xref: /freebsd/stand/efi/loader/main.c (revision bbce101753b9f68edd34180cb617fff9327a9e0b)
1 /*-
2  * Copyright (c) 2008-2010 Rui Paulo
3  * Copyright (c) 2006 Marcel Moolenaar
4  * All rights reserved.
5  *
6  * Copyright (c) 2016-2019 Netflix, Inc. written by M. Warner Losh
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <stand.h>
34 
35 #include <sys/disk.h>
36 #include <sys/param.h>
37 #include <sys/reboot.h>
38 #include <sys/boot.h>
39 #include <paths.h>
40 #include <stdint.h>
41 #include <string.h>
42 #include <setjmp.h>
43 #include <disk.h>
44 
45 #include <efi.h>
46 #include <efilib.h>
47 #include <efichar.h>
48 
49 #include <uuid.h>
50 
51 #include <bootstrap.h>
52 #include <smbios.h>
53 
54 #include "efizfs.h"
55 
56 #include "loader_efi.h"
57 
58 struct arch_switch archsw;	/* MI/MD interface boundary */
59 
60 EFI_GUID acpi = ACPI_TABLE_GUID;
61 EFI_GUID acpi20 = ACPI_20_TABLE_GUID;
62 EFI_GUID devid = DEVICE_PATH_PROTOCOL;
63 EFI_GUID imgid = LOADED_IMAGE_PROTOCOL;
64 EFI_GUID mps = MPS_TABLE_GUID;
65 EFI_GUID netid = EFI_SIMPLE_NETWORK_PROTOCOL;
66 EFI_GUID smbios = SMBIOS_TABLE_GUID;
67 EFI_GUID smbios3 = SMBIOS3_TABLE_GUID;
68 EFI_GUID dxe = DXE_SERVICES_TABLE_GUID;
69 EFI_GUID hoblist = HOB_LIST_TABLE_GUID;
70 EFI_GUID lzmadecomp = LZMA_DECOMPRESSION_GUID;
71 EFI_GUID mpcore = ARM_MP_CORE_INFO_TABLE_GUID;
72 EFI_GUID esrt = ESRT_TABLE_GUID;
73 EFI_GUID memtype = MEMORY_TYPE_INFORMATION_TABLE_GUID;
74 EFI_GUID debugimg = DEBUG_IMAGE_INFO_TABLE_GUID;
75 EFI_GUID fdtdtb = FDT_TABLE_GUID;
76 EFI_GUID inputid = SIMPLE_TEXT_INPUT_PROTOCOL;
77 
78 /*
79  * Number of seconds to wait for a keystroke before exiting with failure
80  * in the event no currdev is found. -2 means always break, -1 means
81  * never break, 0 means poll once and then reboot, > 0 means wait for
82  * that many seconds. "fail_timeout" can be set in the environment as
83  * well.
84  */
85 static int fail_timeout = 5;
86 
87 /*
88  * Current boot variable
89  */
90 UINT16 boot_current;
91 
92 /*
93  * Image that we booted from.
94  */
95 EFI_LOADED_IMAGE *boot_img;
96 
97 static bool
98 has_keyboard(void)
99 {
100 	EFI_STATUS status;
101 	EFI_DEVICE_PATH *path;
102 	EFI_HANDLE *hin, *hin_end, *walker;
103 	UINTN sz;
104 	bool retval = false;
105 
106 	/*
107 	 * Find all the handles that support the SIMPLE_TEXT_INPUT_PROTOCOL and
108 	 * do the typical dance to get the right sized buffer.
109 	 */
110 	sz = 0;
111 	hin = NULL;
112 	status = BS->LocateHandle(ByProtocol, &inputid, 0, &sz, 0);
113 	if (status == EFI_BUFFER_TOO_SMALL) {
114 		hin = (EFI_HANDLE *)malloc(sz);
115 		status = BS->LocateHandle(ByProtocol, &inputid, 0, &sz,
116 		    hin);
117 		if (EFI_ERROR(status))
118 			free(hin);
119 	}
120 	if (EFI_ERROR(status))
121 		return retval;
122 
123 	/*
124 	 * Look at each of the handles. If it supports the device path protocol,
125 	 * use it to get the device path for this handle. Then see if that
126 	 * device path matches either the USB device path for keyboards or the
127 	 * legacy device path for keyboards.
128 	 */
129 	hin_end = &hin[sz / sizeof(*hin)];
130 	for (walker = hin; walker < hin_end; walker++) {
131 		status = OpenProtocolByHandle(*walker, &devid, (void **)&path);
132 		if (EFI_ERROR(status))
133 			continue;
134 
135 		while (!IsDevicePathEnd(path)) {
136 			/*
137 			 * Check for the ACPI keyboard node. All PNP3xx nodes
138 			 * are keyboards of different flavors. Note: It is
139 			 * unclear of there's always a keyboard node when
140 			 * there's a keyboard controller, or if there's only one
141 			 * when a keyboard is detected at boot.
142 			 */
143 			if (DevicePathType(path) == ACPI_DEVICE_PATH &&
144 			    (DevicePathSubType(path) == ACPI_DP ||
145 				DevicePathSubType(path) == ACPI_EXTENDED_DP)) {
146 				ACPI_HID_DEVICE_PATH  *acpi;
147 
148 				acpi = (ACPI_HID_DEVICE_PATH *)(void *)path;
149 				if ((EISA_ID_TO_NUM(acpi->HID) & 0xff00) == 0x300 &&
150 				    (acpi->HID & 0xffff) == PNP_EISA_ID_CONST) {
151 					retval = true;
152 					goto out;
153 				}
154 			/*
155 			 * Check for USB keyboard node, if present. Unlike a
156 			 * PS/2 keyboard, these definitely only appear when
157 			 * connected to the system.
158 			 */
159 			} else if (DevicePathType(path) == MESSAGING_DEVICE_PATH &&
160 			    DevicePathSubType(path) == MSG_USB_CLASS_DP) {
161 				USB_CLASS_DEVICE_PATH *usb;
162 
163 				usb = (USB_CLASS_DEVICE_PATH *)(void *)path;
164 				if (usb->DeviceClass == 3 && /* HID */
165 				    usb->DeviceSubClass == 1 && /* Boot devices */
166 				    usb->DeviceProtocol == 1) { /* Boot keyboards */
167 					retval = true;
168 					goto out;
169 				}
170 			}
171 			path = NextDevicePathNode(path);
172 		}
173 	}
174 out:
175 	free(hin);
176 	return retval;
177 }
178 
179 static void
180 set_currdev(const char *devname)
181 {
182 
183 	env_setenv("currdev", EV_VOLATILE, devname, efi_setcurrdev, env_nounset);
184 	env_setenv("loaddev", EV_VOLATILE, devname, env_noset, env_nounset);
185 }
186 
187 static void
188 set_currdev_devdesc(struct devdesc *currdev)
189 {
190 	const char *devname;
191 
192 	devname = efi_fmtdev(currdev);
193 	printf("Setting currdev to %s\n", devname);
194 	set_currdev(devname);
195 }
196 
197 static void
198 set_currdev_devsw(struct devsw *dev, int unit)
199 {
200 	struct devdesc currdev;
201 
202 	currdev.d_dev = dev;
203 	currdev.d_unit = unit;
204 
205 	set_currdev_devdesc(&currdev);
206 }
207 
208 static void
209 set_currdev_pdinfo(pdinfo_t *dp)
210 {
211 
212 	/*
213 	 * Disks are special: they have partitions. if the parent
214 	 * pointer is non-null, we're a partition not a full disk
215 	 * and we need to adjust currdev appropriately.
