1 /*- 2 * Copyright (c) 2008-2010 Rui Paulo 3 * Copyright (c) 2006 Marcel Moolenaar 4 * All rights reserved. 5 * 6 * Copyright (c) 2016-2019 Netflix, Inc. written by M. Warner Losh 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <stand.h> 34 35 #include <sys/disk.h> 36 #include <sys/param.h> 37 #include <sys/reboot.h> 38 #include <sys/boot.h> 39 #include <sys/zfs_bootenv.h> 40 #include <paths.h> 41 #include <stdint.h> 42 #include <string.h> 43 #include <setjmp.h> 44 #include <disk.h> 45 46 #include <efi.h> 47 #include <efilib.h> 48 #include <efichar.h> 49 50 #include <uuid.h> 51 52 #include <bootstrap.h> 53 #include <smbios.h> 54 55 #include "efizfs.h" 56 57 #include "loader_efi.h" 58 59 struct arch_switch archsw; /* MI/MD interface boundary */ 60 61 EFI_GUID acpi = ACPI_TABLE_GUID; 62 EFI_GUID acpi20 = ACPI_20_TABLE_GUID; 63 EFI_GUID devid = DEVICE_PATH_PROTOCOL; 64 EFI_GUID imgid = LOADED_IMAGE_PROTOCOL; 65 EFI_GUID mps = MPS_TABLE_GUID; 66 EFI_GUID netid = EFI_SIMPLE_NETWORK_PROTOCOL; 67 EFI_GUID smbios = SMBIOS_TABLE_GUID; 68 EFI_GUID smbios3 = SMBIOS3_TABLE_GUID; 69 EFI_GUID dxe = DXE_SERVICES_TABLE_GUID; 70 EFI_GUID hoblist = HOB_LIST_TABLE_GUID; 71 EFI_GUID lzmadecomp = LZMA_DECOMPRESSION_GUID; 72 EFI_GUID mpcore = ARM_MP_CORE_INFO_TABLE_GUID; 73 EFI_GUID esrt = ESRT_TABLE_GUID; 74 EFI_GUID memtype = MEMORY_TYPE_INFORMATION_TABLE_GUID; 75 EFI_GUID debugimg = DEBUG_IMAGE_INFO_TABLE_GUID; 76 EFI_GUID fdtdtb = FDT_TABLE_GUID; 77 EFI_GUID inputid = SIMPLE_TEXT_INPUT_PROTOCOL; 78 79 /* 80 * Number of seconds to wait for a keystroke before exiting with failure 81 * in the event no currdev is found. -2 means always break, -1 means 82 * never break, 0 means poll once and then reboot, > 0 means wait for 83 * that many seconds. "fail_timeout" can be set in the environment as 84 * well. 85 */ 86 static int fail_timeout = 5; 87 88 /* 89 * Current boot variable 90 */ 91 UINT16 boot_current; 92 93 /* 94 * Image that we booted from. 95 */ 96 EFI_LOADED_IMAGE *boot_img; 97 98 static bool 99 has_keyboard(void) 100 { 101 EFI_STATUS status; 102 EFI_DEVICE_PATH *path; 103 EFI_HANDLE *hin, *hin_end, *walker; 104 UINTN sz; 105 bool retval = false; 106 107 /* 108 * Find all the handles that support the SIMPLE_TEXT_INPUT_PROTOCOL and 109 * do the typical dance to get the right sized buffer. 110 */ 111 sz = 0; 112 hin = NULL; 113 status = BS->LocateHandle(ByProtocol, &inputid, 0, &sz, 0); 114 if (status == EFI_BUFFER_TOO_SMALL) { 115 hin = (EFI_HANDLE *)malloc(sz); 116 status = BS->LocateHandle(ByProtocol, &inputid, 0, &sz, 117 hin); 118 if (EFI_ERROR(status)) 119 free(hin); 120 } 121 if (EFI_ERROR(status)) 122 return retval; 123 124 /* 125 * Look at each of the handles. If it supports the device path protocol, 126 * use it to get the device path for this handle. Then see if that 127 * device path matches either the USB device path for keyboards or the 128 * legacy device path for keyboards. 129 */ 130 hin_end = &hin[sz / sizeof(*hin)]; 131 for (walker = hin; walker < hin_end; walker++) { 132 status = OpenProtocolByHandle(*walker, &devid, (void **)&path); 133 if (EFI_ERROR(status)) 134 continue; 135 136 while (!IsDevicePathEnd(path)) { 137 /* 138 * Check for the ACPI keyboard node. All PNP3xx nodes 139 * are keyboards of different flavors. Note: It is 140 * unclear of there's always a keyboard node when 141 * there's a keyboard controller, or if there's only one 142 * when a keyboard is detected at boot. 143 */ 144 if (DevicePathType(path) == ACPI_DEVICE_PATH && 145 (DevicePathSubType(path) == ACPI_DP || 146 DevicePathSubType(path) == ACPI_EXTENDED_DP)) { 147 ACPI_HID_DEVICE_PATH *acpi; 148 149 acpi = (ACPI_HID_DEVICE_PATH *)(void *)path; 150 if ((EISA_ID_TO_NUM(acpi->HID) & 0xff00) == 0x300 && 151 (acpi->HID & 0xffff) == PNP_EISA_ID_CONST) { 152 retval = true; 153 goto out; 154 } 155 /* 156 * Check for USB keyboard node, if present. Unlike a 157 * PS/2 keyboard, these definitely only appear when 158 * connected to the system. 159 */ 160 } else if (DevicePathType(path) == MESSAGING_DEVICE_PATH && 161 DevicePathSubType(path) == MSG_USB_CLASS_DP) { 162 USB_CLASS_DEVICE_PATH *usb; 163 164 usb = (USB_CLASS_DEVICE_PATH *)(void *)path; 165 if (usb->DeviceClass == 3 && /* HID */ 166 usb->DeviceSubClass == 1 && /* Boot devices */ 167 usb->DeviceProtocol == 1) { /* Boot keyboards */ 168 retval = true; 169 goto out; 170 } 171 } 172 path = NextDevicePathNode(path); 173 } 174 } 175 out: 176 free(hin); 177 return retval; 178 } 179 180 static void 181 set_currdev(const char *devname) 182 { 183 184 /* 185 * Don't execute hooks here; we may need to try setting these more than 186 * once here if we're probing for the ZFS pool we're supposed to boot. 187 * The currdev hook is intended to just validate user input anyways, 188 * while the loaddev hook makes it immutable once we've determined what 189 * the proper currdev is. 190 */ 191 env_setenv("currdev", EV_VOLATILE | EV_NOHOOK, devname, efi_setcurrdev, 192 env_nounset); 193 env_setenv("loaddev", EV_VOLATILE | EV_NOHOOK, devname, env_noset, 194 env_nounset); 195 } 196 197 static void 198 set_currdev_devdesc(struct devdesc *currdev) 199 { 200 const char *devname; 201 202 devname = efi_fmtdev(currdev); 203 printf("Setting currdev to %s\n", devname); 204 set_currdev(devname); 205 } 206 207 static void 208 set_currdev_devsw(struct devsw *dev, int unit) 209 { 210 struct devdesc currdev; 211 212 currdev.d_dev = dev; 213 currdev.d_unit = unit; 214 215 set_currdev_devdesc(&currdev); 216 } 217 218 static void 219 set_currdev_pdinfo(pdinfo_t *dp) 220 { 221 222 /* 223 * Disks are special: they have partitions. if the parent 224 * pointer is non-null, we're a partition not a full disk 225 * and we need to adjust currdev appropriately. 