xref: /freebsd/stand/efi/loader/main.c (revision a25896ca1270e25b657ceaa8d47d5699515f5c25)
1 /*-
2  * Copyright (c) 2008-2010 Rui Paulo
3  * Copyright (c) 2006 Marcel Moolenaar
4  * Copyright (c) 2018 Netflix, Inc
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include <stand.h>
33 
34 #include <sys/disk.h>
35 #include <sys/param.h>
36 #include <sys/reboot.h>
37 #include <sys/boot.h>
38 #include <stdint.h>
39 #include <string.h>
40 #include <setjmp.h>
41 #include <disk.h>
42 
43 #include <efi.h>
44 #include <efilib.h>
45 #include <efichar.h>
46 
47 #include <uuid.h>
48 
49 #include <bootstrap.h>
50 #include <smbios.h>
51 
52 #ifdef EFI_ZFS_BOOT
53 #include <libzfs.h>
54 #include "efizfs.h"
55 #endif
56 
57 #include "loader_efi.h"
58 
59 struct arch_switch archsw;	/* MI/MD interface boundary */
60 
61 EFI_GUID acpi = ACPI_TABLE_GUID;
62 EFI_GUID acpi20 = ACPI_20_TABLE_GUID;
63 EFI_GUID devid = DEVICE_PATH_PROTOCOL;
64 EFI_GUID imgid = LOADED_IMAGE_PROTOCOL;
65 EFI_GUID mps = MPS_TABLE_GUID;
66 EFI_GUID netid = EFI_SIMPLE_NETWORK_PROTOCOL;
67 EFI_GUID smbios = SMBIOS_TABLE_GUID;
68 EFI_GUID smbios3 = SMBIOS3_TABLE_GUID;
69 EFI_GUID dxe = DXE_SERVICES_TABLE_GUID;
70 EFI_GUID hoblist = HOB_LIST_TABLE_GUID;
71 EFI_GUID lzmadecomp = LZMA_DECOMPRESSION_GUID;
72 EFI_GUID mpcore = ARM_MP_CORE_INFO_TABLE_GUID;
73 EFI_GUID esrt = ESRT_TABLE_GUID;
74 EFI_GUID memtype = MEMORY_TYPE_INFORMATION_TABLE_GUID;
75 EFI_GUID debugimg = DEBUG_IMAGE_INFO_TABLE_GUID;
76 EFI_GUID fdtdtb = FDT_TABLE_GUID;
77 EFI_GUID inputid = SIMPLE_TEXT_INPUT_PROTOCOL;
78 
79 /*
80  * Number of seconds to wait for a keystroke before exiting with failure
81  * in the event no currdev is found. -2 means always break, -1 means
82  * never break, 0 means poll once and then reboot, > 0 means wait for
83  * that many seconds. "fail_timeout" can be set in the environment as
84  * well.
85  */
86 static int fail_timeout = 5;
87 
88 /*
89  * Current boot variable
90  */
91 UINT16 boot_current;
92 
93 static bool
94 has_keyboard(void)
95 {
96 	EFI_STATUS status;
97 	EFI_DEVICE_PATH *path;
98 	EFI_HANDLE *hin, *hin_end, *walker;
99 	UINTN sz;
100 	bool retval = false;
101 
102 	/*
103 	 * Find all the handles that support the SIMPLE_TEXT_INPUT_PROTOCOL and
104 	 * do the typical dance to get the right sized buffer.
105 	 */
106 	sz = 0;
107 	hin = NULL;
108 	status = BS->LocateHandle(ByProtocol, &inputid, 0, &sz, 0);
109 	if (status == EFI_BUFFER_TOO_SMALL) {
110 		hin = (EFI_HANDLE *)malloc(sz);
111 		status = BS->LocateHandle(ByProtocol, &inputid, 0, &sz,
112 		    hin);
113 		if (EFI_ERROR(status))
114 			free(hin);
115 	}
116 	if (EFI_ERROR(status))
117 		return retval;
118 
119 	/*
120 	 * Look at each of the handles. If it supports the device path protocol,
121 	 * use it to get the device path for this handle. Then see if that
122 	 * device path matches either the USB device path for keyboards or the
123 	 * legacy device path for keyboards.
124 	 */
125 	hin_end = &hin[sz / sizeof(*hin)];
126 	for (walker = hin; walker < hin_end; walker++) {
127 		status = BS->HandleProtocol(*walker, &devid, (VOID **)&path);
128 		if (EFI_ERROR(status))
129 			continue;
130 
131 		while (!IsDevicePathEnd(path)) {
132 			/*
133 			 * Check for the ACPI keyboard node. All PNP3xx nodes
134 			 * are keyboards of different flavors. Note: It is
135 			 * unclear of there's always a keyboard node when
136 			 * there's a keyboard controller, or if there's only one
137 			 * when a keyboard is detected at boot.