216 	 */
217 	if (dp->pd_devsw->dv_type == DEVT_DISK) {
218 		struct disk_devdesc currdev;
219 
220 		currdev.dd.d_dev = dp->pd_devsw;
221 		if (dp->pd_parent == NULL) {
222 			currdev.dd.d_unit = dp->pd_unit;
223 			currdev.d_slice = D_SLICENONE;
224 			currdev.d_partition = D_PARTNONE;
225 		} else {
226 			currdev.dd.d_unit = dp->pd_parent->pd_unit;
227 			currdev.d_slice = dp->pd_unit;
228 			currdev.d_partition = D_PARTISGPT; /* XXX Assumes GPT */
229 		}
230 		set_currdev_devdesc((struct devdesc *)&currdev);
231 	} else {
232 		set_currdev_devsw(dp->pd_devsw, dp->pd_unit);
233 	}
234 }
235 
236 static bool
237 sanity_check_currdev(void)
238 {
239 	struct stat st;
240 
241 	return (stat(PATH_DEFAULTS_LOADER_CONF, &st) == 0 ||
242 	    stat(PATH_KERNEL, &st) == 0);
243 }
244 
245 #ifdef EFI_ZFS_BOOT
246 static bool
247 probe_zfs_currdev(uint64_t guid)
248 {
249 	char *devname;
250 	struct zfs_devdesc currdev;
251 
252 	currdev.dd.d_dev = &zfs_dev;
253 	currdev.dd.d_unit = 0;
254 	currdev.pool_guid = guid;
255 	currdev.root_guid = 0;
256 	set_currdev_devdesc((struct devdesc *)&currdev);
257 	devname = efi_fmtdev(&currdev);
258 	init_zfs_bootenv(devname);
259 
260 	return (sanity_check_currdev());
261 }
262 #endif
263 
264 static bool
265 try_as_currdev(pdinfo_t *hd, pdinfo_t *pp)
266 {
267 	uint64_t guid;
268 
269 #ifdef EFI_ZFS_BOOT
270 	/*
271 	 * If there's a zpool on this device, try it as a ZFS
272 	 * filesystem, which has somewhat different setup than all
273 	 * other types of fs due to imperfect loader integration.
274 	 * This all stems from ZFS being both a device (zpool) and
275 	 * a filesystem, plus the boot env feature.
276 	 */
277 	if (efizfs_get_guid_by_handle(pp->pd_handle, &guid))
278 		return (probe_zfs_currdev(guid));
279 #endif
280 	/*
281 	 * All other filesystems just need the pdinfo
282 	 * initialized in the standard way.
283 	 */
284 	set_currdev_pdinfo(pp);
285 	return (sanity_check_currdev());
286 }
287 
288 /*
289  * Sometimes we get filenames that are all upper case
290  * and/or have backslashes in them. Filter all this out
291  * if it looks like we need to do so.
292  */
293 static void
294 fix_dosisms(char *p)
295 {
296 	while (*p) {
297 		if (isupper(*p))
298 			*p = tolower(*p);
299 		else if (*p == '\\')
300 			*p = '/';
301 		p++;
302 	}
303 }
304 
305 #define SIZE(dp, edp) (size_t)((intptr_t)(void *)edp - (intptr_t)(void *)dp)
306 
307 enum { BOOT_INFO_OK = 0, BAD_CHOICE = 1, NOT_SPECIFIC = 2  };
308 static int
309 match_boot_info(char *boot_info, size_t bisz)
310 {
311 	uint32_t attr;
312 	uint16_t fplen;
313 	size_t len;
314 	char *walker, *ep;
315 	EFI_DEVICE_PATH *dp, *edp, *first_dp, *last_dp;
316 	pdinfo_t *pp;
317 	CHAR16 *descr;
318 	char *kernel = NULL;
319 	FILEPATH_DEVICE_PATH  *fp;
320 	struct stat st;
321 	CHAR16 *text;
322 
323 	/*
324 	 * FreeBSD encodes it's boot loading path into the boot loader
325 	 * BootXXXX variable. We look for the last one in the path
326 	 * and use that to load the kernel. However, if we only fine
327 	 * one DEVICE_PATH, then there's nothing specific and we should
328 	 * fall back.
329 	 *
330 	 * In an ideal world, we'd look at the image handle we were
331 	 * passed, match up with the loader we are and then return the
332 	 * next one in the path. This would be most flexible and cover
333 	 * many chain booting scenarios where you need to use this
334 	 * boot loader to get to the next boot loader. However, that
335 	 * doesn't work. We rarely have the path to the image booted
336 	 * (just the device) so we can't count on that. So, we do the
337 	 * enxt best thing, we look through the device path(s) passed
338 	 * in the BootXXXX varaible. If there's only one, we return
339 	 * NOT_SPECIFIC. Otherwise, we look at the last one and try to
340 	 * load that. If we can, we return BOOT_INFO_OK. Otherwise we
341 	 * return BAD_CHOICE for the caller to sort out.
342 	 */
343 	if (bisz < sizeof(attr) + sizeof(fplen) + sizeof(CHAR16))
344 		return NOT_SPECIFIC;
345 	walker = boot_info;
346 	ep = walker + bisz;
347 	memcpy(&attr, walker, sizeof(attr));
348 	walker += sizeof(attr);
349 	memcpy(&fplen, walker, sizeof(fplen));
350 	walker += sizeof(fplen);
351 	descr = (CHAR16 *)(intptr_t)walker;
352 	len = ucs2len(descr);
353 	walker += (len + 1) * sizeof(CHAR16);
354 	last_dp = first_dp = dp = (EFI_DEVICE_PATH *)walker;
355 	edp = (EFI_DEVICE_PATH *)(walker + fplen);
356 	if ((char *)edp > ep)
357 		return NOT_SPECIFIC;
358 	while (dp < edp && SIZE(dp, edp) > sizeof(EFI_DEVICE_PATH)) {
359 		text = efi_devpath_name(dp);
360 		if (text != NULL) {
361 			printf("   BootInfo Path: %S\n", text);
362 			efi_free_devpath_name(text);
363 		}
364 		last_dp = dp;
365 		dp = (EFI_DEVICE_PATH *)((char *)dp + efi_devpath_length(dp));
366 	}
367 
368 	/*
369 	 * If there's only one item in the list, then nothing was
370 	 * specified. Or if the last path doesn't have a media
371 	 * path in it. Those show up as various VenHw() nodes
372 	 * which are basically opaque to us. Don't count those
373 	 * as something specifc.
374 	 */
375 	if (last_dp == first_dp) {
376 		printf("Ignoring Boot%04x: Only one DP found\n", boot_current);
377 		return NOT_SPECIFIC;
378 	}
379 	if (efi_devpath_to_media_path(last_dp) == NULL) {
380 		printf("Ignoring Boot%04x: No Media Path\n", boot_current);
381 		return NOT_SPECIFIC;
382 	}
383 
384 	/*
385 	 * OK. At this point we either have a good path or a bad one.
386 	 * Let's check.
387 	 */
388 	pp = efiblk_get_pdinfo_by_device_path(last_dp);
389 	if (pp == NULL) {
390 		printf("Ignoring Boot%04x: Device Path not found\n", boot_current);
391 		return BAD_CHOICE;
392 	}
393 	set_currdev_pdinfo(pp);
394 	if (!sanity_check_currdev()) {
395 		printf("Ignoring Boot%04x: sanity check failed\n", boot_current);
396 		return BAD_CHOICE;
397 	}
398 
399 	/*
400 	 * OK. We've found a device that matches, next we need to check the last
401 	 * component of the path. If it's a file, then we set the default kernel
402 	 * to that. Otherwise, just use this as the default root.
