1 /*- 2 * Copyright (c) 2008-2010 Rui Paulo 3 * Copyright (c) 2006 Marcel Moolenaar 4 * Copyright (c) 2018 Netflix, Inc 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include <stand.h> 33 34 #include <sys/disk.h> 35 #include <sys/param.h> 36 #include <sys/reboot.h> 37 #include <sys/boot.h> 38 #include <stdint.h> 39 #include <string.h> 40 #include <setjmp.h> 41 #include <disk.h> 42 43 #include <efi.h> 44 #include <efilib.h> 45 #include <efichar.h> 46 47 #include <uuid.h> 48 49 #include <bootstrap.h> 50 #include <smbios.h> 51 52 #ifdef EFI_ZFS_BOOT 53 #include <libzfs.h> 54 #include "efizfs.h" 55 #endif 56 57 #include "loader_efi.h" 58 59 struct arch_switch archsw; /* MI/MD interface boundary */ 60 61 EFI_GUID acpi = ACPI_TABLE_GUID; 62 EFI_GUID acpi20 = ACPI_20_TABLE_GUID; 63 EFI_GUID devid = DEVICE_PATH_PROTOCOL; 64 EFI_GUID imgid = LOADED_IMAGE_PROTOCOL; 65 EFI_GUID mps = MPS_TABLE_GUID; 66 EFI_GUID netid = EFI_SIMPLE_NETWORK_PROTOCOL; 67 EFI_GUID smbios = SMBIOS_TABLE_GUID; 68 EFI_GUID smbios3 = SMBIOS3_TABLE_GUID; 69 EFI_GUID dxe = DXE_SERVICES_TABLE_GUID; 70 EFI_GUID hoblist = HOB_LIST_TABLE_GUID; 71 EFI_GUID lzmadecomp = LZMA_DECOMPRESSION_GUID; 72 EFI_GUID mpcore = ARM_MP_CORE_INFO_TABLE_GUID; 73 EFI_GUID esrt = ESRT_TABLE_GUID; 74 EFI_GUID memtype = MEMORY_TYPE_INFORMATION_TABLE_GUID; 75 EFI_GUID debugimg = DEBUG_IMAGE_INFO_TABLE_GUID; 76 EFI_GUID fdtdtb = FDT_TABLE_GUID; 77 EFI_GUID inputid = SIMPLE_TEXT_INPUT_PROTOCOL; 78 79 /* 80 * Number of seconds to wait for a keystroke before exiting with failure 81 * in the event no currdev is found. -2 means always break, -1 means 82 * never break, 0 means poll once and then reboot, > 0 means wait for 83 * that many seconds. "fail_timeout" can be set in the environment as 84 * well. 85 */ 86 static int fail_timeout = 5; 87 88 /* 89 * Current boot variable 90 */ 91 UINT16 boot_current; 92 93 static bool 94 has_keyboard(void) 95 { 96 EFI_STATUS status; 97 EFI_DEVICE_PATH *path; 98 EFI_HANDLE *hin, *hin_end, *walker; 99 UINTN sz; 100 bool retval = false; 101 102 /* 103 * Find all the handles that support the SIMPLE_TEXT_INPUT_PROTOCOL and 104 * do the typical dance to get the right sized buffer. 105 */ 106 sz = 0; 107 hin = NULL; 108 status = BS->LocateHandle(ByProtocol, &inputid, 0, &sz, 0); 109 if (status == EFI_BUFFER_TOO_SMALL) { 110 hin = (EFI_HANDLE *)malloc(sz); 111 status = BS->LocateHandle(ByProtocol, &inputid, 0, &sz, 112 hin); 113 if (EFI_ERROR(status)) 114 free(hin); 115 } 116 if (EFI_ERROR(status)) 117 return retval; 118 119 /* 120 * Look at each of the handles. If it supports the device path protocol, 121 * use it to get the device path for this handle. Then see if that 122 * device path matches either the USB device path for keyboards or the 123 * legacy device path for keyboards. 124 */ 125 hin_end = &hin[sz / sizeof(*hin)]; 126 for (walker = hin; walker < hin_end; walker++) { 127 status = BS->HandleProtocol(*walker, &devid, (VOID **)&path); 128 if (EFI_ERROR(status)) 129 continue; 130 131 while (!IsDevicePathEnd(path)) { 132 /* 133 * Check for the ACPI keyboard node. All PNP3xx nodes 134 * are keyboards of different flavors. Note: It is 135 * unclear of there's always a keyboard node when 136 * there's a keyboard controller, or if there's only one 137 * when a keyboard is detected at boot. 138 */ 139 if (DevicePathType(path) == ACPI_DEVICE_PATH && 140 (DevicePathSubType(path) == ACPI_DP || 141 DevicePathSubType(path) == ACPI_EXTENDED_DP)) { 142 ACPI_HID_DEVICE_PATH *acpi; 143 144 acpi = (ACPI_HID_DEVICE_PATH *)(void *)path; 145 if ((EISA_ID_TO_NUM(acpi->HID) & 0xff00) == 0x300 && 146 (acpi->HID & 0xffff) == PNP_EISA_ID_CONST) { 147 retval = true; 148 goto out; 149 } 150 /* 151 * Check for USB keyboard node, if present. Unlike a 152 * PS/2 keyboard, these definitely only appear when 153 * connected to the system. 154 */ 155 } else if (DevicePathType(path) == MESSAGING_DEVICE_PATH && 156 DevicePathSubType(path) == MSG_USB_CLASS_DP) { 157 USB_CLASS_DEVICE_PATH *usb; 158 159 usb = (USB_CLASS_DEVICE_PATH *)(void *)path; 160 if (usb->DeviceClass == 3 && /* HID */ 161 usb->DeviceSubClass == 1 && /* Boot devices */ 162 usb->DeviceProtocol == 1) { /* Boot keyboards */ 163 retval = true; 164 goto out; 165 } 166 } 167 path = NextDevicePathNode(path); 168 } 169 } 170 out: 171 free(hin); 172 return retval; 173 } 174 175 static void 176 set_currdev(const char *devname) 177 { 178 179 env_setenv("currdev", EV_VOLATILE, devname, efi_setcurrdev, env_nounset); 180 env_setenv("loaddev", EV_VOLATILE, devname, env_noset, env_nounset); 181 } 182 183 static void 184 set_currdev_devdesc(struct devdesc *currdev) 185 { 186 const char *devname; 187 188 devname = efi_fmtdev(currdev); 189 printf("Setting currdev to %s\n", devname); 190 set_currdev(devname); 191 } 192 193 static void 194 set_currdev_devsw(struct devsw *dev, int unit) 195 { 196 struct devdesc currdev; 197 198 currdev.d_dev = dev; 199 currdev.d_unit = unit; 200 201 set_currdev_devdesc(&currdev); 202 } 203 204 static void 205 set_currdev_pdinfo(pdinfo_t *dp) 206 { 207 208 /* 209 * Disks are special: they have partitions. if the parent 210 * pointer is non-null, we're a partition not a full disk 211 * and we need to adjust currdev appropriately. 