138 			 */
139 			if (DevicePathType(path) == ACPI_DEVICE_PATH &&
140 			    (DevicePathSubType(path) == ACPI_DP ||
141 				DevicePathSubType(path) == ACPI_EXTENDED_DP)) {
142 				ACPI_HID_DEVICE_PATH  *acpi;
143 
144 				acpi = (ACPI_HID_DEVICE_PATH *)(void *)path;
145 				if ((EISA_ID_TO_NUM(acpi->HID) & 0xff00) == 0x300 &&
146 				    (acpi->HID & 0xffff) == PNP_EISA_ID_CONST) {
147 					retval = true;
148 					goto out;
149 				}
150 			/*
151 			 * Check for USB keyboard node, if present. Unlike a
152 			 * PS/2 keyboard, these definitely only appear when
153 			 * connected to the system.
154 			 */
155 			} else if (DevicePathType(path) == MESSAGING_DEVICE_PATH &&
156 			    DevicePathSubType(path) == MSG_USB_CLASS_DP) {
157 				USB_CLASS_DEVICE_PATH *usb;
158 
159 				usb = (USB_CLASS_DEVICE_PATH *)(void *)path;
160 				if (usb->DeviceClass == 3 && /* HID */
161 				    usb->DeviceSubClass == 1 && /* Boot devices */
162 				    usb->DeviceProtocol == 1) { /* Boot keyboards */
163 					retval = true;
164 					goto out;
165 				}
166 			}
167 			path = NextDevicePathNode(path);
168 		}
169 	}
170 out:
171 	free(hin);
172 	return retval;
173 }
174 
175 static void
176 set_currdev(const char *devname)
177 {
178 
179 	env_setenv("currdev", EV_VOLATILE, devname, efi_setcurrdev, env_nounset);
180 	env_setenv("loaddev", EV_VOLATILE, devname, env_noset, env_nounset);
181 }
182 
183 static void
184 set_currdev_devdesc(struct devdesc *currdev)
185 {
186 	const char *devname;
187 
188 	devname = efi_fmtdev(currdev);
189 	printf("Setting currdev to %s\n", devname);
190 	set_currdev(devname);
191 }
192 
193 static void
194 set_currdev_devsw(struct devsw *dev, int unit)
195 {
196 	struct devdesc currdev;
197 
198 	currdev.d_dev = dev;
199 	currdev.d_unit = unit;
200 
201 	set_currdev_devdesc(&currdev);
202 }
203 
204 static void
205 set_currdev_pdinfo(pdinfo_t *dp)
206 {
207 
208 	/*
209 	 * Disks are special: they have partitions. if the parent
210 	 * pointer is non-null, we're a partition not a full disk
211 	 * and we need to adjust currdev appropriately.
212 	 */
213 	if (dp->pd_devsw->dv_type == DEVT_DISK) {
214 		struct disk_devdesc currdev;
215 
216 		currdev.dd.d_dev = dp->pd_devsw;
217 		if (dp->pd_parent == NULL) {
218 			currdev.dd.d_unit = dp->pd_unit;
219 			currdev.d_slice = -1;
220 			currdev.d_partition = -1;
221 		} else {
222 			currdev.dd.d_unit = dp->pd_parent->pd_unit;
223 			currdev.d_slice = dp->pd_unit;
224 			currdev.d_partition = 255;	/* Assumes GPT */
225 		}
226 		set_currdev_devdesc((struct devdesc *)&currdev);
227 	} else {
228 		set_currdev_devsw(dp->pd_devsw, dp->pd_unit);
229 	}
230 }
231 
232 static bool
233 sanity_check_currdev(void)
234 {
235 	struct stat st;
236 
237 	return (stat("/boot/defaults/loader.conf", &st) == 0 ||
238 	    stat("/boot/kernel/kernel", &st) == 0);
239 }
240 
241 #ifdef EFI_ZFS_BOOT
242 static bool
243 probe_zfs_currdev(uint64_t guid)
244 {
245 	char *devname;
246 	struct zfs_devdesc currdev;
247 
248 	currdev.dd.d_dev = &zfs_dev;
249 	currdev.dd.d_unit = 0;
250 	currdev.pool_guid = guid;
251 	currdev.root_guid = 0;
252 	set_currdev_devdesc((struct devdesc *)&currdev);
253 	devname = efi_fmtdev(&currdev);
254 	init_zfs_bootenv(devname);
255 
256 	return (sanity_check_currdev());
257 }
258 #endif
259 
260 static bool
261 try_as_currdev(pdinfo_t *hd, pdinfo_t *pp)
262 {
263 	uint64_t guid;
264 
265 #ifdef EFI_ZFS_BOOT
266 	/*
267 	 * If there's a zpool on this device, try it as a ZFS
268 	 * filesystem, which has somewhat different setup than all
269 	 * other types of fs due to imperfect loader integration.