226 */ 227 if (dp->pd_devsw->dv_type == DEVT_DISK) { 228 struct disk_devdesc currdev; 229 230 currdev.dd.d_dev = dp->pd_devsw; 231 if (dp->pd_parent == NULL) { 232 currdev.dd.d_unit = dp->pd_unit; 233 currdev.d_slice = D_SLICENONE; 234 currdev.d_partition = D_PARTNONE; 235 } else { 236 currdev.dd.d_unit = dp->pd_parent->pd_unit; 237 currdev.d_slice = dp->pd_unit; 238 currdev.d_partition = D_PARTISGPT; /* XXX Assumes GPT */ 239 } 240 set_currdev_devdesc((struct devdesc *)&currdev); 241 } else { 242 set_currdev_devsw(dp->pd_devsw, dp->pd_unit); 243 } 244 } 245 246 static bool 247 sanity_check_currdev(void) 248 { 249 struct stat st; 250 251 return (stat(PATH_DEFAULTS_LOADER_CONF, &st) == 0 || 252 #ifdef PATH_BOOTABLE_TOKEN 253 stat(PATH_BOOTABLE_TOKEN, &st) == 0 || /* non-standard layout */ 254 #endif 255 stat(PATH_KERNEL, &st) == 0); 256 } 257 258 #ifdef EFI_ZFS_BOOT 259 static bool 260 probe_zfs_currdev(uint64_t guid) 261 { 262 char *devname; 263 struct zfs_devdesc currdev; 264 char *buf = NULL; 265 bool rv; 266 267 currdev.dd.d_dev = &zfs_dev; 268 currdev.dd.d_unit = 0; 269 currdev.pool_guid = guid; 270 currdev.root_guid = 0; 271 set_currdev_devdesc((struct devdesc *)&currdev); 272 devname = efi_fmtdev(&currdev); 273 init_zfs_boot_options(devname); 274 275 rv = sanity_check_currdev(); 276 if (rv) { 277 buf = malloc(VDEV_PAD_SIZE); 278 if (buf != NULL) { 279 if (zfs_get_bootonce(&currdev, OS_BOOTONCE, buf, 280 VDEV_PAD_SIZE) == 0) { 281 printf("zfs bootonce: %s\n", buf); 282 set_currdev(buf); 283 setenv("zfs-bootonce", buf, 1); 284 } 285 free(buf); 286 (void) zfs_attach_nvstore(&currdev); 287 } 288 } 289 return (rv); 290 } 291 #endif 292 293 static bool 294 try_as_currdev(pdinfo_t *hd, pdinfo_t *pp) 295 { 296 uint64_t guid; 297 298 #ifdef EFI_ZFS_BOOT 299 /* 300 * If there's a zpool on this device, try it as a ZFS 301 * filesystem, which has somewhat different setup than all 302 * other types of fs due to imperfect loader integration. 303 * This all stems from ZFS being both a device (zpool) and 304 * a filesystem, plus the boot env feature. 305 */ 306 if (efizfs_get_guid_by_handle(pp->pd_handle, &guid)) 307 return (probe_zfs_currdev(guid)); 308 #endif 309 /* 310 * All other filesystems just need the pdinfo 311 * initialized in the standard way. 312 */ 313 set_currdev_pdinfo(pp); 314 return (sanity_check_currdev()); 315 } 316 317 /* 318 * Sometimes we get filenames that are all upper case 319 * and/or have backslashes in them. Filter all this out 320 * if it looks like we need to do so. 321 */ 322 static void 323 fix_dosisms(char *p) 324 { 325 while (*p) { 326 if (isupper(*p)) 327 *p = tolower(*p); 328 else if (*p == '\\') 329 *p = '/'; 330 p++; 331 } 332 } 333 334 #define SIZE(dp, edp) (size_t)((intptr_t)(void *)edp - (intptr_t)(void *)dp) 335 336 enum { BOOT_INFO_OK = 0, BAD_CHOICE = 1, NOT_SPECIFIC = 2 }; 337 static int 338 match_boot_info(char *boot_info, size_t bisz) 339 { 340 uint32_t attr; 341 uint16_t fplen; 342 size_t len; 343 char *walker, *ep; 344 EFI_DEVICE_PATH *dp, *edp, *first_dp, *last_dp; 345 pdinfo_t *pp; 346 CHAR16 *descr; 347 char *kernel = NULL; 348 FILEPATH_DEVICE_PATH *fp; 349 struct stat st; 350 CHAR16 *text; 351 352 /* 353 * FreeBSD encodes it's boot loading path into the boot loader 354 * BootXXXX variable. We look for the last one in the path 355 * and use that to load the kernel. However, if we only fine 356 * one DEVICE_PATH, then there's nothing specific and we should 357 * fall back. 358 * 359 * In an ideal world, we'd look at the image handle we were 360 * passed, match up with the loader we are and then return the 361 * next one in the path. This would be most flexible and cover 362 * many chain booting scenarios where you need to use this 363 * boot loader to get to the next boot loader. However, that 364 * doesn't work. We rarely have the path to the image booted 365 * (just the device) so we can't count on that. So, we do the 366 * enxt best thing, we look through the device path(s) passed 367 * in the BootXXXX varaible. If there's only one, we return 368 * NOT_SPECIFIC. Otherwise, we look at the last one and try to 369 * load that. If we can, we return BOOT_INFO_OK. Otherwise we 370 * return BAD_CHOICE for the caller to sort out. 371 */ 372 if (bisz < sizeof(attr) + sizeof(fplen) + sizeof(CHAR16)) 373 return NOT_SPECIFIC; 374 walker = boot_info; 375 ep = walker + bisz; 376 memcpy(&attr, walker, sizeof(attr)); 377 walker += sizeof(attr); 378 memcpy(&fplen, walker, sizeof(fplen)); 379 walker += sizeof(fplen); 380 descr = (CHAR16 *)(intptr_t)walker; 381 len = ucs2len(descr); 382 walker += (len + 1) * sizeof(CHAR16); 383 last_dp = first_dp = dp = (EFI_DEVICE_PATH *)walker; 384 edp = (EFI_DEVICE_PATH *)(walker + fplen); 385 if ((char *)edp > ep) 386 return NOT_SPECIFIC; 387 while (dp < edp && SIZE(dp, edp) > sizeof(EFI_DEVICE_PATH)) { 388 text = efi_devpath_name(dp); 389 if (text != NULL) { 390 printf(" BootInfo Path: %S\n", text); 391 efi_free_devpath_name(text); 392 } 393 last_dp = dp; 394 dp = (EFI_DEVICE_PATH *)((char *)dp + efi_devpath_length(dp)); 395 } 396 397 /* 398 * If there's only one item in the list, then nothing was 399 * specified. Or if the last path doesn't have a media 400 * path in it. Those show up as various VenHw() nodes 401 * which are basically opaque to us. Don't count those 402 * as something specifc. 403 */ 404 if (last_dp == first_dp) { 405 printf("Ignoring Boot%04x: Only one DP found\n", boot_current); 406 return NOT_SPECIFIC; 407 } 408 if (efi_devpath_to_media_path(last_dp) == NULL) { 409 printf("Ignoring Boot%04x: No Media Path\n", boot_current); 410 return NOT_SPECIFIC; 411 } 412 413 /* 414 * OK. At this point we either have a good path or a bad one. 415 * Let's check. 