403 	 *
404 	 * Reminder: we're running very early, before we've parsed the defaults
405 	 * file, so we may need to have a hack override.
406 	 */
407 	dp = efi_devpath_last_node(last_dp);
408 	if (DevicePathType(dp) !=  MEDIA_DEVICE_PATH ||
409 	    DevicePathSubType(dp) != MEDIA_FILEPATH_DP) {
410 		printf("Using Boot%04x for root partition\n", boot_current);
411 		return (BOOT_INFO_OK);		/* use currdir, default kernel */
412 	}
413 	fp = (FILEPATH_DEVICE_PATH *)dp;
414 	ucs2_to_utf8(fp->PathName, &kernel);
415 	if (kernel == NULL) {
416 		printf("Not using Boot%04x: can't decode kernel\n", boot_current);
417 		return (BAD_CHOICE);
418 	}
419 	if (*kernel == '\\' || isupper(*kernel))
420 		fix_dosisms(kernel);
421 	if (stat(kernel, &st) != 0) {
422 		free(kernel);
423 		printf("Not using Boot%04x: can't find %s\n", boot_current,
424 		    kernel);
425 		return (BAD_CHOICE);
426 	}
427 	setenv("kernel", kernel, 1);
428 	free(kernel);
429 	text = efi_devpath_name(last_dp);
430 	if (text) {
431 		printf("Using Boot%04x %S + %s\n", boot_current, text,
432 		    kernel);
433 		efi_free_devpath_name(text);
434 	}
435 
436 	return (BOOT_INFO_OK);
437 }
438 
439 /*
440  * Look at the passed-in boot_info, if any. If we find it then we need
441  * to see if we can find ourselves in the boot chain. If we can, and
442  * there's another specified thing to boot next, assume that the file
443  * is loaded from / and use that for the root filesystem. If can't
444  * find the specified thing, we must fail the boot. If we're last on
445  * the list, then we fallback to looking for the first available /
446  * candidate (ZFS, if there's a bootable zpool, otherwise a UFS
447  * partition that has either /boot/defaults/loader.conf on it or
448  * /boot/kernel/kernel (the default kernel) that we can use.
449  *
450  * We always fail if we can't find the right thing. However, as
451  * a concession to buggy UEFI implementations, like u-boot, if
452  * we have determined that the host is violating the UEFI boot
453  * manager protocol, we'll signal the rest of the program that
454  * a drop to the OK boot loader prompt is possible.
455  */
456 static int
457 find_currdev(bool do_bootmgr, bool is_last,
458     char *boot_info, size_t boot_info_sz)
459 {
460 	pdinfo_t *dp, *pp;
461 	EFI_DEVICE_PATH *devpath, *copy;
462 	EFI_HANDLE h;
463 	CHAR16 *text;
464 	struct devsw *dev;
465 	int unit;
466 	uint64_t extra;
467 	int rv;
468 	char *rootdev;
469 
470 	/*
471 	 * First choice: if rootdev is already set, use that, even if
472 	 * it's wrong.
473 	 */
474 	rootdev = getenv("rootdev");
475 	if (rootdev != NULL) {
476 		printf("    Setting currdev to configured rootdev %s\n",
477 		    rootdev);
478 		set_currdev(rootdev);
479 		return (0);
480 	}
481 
482 	/*
483 	 * Second choice: If uefi_rootdev is set, translate that UEFI device
484 	 * path to the loader's internal name and use that.
485 	 */
486 	do {
487 		rootdev = getenv("uefi_rootdev");
488 		if (rootdev == NULL)
489 			break;
490 		devpath = efi_name_to_devpath(rootdev);
491 		if (devpath == NULL)
492 			break;
493 		dp = efiblk_get_pdinfo_by_device_path(devpath);
494 		efi_devpath_free(devpath);
495 		if (dp == NULL)
496 			break;
497 		printf("    Setting currdev to UEFI path %s\n",
498 		    rootdev);
499 		set_currdev_pdinfo(dp);
500 		return (0);
501 	} while (0);
502 
503 	/*
504 	 * Third choice: If we can find out image boot_info, and there's
505 	 * a follow-on boot image in that boot_info, use that. In this
506 	 * case root will be the partition specified in that image and
507 	 * we'll load the kernel specified by the file path. Should there
508 	 * not be a filepath, we use the default. This filepath overrides
509 	 * loader.conf.
510 	 */
511 	if (do_bootmgr) {
512 		rv = match_boot_info(boot_info, boot_info_sz);
513 		switch (rv) {
514 		case BOOT_INFO_OK:	/* We found it */
515 			return (0);
516 		case BAD_CHOICE:	/* specified file not found -> error */
517 			/* XXX do we want to have an escape hatch for last in boot order? */
518 			return (ENOENT);
519 		} /* Nothing specified, try normal match */
520 	}
521 
522 #ifdef EFI_ZFS_BOOT
523 	/*
524 	 * Did efi_zfs_probe() detect the boot pool? If so, use the zpool
525 	 * it found, if it's sane. ZFS is the only thing that looks for
526 	 * disks and pools to boot. This may change in the future, however,
527 	 * if we allow specifying which pool to boot from via UEFI variables
528 	 * rather than the bootenv stuff that FreeBSD uses today.
529 	 */
530 	if (pool_guid != 0) {
531 		printf("Trying ZFS pool\n");
532 		if (probe_zfs_currdev(pool_guid))
533 			return (0);
534 	}
535 #endif /* EFI_ZFS_BOOT */
536 
537 	/*
538 	 * Try to find the block device by its handle based on the
539 	 * image we're booting. If we can't find a sane partition,
540 	 * search all the other partitions of the disk. We do not
541 	 * search other disks because it's a violation of the UEFI
542 	 * boot protocol to do so. We fail and let UEFI go on to
543 	 * the next candidate.
544 	 */
545 	dp = efiblk_get_pdinfo_by_handle(boot_img->DeviceHandle);
546 	if (dp != NULL) {
547 		text = efi_devpath_name(dp->pd_devpath);
548 		if (text != NULL) {
549 			printf("Trying ESP: %S\n", text);
550 			efi_free_devpath_name(text);
551 		}
552 		set_currdev_pdinfo(dp);
553 		if (sanity_check_currdev())
554 			return (0);
555 		if (dp->pd_parent != NULL) {
556 			pdinfo_t *espdp = dp;
557 			dp = dp->pd_parent;
558 			STAILQ_FOREACH(pp, &dp->pd_part, pd_link) {
559 				/* Already tried the ESP */
560 				if (espdp == pp)
561 					continue;
562 				/*
563 				 * Roll up the ZFS special case
564 				 * for those partitions that have
565 				 * zpools on them.
566 				 */
567 				text = efi_devpath_name(pp->pd_devpath);
568 				if (text != NULL) {
569 					printf("Trying: %S\n", text);
570 					efi_free_devpath_name(text);
571 				}
572 				if (try_as_currdev(dp, pp))
573 					return (0);
574 			}
575 		}
576 	}
577 
578 	/*
579 	 * Try the device handle from our loaded image first.  If that
580 	 * fails, use the device path from the loaded image and see if
581 	 * any of the nodes in that path match one of the enumerated
582 	 * handles. Currently, this handle list is only for netboot.