270 	 * This all stems from ZFS being both a device (zpool) and
271 	 * a filesystem, plus the boot env feature.
272 	 */
273 	if (efizfs_get_guid_by_handle(pp->pd_handle, &guid))
274 		return (probe_zfs_currdev(guid));
275 #endif
276 	/*
277 	 * All other filesystems just need the pdinfo
278 	 * initialized in the standard way.
279 	 */
280 	set_currdev_pdinfo(pp);
281 	return (sanity_check_currdev());
282 }
283 
284 /*
285  * Sometimes we get filenames that are all upper case
286  * and/or have backslashes in them. Filter all this out
287  * if it looks like we need to do so.
288  */
289 static void
290 fix_dosisms(char *p)
291 {
292 	while (*p) {
293 		if (isupper(*p))
294 			*p = tolower(*p);
295 		else if (*p == '\\')
296 			*p = '/';
297 		p++;
298 	}
299 }
300 
301 #define SIZE(dp, edp) (size_t)((intptr_t)(void *)edp - (intptr_t)(void *)dp)
302 
303 enum { BOOT_INFO_OK = 0, BAD_CHOICE = 1, NOT_SPECIFIC = 2  };
304 static int
305 match_boot_info(EFI_LOADED_IMAGE *img __unused, char *boot_info, size_t bisz)
306 {
307 	uint32_t attr;
308 	uint16_t fplen;
309 	size_t len;
310 	char *walker, *ep;
311 	EFI_DEVICE_PATH *dp, *edp, *first_dp, *last_dp;
312 	pdinfo_t *pp;
313 	CHAR16 *descr;
314 	char *kernel = NULL;
315 	FILEPATH_DEVICE_PATH  *fp;
316 	struct stat st;
317 	CHAR16 *text;
318 
319 	/*
320 	 * FreeBSD encodes it's boot loading path into the boot loader
321 	 * BootXXXX variable. We look for the last one in the path
322 	 * and use that to load the kernel. However, if we only fine
323 	 * one DEVICE_PATH, then there's nothing specific and we should
324 	 * fall back.
325 	 *
326 	 * In an ideal world, we'd look at the image handle we were
327 	 * passed, match up with the loader we are and then return the
328 	 * next one in the path. This would be most flexible and cover
329 	 * many chain booting scenarios where you need to use this
330 	 * boot loader to get to the next boot loader. However, that
331 	 * doesn't work. We rarely have the path to the image booted
332 	 * (just the device) so we can't count on that. So, we do the
333 	 * enxt best thing, we look through the device path(s) passed
334 	 * in the BootXXXX varaible. If there's only one, we return
335 	 * NOT_SPECIFIC. Otherwise, we look at the last one and try to
336 	 * load that. If we can, we return BOOT_INFO_OK. Otherwise we
337 	 * return BAD_CHOICE for the caller to sort out.
338 	 */
339 	if (bisz < sizeof(attr) + sizeof(fplen) + sizeof(CHAR16))
340 		return NOT_SPECIFIC;
341 	walker = boot_info;
342 	ep = walker + bisz;
343 	memcpy(&attr, walker, sizeof(attr));
344 	walker += sizeof(attr);
345 	memcpy(&fplen, walker, sizeof(fplen));
346 	walker += sizeof(fplen);
347 	descr = (CHAR16 *)(intptr_t)walker;
348 	len = ucs2len(descr);
349 	walker += (len + 1) * sizeof(CHAR16);
350 	last_dp = first_dp = dp = (EFI_DEVICE_PATH *)walker;
351 	edp = (EFI_DEVICE_PATH *)(walker + fplen);
352 	if ((char *)edp > ep)
353 		return NOT_SPECIFIC;
354 	while (dp < edp && SIZE(dp, edp) > sizeof(EFI_DEVICE_PATH)) {
355 		text = efi_devpath_name(dp);
356 		if (text != NULL) {
357 			printf("   BootInfo Path: %S\n", text);
358 			efi_free_devpath_name(text);
359 		}
360 		last_dp = dp;
361 		dp = (EFI_DEVICE_PATH *)((char *)dp + efi_devpath_length(dp));
362 	}
363 
364 	/*
365 	 * If there's only one item in the list, then nothing was
366 	 * specified. Or if the last path doesn't have a media
367 	 * path in it. Those show up as various VenHw() nodes
368 	 * which are basically opaque to us. Don't count those
369 	 * as something specifc.