416 */ 417 pp = efiblk_get_pdinfo_by_device_path(last_dp); 418 if (pp == NULL) { 419 printf("Ignoring Boot%04x: Device Path not found\n", boot_current); 420 return BAD_CHOICE; 421 } 422 set_currdev_pdinfo(pp); 423 if (!sanity_check_currdev()) { 424 printf("Ignoring Boot%04x: sanity check failed\n", boot_current); 425 return BAD_CHOICE; 426 } 427 428 /* 429 * OK. We've found a device that matches, next we need to check the last 430 * component of the path. If it's a file, then we set the default kernel 431 * to that. Otherwise, just use this as the default root. 432 * 433 * Reminder: we're running very early, before we've parsed the defaults 434 * file, so we may need to have a hack override. 435 */ 436 dp = efi_devpath_last_node(last_dp); 437 if (DevicePathType(dp) != MEDIA_DEVICE_PATH || 438 DevicePathSubType(dp) != MEDIA_FILEPATH_DP) { 439 printf("Using Boot%04x for root partition\n", boot_current); 440 return (BOOT_INFO_OK); /* use currdir, default kernel */ 441 } 442 fp = (FILEPATH_DEVICE_PATH *)dp; 443 ucs2_to_utf8(fp->PathName, &kernel); 444 if (kernel == NULL) { 445 printf("Not using Boot%04x: can't decode kernel\n", boot_current); 446 return (BAD_CHOICE); 447 } 448 if (*kernel == '\\' || isupper(*kernel)) 449 fix_dosisms(kernel); 450 if (stat(kernel, &st) != 0) { 451 free(kernel); 452 printf("Not using Boot%04x: can't find %s\n", boot_current, 453 kernel); 454 return (BAD_CHOICE); 455 } 456 setenv("kernel", kernel, 1); 457 free(kernel); 458 text = efi_devpath_name(last_dp); 459 if (text) { 460 printf("Using Boot%04x %S + %s\n", boot_current, text, 461 kernel); 462 efi_free_devpath_name(text); 463 } 464 465 return (BOOT_INFO_OK); 466 } 467 468 /* 469 * Look at the passed-in boot_info, if any. If we find it then we need 470 * to see if we can find ourselves in the boot chain. If we can, and 471 * there's another specified thing to boot next, assume that the file 472 * is loaded from / and use that for the root filesystem. If can't 473 * find the specified thing, we must fail the boot. If we're last on 474 * the list, then we fallback to looking for the first available / 475 * candidate (ZFS, if there's a bootable zpool, otherwise a UFS 476 * partition that has either /boot/defaults/loader.conf on it or 477 * /boot/kernel/kernel (the default kernel) that we can use. 478 * 479 * We always fail if we can't find the right thing. However, as 480 * a concession to buggy UEFI implementations, like u-boot, if 481 * we have determined that the host is violating the UEFI boot 482 * manager protocol, we'll signal the rest of the program that 483 * a drop to the OK boot loader prompt is possible. 484 */ 485 static int 486 find_currdev(bool do_bootmgr, bool is_last, 487 char *boot_info, size_t boot_info_sz) 488 { 489 pdinfo_t *dp, *pp; 490 EFI_DEVICE_PATH *devpath, *copy; 491 EFI_HANDLE h; 492 CHAR16 *text; 493 struct devsw *dev; 494 int unit; 495 uint64_t extra; 496 int rv; 497 char *rootdev; 498 499 /* 500 * First choice: if rootdev is already set, use that, even if 501 * it's wrong. 502 */ 503 rootdev = getenv("rootdev"); 504 if (rootdev != NULL) { 505 printf(" Setting currdev to configured rootdev %s\n", 506 rootdev); 507 set_currdev(rootdev); 508 return (0); 509 } 510 511 /* 512 * Second choice: If uefi_rootdev is set, translate that UEFI device 513 * path to the loader's internal name and use that. 514 */ 515 do { 516 rootdev = getenv("uefi_rootdev"); 517 if (rootdev == NULL) 518 break; 519 devpath = efi_name_to_devpath(rootdev); 520 if (devpath == NULL) 521 break; 522 dp = efiblk_get_pdinfo_by_device_path(devpath); 523 efi_devpath_free(devpath); 524 if (dp == NULL) 525 break; 526 printf(" Setting currdev to UEFI path %s\n", 527 rootdev); 528 set_currdev_pdinfo(dp); 529 return (0); 530 } while (0); 531 532 /* 533 * Third choice: If we can find out image boot_info, and there's 534 * a follow-on boot image in that boot_info, use that. In this 535 * case root will be the partition specified in that image and 536 * we'll load the kernel specified by the file path. Should there 537 * not be a filepath, we use the default. This filepath overrides 538 * loader.conf. 539 */ 540 if (do_bootmgr) { 541 rv = match_boot_info(boot_info, boot_info_sz); 542 switch (rv) { 543 case BOOT_INFO_OK: /* We found it */ 544 return (0); 545 case BAD_CHOICE: /* specified file not found -> error */ 546 /* XXX do we want to have an escape hatch for last in boot order? */ 547 return (ENOENT); 548 } /* Nothing specified, try normal match */ 549 } 550 551 #ifdef EFI_ZFS_BOOT 552 /* 553 * Did efi_zfs_probe() detect the boot pool? If so, use the zpool 554 * it found, if it's sane. ZFS is the only thing that looks for 555 * disks and pools to boot. This may change in the future, however, 556 * if we allow specifying which pool to boot from via UEFI variables 557 * rather than the bootenv stuff that FreeBSD uses today. 558 */ 559 if (pool_guid != 0) { 560 printf("Trying ZFS pool\n"); 561 if (probe_zfs_currdev(pool_guid)) 562 return (0); 563 } 564 #endif /* EFI_ZFS_BOOT */ 565 566 /* 567 * Try to find the block device by its handle based on the 568 * image we're booting. If we can't find a sane partition, 569 * search all the other partitions of the disk. We do not 570 * search other disks because it's a violation of the UEFI 571 * boot protocol to do so. We fail and let UEFI go on to 572 * the next candidate. 