break; 1526 } 1527 d_dev = (struct disk_devdesc *)dev; 1528 STAILQ_FOREACH(pd, &hd->pd_part, pd_link) { 1529 /* 1530 * d_partition should be 255 1531 */ 1532 if (pd->pd_unit == (uint32_t)d_dev->d_slice) { 1533 loaded_image->DeviceHandle = 1534 pd->pd_handle; 1535 break; 1536 } 1537 } 1538 break; 1539 } 1540 } 1541 1542 dev_cleanup(); 1543 status = BS->StartImage(loaderhandle, NULL, NULL); 1544 if (status != EFI_SUCCESS) { 1545 command_errmsg = "StartImage failed"; 1546 free(loaded_image->LoadOptions); 1547 loaded_image->LoadOptions = NULL; 1548 status = BS->UnloadImage(loaded_image); 1549 return (CMD_ERROR); 1550 } 1551 1552 return (CMD_ERROR); /* not reached */ 1553 } 1554 1555 COMMAND_SET(chain, "chain", "chain load file", command_chain); 1556