212 */ 213 if (dp->pd_devsw->dv_type == DEVT_DISK) { 214 struct disk_devdesc currdev; 215 216 currdev.dd.d_dev = dp->pd_devsw; 217 if (dp->pd_parent == NULL) { 218 currdev.dd.d_unit = dp->pd_unit; 219 currdev.d_slice = -1; 220 currdev.d_partition = -1; 221 } else { 222 currdev.dd.d_unit = dp->pd_parent->pd_unit; 223 currdev.d_slice = dp->pd_unit; 224 currdev.d_partition = 255; /* Assumes GPT */ 225 } 226 set_currdev_devdesc((struct devdesc *)&currdev); 227 } else { 228 set_currdev_devsw(dp->pd_devsw, dp->pd_unit); 229 } 230 } 231 232 static bool 233 sanity_check_currdev(void) 234 { 235 struct stat st; 236 237 return (stat("/boot/defaults/loader.conf", &st) == 0 || 238 stat("/boot/kernel/kernel", &st) == 0); 239 } 240 241 #ifdef EFI_ZFS_BOOT 242 static bool 243 probe_zfs_currdev(uint64_t guid) 244 { 245 char *devname; 246 struct zfs_devdesc currdev; 247 248 currdev.dd.d_dev = &zfs_dev; 249 currdev.dd.d_unit = 0; 250 currdev.pool_guid = guid; 251 currdev.root_guid = 0; 252 set_currdev_devdesc((struct devdesc *)&currdev); 253 devname = efi_fmtdev(&currdev); 254 init_zfs_bootenv(devname); 255 256 return (sanity_check_currdev()); 257 } 258 #endif 259 260 static bool 261 try_as_currdev(pdinfo_t *hd, pdinfo_t *pp) 262 { 263 uint64_t guid; 264 265 #ifdef EFI_ZFS_BOOT 266 /* 267 * If there's a zpool on this device, try it as a ZFS 268 * filesystem, which has somewhat different setup than all 269 * other types of fs due to imperfect loader integration. 270 * This all stems from ZFS being both a device (zpool) and 271 * a filesystem, plus the boot env feature. 272 */ 273 if (efizfs_get_guid_by_handle(pp->pd_handle, &guid)) 274 return (probe_zfs_currdev(guid)); 275 #endif 276 /* 277 * All other filesystems just need the pdinfo 278 * initialized in the standard way. 279 */ 280 set_currdev_pdinfo(pp); 281 return (sanity_check_currdev()); 282 } 283 284 /* 285 * Sometimes we get filenames that are all upper case 286 * and/or have backslashes in them. Filter all this out 287 * if it looks like we need to do so. 288 */ 289 static void 290 fix_dosisms(char *p) 291 { 292 while (*p) { 293 if (isupper(*p)) 294 *p = tolower(*p); 295 else if (*p == '\\') 296 *p = '/'; 297 p++; 298 } 299 } 300 301 #define SIZE(dp, edp) (size_t)((intptr_t)(void *)edp - (intptr_t)(void *)dp) 302 303 enum { BOOT_INFO_OK = 0, BAD_CHOICE = 1, NOT_SPECIFIC = 2 }; 304 static int 305 match_boot_info(EFI_LOADED_IMAGE *img __unused, char *boot_info, size_t bisz) 306 { 307 uint32_t attr; 308 uint16_t fplen; 309 size_t len; 310 char *walker, *ep; 311 EFI_DEVICE_PATH *dp, *edp, *first_dp, *last_dp; 312 pdinfo_t *pp; 313 CHAR16 *descr; 314 char *kernel = NULL; 315 FILEPATH_DEVICE_PATH *fp; 316 struct stat st; 317 CHAR16 *text; 318 319 /* 320 * FreeBSD encodes it's boot loading path into the boot loader 321 * BootXXXX variable. We look for the last one in the path 322 * and use that to load the kernel. However, if we only fine 323 * one DEVICE_PATH, then there's nothing specific and we should 324 * fall back. 325 * 326 * In an ideal world, we'd look at the image handle we were 327 * passed, match up with the loader we are and then return the 328 * next one in the path. This would be most flexible and cover 329 * many chain booting scenarios where you need to use this 330 * boot loader to get to the next boot loader. However, that 331 * doesn't work. We rarely have the path to the image booted 332 * (just the device) so we can't count on that. So, we do the 333 * enxt best thing, we look through the device path(s) passed 334 * in the BootXXXX varaible. If there's only one, we return 335 * NOT_SPECIFIC. Otherwise, we look at the last one and try to 336 * load that. If we can, we return BOOT_INFO_OK. Otherwise we 337 * return BAD_CHOICE for the caller to sort out. 338 */ 339 if (bisz < sizeof(attr) + sizeof(fplen) + sizeof(CHAR16)) 340 return NOT_SPECIFIC; 341 walker = boot_info; 342 ep = walker + bisz; 343 memcpy(&attr, walker, sizeof(attr)); 344 walker += sizeof(attr); 345 memcpy(&fplen, walker, sizeof(fplen)); 346 walker += sizeof(fplen); 347 descr = (CHAR16 *)(intptr_t)walker; 348 len = ucs2len(descr); 349 walker += (len + 1) * sizeof(CHAR16); 350 last_dp = first_dp = dp = (EFI_DEVICE_PATH *)walker; 351 edp = (EFI_DEVICE_PATH *)(walker + fplen); 352 if ((char *)edp > ep) 353 return NOT_SPECIFIC; 354 while (dp < edp && SIZE(dp, edp) > sizeof(EFI_DEVICE_PATH)) { 355 text = efi_devpath_name(dp); 356 if (text != NULL) { 357 printf(" BootInfo Path: %S\n", text); 358 efi_free_devpath_name(text); 359 } 360 last_dp = dp; 361 dp = (EFI_DEVICE_PATH *)((char *)dp + efi_devpath_length(dp)); 362 } 363 364 /* 365 * If there's only one item in the list, then nothing was 366 * specified. Or if the last path doesn't have a media 367 * path in it. Those show up as various VenHw() nodes 368 * which are basically opaque to us. Don't count those 369 * as something specifc. 