573 */ 574 dp = efiblk_get_pdinfo_by_handle(boot_img->DeviceHandle); 575 if (dp != NULL) { 576 text = efi_devpath_name(dp->pd_devpath); 577 if (text != NULL) { 578 printf("Trying ESP: %S\n", text); 579 efi_free_devpath_name(text); 580 } 581 set_currdev_pdinfo(dp); 582 if (sanity_check_currdev()) 583 return (0); 584 if (dp->pd_parent != NULL) { 585 pdinfo_t *espdp = dp; 586 dp = dp->pd_parent; 587 STAILQ_FOREACH(pp, &dp->pd_part, pd_link) { 588 /* Already tried the ESP */ 589 if (espdp == pp) 590 continue; 591 /* 592 * Roll up the ZFS special case 593 * for those partitions that have 594 * zpools on them. 595 */ 596 text = efi_devpath_name(pp->pd_devpath); 597 if (text != NULL) { 598 printf("Trying: %S\n", text); 599 efi_free_devpath_name(text); 600 } 601 if (try_as_currdev(dp, pp)) 602 return (0); 603 } 604 } 605 } 606 607 /* 608 * Try the device handle from our loaded image first. If that 609 * fails, use the device path from the loaded image and see if 610 * any of the nodes in that path match one of the enumerated 611 * handles. Currently, this handle list is only for netboot. 612 */ 613 if (efi_handle_lookup(boot_img->DeviceHandle, &dev, &unit, &extra) == 0) { 614 set_currdev_devsw(dev, unit); 615 if (sanity_check_currdev()) 616 return (0); 617 } 618 619 copy = NULL; 620 devpath = efi_lookup_image_devpath(IH); 621 while (devpath != NULL) { 622 h = efi_devpath_handle(devpath); 623 if (h == NULL) 624 break; 625 626 free(copy); 627 copy = NULL; 628 629 if (efi_handle_lookup(h, &dev, &unit, &extra) == 0) { 630 set_currdev_devsw(dev, unit); 631 if (sanity_check_currdev()) 632 return (0); 633 } 634 635 devpath = efi_lookup_devpath(h); 636 if (devpath != NULL) { 637 copy = efi_devpath_trim(devpath); 638 devpath = copy; 639 } 640 } 641 free(copy); 642 643 return (ENOENT); 644 } 645 646 static bool 647 interactive_interrupt(const char *msg) 648 { 649 time_t now, then, last; 650 651 last = 0; 652 now = then = getsecs(); 653 printf("%s\n", msg); 654 if (fail_timeout == -2) /* Always break to OK */ 655 return (true); 656 if (fail_timeout == -1) /* Never break to OK */ 657 return (false); 658 do { 659 if (last != now) { 660 printf("press any key to interrupt reboot in %d seconds\r", 661 fail_timeout - (int)(now - then)); 662 last = now; 663 } 664 665 /* XXX no pause or timeout wait for char */ 666 if (ischar()) 667 return (true); 668 now = getsecs(); 669 } while (now - then < fail_timeout); 670 return (false); 671 } 672 673 static int 674 parse_args(int argc, CHAR16 *argv[]) 675 { 676 int i, j, howto; 677 bool vargood; 678 char var[128]; 679 680 /* 681 * Parse the args to set the console settings, etc 682 * boot1.efi passes these in, if it can read /boot.config or /boot/config 683 * or iPXE may be setup to pass these in. Or the optional argument in the 684 * boot environment was used to pass these arguments in (in which case 685 * neither /boot.config nor /boot/config are consulted). 686 * 687 * Loop through the args, and for each one that contains an '=' that is 688 * not the first character, add it to the environment. This allows 689 * loader and kernel env vars to be passed on the command line. Convert 690 * args from UCS-2 to ASCII (16 to 8 bit) as they are copied (though this 691 * method is flawed for non-ASCII characters). 692 */ 693 howto = 0; 694 for (i = 1; i < argc; i++) { 695 cpy16to8(argv[i], var, sizeof(var)); 696 howto |= boot_parse_arg(var); 697 } 698 699 return (howto); 700 } 701 702 static void 703 setenv_int(const char *key, int val) 704 { 705 char buf[20]; 706 707 snprintf(buf, sizeof(buf), "%d", val); 708 setenv(key, buf, 1); 709 } 710 711 /* 712 * Parse ConOut (the list of consoles active) and see if we can find a 713 * serial port and/or a video port. It would be nice to also walk the 714 * ACPI name space to map the UID for the serial port to a port. The 715 * latter is especially hard. 716 */ 717 int 718 parse_uefi_con_out(void) 719 { 720 int how, rv; 721 int vid_seen = 0, com_seen = 0, seen = 0; 722 size_t sz; 723 char buf[4096], *ep; 724 EFI_DEVICE_PATH *node; 725 ACPI_HID_DEVICE_PATH *acpi; 726 UART_DEVICE_PATH *uart; 727 bool pci_pending; 728 729 how = 0; 730 sz = sizeof(buf); 731 rv = efi_global_getenv("ConOut", buf, &sz); 732 if (rv != EFI_SUCCESS) { 733 /* If we don't have any ConOut default to serial */ 734 how = RB_SERIAL; 735 goto out; 736 } 737 ep = buf + sz; 738 node = (EFI_DEVICE_PATH *)buf; 739 while ((char *)node < ep) { 740 pci_pending = false; 741 if (DevicePathType(node) == ACPI_DEVICE_PATH && 742 (DevicePathSubType(node) == ACPI_DP || 743 DevicePathSubType(node) == ACPI_EXTENDED_DP)) { 744 /* Check for Serial node */ 745 acpi = (void *)node; 746 if (EISA_ID_TO_NUM(acpi->HID) == 0x501) { 747 setenv_int("efi_8250_uid", acpi->UID); 748 com_seen = ++seen; 749 } 750 } else if (DevicePathType(node) == MESSAGING_DEVICE_PATH && 751 DevicePathSubType(node) == MSG_UART_DP) { 752 com_seen = ++seen; 753 uart = (void *)node; 754 setenv_int("efi_com_speed", uart->BaudRate); 755 } else if (DevicePathType(node) == ACPI_DEVICE_PATH && 756 DevicePathSubType(node) == ACPI_ADR_DP) { 757 /* Check for AcpiAdr() Node for video */ 758 vid_seen = ++seen; 759 } else if (DevicePathType(node) == HARDWARE_DEVICE_PATH && 760 DevicePathSubType(node) == HW_PCI_DP) { 761 /* 762 * Note, vmware fusion has a funky console device 763 * PciRoot(0x0)/Pci(0xf,0x0) 764 * which we can only detect at the end since we also 765 * have to cope with: 766 * PciRoot(0x0)/Pci(0x1f,0x0)/Serial(0x1) 767 * so only match it if it's last. 768 */ 769 pci_pending = true; 770 } 771 node = NextDevicePathNode(node); 772 } 773 if (pci_pending && vid_seen == 0) 774 vid_seen = ++seen; 775 776 /* 777 * Truth table for RB_MULTIPLE | RB_SERIAL 778 * Value Result 779 * 0 Use only video console 780 * RB_SERIAL Use only serial console 781 * RB_MULTIPLE Use both video and serial console 782 * (but video is primary so gets rc messages) 783 * both Use both video and serial console 784 * (but serial is primary so gets rc messages) 785 * 786 * Try to honor this as best we can. If only one of serial / video 787 * found, then use that. Otherwise, use the first one we found. 788 * This also implies if we found nothing, default to video. 