583 	 */
584 	if (efi_handle_lookup(boot_img->DeviceHandle, &dev, &unit, &extra) == 0) {
585 		set_currdev_devsw(dev, unit);
586 		if (sanity_check_currdev())
587 			return (0);
588 	}
589 
590 	copy = NULL;
591 	devpath = efi_lookup_image_devpath(IH);
592 	while (devpath != NULL) {
593 		h = efi_devpath_handle(devpath);
594 		if (h == NULL)
595 			break;
596 
597 		free(copy);
598 		copy = NULL;
599 
600 		if (efi_handle_lookup(h, &dev, &unit, &extra) == 0) {
601 			set_currdev_devsw(dev, unit);
602 			if (sanity_check_currdev())
603 				return (0);
604 		}
605 
606 		devpath = efi_lookup_devpath(h);
607 		if (devpath != NULL) {
608 			copy = efi_devpath_trim(devpath);
609 			devpath = copy;
610 		}
611 	}
612 	free(copy);
613 
614 	return (ENOENT);
615 }
616 
617 static bool
618 interactive_interrupt(const char *msg)
619 {
620 	time_t now, then, last;
621 
622 	last = 0;
623 	now = then = getsecs();
624 	printf("%s\n", msg);
625 	if (fail_timeout == -2)		/* Always break to OK */
626 		return (true);
627 	if (fail_timeout == -1)		/* Never break to OK */
628 		return (false);
629 	do {
630 		if (last != now) {
631 			printf("press any key to interrupt reboot in %d seconds\r",
632 			    fail_timeout - (int)(now - then));
633 			last = now;
634 		}
635 
636 		/* XXX no pause or timeout wait for char */
637 		if (ischar())
638 			return (true);
639 		now = getsecs();
640 	} while (now - then < fail_timeout);
641 	return (false);
642 }
643 
644 static int
645 parse_args(int argc, CHAR16 *argv[])
646 {
647 	int i, j, howto;
648 	bool vargood;
649 	char var[128];
650 
651 	/*
652 	 * Parse the args to set the console settings, etc
653 	 * boot1.efi passes these in, if it can read /boot.config or /boot/config
654 	 * or iPXE may be setup to pass these in. Or the optional argument in the
655 	 * boot environment was used to pass these arguments in (in which case
656 	 * neither /boot.config nor /boot/config are consulted).
657 	 *
658 	 * Loop through the args, and for each one that contains an '=' that is
659 	 * not the first character, add it to the environment.  This allows
660 	 * loader and kernel env vars to be passed on the command line.  Convert
661 	 * args from UCS-2 to ASCII (16 to 8 bit) as they are copied (though this
662 	 * method is flawed for non-ASCII characters).
663 	 */
664 	howto = 0;
665 	for (i = 1; i < argc; i++) {
666 		cpy16to8(argv[i], var, sizeof(var));
667 		howto |= boot_parse_arg(var);
668 	}
669 
670 	return (howto);
671 }
672 
673 static void
674 setenv_int(const char *key, int val)
675 {
676 	char buf[20];
677 
678 	snprintf(buf, sizeof(buf), "%d", val);
679 	setenv(key, buf, 1);
680 }
681 
682 /*
683  * Parse ConOut (the list of consoles active) and see if we can find a
684  * serial port and/or a video port. It would be nice to also walk the
685  * ACPI name space to map the UID for the serial port to a port. The
686  * latter is especially hard.
687  */
688 static int
689 parse_uefi_con_out(void)
690 {
691 	int how, rv;
692 	int vid_seen = 0, com_seen = 0, seen = 0;
693 	size_t sz;
694 	char buf[4096], *ep;
695 	EFI_DEVICE_PATH *node;
696 	ACPI_HID_DEVICE_PATH  *acpi;
697 	UART_DEVICE_PATH  *uart;
698 	bool pci_pending;
699 
700 	how = 0;
701 	sz = sizeof(buf);
702 	rv = efi_global_getenv("ConOut", buf, &sz);
703 	if (rv != EFI_SUCCESS)
704 		goto out;
705 	ep = buf + sz;
706 	node = (EFI_DEVICE_PATH *)buf;
707 	while ((char *)node < ep) {
708 		pci_pending = false;
709 		if (DevicePathType(node) == ACPI_DEVICE_PATH &&
710 		    DevicePathSubType(node) == ACPI_DP) {
711 			/* Check for Serial node */
712 			acpi = (void *)node;
713 			if (EISA_ID_TO_NUM(acpi->HID) == 0x501) {
714 				setenv_int("efi_8250_uid", acpi->UID);
715 				com_seen = ++seen;
716 			}
717 		} else if (DevicePathType(node) == MESSAGING_DEVICE_PATH &&
718 		    DevicePathSubType(node) == MSG_UART_DP) {
719 
720 			uart = (void *)node;
721 			setenv_int("efi_com_speed", uart->BaudRate);
722 		} else if (DevicePathType(node) == ACPI_DEVICE_PATH &&
723 		    DevicePathSubType(node) == ACPI_ADR_DP) {
724 			/* Check for AcpiAdr() Node for video */
725 			vid_seen = ++seen;
726 		} else if (DevicePathType(node) == HARDWARE_DEVICE_PATH &&
727 		    DevicePathSubType(node) == HW_PCI_DP) {
728 			/*
729 			 * Note, vmware fusion has a funky console device
730 			 *	PciRoot(0x0)/Pci(0xf,0x0)
731 			 * which we can only detect at the end since we also
732 			 * have to cope with:
733 			 *	PciRoot(0x0)/Pci(0x1f,0x0)/Serial(0x1)
734 			 * so only match it if it's last.
735 			 */
736 			pci_pending = true;
737 		}
738 		node = NextDevicePathNode(node); /* Skip the end node */
739 	}
740 	if (pci_pending && vid_seen == 0)
741 		vid_seen = ++seen;
742 
743 	/*
744 	 * Truth table for RB_MULTIPLE | RB_SERIAL
745 	 * Value		Result
746 	 * 0			Use only video console
747 	 * RB_SERIAL		Use only serial console
748 	 * RB_MULTIPLE		Use both video and serial console
749 	 *			(but video is primary so gets rc messages)
750 	 * both			Use both video and serial console
751 	 *			(but serial is primary so gets rc messages)
752 	 *
753 	 * Try to honor this as best we can. If only one of serial / video
754 	 * found, then use that. Otherwise, use the first one we found.
755 	 * This also implies if we found nothing, default to video.
756 	 */
757 	how = 0;
758 	if (vid_seen && com_seen) {
759 		how |= RB_MULTIPLE;
760 		if (com_seen < vid_seen)
761 			how |= RB_SERIAL;
762 	} else if (com_seen)
763 		how |= RB_SERIAL;
764 out:
765 	return (how);
766 }
767 
768 void
769 parse_loader_efi_config(EFI_HANDLE h, const char *env_fn)
770 {
771 	pdinfo_t *dp;
772 	struct stat st;
773 	int fd = -1;
774 	char *env = NULL;
775 
776 	dp = efiblk_get_pdinfo_by_handle(h);
777 	if (dp == NULL)
778 		return;
779 	set_currdev_pdinfo(dp);
780 	if (stat(env_fn, &st) != 0)
781 		return;
782 	fd = open(env_fn, O_RDONLY);
783 	if (fd == -1)
784 		return;
785 	env = malloc(st.st_size + 1);
786 	if (env == NULL)
787 		goto out;
788 	if (read(fd, env, st.st_size) != st.st_size)
789 		goto out;
790 	env[st.st_size] = '\0';
791 	boot_parse_cmdline(env);
792 out:
793 	free(env);
794 	close(fd);
795 }
796 
797 static void
798 read_loader_env(const char *name, char *def_fn, bool once)
799 {
800 	UINTN len;
801 	char *fn, *freeme = NULL;
802 
803 	len = 0;
804 	fn = def_fn;
805 	if (efi_freebsd_getenv(name, NULL, &len) == EFI_BUFFER_TOO_SMALL) {
806 		freeme = fn = malloc(len + 1);
807 		if (fn != NULL) {
808 			if (efi_freebsd_getenv(name, fn, &len) != EFI_SUCCESS) {
809 				free(fn);
810 				fn = NULL;
811 				printf(
812 			    "Can't fetch FreeBSD::%s we know is there\n", name);
813 			} else {
814 				/*
815 				 * if tagged as 'once' delete the env variable so we
816 				 * only use it once.