370 */ 371 if (last_dp == first_dp) { 372 printf("Ignoring Boot%04x: Only one DP found\n", boot_current); 373 return NOT_SPECIFIC; 374 } 375 if (efi_devpath_to_media_path(last_dp) == NULL) { 376 printf("Ignoring Boot%04x: No Media Path\n", boot_current); 377 return NOT_SPECIFIC; 378 } 379 380 /* 381 * OK. At this point we either have a good path or a bad one. 382 * Let's check. 383 */ 384 pp = efiblk_get_pdinfo_by_device_path(last_dp); 385 if (pp == NULL) { 386 printf("Ignoring Boot%04x: Device Path not found\n", boot_current); 387 return BAD_CHOICE; 388 } 389 set_currdev_pdinfo(pp); 390 if (!sanity_check_currdev()) { 391 printf("Ignoring Boot%04x: sanity check failed\n", boot_current); 392 return BAD_CHOICE; 393 } 394 395 /* 396 * OK. We've found a device that matches, next we need to check the last 397 * component of the path. If it's a file, then we set the default kernel 398 * to that. Otherwise, just use this as the default root. 399 * 400 * Reminder: we're running very early, before we've parsed the defaults 401 * file, so we may need to have a hack override. 402 */ 403 dp = efi_devpath_last_node(last_dp); 404 if (DevicePathType(dp) != MEDIA_DEVICE_PATH || 405 DevicePathSubType(dp) != MEDIA_FILEPATH_DP) { 406 printf("Using Boot%04x for root partition\n", boot_current); 407 return (BOOT_INFO_OK); /* use currdir, default kernel */ 408 } 409 fp = (FILEPATH_DEVICE_PATH *)dp; 410 ucs2_to_utf8(fp->PathName, &kernel); 411 if (kernel == NULL) { 412 printf("Not using Boot%04x: can't decode kernel\n", boot_current); 413 return (BAD_CHOICE); 414 } 415 if (*kernel == '\\' || isupper(*kernel)) 416 fix_dosisms(kernel); 417 if (stat(kernel, &st) != 0) { 418 free(kernel); 419 printf("Not using Boot%04x: can't find %s\n", boot_current, 420 kernel); 421 return (BAD_CHOICE); 422 } 423 setenv("kernel", kernel, 1); 424 free(kernel); 425 text = efi_devpath_name(last_dp); 426 if (text) { 427 printf("Using Boot%04x %S + %s\n", boot_current, text, 428 kernel); 429 efi_free_devpath_name(text); 430 } 431 432 return (BOOT_INFO_OK); 433 } 434 435 /* 436 * Look at the passed-in boot_info, if any. If we find it then we need 437 * to see if we can find ourselves in the boot chain. If we can, and 438 * there's another specified thing to boot next, assume that the file 439 * is loaded from / and use that for the root filesystem. If can't 440 * find the specified thing, we must fail the boot. If we're last on 441 * the list, then we fallback to looking for the first available / 442 * candidate (ZFS, if there's a bootable zpool, otherwise a UFS 443 * partition that has either /boot/defaults/loader.conf on it or 444 * /boot/kernel/kernel (the default kernel) that we can use. 445 * 446 * We always fail if we can't find the right thing. However, as 447 * a concession to buggy UEFI implementations, like u-boot, if 448 * we have determined that the host is violating the UEFI boot 449 * manager protocol, we'll signal the rest of the program that 450 * a drop to the OK boot loader prompt is possible. 451 */ 452 static int 453 find_currdev(EFI_LOADED_IMAGE *img, bool do_bootmgr, bool is_last, 454 char *boot_info, size_t boot_info_sz) 455 { 456 pdinfo_t *dp, *pp; 457 EFI_DEVICE_PATH *devpath, *copy; 458 EFI_HANDLE h; 459 CHAR16 *text; 460 struct devsw *dev; 461 int unit; 462 uint64_t extra; 463 int rv; 464 char *rootdev; 465 466 /* 467 * First choice: if rootdev is already set, use that, even if 468 * it's wrong. 469 */ 470 rootdev = getenv("rootdev"); 471 if (rootdev != NULL) { 472 printf("Setting currdev to configured rootdev %s\n", rootdev); 473 set_currdev(rootdev); 474 return (0); 475 } 476 477 /* 478 * Second choice: If we can find out image boot_info, and there's 479 * a follow-on boot image in that boot_info, use that. In this 480 * case root will be the partition specified in that image and 481 * we'll load the kernel specified by the file path. Should there 482 * not be a filepath, we use the default. This filepath overrides 483 * loader.conf. 484 */ 485 if (do_bootmgr) { 486 rv = match_boot_info(img, boot_info, boot_info_sz); 487 switch (rv) { 488 case BOOT_INFO_OK: /* We found it */ 489 return (0); 490 case BAD_CHOICE: /* specified file not found -> error */ 491 /* XXX do we want to have an escape hatch for last in boot order? */ 492 return (ENOENT); 493 } /* Nothing specified, try normal match */ 494 } 495 496 #ifdef EFI_ZFS_BOOT 497 /* 498 * Did efi_zfs_probe() detect the boot pool? If so, use the zpool 499 * it found, if it's sane. ZFS is the only thing that looks for 500 * disks and pools to boot. This may change in the future, however, 501 * if we allow specifying which pool to boot from via UEFI variables 502 * rather than the bootenv stuff that FreeBSD uses today. 503 */ 504 if (pool_guid != 0) { 505 printf("Trying ZFS pool\n"); 506 if (probe_zfs_currdev(pool_guid)) 507 return (0); 508 } 509 #endif /* EFI_ZFS_BOOT */ 510 511 /* 512 * Try to find the block device by its handle based on the 513 * image we're booting. If we can't find a sane partition, 514 * search all the other partitions of the disk. We do not 515 * search other disks because it's a violation of the UEFI 516 * boot protocol to do so. We fail and let UEFI go on to 517 * the next candidate. 