789 */ 790 how = 0; 791 if (vid_seen && com_seen) { 792 how |= RB_MULTIPLE; 793 if (com_seen < vid_seen) 794 how |= RB_SERIAL; 795 } else if (com_seen) 796 how |= RB_SERIAL; 797 out: 798 return (how); 799 } 800 801 void 802 parse_loader_efi_config(EFI_HANDLE h, const char *env_fn) 803 { 804 pdinfo_t *dp; 805 struct stat st; 806 int fd = -1; 807 char *env = NULL; 808 809 dp = efiblk_get_pdinfo_by_handle(h); 810 if (dp == NULL) 811 return; 812 set_currdev_pdinfo(dp); 813 if (stat(env_fn, &st) != 0) 814 return; 815 fd = open(env_fn, O_RDONLY); 816 if (fd == -1) 817 return; 818 env = malloc(st.st_size + 1); 819 if (env == NULL) 820 goto out; 821 if (read(fd, env, st.st_size) != st.st_size) 822 goto out; 823 env[st.st_size] = '\0'; 824 boot_parse_cmdline(env); 825 out: 826 free(env); 827 close(fd); 828 } 829 830 static void 831 read_loader_env(const char *name, char *def_fn, bool once) 832 { 833 UINTN len; 834 char *fn, *freeme = NULL; 835 836 len = 0; 837 fn = def_fn; 838 if (efi_freebsd_getenv(name, NULL, &len) == EFI_BUFFER_TOO_SMALL) { 839 freeme = fn = malloc(len + 1); 840 if (fn != NULL) { 841 if (efi_freebsd_getenv(name, fn, &len) != EFI_SUCCESS) { 842 free(fn); 843 fn = NULL; 844 printf( 845 "Can't fetch FreeBSD::%s we know is there\n", name); 846 } else { 847 /* 848 * if tagged as 'once' delete the env variable so we 849 * only use it once. 850 */ 851 if (once) 852 efi_freebsd_delenv(name); 853 /* 854 * We malloced 1 more than len above, then redid the call. 855 * so now we have room at the end of the string to NUL terminate 856 * it here, even if the typical idium would have '- 1' here to 857 * not overflow. len should be the same on return both times. 858 */ 859 fn[len] = '\0'; 860 } 861 } else { 862 printf( 863 "Can't allocate %d bytes to fetch FreeBSD::%s env var\n", 864 len, name); 865 } 866 } 867 if (fn) { 868 printf(" Reading loader env vars from %s\n", fn); 869 parse_loader_efi_config(boot_img->DeviceHandle, fn); 870 } 871 } 872 873 caddr_t 874 ptov(uintptr_t x) 875 { 876 return ((caddr_t)x); 877 } 878 879 EFI_STATUS 880 main(int argc, CHAR16 *argv[]) 881 { 882 EFI_GUID *guid; 883 int howto, i, uhowto; 884 UINTN k; 885 bool has_kbd, is_last; 886 char *s; 887 EFI_DEVICE_PATH *imgpath; 888 CHAR16 *text; 889 EFI_STATUS rv; 890 size_t sz, bosz = 0, bisz = 0; 891 UINT16 boot_order[100]; 892 char boot_info[4096]; 893 char buf[32]; 894 bool uefi_boot_mgr; 895 896 archsw.arch_autoload = efi_autoload; 897 archsw.arch_getdev = efi_getdev; 898 archsw.arch_copyin = efi_copyin; 899 archsw.arch_copyout = efi_copyout; 900 #ifdef __amd64__ 901 archsw.arch_hypervisor = x86_hypervisor; 902 #endif 903 archsw.arch_readin = efi_readin; 904 archsw.arch_zfs_probe = efi_zfs_probe; 905 906 /* Get our loaded image protocol interface structure. */ 907 (void) OpenProtocolByHandle(IH, &imgid, (void **)&boot_img); 908 909 /* 910 * Chicken-and-egg problem; we want to have console output early, but 911 * some console attributes may depend on reading from eg. the boot 912 * device, which we can't do yet. We can use printf() etc. once this is 913 * done. So, we set it to the efi console, then call console init. This 914 * gets us printf early, but also primes the pump for all future console 915 * changes to take effect, regardless of where they come from. 916 */ 917 setenv("console", "efi", 1); 918 uhowto = parse_uefi_con_out(); 919 #if defined(__aarch64__) || defined(__arm__) || defined(__riscv) 920 if ((uhowto & RB_SERIAL) != 0) 921 setenv("console", "comconsole", 1); 922 #endif 923 cons_probe(); 924 925 /* Init the time source */ 926 efi_time_init(); 927 928 /* 929 * Initialise the block cache. Set the upper limit. 930 */ 931 bcache_init(32768, 512); 932 933 /* 934 * Scan the BLOCK IO MEDIA handles then 935 * march through the device switch probing for things. 936 */ 937 i = efipart_inithandles(); 938 if (i != 0 && i != ENOENT) { 939 printf("efipart_inithandles failed with ERRNO %d, expect " 940 "failures\n", i); 941 } 942 943 for (i = 0; devsw[i] != NULL; i++) 944 if (devsw[i]->dv_init != NULL) 945 (devsw[i]->dv_init)(); 946 947 /* 948 * Detect console settings two different ways: one via the command 949 * args (eg -h) or via the UEFI ConOut variable. 950 */ 951 has_kbd = has_keyboard(); 952 howto = parse_args(argc, argv); 953 if (!has_kbd && (howto & RB_PROBE)) 954 howto |= RB_SERIAL | RB_MULTIPLE; 955 howto &= ~RB_PROBE; 956 957 /* 958 * Read additional environment variables from the boot device's 959 * "LoaderEnv" file. Any boot loader environment variable may be set 960 * there, which are subtly different than loader.conf variables. Only 961 * the 'simple' ones may be set so things like foo_load="YES" won't work 962 * for two reasons. First, the parser is simplistic and doesn't grok 963 * quotes. Second, because the variables that cause an action to happen 964 * are parsed by the lua, 4th or whatever code that's not yet 965 * loaded. This is relative to the root directory when loader.efi is 966 * loaded off the UFS root drive (when chain booted), or from the ESP 967 * when directly loaded by the BIOS. 968 * 969 * We also read in NextLoaderEnv if it was specified. This allows next boot 970 * functionality to be implemented and to override anything in LoaderEnv. 971 */ 972 read_loader_env("LoaderEnv", "/efi/freebsd/loader.env", false); 973 read_loader_env("NextLoaderEnv", NULL, true); 974 975 /* 976 * We now have two notions of console. howto should be viewed as 977 * overrides. If console is already set, don't set it again. 