817 				 */
818 				if (once)
819 					efi_freebsd_delenv(name);
820 				/*
821 				 * We malloced 1 more than len above, then redid the call.
822 				 * so now we have room at the end of the string to NUL terminate
823 				 * it here, even if the typical idium would have '- 1' here to
824 				 * not overflow. len should be the same on return both times.
825 				 */
826 				fn[len] = '\0';
827 			}
828 		} else {
829 			printf(
830 		    "Can't allocate %d bytes to fetch FreeBSD::%s env var\n",
831 			    len, name);
832 		}
833 	}
834 	if (fn) {
835 		printf("    Reading loader env vars from %s\n", fn);
836 		parse_loader_efi_config(boot_img->DeviceHandle, fn);
837 	}
838 }
839 
840 
841 
842 EFI_STATUS
843 main(int argc, CHAR16 *argv[])
844 {
845 	EFI_GUID *guid;
846 	int howto, i, uhowto;
847 	UINTN k;
848 	bool has_kbd, is_last;
849 	char *s;
850 	EFI_DEVICE_PATH *imgpath;
851 	CHAR16 *text;
852 	EFI_STATUS rv;
853 	size_t sz, bosz = 0, bisz = 0;
854 	UINT16 boot_order[100];
855 	char boot_info[4096];
856 	char buf[32];
857 	bool uefi_boot_mgr;
858 
859 	archsw.arch_autoload = efi_autoload;
860 	archsw.arch_getdev = efi_getdev;
861 	archsw.arch_copyin = efi_copyin;
862 	archsw.arch_copyout = efi_copyout;
863 	archsw.arch_readin = efi_readin;
864 	archsw.arch_zfs_probe = efi_zfs_probe;
865 
866         /* Get our loaded image protocol interface structure. */
867 	(void) OpenProtocolByHandle(IH, &imgid, (void **)&boot_img);
868 
869 	/*
870 	 * Chicken-and-egg problem; we want to have console output early, but
871 	 * some console attributes may depend on reading from eg. the boot
872 	 * device, which we can't do yet.  We can use printf() etc. once this is
873 	 * done. So, we set it to the efi console, then call console init. This
874 	 * gets us printf early, but also primes the pump for all future console
875 	 * changes to take effect, regardless of where they come from.
876 	 */
877 	setenv("console", "efi", 1);
878 	cons_probe();
879 
880 	/* Init the time source */
881 	efi_time_init();
882 
883 	/*
884 	 * Initialise the block cache. Set the upper limit.
885 	 */
886 	bcache_init(32768, 512);
887 
888 	/*
889 	 * Scan the BLOCK IO MEDIA handles then
890 	 * march through the device switch probing for things.
891 	 */
892 	i = efipart_inithandles();
893 	if (i != 0 && i != ENOENT) {
894 		printf("efipart_inithandles failed with ERRNO %d, expect "
895 		    "failures\n", i);
896 	}
897 
898 	for (i = 0; devsw[i] != NULL; i++)
899 		if (devsw[i]->dv_init != NULL)
900 			(devsw[i]->dv_init)();
901 
902 	/*
903 	 * Detect console settings two different ways: one via the command
904 	 * args (eg -h) or via the UEFI ConOut variable.
905 	 */
906 	has_kbd = has_keyboard();
907 	howto = parse_args(argc, argv);
908 	if (!has_kbd && (howto & RB_PROBE))
909 		howto |= RB_SERIAL | RB_MULTIPLE;
910 	howto &= ~RB_PROBE;
911 	uhowto = parse_uefi_con_out();
912 
913 	/*
914 	 * Read additional environment variables from the boot device's
915 	 * "LoaderEnv" file. Any boot loader environment variable may be set
916 	 * there, which are subtly different than loader.conf variables. Only
917 	 * the 'simple' ones may be set so things like foo_load="YES" won't work
918 	 * for two reasons.  First, the parser is simplistic and doesn't grok
919 	 * quotes.  Second, because the variables that cause an action to happen
920 	 * are parsed by the lua, 4th or whatever code that's not yet
921 	 * loaded. This is relative to the root directory when loader.efi is
922 	 * loaded off the UFS root drive (when chain booted), or from the ESP
923 	 * when directly loaded by the BIOS.
924 	 *
925 	 * We also read in NextLoaderEnv if it was specified. This allows next boot
926 	 * functionality to be implemented and to override anything in LoaderEnv.
927 	 */
928 	read_loader_env("LoaderEnv", "/efi/freebsd/loader.env", false);
929 	read_loader_env("NextLoaderEnv", NULL, true);
930 
931 	/*
932 	 * We now have two notions of console. howto should be viewed as
933 	 * overrides. If console is already set, don't set it again.
934 	 */
935 #define	VIDEO_ONLY	0
936 #define	SERIAL_ONLY	RB_SERIAL
937 #define	VID_SER_BOTH	RB_MULTIPLE
938 #define	SER_VID_BOTH	(RB_SERIAL | RB_MULTIPLE)
939 #define	CON_MASK	(RB_SERIAL | RB_MULTIPLE)
940 	if (strcmp(getenv("console"), "efi") == 0) {
941 		if ((howto & CON_MASK) == 0) {
942 			/* No override, uhowto is controlling and efi cons is perfect */
943 			howto = howto | (uhowto & CON_MASK);
944 		} else if ((howto & CON_MASK) == (uhowto & CON_MASK)) {
945 			/* override matches what UEFI told us, efi console is perfect */
946 		} else if ((uhowto & (CON_MASK)) != 0) {
947 			/*
948 			 * We detected a serial console on ConOut. All possible
949 			 * overrides include serial. We can't really override what efi
950 			 * gives us, so we use it knowing it's the best choice.
951 			 */
952 			/* Do nothing */
953 		} else {
954 			/*
955 			 * We detected some kind of serial in the override, but ConOut
956 			 * has no serial, so we have to sort out which case it really is.
957 			 */
958 			switch (howto & CON_MASK) {
959 			case SERIAL_ONLY:
960 				setenv("console", "comconsole", 1);
961 				break;
962 			case VID_SER_BOTH:
963 				setenv("console", "efi comconsole", 1);
964 				break;
965 			case SER_VID_BOTH:
966 				setenv("console", "comconsole efi", 1);
967 				break;
968 				/* case VIDEO_ONLY can't happen -- it's the first if above */
969 			}
970 		}
971 	}
972 
973 	/*
974 	 * howto is set now how we want to export the flags to the kernel, so
975 	 * set the env based on it.