518 */ 519 dp = efiblk_get_pdinfo_by_handle(img->DeviceHandle); 520 if (dp != NULL) { 521 text = efi_devpath_name(dp->pd_devpath); 522 if (text != NULL) { 523 printf("Trying ESP: %S\n", text); 524 efi_free_devpath_name(text); 525 } 526 set_currdev_pdinfo(dp); 527 if (sanity_check_currdev()) 528 return (0); 529 if (dp->pd_parent != NULL) { 530 pdinfo_t *espdp = dp; 531 dp = dp->pd_parent; 532 STAILQ_FOREACH(pp, &dp->pd_part, pd_link) { 533 /* Already tried the ESP */ 534 if (espdp == pp) 535 continue; 536 /* 537 * Roll up the ZFS special case 538 * for those partitions that have 539 * zpools on them. 540 */ 541 text = efi_devpath_name(pp->pd_devpath); 542 if (text != NULL) { 543 printf("Trying: %S\n", text); 544 efi_free_devpath_name(text); 545 } 546 if (try_as_currdev(dp, pp)) 547 return (0); 548 } 549 } 550 } 551 552 /* 553 * Try the device handle from our loaded image first. If that 554 * fails, use the device path from the loaded image and see if 555 * any of the nodes in that path match one of the enumerated 556 * handles. Currently, this handle list is only for netboot. 557 */ 558 if (efi_handle_lookup(img->DeviceHandle, &dev, &unit, &extra) == 0) { 559 set_currdev_devsw(dev, unit); 560 if (sanity_check_currdev()) 561 return (0); 562 } 563 564 copy = NULL; 565 devpath = efi_lookup_image_devpath(IH); 566 while (devpath != NULL) { 567 h = efi_devpath_handle(devpath); 568 if (h == NULL) 569 break; 570 571 free(copy); 572 copy = NULL; 573 574 if (efi_handle_lookup(h, &dev, &unit, &extra) == 0) { 575 set_currdev_devsw(dev, unit); 576 if (sanity_check_currdev()) 577 return (0); 578 } 579 580 devpath = efi_lookup_devpath(h); 581 if (devpath != NULL) { 582 copy = efi_devpath_trim(devpath); 583 devpath = copy; 584 } 585 } 586 free(copy); 587 588 return (ENOENT); 589 } 590 591 static bool 592 interactive_interrupt(const char *msg) 593 { 594 time_t now, then, last; 595 596 last = 0; 597 now = then = getsecs(); 598 printf("%s\n", msg); 599 if (fail_timeout == -2) /* Always break to OK */ 600 return (true); 601 if (fail_timeout == -1) /* Never break to OK */ 602 return (false); 603 do { 604 if (last != now) { 605 printf("press any key to interrupt reboot in %d seconds\r", 606 fail_timeout - (int)(now - then)); 607 last = now; 608 } 609 610 /* XXX no pause or timeout wait for char */ 611 if (ischar()) 612 return (true); 613 now = getsecs(); 614 } while (now - then < fail_timeout); 615 return (false); 616 } 617 618 static int 619 parse_args(int argc, CHAR16 *argv[]) 620 { 621 int i, j, howto; 622 bool vargood; 623 char var[128]; 624 625 /* 626 * Parse the args to set the console settings, etc 627 * boot1.efi passes these in, if it can read /boot.config or /boot/config 628 * or iPXE may be setup to pass these in. Or the optional argument in the 629 * boot environment was used to pass these arguments in (in which case 630 * neither /boot.config nor /boot/config are consulted). 631 * 632 * Loop through the args, and for each one that contains an '=' that is 633 * not the first character, add it to the environment. This allows 634 * loader and kernel env vars to be passed on the command line. Convert 635 * args from UCS-2 to ASCII (16 to 8 bit) as they are copied (though this 636 * method is flawed for non-ASCII characters). 637 */ 638 howto = 0; 639 for (i = 1; i < argc; i++) { 640 cpy16to8(argv[i], var, sizeof(var)); 641 howto |= boot_parse_arg(var); 642 } 643 644 return (howto); 645 } 646 647 static void 648 setenv_int(const char *key, int val) 649 { 650 char buf[20]; 651 652 snprintf(buf, sizeof(buf), "%d", val); 653 setenv(key, buf, 1); 654 } 655 656 /* 657 * Parse ConOut (the list of consoles active) and see if we can find a 658 * serial port and/or a video port. It would be nice to also walk the 659 * ACPI name space to map the UID for the serial port to a port. The 660 * latter is especially hard. 661 */ 662 static int 663 parse_uefi_con_out(void) 664 { 665 int how, rv; 666 int vid_seen = 0, com_seen = 0, seen = 0; 667 size_t sz; 668 char buf[4096], *ep; 669 EFI_DEVICE_PATH *node; 670 ACPI_HID_DEVICE_PATH *acpi; 671 UART_DEVICE_PATH *uart; 672 bool pci_pending; 673 674 how = 0; 675 sz = sizeof(buf); 676 rv = efi_global_getenv("ConOut", buf, &sz); 677 if (rv != EFI_SUCCESS) 678 goto out; 679 ep = buf + sz; 680 node = (EFI_DEVICE_PATH *)buf; 681 while ((char *)node < ep) { 682 pci_pending = false; 683 if (DevicePathType(node) == ACPI_DEVICE_PATH && 684 DevicePathSubType(node) == ACPI_DP) { 685 /* Check for Serial node */ 686 acpi = (void *)node; 687 if (EISA_ID_TO_NUM(acpi->HID) == 0x501) { 688 setenv_int("efi_8250_uid", acpi->UID); 689 com_seen = ++seen; 690 } 691 } else if (DevicePathType(node) == MESSAGING_DEVICE_PATH && 692 DevicePathSubType(node) == MSG_UART_DP) { 693 694 uart = (void *)node; 695 setenv_int("efi_com_speed", uart->BaudRate); 696 } else if (DevicePathType(node) == ACPI_DEVICE_PATH && 697 