978 */ 979 #define VIDEO_ONLY 0 980 #define SERIAL_ONLY RB_SERIAL 981 #define VID_SER_BOTH RB_MULTIPLE 982 #define SER_VID_BOTH (RB_SERIAL | RB_MULTIPLE) 983 #define CON_MASK (RB_SERIAL | RB_MULTIPLE) 984 if (strcmp(getenv("console"), "efi") == 0) { 985 if ((howto & CON_MASK) == 0) { 986 /* No override, uhowto is controlling and efi cons is perfect */ 987 howto = howto | (uhowto & CON_MASK); 988 } else if ((howto & CON_MASK) == (uhowto & CON_MASK)) { 989 /* override matches what UEFI told us, efi console is perfect */ 990 } else if ((uhowto & (CON_MASK)) != 0) { 991 /* 992 * We detected a serial console on ConOut. All possible 993 * overrides include serial. We can't really override what efi 994 * gives us, so we use it knowing it's the best choice. 995 */ 996 /* Do nothing */ 997 } else { 998 /* 999 * We detected some kind of serial in the override, but ConOut 1000 * has no serial, so we have to sort out which case it really is. 1001 */ 1002 switch (howto & CON_MASK) { 1003 case SERIAL_ONLY: 1004 setenv("console", "comconsole", 1); 1005 break; 1006 case VID_SER_BOTH: 1007 setenv("console", "efi comconsole", 1); 1008 break; 1009 case SER_VID_BOTH: 1010 setenv("console", "comconsole efi", 1); 1011 break; 1012 /* case VIDEO_ONLY can't happen -- it's the first if above */ 1013 } 1014 } 1015 } 1016 1017 /* 1018 * howto is set now how we want to export the flags to the kernel, so 1019 * set the env based on it. 1020 */ 1021 boot_howto_to_env(howto); 1022 1023 if (efi_copy_init()) { 1024 printf("failed to allocate staging area\n"); 1025 return (EFI_BUFFER_TOO_SMALL); 1026 } 1027 1028 if ((s = getenv("fail_timeout")) != NULL) 1029 fail_timeout = strtol(s, NULL, 10); 1030 1031 printf("%s\n", bootprog_info); 1032 printf(" Command line arguments:"); 1033 for (i = 0; i < argc; i++) 1034 printf(" %S", argv[i]); 1035 printf("\n"); 1036 1037 printf(" Image base: 0x%lx\n", (unsigned long)boot_img->ImageBase); 1038 printf(" EFI version: %d.%02d\n", ST->Hdr.Revision >> 16, 1039 ST->Hdr.Revision & 0xffff); 1040 printf(" EFI Firmware: %S (rev %d.%02d)\n", ST->FirmwareVendor, 1041 ST->FirmwareRevision >> 16, ST->FirmwareRevision & 0xffff); 1042 printf(" Console: %s (%#x)\n", getenv("console"), howto); 1043 1044 /* Determine the devpath of our image so we can prefer it. */ 1045 text = efi_devpath_name(boot_img->FilePath); 1046 if (text != NULL) { 1047 printf(" Load Path: %S\n", text); 1048 efi_setenv_freebsd_wcs("LoaderPath", text); 1049 efi_free_devpath_name(text); 1050 } 1051 1052 rv = OpenProtocolByHandle(boot_img->DeviceHandle, &devid, 1053 (void **)&imgpath); 1054 if (rv == EFI_SUCCESS) { 1055 text = efi_devpath_name(imgpath); 1056 if (text != NULL) { 1057 printf(" Load Device: %S\n", text); 1058 efi_setenv_freebsd_wcs("LoaderDev", text); 1059 efi_free_devpath_name(text); 1060 } 1061 } 1062 1063 if (getenv("uefi_ignore_boot_mgr") != NULL) { 1064 printf(" Ignoring UEFI boot manager\n"); 1065 uefi_boot_mgr = false; 1066 } else { 1067 uefi_boot_mgr = true; 1068 boot_current = 0; 1069 sz = sizeof(boot_current); 1070 rv = efi_global_getenv("BootCurrent", &boot_current, &sz); 1071 if (rv == EFI_SUCCESS) 1072 printf(" BootCurrent: %04x\n", boot_current); 1073 else { 1074 boot_current = 0xffff; 1075 uefi_boot_mgr = false; 1076 } 1077 1078 sz = sizeof(boot_order); 1079 rv = efi_global_getenv("BootOrder", &boot_order, &sz); 1080 if (rv == EFI_SUCCESS) { 1081 printf(" BootOrder:"); 1082 for (i = 0; i < sz / sizeof(boot_order[0]); i++) 1083 printf(" %04x%s", boot_order[i], 1084 boot_order[i] == boot_current ? "[*]" : ""); 1085 printf("\n"); 1086 is_last = boot_order[(sz / sizeof(boot_order[0])) - 1] == boot_current; 1087 bosz = sz; 1088 } else if (uefi_boot_mgr) { 1089 /* 1090 * u-boot doesn't set BootOrder, but otherwise participates in the 1091 * boot manager protocol. So we fake it here and don't consider it 1092 * a failure. 1093 */ 1094 bosz = sizeof(boot_order[0]); 1095 boot_order[0] = boot_current; 1096 is_last = true; 1097 } 1098 } 1099 1100 /* 1101 * Next, find the boot info structure the UEFI boot manager is 1102 * supposed to setup. We need this so we can walk through it to 1103 * find where we are in the booting process and what to try to 1104 * boot next. 1105 */ 1106 if (uefi_boot_mgr) { 1107 snprintf(buf, sizeof(buf), "Boot%04X", boot_current); 1108 sz = sizeof(boot_info); 1109 rv = efi_global_getenv(buf, &boot_info, &sz); 1110 if (rv == EFI_SUCCESS) 1111 bisz = sz; 1112 else 1113 uefi_boot_mgr = false; 1114 } 1115 1116 /* 1117 * Disable the watchdog timer. By default the boot manager sets 1118 * the timer to 5 minutes before invoking a boot option. If we 1119 * want to return to the boot manager, we have to disable the 1120 * watchdog timer and since we're an interactive program, we don't 1121 * want to wait until the user types "quit". The timer may have 1122 * fired by then. We don't care if this fails. It does not prevent 1123 * normal functioning in any way... 1124 */ 1125 BS->SetWatchdogTimer(0, 0, 0, NULL); 1126 1127 /* 1128 * Initialize the trusted/forbidden certificates from UEFI. 1129 * They will be later used to verify the manifest(s), 1130 * which should contain hashes of verified files. 1131 * This needs to be initialized before any configuration files 1132 * are loaded. 1133 */ 1134 #ifdef EFI_SECUREBOOT 1135 ve_efi_init(); 1136 #endif 1137 1138 /* 1139 * Try and find a good currdev based on the image that was booted. 1140 * It might be desirable here to have a short pause to allow falling 1141 * through to the boot loader instead of returning instantly to follow 1142 * the boot protocol and also allow an escape hatch for users wishing 1143 * to try something different. 