976 	 */
977 	boot_howto_to_env(howto);
978 
979 	if (efi_copy_init()) {
980 		printf("failed to allocate staging area\n");
981 		return (EFI_BUFFER_TOO_SMALL);
982 	}
983 
984 	if ((s = getenv("fail_timeout")) != NULL)
985 		fail_timeout = strtol(s, NULL, 10);
986 
987 	printf("%s\n", bootprog_info);
988 	printf("   Command line arguments:");
989 	for (i = 0; i < argc; i++)
990 		printf(" %S", argv[i]);
991 	printf("\n");
992 
993 	printf("   EFI version: %d.%02d\n", ST->Hdr.Revision >> 16,
994 	    ST->Hdr.Revision & 0xffff);
995 	printf("   EFI Firmware: %S (rev %d.%02d)\n", ST->FirmwareVendor,
996 	    ST->FirmwareRevision >> 16, ST->FirmwareRevision & 0xffff);
997 	printf("   Console: %s (%#x)\n", getenv("console"), howto);
998 
999 	/* Determine the devpath of our image so we can prefer it. */
1000 	text = efi_devpath_name(boot_img->FilePath);
1001 	if (text != NULL) {
1002 		printf("   Load Path: %S\n", text);
1003 		efi_setenv_freebsd_wcs("LoaderPath", text);
1004 		efi_free_devpath_name(text);
1005 	}
1006 
1007 	rv = OpenProtocolByHandle(boot_img->DeviceHandle, &devid,
1008 	    (void **)&imgpath);
1009 	if (rv == EFI_SUCCESS) {
1010 		text = efi_devpath_name(imgpath);
1011 		if (text != NULL) {
1012 			printf("   Load Device: %S\n", text);
1013 			efi_setenv_freebsd_wcs("LoaderDev", text);
1014 			efi_free_devpath_name(text);
1015 		}
1016 	}
1017 
1018 	if (getenv("uefi_ignore_boot_mgr") != NULL) {
1019 		printf("    Ignoring UEFI boot manager\n");
1020 		uefi_boot_mgr = false;
1021 	} else {
1022 		uefi_boot_mgr = true;
1023 		boot_current = 0;
1024 		sz = sizeof(boot_current);
1025 		rv = efi_global_getenv("BootCurrent", &boot_current, &sz);
1026 		if (rv == EFI_SUCCESS)
1027 			printf("   BootCurrent: %04x\n", boot_current);
1028 		else {
1029 			boot_current = 0xffff;
1030 			uefi_boot_mgr = false;
1031 		}
1032 
1033 		sz = sizeof(boot_order);
1034 		rv = efi_global_getenv("BootOrder", &boot_order, &sz);
1035 		if (rv == EFI_SUCCESS) {
1036 			printf("   BootOrder:");
1037 			for (i = 0; i < sz / sizeof(boot_order[0]); i++)
1038 				printf(" %04x%s", boot_order[i],
1039 				    boot_order[i] == boot_current ? "[*]" : "");
1040 			printf("\n");
1041 			is_last = boot_order[(sz / sizeof(boot_order[0])) - 1] == boot_current;
1042 			bosz = sz;
1043 		} else if (uefi_boot_mgr) {
1044 			/*
1045 			 * u-boot doesn't set BootOrder, but otherwise participates in the
1046 			 * boot manager protocol. So we fake it here and don't consider it
1047 			 * a failure.
1048 			 */
1049 			bosz = sizeof(boot_order[0]);
1050 			boot_order[0] = boot_current;
1051 			is_last = true;
1052 		}
1053 	}
1054 
1055 	/*
1056 	 * Next, find the boot info structure the UEFI boot manager is
1057 	 * supposed to setup. We need this so we can walk through it to
1058 	 * find where we are in the booting process and what to try to
1059 	 * boot next.
1060 	 */
1061 	if (uefi_boot_mgr) {
1062 		snprintf(buf, sizeof(buf), "Boot%04X", boot_current);
1063 		sz = sizeof(boot_info);
1064 		rv = efi_global_getenv(buf, &boot_info, &sz);
1065 		if (rv == EFI_SUCCESS)
1066 			bisz = sz;
1067 		else
1068 			uefi_boot_mgr = false;
1069 	}
1070 
1071 	/*
1072 	 * Disable the watchdog timer. By default the boot manager sets
1073 	 * the timer to 5 minutes before invoking a boot option. If we
1074 	 * want to return to the boot manager, we have to disable the
1075 	 * watchdog timer and since we're an interactive program, we don't
1076 	 * want to wait until the user types "quit". The timer may have
1077 	 * fired by then. We don't care if this fails. It does not prevent
1078 	 * normal functioning in any way...
1079 	 */
1080 	BS->SetWatchdogTimer(0, 0, 0, NULL);
1081 
1082 	/*
1083 	 * Initialize the trusted/forbidden certificates from UEFI.
1084 	 * They will be later used to verify the manifest(s),
1085 	 * which should contain hashes of verified files.
1086 	 * This needs to be initialized before any configuration files
1087 	 * are loaded.
1088 	 */
1089 #ifdef EFI_SECUREBOOT
1090 	ve_efi_init();
1091 #endif
1092 
1093 	/*
1094 	 * Try and find a good currdev based on the image that was booted.
1095 	 * It might be desirable here to have a short pause to allow falling
1096 	 * through to the boot loader instead of returning instantly to follow
1097 	 * the boot protocol and also allow an escape hatch for users wishing
1098 	 * to try something different.
1099 	 */
1100 	if (find_currdev(uefi_boot_mgr, is_last, boot_info, bisz) != 0)
1101 		if (uefi_boot_mgr &&
1102 		    !interactive_interrupt("Failed to find bootable partition"))
1103 			return (EFI_NOT_FOUND);
1104 
1105 	efi_init_environment();
1106 
1107 #if !defined(__arm__)
1108 	for (k = 0; k < ST->NumberOfTableEntries; k++) {
1109 		guid = &ST->ConfigurationTable[k].VendorGuid;
1110 		if (!memcmp(guid, &smbios, sizeof(EFI_GUID))) {
1111 			char buf[40];
1112 
1113 			snprintf(buf, sizeof(buf), "%p",
1114 			    ST->ConfigurationTable[k].VendorTable);
1115 			setenv("hint.smbios.0.mem", buf, 1);
1116 			smbios_detect(ST->ConfigurationTable[k].VendorTable);
1117 			break;
1118 		}
1119 	}
1120 #endif
1121 
1122 	interact();			/* doesn't return */
1123 
1124 	return (EFI_SUCCESS);		/* keep compiler happy */
1125 }
1126 
1127 COMMAND_SET(poweroff, "poweroff", "power off the system", command_poweroff);
1128 
1129 static int
1130 command_poweroff(int argc __unused, char *argv[] __unused)
1131 {
1132 	int i;
1133 
1134 	for (i = 0; devsw[i] != NULL; ++i)
1135 		if (devsw[i]->dv_cleanup != NULL)
1136 			(devsw[i]->dv_cleanup)();
1137 
1138 	RS->ResetSystem(EfiResetShutdown, EFI_SUCCESS, 0, NULL);
1139 
1140 	/* NOTREACHED */
1141 	return (CMD_ERROR);
1142 }
1143 
1144 COMMAND_SET(reboot, "reboot", "reboot the system", command_reboot);
1145 
1146 static int
1147 command_reboot(int argc, char *argv[])
1148 {
1149 	int i;
1150 
1151 	for (i = 0; devsw[i] != NULL; ++i)
1152 		if (devsw[i]->dv_cleanup != NULL)
1153 			(devsw[i]->dv_cleanup)();
1154 
1155 	RS->ResetSystem(EfiResetCold, EFI_SUCCESS, 0, NULL);
1156 
1157 	/* NOTREACHED */
1158 	return (CMD_ERROR);
1159 }
1160 
1161 COMMAND_SET(quit, "quit", "exit the loader", command_quit);
1162 
1163 static int
1164 command_quit(int argc, char *argv[])
1165 {
1166 	exit(0);
1167 	return (CMD_OK);
1168 }
1169 
1170 COMMAND_SET(memmap, "memmap", "print memory map", command_memmap);
1171 
1172 static int
1173 command_memmap(int argc __unused, char *argv[] __unused)
1174 {
1175 	UINTN sz;
1176 	EFI_MEMORY_DESCRIPTOR *map, *p;
1177 	UINTN key, dsz;
1178 	UINT32 dver;
1179 	EFI_STATUS status;