DevicePathSubType(node) == ACPI_ADR_DP) { 698 /* Check for AcpiAdr() Node for video */ 699 vid_seen = ++seen; 700 } else if (DevicePathType(node) == HARDWARE_DEVICE_PATH && 701 DevicePathSubType(node) == HW_PCI_DP) { 702 /* 703 * Note, vmware fusion has a funky console device 704 * PciRoot(0x0)/Pci(0xf,0x0) 705 * which we can only detect at the end since we also 706 * have to cope with: 707 * PciRoot(0x0)/Pci(0x1f,0x0)/Serial(0x1) 708 * so only match it if it's last. 709 */ 710 pci_pending = true; 711 } 712 node = NextDevicePathNode(node); /* Skip the end node */ 713 } 714 if (pci_pending && vid_seen == 0) 715 vid_seen = ++seen; 716 717 /* 718 * Truth table for RB_MULTIPLE | RB_SERIAL 719 * Value Result 720 * 0 Use only video console 721 * RB_SERIAL Use only serial console 722 * RB_MULTIPLE Use both video and serial console 723 * (but video is primary so gets rc messages) 724 * both Use both video and serial console 725 * (but serial is primary so gets rc messages) 726 * 727 * Try to honor this as best we can. If only one of serial / video 728 * found, then use that. Otherwise, use the first one we found. 729 * This also implies if we found nothing, default to video. 730 */ 731 how = 0; 732 if (vid_seen && com_seen) { 733 how |= RB_MULTIPLE; 734 if (com_seen < vid_seen) 735 how |= RB_SERIAL; 736 } else if (com_seen) 737 how |= RB_SERIAL; 738 out: 739 return (how); 740 } 741 742 EFI_STATUS 743 main(int argc, CHAR16 *argv[]) 744 { 745 EFI_GUID *guid; 746 int howto, i, uhowto; 747 UINTN k; 748 bool has_kbd, is_last; 749 char *s; 750 EFI_DEVICE_PATH *imgpath; 751 CHAR16 *text; 752 EFI_STATUS rv; 753 size_t sz, bosz = 0, bisz = 0; 754 UINT16 boot_order[100]; 755 char boot_info[4096]; 756 EFI_LOADED_IMAGE *img; 757 char buf[32]; 758 bool uefi_boot_mgr; 759 760 archsw.arch_autoload = efi_autoload; 761 archsw.arch_getdev = efi_getdev; 762 archsw.arch_copyin = efi_copyin; 763 archsw.arch_copyout = efi_copyout; 764 archsw.arch_readin = efi_readin; 765 #ifdef EFI_ZFS_BOOT 766 /* Note this needs to be set before ZFS init. */ 767 archsw.arch_zfs_probe = efi_zfs_probe; 768 #endif 769 770 /* Get our loaded image protocol interface structure. */ 771 BS->HandleProtocol(IH, &imgid, (VOID**)&img); 772 773 #ifdef EFI_ZFS_BOOT 774 /* Tell ZFS probe code where we booted from */ 775 efizfs_set_preferred(img->DeviceHandle); 776 #endif 777 /* Init the time source */ 778 efi_time_init(); 779 780 has_kbd = has_keyboard(); 781 782 /* 783 * XXX Chicken-and-egg problem; we want to have console output 784 * early, but some console attributes may depend on reading from 785 * eg. the boot device, which we can't do yet. We can use 786 * printf() etc. once this is done. 787 */ 788 setenv("console", "efi", 1); 789 cons_probe(); 790 791 /* 792 * Initialise the block cache. Set the upper limit. 793 */ 794 bcache_init(32768, 512); 795 796 howto = parse_args(argc, argv); 797 if (!has_kbd && (howto & RB_PROBE)) 798 howto |= RB_SERIAL | RB_MULTIPLE; 799 howto &= ~RB_PROBE; 800 uhowto = parse_uefi_con_out(); 801 802 /* 803 * We now have two notions of console. howto should be viewed as 804 * overrides. If console is already set, don't set it again. 805 */ 806 #define VIDEO_ONLY 0 807 #define SERIAL_ONLY RB_SERIAL 808 #define VID_SER_BOTH RB_MULTIPLE 809 #define SER_VID_BOTH (RB_SERIAL | RB_MULTIPLE) 810 #define CON_MASK (RB_SERIAL | RB_MULTIPLE) 811 if (strcmp(getenv("console"), "efi") == 0) { 812 if ((howto & CON_MASK) == 0) { 813 /* No override, uhowto is controlling and efi cons is perfect */ 814 howto = howto | (uhowto & CON_MASK); 815 setenv("console", "efi", 1); 816 } else if ((howto & CON_MASK) == (uhowto & CON_MASK)) { 817 /* override matches what UEFI told us, efi console is perfect */ 818 setenv("console", "efi", 1); 819 } else if ((uhowto & (CON_MASK)) != 0) { 820 /* 821 * We detected a serial console on ConOut. All possible 822 * overrides include serial. We can't really override what efi 823 * gives us, so we use it knowing it's the best choice. 824 */ 825 setenv("console", "efi", 1); 826 } else { 827 /* 828 * We detected some kind of serial in the override, but ConOut 829 * has no serial, so we have to sort out which case it really is. 830 */ 831 switch (howto & CON_MASK) { 832 case SERIAL_ONLY: 833 setenv("console", "comconsole", 1); 834 break; 835 case VID_SER_BOTH: 836 setenv("console", "efi comconsole", 1); 837 break; 838 case SER_VID_BOTH: 839 setenv("console", "comconsole efi", 1); 840 break; 841 /* case VIDEO_ONLY can't happen -- it's the first if above */ 842 } 843 } 844 } 845 846 /* 847 * howto is set now how we want to export the flags to the kernel, so 848 * set the env based on it. 849 */ 850 boot_howto_to_env(howto); 851 852 if (efi_copy_init()) { 853 printf("failed to allocate staging area\n"); 854 return (EFI_BUFFER_TOO_SMALL); 855 } 856 857 if ((s = getenv("fail_timeout")) != NULL) 858 fail_timeout = strtol(s, NULL, 10); 859 860 /* 861 * Scan the BLOCK IO MEDIA handles then 862 * march through the device switch probing for things. 