1144 */ 1145 if (find_currdev(uefi_boot_mgr, is_last, boot_info, bisz) != 0) 1146 if (uefi_boot_mgr && 1147 !interactive_interrupt("Failed to find bootable partition")) 1148 return (EFI_NOT_FOUND); 1149 1150 efi_init_environment(); 1151 1152 #if !defined(__arm__) 1153 for (k = 0; k < ST->NumberOfTableEntries; k++) { 1154 guid = &ST->ConfigurationTable[k].VendorGuid; 1155 if (!memcmp(guid, &smbios, sizeof(EFI_GUID))) { 1156 char buf[40]; 1157 1158 snprintf(buf, sizeof(buf), "%p", 1159 ST->ConfigurationTable[k].VendorTable); 1160 setenv("hint.smbios.0.mem", buf, 1); 1161 smbios_detect(ST->ConfigurationTable[k].VendorTable); 1162 break; 1163 } 1164 } 1165 #endif 1166 1167 interact(); /* doesn't return */ 1168 1169 return (EFI_SUCCESS); /* keep compiler happy */ 1170 } 1171 1172 COMMAND_SET(poweroff, "poweroff", "power off the system", command_poweroff); 1173 1174 static int 1175 command_poweroff(int argc __unused, char *argv[] __unused) 1176 { 1177 int i; 1178 1179 for (i = 0; devsw[i] != NULL; ++i) 1180 if (devsw[i]->dv_cleanup != NULL) 1181 (devsw[i]->dv_cleanup)(); 1182 1183 RS->ResetSystem(EfiResetShutdown, EFI_SUCCESS, 0, NULL); 1184 1185 /* NOTREACHED */ 1186 return (CMD_ERROR); 1187 } 1188 1189 COMMAND_SET(reboot, "reboot", "reboot the system", command_reboot); 1190 1191 static int 1192 command_reboot(int argc, char *argv[]) 1193 { 1194 int i; 1195 1196 for (i = 0; devsw[i] != NULL; ++i) 1197 if (devsw[i]->dv_cleanup != NULL) 1198 (devsw[i]->dv_cleanup)(); 1199 1200 RS->ResetSystem(EfiResetCold, EFI_SUCCESS, 0, NULL); 1201 1202 /* NOTREACHED */ 1203 return (CMD_ERROR); 1204 } 1205 1206 COMMAND_SET(quit, "quit", "exit the loader", command_quit); 1207 1208 static int 1209 command_quit(int argc, char *argv[]) 1210 { 1211 exit(0); 1212 return (CMD_OK); 1213 } 1214 1215 COMMAND_SET(memmap, "memmap", "print memory map", command_memmap); 1216 1217 static int 1218 command_memmap(int argc __unused, char *argv[] __unused) 1219 { 1220 UINTN sz; 1221 EFI_MEMORY_DESCRIPTOR *map, *p; 1222 UINTN key, dsz; 1223 UINT32 dver; 1224 EFI_STATUS status; 1225 int i, ndesc; 1226 char line[80]; 1227 1228 sz = 0; 1229 status = BS->GetMemoryMap(&sz, 0, &key, &dsz, &dver); 1230 if (status != EFI_BUFFER_TOO_SMALL) { 1231 printf("Can't determine memory map size\n"); 1232 return (CMD_ERROR); 1233 } 1234 map = malloc(sz); 1235 status = BS->GetMemoryMap(&sz, map, &key, &dsz, &dver); 1236 if (EFI_ERROR(status)) { 1237 printf("Can't read memory map\n"); 1238 return (CMD_ERROR); 1239 } 1240 1241 ndesc = sz / dsz; 1242 snprintf(line, sizeof(line), "%23s %12s %12s %8s %4s\n", 1243 "Type", "Physical", "Virtual", "#Pages", "Attr"); 1244 pager_open(); 1245 if (pager_output(line)) { 1246 pager_close(); 1247 return (CMD_OK); 1248 } 1249 1250 for (i = 0, p = map; i < ndesc; 1251 i++, p = NextMemoryDescriptor(p, dsz)) { 1252 snprintf(line, sizeof(line), "%23s %012jx %012jx %08jx ", 1253 efi_memory_type(p->Type), (uintmax_t)p->PhysicalStart, 1254 (uintmax_t)p->VirtualStart, (uintmax_t)p->NumberOfPages); 1255 if (pager_output(line)) 1256 break; 1257 1258 if (p->Attribute & EFI_MEMORY_UC) 1259 printf("UC "); 1260 if (p->Attribute & EFI_MEMORY_WC) 1261 printf("WC "); 1262 if (p->Attribute & EFI_MEMORY_WT) 1263 printf("WT "); 1264 if (p->Attribute & EFI_MEMORY_WB) 1265 printf("WB "); 1266 if (p->Attribute & EFI_MEMORY_UCE) 1267 printf("UCE "); 1268 if (p->Attribute & EFI_MEMORY_WP) 1269 printf("WP "); 1270 if (p->Attribute & EFI_MEMORY_RP) 1271 printf("RP "); 1272 if (p->Attribute & EFI_MEMORY_XP) 1273 printf("XP "); 1274 if (p->Attribute & EFI_MEMORY_NV) 1275 printf("NV "); 1276 if (p->Attribute & EFI_MEMORY_MORE_RELIABLE) 1277 printf("MR "); 1278 if (p->Attribute & EFI_MEMORY_RO) 1279 printf("RO "); 1280 if (pager_output("\n")) 1281 break; 1282 } 1283 1284 pager_close(); 1285 return (CMD_OK); 1286 } 1287 1288 COMMAND_SET(configuration, "configuration", "print configuration tables", 1289 command_configuration); 1290 1291 static int 1292 command_configuration(int argc, char *argv[]) 1293 { 1294 UINTN i; 1295 char *name; 1296 1297 printf("NumberOfTableEntries=%lu\n", 1298 (unsigned long)ST->NumberOfTableEntries); 1299 1300 for (i = 0; i < ST->NumberOfTableEntries; i++) { 1301 EFI_GUID *guid; 1302 1303 printf(" "); 1304 guid = &ST->ConfigurationTable[i].VendorGuid; 1305 1306 if (efi_guid_to_name(guid, &name) == true) { 1307 printf(name); 1308 free(name); 1309 } else { 1310 printf("Error while translating UUID to name"); 1311 } 1312 printf(" at %p\n", ST->ConfigurationTable[i].VendorTable); 1313 } 1314 1315 return (CMD_OK); 1316 } 1317 1318 1319 COMMAND_SET(mode, "mode", "change or display EFI text modes", command_mode); 1320 1321 static int 1322 command_mode(int argc, char *argv[]) 1323 { 1324 UINTN cols, rows; 1325 unsigned int mode; 1326 int i; 1327 char *cp; 1328 EFI_STATUS status; 1329 SIMPLE_TEXT_OUTPUT_INTERFACE *conout; 1330 1331 conout = ST->ConOut; 1332 1333 if (argc > 1) { 1334 mode = strtol(argv[1], &cp, 0); 1335 if (cp[0] != '\0') { 1336 printf("Invalid mode\n"); 1337 return (CMD_ERROR); 1338 } 1339 status = conout->QueryMode(conout, mode, &cols, &rows); 1340 if (EFI_ERROR(status)) { 1341 printf("invalid mode %d\n", mode); 1342 return (CMD_ERROR); 1343 } 1344 status = conout->SetMode(conout, mode); 1345 if (EFI_ERROR(status)) { 1346 printf("couldn't set mode %d\n", mode); 1347 return (CMD_ERROR); 1348 } 1349 (void) efi_cons_update_mode(); 1350 return (CMD_OK); 1351 } 1352 1353 printf("Current mode: %d\n", conout->Mode->Mode); 1354 for (i = 0; i <= conout->Mode->MaxMode; i++) { 1355 status = conout->QueryMode(conout, i, &cols, &rows); 1356 if (EFI_ERROR(status)) 1357 continue; 1358 printf("Mode %d: %u columns, %u rows\n", i, (unsigned)cols, 1359 (unsigned)rows); 1360 } 1361 1362 if (i != 0) 1363 printf("Select a mode with the command \"mode <number>\"\n"); 1364 1365 return (CMD_OK); 1366 } 1367 1368 COMMAND_SET(lsefi, "lsefi", "list EFI handles", command_lsefi); 1369 1370 static int 1371 command_lsefi(int argc __unused, char *argv[] __unused) 1372 { 1373 char *name; 1374 EFI_HANDLE *buffer = NULL; 1375 EFI_HANDLE handle; 1376 UINTN bufsz = 0, i, j; 1377 EFI_STATUS