1180 	int i, ndesc;
1181 	char line[80];
1182 
1183 	sz = 0;
1184 	status = BS->GetMemoryMap(&sz, 0, &key, &dsz, &dver);
1185 	if (status != EFI_BUFFER_TOO_SMALL) {
1186 		printf("Can't determine memory map size\n");
1187 		return (CMD_ERROR);
1188 	}
1189 	map = malloc(sz);
1190 	status = BS->GetMemoryMap(&sz, map, &key, &dsz, &dver);
1191 	if (EFI_ERROR(status)) {
1192 		printf("Can't read memory map\n");
1193 		return (CMD_ERROR);
1194 	}
1195 
1196 	ndesc = sz / dsz;
1197 	snprintf(line, sizeof(line), "%23s %12s %12s %8s %4s\n",
1198 	    "Type", "Physical", "Virtual", "#Pages", "Attr");
1199 	pager_open();
1200 	if (pager_output(line)) {
1201 		pager_close();
1202 		return (CMD_OK);
1203 	}
1204 
1205 	for (i = 0, p = map; i < ndesc;
1206 	     i++, p = NextMemoryDescriptor(p, dsz)) {
1207 		snprintf(line, sizeof(line), "%23s %012jx %012jx %08jx ",
1208 		    efi_memory_type(p->Type), (uintmax_t)p->PhysicalStart,
1209 		    (uintmax_t)p->VirtualStart, (uintmax_t)p->NumberOfPages);
1210 		if (pager_output(line))
1211 			break;
1212 
1213 		if (p->Attribute & EFI_MEMORY_UC)
1214 			printf("UC ");
1215 		if (p->Attribute & EFI_MEMORY_WC)
1216 			printf("WC ");
1217 		if (p->Attribute & EFI_MEMORY_WT)
1218 			printf("WT ");
1219 		if (p->Attribute & EFI_MEMORY_WB)
1220 			printf("WB ");
1221 		if (p->Attribute & EFI_MEMORY_UCE)
1222 			printf("UCE ");
1223 		if (p->Attribute & EFI_MEMORY_WP)
1224 			printf("WP ");
1225 		if (p->Attribute & EFI_MEMORY_RP)
1226 			printf("RP ");
1227 		if (p->Attribute & EFI_MEMORY_XP)
1228 			printf("XP ");
1229 		if (p->Attribute & EFI_MEMORY_NV)
1230 			printf("NV ");
1231 		if (p->Attribute & EFI_MEMORY_MORE_RELIABLE)
1232 			printf("MR ");
1233 		if (p->Attribute & EFI_MEMORY_RO)
1234 			printf("RO ");
1235 		if (pager_output("\n"))
1236 			break;
1237 	}
1238 
1239 	pager_close();
1240 	return (CMD_OK);
1241 }
1242 
1243 COMMAND_SET(configuration, "configuration", "print configuration tables",
1244     command_configuration);
1245 
1246 static int
1247 command_configuration(int argc, char *argv[])
1248 {
1249 	UINTN i;
1250 	char *name;
1251 
1252 	printf("NumberOfTableEntries=%lu\n",
1253 		(unsigned long)ST->NumberOfTableEntries);
1254 
1255 	for (i = 0; i < ST->NumberOfTableEntries; i++) {
1256 		EFI_GUID *guid;
1257 
1258 		printf("  ");
1259 		guid = &ST->ConfigurationTable[i].VendorGuid;
1260 
1261 		if (efi_guid_to_name(guid, &name) == true) {
1262 			printf(name);
1263 			free(name);
1264 		} else {
1265 			printf("Error while translating UUID to name");
1266 		}
1267 		printf(" at %p\n", ST->ConfigurationTable[i].VendorTable);
1268 	}
1269 
1270 	return (CMD_OK);
1271 }
1272 
1273 
1274 COMMAND_SET(mode, "mode", "change or display EFI text modes", command_mode);
1275 
1276 static int
1277 command_mode(int argc, char *argv[])
1278 {
1279 	UINTN cols, rows;
1280 	unsigned int mode;
1281 	int i;
1282 	char *cp;
1283 	char rowenv[8];
1284 	EFI_STATUS status;
1285 	SIMPLE_TEXT_OUTPUT_INTERFACE *conout;
1286 	extern void HO(void);
1287 
1288 	conout = ST->ConOut;
1289 
1290 	if (argc > 1) {
1291 		mode = strtol(argv[1], &cp, 0);
1292 		if (cp[0] != '\0') {
1293 			printf("Invalid mode\n");
1294 			return (CMD_ERROR);
1295 		}
1296 		status = conout->QueryMode(conout, mode, &cols, &rows);
1297 		if (EFI_ERROR(status)) {
1298 			printf("invalid mode %d\n", mode);
1299 			return (CMD_ERROR);
1300 		}
1301 		status = conout->SetMode(conout, mode);
1302 		if (EFI_ERROR(status)) {
1303 			printf("couldn't set mode %d\n", mode);
1304 			return (CMD_ERROR);
1305 		}
1306 		sprintf(rowenv, "%u", (unsigned)rows);
1307 		setenv("LINES", rowenv, 1);
1308 		HO();		/* set cursor */
1309 		return (CMD_OK);
1310 	}
1311 
1312 	printf("Current mode: %d\n", conout->Mode->Mode);
1313 	for (i = 0; i <= conout->Mode->MaxMode; i++) {
1314 		status = conout->QueryMode(conout, i, &cols, &rows);
1315 		if (EFI_ERROR(status))
1316 			continue;
1317 		printf("Mode %d: %u columns, %u rows\n", i, (unsigned)cols,
1318 		    (unsigned)rows);
1319 	}
1320 
1321 	if (i != 0)
1322 		printf("Select a mode with the command \"mode <number>\"\n");
1323 
1324 	return (CMD_OK);
1325 }
1326 
1327 COMMAND_SET(lsefi, "lsefi", "list EFI handles", command_lsefi);
1328 
1329 static int
1330 command_lsefi(int argc __unused, char *argv[] __unused)
1331 {
1332 	char *name;
1333 	EFI_HANDLE *buffer = NULL;
1334 	EFI_HANDLE handle;
1335 	UINTN bufsz = 0, i, j;
1336 	EFI_STATUS status;
1337 	int ret = 0;
1338 
1339 	status = BS->LocateHandle(AllHandles, NULL, NULL, &bufsz, buffer);
1340 	if (status != EFI_BUFFER_TOO_SMALL) {
1341 		snprintf(command_errbuf, sizeof (command_errbuf),
1342 		    "unexpected error: %lld", (long long)status);
1343 		return (CMD_ERROR);
1344 	}
1345 	if ((buffer = malloc(bufsz)) == NULL) {
1346 		sprintf(command_errbuf, "out of memory");
1347 		return (CMD_ERROR);
1348 	}
1349 
1350 	status = BS->LocateHandle(AllHandles, NULL, NULL, &bufsz, buffer);
1351 	if (EFI_ERROR(status)) {
1352 		free(buffer);
1353 		snprintf(command_errbuf, sizeof (command_errbuf),
1354 		    "LocateHandle() error: %lld", (long long)status);
1355 		return (CMD_ERROR);
1356 	}
1357 
1358 	pager_open();
1359 	for (i = 0; i < (bufsz / sizeof (EFI_HANDLE)); i++) {
1360 		UINTN nproto = 0;
1361 		EFI_GUID **protocols = NULL;
1362 
1363 		handle = buffer[i];
1364 		printf("Handle %p", handle);
1365 		if (pager_output("\n"))
1366 			break;
1367 		/* device path */
1368 
1369 		status = BS->ProtocolsPerHandle(handle, &protocols, &nproto);
1370 		if (EFI_ERROR(status)) {
1371 			snprintf(command_errbuf, sizeof (command_errbuf),
1372 			    "ProtocolsPerHandle() error: %lld",
1373 			    (long long)status);
1374 			continue;
1375 		}
1376 
1377 		for (j = 0; j < nproto; j++) {
1378 			if (efi_guid_to_name(protocols[j], &name) == true) {
1379 				printf("  %s", name);
1380 				free(name);
1381 			} else {
1382 				printf("Error while translating UUID to name");
1383 			}
1384 			if ((ret = pager_output("\n")) != 0)
1385 				break;
1386 		}
1387 		BS->FreePool(protocols);
1388 		if (ret != 0)
1389 			break;
1390 	}
1391 	pager_close();
1392 	free(buffer);
1393 	return (CMD_OK);
1394 }
1395 
1396 #ifdef LOADER_FDT_SUPPORT
1397 extern int command_fdt_internal(int argc, char *argv[]);
1398 
1399 /*
1400  * Since proper fdt command handling function is defined in fdt_loader_cmd.c,
1401  * and declaring it as extern is in contradiction with COMMAND_SET() macro
1402  * (which uses static pointer), we're defining wrapper function, which
1403  * calls the proper fdt handling routine.