863 */ 864 i = efipart_inithandles(); 865 if (i != 0 && i != ENOENT) { 866 printf("efipart_inithandles failed with ERRNO %d, expect " 867 "failures\n", i); 868 } 869 870 for (i = 0; devsw[i] != NULL; i++) 871 if (devsw[i]->dv_init != NULL) 872 (devsw[i]->dv_init)(); 873 874 printf("%s\n", bootprog_info); 875 printf(" Command line arguments:"); 876 for (i = 0; i < argc; i++) 877 printf(" %S", argv[i]); 878 printf("\n"); 879 880 printf(" EFI version: %d.%02d\n", ST->Hdr.Revision >> 16, 881 ST->Hdr.Revision & 0xffff); 882 printf(" EFI Firmware: %S (rev %d.%02d)\n", ST->FirmwareVendor, 883 ST->FirmwareRevision >> 16, ST->FirmwareRevision & 0xffff); 884 printf(" Console: %s (%#x)\n", getenv("console"), howto); 885 886 887 888 /* Determine the devpath of our image so we can prefer it. */ 889 text = efi_devpath_name(img->FilePath); 890 if (text != NULL) { 891 printf(" Load Path: %S\n", text); 892 efi_setenv_freebsd_wcs("LoaderPath", text); 893 efi_free_devpath_name(text); 894 } 895 896 rv = BS->HandleProtocol(img->DeviceHandle, &devid, (void **)&imgpath); 897 if (rv == EFI_SUCCESS) { 898 text = efi_devpath_name(imgpath); 899 if (text != NULL) { 900 printf(" Load Device: %S\n", text); 901 efi_setenv_freebsd_wcs("LoaderDev", text); 902 efi_free_devpath_name(text); 903 } 904 } 905 906 uefi_boot_mgr = true; 907 boot_current = 0; 908 sz = sizeof(boot_current); 909 rv = efi_global_getenv("BootCurrent", &boot_current, &sz); 910 if (rv == EFI_SUCCESS) 911 printf(" BootCurrent: %04x\n", boot_current); 912 else { 913 boot_current = 0xffff; 914 uefi_boot_mgr = false; 915 } 916 917 sz = sizeof(boot_order); 918 rv = efi_global_getenv("BootOrder", &boot_order, &sz); 919 if (rv == EFI_SUCCESS) { 920 printf(" BootOrder:"); 921 for (i = 0; i < sz / sizeof(boot_order[0]); i++) 922 printf(" %04x%s", boot_order[i], 923 boot_order[i] == boot_current ? "[*]" : ""); 924 printf("\n"); 925 is_last = boot_order[(sz / sizeof(boot_order[0])) - 1] == boot_current; 926 bosz = sz; 927 } else if (uefi_boot_mgr) { 928 /* 929 * u-boot doesn't set BootOrder, but otherwise participates in the 930 * boot manager protocol. So we fake it here and don't consider it 931 * a failure. 932 */ 933 bosz = sizeof(boot_order[0]); 934 boot_order[0] = boot_current; 935 is_last = true; 936 } 937 938 /* 939 * Next, find the boot info structure the UEFI boot manager is 940 * supposed to setup. We need this so we can walk through it to 941 * find where we are in the booting process and what to try to 942 * boot next. 943 */ 944 if (uefi_boot_mgr) { 945 snprintf(buf, sizeof(buf), "Boot%04X", boot_current); 946 sz = sizeof(boot_info); 947 rv = efi_global_getenv(buf, &boot_info, &sz); 948 if (rv == EFI_SUCCESS) 949 bisz = sz; 950 else 951 uefi_boot_mgr = false; 952 } 953 954 /* 955 * Disable the watchdog timer. By default the boot manager sets 956 * the timer to 5 minutes before invoking a boot option. If we 957 * want to return to the boot manager, we have to disable the 958 * watchdog timer and since we're an interactive program, we don't 959 * want to wait until the user types "quit". The timer may have 960 * fired by then. We don't care if this fails. It does not prevent 961 * normal functioning in any way... 962 */ 963 BS->SetWatchdogTimer(0, 0, 0, NULL); 964 965 /* 966 * Try and find a good currdev based on the image that was booted. 967 * It might be desirable here to have a short pause to allow falling 968 * through to the boot loader instead of returning instantly to follow 969 * the boot protocol and also allow an escape hatch for users wishing 970 * to try something different. 971 */ 972 if (find_currdev(img, uefi_boot_mgr, is_last, boot_info, bisz) != 0) 973 if (!interactive_interrupt("Failed to find bootable partition")) 974 return (EFI_NOT_FOUND); 975 976 efi_init_environment(); 977 978 #if !defined(__arm__) 979 for (k = 0; k < ST->NumberOfTableEntries; k++) { 980 guid = &ST->ConfigurationTable[k].VendorGuid; 981 if (!memcmp(guid, &smbios, sizeof(EFI_GUID))) { 982 char buf[40]; 983 984 snprintf(buf, sizeof(buf), "%p", 985 ST->ConfigurationTable[k].VendorTable); 986 setenv("hint.smbios.0.mem", buf, 1); 987 smbios_detect(ST->ConfigurationTable[k].VendorTable); 988 break; 989 } 990 } 991 #endif 992 993 interact(); /* doesn't return */ 994 995 return (EFI_SUCCESS); /* keep compiler happy */ 996 } 997 998 COMMAND_SET(poweroff, "poweroff", "power off the system", command_poweroff); 999 1000 static int 1001 command_poweroff(int argc __unused, char *argv[] __unused) 1002 { 1003 int i; 1004 1005 for (i = 0; devsw[i] != NULL; ++i) 1006 if (devsw[i]->dv_cleanup != NULL) 1007 (devsw[i]->dv_cleanup)(); 1008 1009 RS->ResetSystem(EfiResetShutdown, EFI_SUCCESS, 0, NULL); 1010 1011 /* NOTREACHED */ 1012 return (CMD_ERROR); 1013 } 1014 1015 COMMAND_SET(reboot, "reboot", "reboot the system", command_reboot); 1016 1017 static int 1018 command_reboot(int argc, char *argv[]) 1019 { 1020 int i; 1021 1022 for (i = 0; devsw[i] != NULL; ++i) 1023 if (devsw[i]->dv_cleanup != NULL) 1024 (devsw[i]->dv_cleanup)(); 1025 1026 RS->ResetSystem(EfiResetCold, EFI_SUCCESS, 0, NULL); 1027 1028 /* NOTREACHED */ 