status; 1378 int ret = 0; 1379 1380 status = BS->LocateHandle(AllHandles, NULL, NULL, &bufsz, buffer); 1381 if (status != EFI_BUFFER_TOO_SMALL) { 1382 snprintf(command_errbuf, sizeof (command_errbuf), 1383 "unexpected error: %lld", (long long)status); 1384 return (CMD_ERROR); 1385 } 1386 if ((buffer = malloc(bufsz)) == NULL) { 1387 sprintf(command_errbuf, "out of memory"); 1388 return (CMD_ERROR); 1389 } 1390 1391 status = BS->LocateHandle(AllHandles, NULL, NULL, &bufsz, buffer); 1392 if (EFI_ERROR(status)) { 1393 free(buffer); 1394 snprintf(command_errbuf, sizeof (command_errbuf), 1395 "LocateHandle() error: %lld", (long long)status); 1396 return (CMD_ERROR); 1397 } 1398 1399 pager_open(); 1400 for (i = 0; i < (bufsz / sizeof (EFI_HANDLE)); i++) { 1401 UINTN nproto = 0; 1402 EFI_GUID **protocols = NULL; 1403 1404 handle = buffer[i]; 1405 printf("Handle %p", handle); 1406 if (pager_output("\n")) 1407 break; 1408 /* device path */ 1409 1410 status = BS->ProtocolsPerHandle(handle, &protocols, &nproto); 1411 if (EFI_ERROR(status)) { 1412 snprintf(command_errbuf, sizeof (command_errbuf), 1413 "ProtocolsPerHandle() error: %lld", 1414 (long long)status); 1415 continue; 1416 } 1417 1418 for (j = 0; j < nproto; j++) { 1419 if (efi_guid_to_name(protocols[j], &name) == true) { 1420 printf(" %s", name); 1421 free(name); 1422 } else { 1423 printf("Error while translating UUID to name"); 1424 } 1425 if ((ret = pager_output("\n")) != 0) 1426 break; 1427 } 1428 BS->FreePool(protocols); 1429 if (ret != 0) 1430 break; 1431 } 1432 pager_close(); 1433 free(buffer); 1434 return (CMD_OK); 1435 } 1436 1437 #ifdef LOADER_FDT_SUPPORT 1438 extern int command_fdt_internal(int argc, char *argv[]); 1439 1440 /* 1441 * Since proper fdt command handling function is defined in fdt_loader_cmd.c, 1442 * and declaring it as extern is in contradiction with COMMAND_SET() macro 1443 * (which uses static pointer), we're defining wrapper function, which 1444 * calls the proper fdt handling routine. 1445 */ 1446 static int 1447 command_fdt(int argc, char *argv[]) 1448 { 1449 1450 return (command_fdt_internal(argc, argv)); 1451 } 1452 1453 COMMAND_SET(fdt, "fdt", "flattened device tree handling", command_fdt); 1454 #endif 1455 1456 /* 1457 * Chain load another efi loader. 1458 */ 1459 static int 1460 command_chain(int argc, char *argv[]) 1461 { 1462 EFI_GUID LoadedImageGUID = LOADED_IMAGE_PROTOCOL; 1463 EFI_HANDLE loaderhandle; 1464 EFI_LOADED_IMAGE *loaded_image; 1465 EFI_STATUS status; 1466 struct stat st; 1467 struct devdesc *dev; 1468 char *name, *path; 1469 void *buf; 1470 int fd; 1471 1472 if (argc < 2) { 1473 command_errmsg = "wrong number of arguments"; 1474 return (CMD_ERROR); 1475 } 1476 1477 name = argv[1]; 1478 1479 if ((fd = open(name, O_RDONLY)) < 0) { 1480 command_errmsg = "no such file"; 1481 return (CMD_ERROR); 1482 } 1483 1484 #ifdef LOADER_VERIEXEC 1485 if (verify_file(fd, name, 0, VE_MUST, __func__) < 0) { 1486 sprintf(command_errbuf, "can't verify: %s", name); 1487 close(fd); 1488 return (CMD_ERROR); 1489 } 1490 #endif 1491 1492 if (fstat(fd, &st) < -1) { 1493 command_errmsg = "stat failed"; 1494 close(fd); 1495 return (CMD_ERROR); 1496 } 1497 1498 status = BS->AllocatePool(EfiLoaderCode, (UINTN)st.st_size, &buf); 1499 if (status != EFI_SUCCESS) { 1500 command_errmsg = "failed to allocate buffer"; 1501 close(fd); 1502 return (CMD_ERROR); 1503 } 1504 if (read(fd, buf, st.st_size) != st.st_size) { 1505 command_errmsg = "error while reading the file"; 1506 (void)BS->FreePool(buf); 1507 close(fd); 1508 return (CMD_ERROR); 1509 } 1510 close(fd); 1511 status = BS->LoadImage(FALSE, IH, NULL, buf, st.st_size, &loaderhandle); 1512 (void)BS->FreePool(buf); 1513 if (status != EFI_SUCCESS) { 1514 command_errmsg = "LoadImage failed"; 1515 return (CMD_ERROR); 1516 } 1517 status = OpenProtocolByHandle(loaderhandle, &LoadedImageGUID, 1518 (void **)&loaded_image); 1519 1520 if (argc > 2) { 1521 int i, len = 0; 1522 CHAR16 *argp; 1523 1524 for (i = 2; i < argc; i++) 1525 len += strlen(argv[i]) + 1; 1526 1527 len *= sizeof (*argp); 1528 loaded_image->LoadOptions = argp = malloc (len); 1529 loaded_image->LoadOptionsSize = len; 1530 for (i = 2; i < argc; i++) { 1531 char *ptr = argv[i]; 1532 while (*ptr) 1533 *(argp++) = *(ptr++); 1534 *(argp++) = ' '; 1535 } 1536 *(--argv) = 0; 1537 } 1538 1539 if (efi_getdev((void **)&dev, name, (const char **)&path) == 0) { 1540 #ifdef EFI_ZFS_BOOT 1541 struct zfs_devdesc *z_dev; 1542 #endif 1543 struct disk_devdesc *d_dev; 1544 pdinfo_t *hd, *pd; 1545 1546 switch (dev->d_dev->dv_type) { 1547 #ifdef EFI_ZFS_BOOT 1548 case DEVT_ZFS: 1549 z_dev = (struct zfs_devdesc *)dev; 1550 loaded_image->DeviceHandle = 1551 efizfs_get_handle_by_guid(z_dev->pool_guid); 1552 break; 1553 #endif 1554 case DEVT_NET: 1555 loaded_image->DeviceHandle = 1556 efi_find_handle(dev->d_dev, dev->d_unit); 1557 break; 1558 default: 1559 hd = efiblk_get_pdinfo(dev); 1560 if (STAILQ_EMPTY(&hd->pd_part)) { 1561 loaded_image->DeviceHandle = hd->pd_handle; 1562 break; 1563 } 1564 d_dev = (struct disk_devdesc *)dev; 1565 STAILQ_FOREACH(pd, &hd->pd_part, pd_link) { 1566 /* 1567 * d_partition should be 255 1568 */ 1569 if (pd->pd_unit == (uint32_t)d_dev->d_slice) { 1570 loaded_image->DeviceHandle = 1571 pd->pd_handle; 1572 break; 1573 } 1574 } 1575 break; 1576 } 1577 } 1578 1579 dev_cleanup(); 1580 status = BS->StartImage(loaderhandle, NULL, NULL); 1581 if (status != EFI_SUCCESS) { 1582 command_errmsg = "StartImage failed"; 1583 free(loaded_image->LoadOptions); 1584 loaded_image->LoadOptions = NULL; 1585 status = BS->UnloadImage(loaded_image); 1586 return (CMD_ERROR); 1587 } 1588 1589 return (CMD_ERROR); /* not reached */ 1590 } 1591 1592 COMMAND_SET(chain, "chain", "chain load file", command_chain); 1593