1404  */
1405 static int
1406 command_fdt(int argc, char *argv[])
1407 {
1408 
1409 	return (command_fdt_internal(argc, argv));
1410 }
1411 
1412 COMMAND_SET(fdt, "fdt", "flattened device tree handling", command_fdt);
1413 #endif
1414 
1415 /*
1416  * Chain load another efi loader.
1417  */
1418 static int
1419 command_chain(int argc, char *argv[])
1420 {
1421 	EFI_GUID LoadedImageGUID = LOADED_IMAGE_PROTOCOL;
1422 	EFI_HANDLE loaderhandle;
1423 	EFI_LOADED_IMAGE *loaded_image;
1424 	EFI_STATUS status;
1425 	struct stat st;
1426 	struct devdesc *dev;
1427 	char *name, *path;
1428 	void *buf;
1429 	int fd;
1430 
1431 	if (argc < 2) {
1432 		command_errmsg = "wrong number of arguments";
1433 		return (CMD_ERROR);
1434 	}
1435 
1436 	name = argv[1];
1437 
1438 	if ((fd = open(name, O_RDONLY)) < 0) {
1439 		command_errmsg = "no such file";
1440 		return (CMD_ERROR);
1441 	}
1442 
1443 	if (fstat(fd, &st) < -1) {
1444 		command_errmsg = "stat failed";
1445 		close(fd);
1446 		return (CMD_ERROR);
1447 	}
1448 
1449 	status = BS->AllocatePool(EfiLoaderCode, (UINTN)st.st_size, &buf);
1450 	if (status != EFI_SUCCESS) {
1451 		command_errmsg = "failed to allocate buffer";
1452 		close(fd);
1453 		return (CMD_ERROR);
1454 	}
1455 	if (read(fd, buf, st.st_size) != st.st_size) {
1456 		command_errmsg = "error while reading the file";
1457 		(void)BS->FreePool(buf);
1458 		close(fd);
1459 		return (CMD_ERROR);
1460 	}
1461 	close(fd);
1462 	status = BS->LoadImage(FALSE, IH, NULL, buf, st.st_size, &loaderhandle);
1463 	(void)BS->FreePool(buf);
1464 	if (status != EFI_SUCCESS) {
1465 		command_errmsg = "LoadImage failed";
1466 		return (CMD_ERROR);
1467 	}
1468 	status = OpenProtocolByHandle(loaderhandle, &LoadedImageGUID,
1469 	    (void **)&loaded_image);
1470 
1471 	if (argc > 2) {
1472 		int i, len = 0;
1473 		CHAR16 *argp;
1474 
1475 		for (i = 2; i < argc; i++)
1476 			len += strlen(argv[i]) + 1;
1477 
1478 		len *= sizeof (*argp);
1479 		loaded_image->LoadOptions = argp = malloc (len);
1480 		loaded_image->LoadOptionsSize = len;
1481 		for (i = 2; i < argc; i++) {
1482 			char *ptr = argv[i];
1483 			while (*ptr)
1484 				*(argp++) = *(ptr++);
1485 			*(argp++) = ' ';
1486 		}
1487 		*(--argv) = 0;
1488 	}
1489 
1490 	if (efi_getdev((void **)&dev, name, (const char **)&path) == 0) {
1491 #ifdef EFI_ZFS_BOOT
1492 		struct zfs_devdesc *z_dev;
1493 #endif
1494 		struct disk_devdesc *d_dev;
1495 		pdinfo_t *hd, *pd;
1496 
1497 		switch (dev->d_dev->dv_type) {
1498 #ifdef EFI_ZFS_BOOT
1499 		case DEVT_ZFS:
1500 			z_dev = (struct zfs_devdesc *)dev;
1501 			loaded_image->DeviceHandle =
1502 			    efizfs_get_handle_by_guid(z_dev->pool_guid);
1503 			break;
1504 #endif
1505 		case DEVT_NET:
1506 			loaded_image->DeviceHandle =
1507 			    efi_find_handle(dev->d_dev, dev->d_unit);
1508 			break;
1509 		default:
1510 			hd = efiblk_get_pdinfo(dev);
1511 			if (STAILQ_EMPTY(&hd->pd_part)) {
1512 				loaded_image->DeviceHandle = hd->pd_handle;
1513 				break;
1514 			}
1515 			d_dev = (struct disk_devdesc *)dev;
1516 			STAILQ_FOREACH(pd, &hd->pd_part, pd_link) {
1517 				/*
1518 				 * d_partition should be 255
1519 				 */
1520 				if (pd->pd_unit == (uint32_t)d_dev->d_slice) {
1521 					loaded_image->DeviceHandle =
1522 					    pd->pd_handle;
1523 					break;
1524 				}
1525 			}
1526 			break;
1527 		}
1528 	}
1529 
1530 	dev_cleanup();
1531 	status = BS->StartImage(loaderhandle, NULL, NULL);
1532 	if (status != EFI_SUCCESS) {
1533 		command_errmsg = "StartImage failed";
1534 		free(loaded_image->LoadOptions);
1535 		loaded_image->LoadOptions = NULL;
1536 		status = BS->UnloadImage(loaded_image);
1537 		return (CMD_ERROR);
1538 	}
1539 
1540 	return (CMD_ERROR);	/* not reached */
1541 }
1542 
1543 COMMAND_SET(chain, "chain", "chain load file", command_chain);
1544