1029 return (CMD_ERROR); 1030 } 1031 1032 COMMAND_SET(quit, "quit", "exit the loader", command_quit); 1033 1034 static int 1035 command_quit(int argc, char *argv[]) 1036 { 1037 exit(0); 1038 return (CMD_OK); 1039 } 1040 1041 COMMAND_SET(memmap, "memmap", "print memory map", command_memmap); 1042 1043 static int 1044 command_memmap(int argc, char *argv[]) 1045 { 1046 UINTN sz; 1047 EFI_MEMORY_DESCRIPTOR *map, *p; 1048 UINTN key, dsz; 1049 UINT32 dver; 1050 EFI_STATUS status; 1051 int i, ndesc; 1052 char line[80]; 1053 static char *types[] = { 1054 "Reserved", 1055 "LoaderCode", 1056 "LoaderData", 1057 "BootServicesCode", 1058 "BootServicesData", 1059 "RuntimeServicesCode", 1060 "RuntimeServicesData", 1061 "ConventionalMemory", 1062 "UnusableMemory", 1063 "ACPIReclaimMemory", 1064 "ACPIMemoryNVS", 1065 "MemoryMappedIO", 1066 "MemoryMappedIOPortSpace", 1067 "PalCode" 1068 }; 1069 1070 sz = 0; 1071 status = BS->GetMemoryMap(&sz, 0, &key, &dsz, &dver); 1072 if (status != EFI_BUFFER_TOO_SMALL) { 1073 printf("Can't determine memory map size\n"); 1074 return (CMD_ERROR); 1075 } 1076 map = malloc(sz); 1077 status = BS->GetMemoryMap(&sz, map, &key, &dsz, &dver); 1078 if (EFI_ERROR(status)) { 1079 printf("Can't read memory map\n"); 1080 return (CMD_ERROR); 1081 } 1082 1083 ndesc = sz / dsz; 1084 snprintf(line, sizeof(line), "%23s %12s %12s %8s %4s\n", 1085 "Type", "Physical", "Virtual", "#Pages", "Attr"); 1086 pager_open(); 1087 if (pager_output(line)) { 1088 pager_close(); 1089 return (CMD_OK); 1090 } 1091 1092 for (i = 0, p = map; i < ndesc; 1093 i++, p = NextMemoryDescriptor(p, dsz)) { 1094 printf("%23s %012jx %012jx %08jx ", types[p->Type], 1095 (uintmax_t)p->PhysicalStart, (uintmax_t)p->VirtualStart, 1096 (uintmax_t)p->NumberOfPages); 1097 if (p->Attribute & EFI_MEMORY_UC) 1098 printf("UC "); 1099 if (p->Attribute & EFI_MEMORY_WC) 1100 printf("WC "); 1101 if (p->Attribute & EFI_MEMORY_WT) 1102 printf("WT "); 1103 if (p->Attribute & EFI_MEMORY_WB) 1104 printf("WB "); 1105 if (p->Attribute & EFI_MEMORY_UCE) 1106 printf("UCE "); 1107 if (p->Attribute & EFI_MEMORY_WP) 1108 printf("WP "); 1109 if (p->Attribute & EFI_MEMORY_RP) 1110 printf("RP "); 1111 if (p->Attribute & EFI_MEMORY_XP) 1112 printf("XP "); 1113 if (pager_output("\n")) 1114 break; 1115 } 1116 1117 pager_close(); 1118 return (CMD_OK); 1119 } 1120 1121 COMMAND_SET(configuration, "configuration", "print configuration tables", 1122 command_configuration); 1123 1124 static const char * 1125 guid_to_string(EFI_GUID *guid) 1126 { 1127 static char buf[40]; 1128 1129 sprintf(buf, "%08x-%04x-%04x-%02x%02x-%02x%02x%02x%02x%02x%02x", 1130 guid->Data1, guid->Data2, guid->Data3, guid->Data4[0], 1131 guid->Data4[1], guid->Data4[2], guid->Data4[3], guid->Data4[4], 1132 guid->Data4[5], guid->Data4[6], guid->Data4[7]); 1133 return (buf); 1134 } 1135 1136 static int 1137 command_configuration(int argc, char *argv[]) 1138 { 1139 char line[80]; 1140 UINTN i; 1141 1142 snprintf(line, sizeof(line), "NumberOfTableEntries=%lu\n", 1143 (unsigned long)ST->NumberOfTableEntries); 1144 pager_open(); 1145 if (pager_output(line)) { 1146 pager_close(); 1147 return (CMD_OK); 1148 } 1149 1150 for (i = 0; i < ST->NumberOfTableEntries; i++) { 1151 EFI_GUID *guid; 1152 1153 printf(" "); 1154 guid = &ST->ConfigurationTable[i].VendorGuid; 1155 if (!memcmp(guid, &mps, sizeof(EFI_GUID))) 1156 printf("MPS Table"); 1157 else if (!memcmp(guid, &acpi, sizeof(EFI_GUID))) 1158 printf("ACPI Table"); 1159 else if (!memcmp(guid, &acpi20, sizeof(EFI_GUID))) 1160 printf("ACPI 2.0 Table"); 1161 else if (!memcmp(guid, &smbios, sizeof(EFI_GUID))) 1162 printf("SMBIOS Table %p", 1163 ST->ConfigurationTable[i].VendorTable); 1164 else if (!memcmp(guid, &smbios3, sizeof(EFI_GUID))) 1165 printf("SMBIOS3 Table"); 1166 else if (!memcmp(guid, &dxe, sizeof(EFI_GUID))) 1167 printf("DXE Table"); 1168 else if (!memcmp(guid, &hoblist, sizeof(EFI_GUID))) 1169 printf("HOB List Table"); 1170 else if (!memcmp(guid, &lzmadecomp, sizeof(EFI_GUID))) 1171 printf("LZMA Compression"); 1172 else if (!memcmp(guid, &mpcore, sizeof(EFI_GUID))) 1173 printf("ARM MpCore Information Table"); 1174 else if (!memcmp(guid, &esrt, sizeof(EFI_GUID))) 1175 printf("ESRT Table"); 1176 else if (!memcmp(guid, &memtype, sizeof(EFI_GUID))) 1177 printf("Memory Type Information Table"); 1178 else if (!memcmp(guid, &debugimg, sizeof(EFI_GUID))) 1179 printf("Debug Image Info Table"); 1180 else if (!memcmp(guid, &fdtdtb, sizeof(EFI_GUID))) 1181 printf("FDT Table"); 1182 else 1183 printf("Unknown Table (%s)", guid_to_string(guid)); 1184 snprintf(line, sizeof(line), " at %p\n", 1185 ST->ConfigurationTable[i].VendorTable); 1186 if (pager_output(line)) 1187 break; 1188 } 1189 1190 pager_close(); 1191 return (CMD_OK); 1192 } 1193 1194 1195 COMMAND_SET(mode, "mode", "change or display EFI text modes", command_mode); 1196 1197 static int 1198 command_mode(int argc, char *argv[]) 1199 { 1200 UINTN cols, rows; 1201 unsigned int mode; 1202 int i; 1203 char *cp; 1204 char rowenv[8]; 1205 EFI_STATUS status; 1206 SIMPLE_TEXT_OUTPUT_INTERFACE *conout; 1207 extern void HO(void); 1208 1209 conout = ST->ConOut; 1210 1211 if (argc > 1) { 1212 mode = strtol(argv[1], &cp, 0); 1213 if (cp[0] != '\0') { 1214 printf("Invalid mode\n"); 1215 return (CMD_ERROR); 1216 } 1217 status = conout->QueryMode(conout, mode, &cols, &rows); 1218 if (EFI_ERROR(status)) { 1219 printf("invalid mode %d\n", mode); 1220 return (CMD_ERROR); 1221 } 1222 status = conout->SetMode(conout, mode); 1223 if (EFI_ERROR(status)) { 1224 printf("couldn't set mode %d\n", mode); 1225 return (CMD_ERROR); 1226 } 1227 sprintf(rowenv, "%u", (unsigned)rows); 1228 setenv("LINES", rowenv, 1); 1229 HO(); /* set cursor */ 1230 return (CMD_OK); 1231 } 1232 1233 printf("Current mode: %d\n", conout->Mode->Mode); 1234 for (i = 0; i <= conout->Mode->MaxMode; i++) { 1235 status = conout->QueryMode(conout, i, &cols, &rows); 1236 if (EFI_ERROR(status)) 1237 continue; 1238 printf("Mode %d: %u columns, %u rows\n", i, (unsigned)cols, 1239 (unsigned)rows); 1240 } 1241 1242 if (i != 0) 1243 printf("Select a mode with the command \"mode <number>\"\n"); 1244 1245 return (CMD_OK); 1246 } 1247 1248 #ifdef LOADER_FDT_SUPPORT 1249 extern int command_fdt_internal(int argc, char *argv[]); 1250 1251 /* 1252 * Since proper fdt command handling function is defined in fdt_loader_cmd.c, 1253 * and declaring it as extern is in contradiction with COMMAND_SET() macro 1254 * (which uses static pointer), we're defining wrapper function, which 1255 * calls the proper fdt handling routine. 1256 */ 1257 static int 1258 command_fdt(int argc, char *argv[]) 1259 { 1260 1261 return (command_fdt_internal(argc, argv)); 1262 } 1263 1264 COMMAND_SET(fdt, "fdt", "flattened device tree handling", command_fdt); 1265 #endif 1266 1267 /* 1268 * Chain load another efi loader. 1269 */ 1270 static int 1271 command_chain(int argc, char *argv[]) 1272 { 1273 EFI_GUID LoadedImageGUID = LOADED_IMAGE_PROTOCOL; 1274 EFI_HANDLE loaderhandle; 1275 EFI_LOADED_IMAGE *loaded_image; 1276 EFI_STATUS status; 1277 struct stat st; 1278 struct devdesc *dev; 1279 char *name, *path; 1280 void *buf; 1281 int fd; 1282 1283 if (argc < 2) { 1284 command_errmsg = "wrong number of arguments"; 1285 return (CMD_ERROR); 1286 } 1287 1288 name = argv[1]; 1289 1290 if ((fd = open(name, O_RDONLY)) < 0) { 1291 command_errmsg = "no such file"; 1292 return (CMD_ERROR); 1293 } 1294 1295 if (fstat(fd, &st) < -1) { 1296 command_errmsg = "stat failed"; 1297 close(fd); 1298 return (CMD_ERROR); 1299 } 1300 1301 status = BS->AllocatePool(EfiLoaderCode, (UINTN)st.st_size, &buf); 1302 if (status != EFI_SUCCESS) { 1303 command_errmsg = "failed to allocate buffer"; 1304 close(fd); 1305 return (CMD_ERROR); 1306 } 1307 if (read(fd, buf, st.st_size) != st.st_size) { 1308 command_errmsg = "error while reading the file"; 1309 (void)BS->FreePool(buf); 1310 close(fd); 1311 return (CMD_ERROR); 1312 } 1313 close(fd); 1314 status = BS->LoadImage(FALSE, IH, NULL, buf, st.st_size, &loaderhandle); 1315 (void)BS->FreePool(buf); 1316 if (status != EFI_SUCCESS) { 1317 command_errmsg = "LoadImage failed"; 1318 return (CMD_ERROR); 1319 } 1320 status = BS->HandleProtocol(loaderhandle, &LoadedImageGUID, 1321 (void **)&loaded_image); 1322 1323 if (argc > 2) { 1324 int i, len = 0; 1325 CHAR16 *argp; 1326 1327 for (i = 2; i < argc; i++) 1328 len += strlen(argv[i]) + 1; 1329 1330 len *= sizeof (*argp); 1331 loaded_image->LoadOptions = argp = malloc (len); 1332 loaded_image->LoadOptionsSize = len; 1333 for (i = 2; i < argc; i++) { 1334 char *ptr = argv[i]; 1335 while (*ptr) 1336 *(argp++) = *(ptr++); 1337 *(argp++) = ' '; 1338 } 1339 *(--argv) = 0; 1340 } 1341 1342 if (efi_getdev((void **)&dev, name, (const char **)&path) == 0) { 1343 #ifdef EFI_ZFS_BOOT 1344 struct zfs_devdesc *z_dev; 1345 #endif 1346 struct disk_devdesc *d_dev; 1347 pdinfo_t *hd, *pd; 1348 1349 switch (dev->d_dev->dv_type) { 1350 #ifdef EFI_ZFS_BOOT 1351 case DEVT_ZFS: 1352 z_dev = (struct zfs_devdesc *)dev; 1353 loaded_image->DeviceHandle = 1354 efizfs_get_handle_by_guid(z_dev->pool_guid); 1355 break; 1356 #endif 1357 case DEVT_NET: 1358 loaded_image->DeviceHandle = 1359 efi_find_handle(dev->d_dev, dev->d_unit); 1360 break; 1361 default: 1362 hd = efiblk_get_pdinfo(dev); 1363 if (STAILQ_EMPTY(&hd->pd_part)) { 1364 loaded_image->DeviceHandle = hd->pd_handle; 1365 break; 1366 } 1367 d_dev = (struct disk_devdesc *)dev; 1368 STAILQ_FOREACH(pd, &hd->pd_part, pd_link) { 1369 /* 1370 * d_partition should be 255 1371 */ 1372 if (pd->pd_unit == (uint32_t)d_dev->d_slice) { 1373 loaded_image->DeviceHandle = 1374 pd->pd_handle; 1375 break; 1376 } 1377 } 1378 break; 1379 } 1380 } 1381 1382 dev_cleanup(); 1383 status = BS->StartImage(loaderhandle, NULL, NULL); 1384 if (status != EFI_SUCCESS) { 1385 command_errmsg = "StartImage failed"; 1386 free(loaded_image->LoadOptions); 1387 loaded_image->LoadOptions = NULL; 1388 status = BS->UnloadImage(loaded_image); 1389 return (CMD_ERROR); 1390 } 1391 1392 return (CMD_ERROR); /* not reached */ 1393 } 1394 1395 COMMAND_SET(chain, "chain", "chain load file", command_chain); 1396