370 	 */
371 	if (last_dp == first_dp) {
372 		printf("Ignoring Boot%04x: Only one DP found\n", boot_current);
373 		return NOT_SPECIFIC;
374 	}
375 	if (efi_devpath_to_media_path(last_dp) == NULL) {
376 		printf("Ignoring Boot%04x: No Media Path\n", boot_current);
377 		return NOT_SPECIFIC;
378 	}
379 
380 	/*
381 	 * OK. At this point we either have a good path or a bad one.
382 	 * Let's check.
383 	 */
384 	pp = efiblk_get_pdinfo_by_device_path(last_dp);
385 	if (pp == NULL) {
386 		printf("Ignoring Boot%04x: Device Path not found\n", boot_current);
387 		return BAD_CHOICE;
388 	}
389 	set_currdev_pdinfo(pp);
390 	if (!sanity_check_currdev()) {
391 		printf("Ignoring Boot%04x: sanity check failed\n", boot_current);
392 		return BAD_CHOICE;
393 	}
394 
395 	/*
396 	 * OK. We've found a device that matches, next we need to check the last
397 	 * component of the path. If it's a file, then we set the default kernel
398 	 * to that. Otherwise, just use this as the default root.
399 	 *
400 	 * Reminder: we're running very early, before we've parsed the defaults
401 	 * file, so we may need to have a hack override.
402 	 */
403 	dp = efi_devpath_last_node(last_dp);
404 	if (DevicePathType(dp) !=  MEDIA_DEVICE_PATH ||
405 	    DevicePathSubType(dp) != MEDIA_FILEPATH_DP) {
406 		printf("Using Boot%04x for root partition\n", boot_current);
407 		return (BOOT_INFO_OK);		/* use currdir, default kernel */
408 	}
409 	fp = (FILEPATH_DEVICE_PATH *)dp;
410 	ucs2_to_utf8(fp->PathName, &kernel);
411 	if (kernel == NULL) {
412 		printf("Not using Boot%04x: can't decode kernel\n", boot_current);
413 		return (BAD_CHOICE);
414 	}
415 	if (*kernel == '\\' || isupper(*kernel))
416 		fix_dosisms(kernel);
417 	if (stat(kernel, &st) != 0) {
418 		free(kernel);
419 		printf("Not using Boot%04x: can't find %s\n", boot_current,
420 		    kernel);
421 		return (BAD_CHOICE);
422 	}
423 	setenv("kernel", kernel, 1);
424 	free(kernel);
425 	text = efi_devpath_name(last_dp);
426 	if (text) {
427 		printf("Using Boot%04x %S + %s\n", boot_current, text,
428 		    kernel);
429 		efi_free_devpath_name(text);
430 	}
431 
432 	return (BOOT_INFO_OK);
433 }
434 
435 /*
436  * Look at the passed-in boot_info, if any. If we find it then we need
437  * to see if we can find ourselves in the boot chain. If we can, and
438  * there's another specified thing to boot next, assume that the file
439  * is loaded from / and use that for the root filesystem. If can't
440  * find the specified thing, we must fail the boot. If we're last on
441  * the list, then we fallback to looking for the first available /
442  * candidate (ZFS, if there's a bootable zpool, otherwise a UFS
443  * partition that has either /boot/defaults/loader.conf on it or
444  * /boot/kernel/kernel (the default kernel) that we can use.
445  *
446  * We always fail if we can't find the right thing. However, as
447  * a concession to buggy UEFI implementations, like u-boot, if
448  * we have determined that the host is violating the UEFI boot
449  * manager protocol, we'll signal the rest of the program that
450  * a drop to the OK boot loader prompt is possible.
451  */
452 static int
453 find_currdev(EFI_LOADED_IMAGE *img, bool do_bootmgr, bool is_last,
454     char *boot_info, size_t boot_info_sz)
455 {
456 	pdinfo_t *dp, *pp;
457 	EFI_DEVICE_PATH *devpath, *copy;
458 	EFI_HANDLE h;
459 	CHAR16 *text;
460 	struct devsw *dev;
461 	int unit;
462 	uint64_t extra;
463 	int rv;
464 	char *rootdev;
465 
466 	/*
467 	 * First choice: if rootdev is already set, use that, even if
468 	 * it's wrong.
469 	 */
470 	rootdev = getenv("rootdev");
471 	if (rootdev != NULL) {
472 		printf("Setting currdev to configured rootdev %s\n", rootdev);
473 		set_currdev(rootdev);
474 		return (0);
475 	}
476 
477 	/*
478 	 * Second choice: If we can find out image boot_info, and there's
479 	 * a follow-on boot image in that boot_info, use that. In this
480 	 * case root will be the partition specified in that image and
481 	 * we'll load the kernel specified by the file path. Should there
482 	 * not be a filepath, we use the default. This filepath overrides
483 	 * loader.conf.
484 	 */
485 	if (do_bootmgr) {
486 		rv = match_boot_info(img, boot_info, boot_info_sz);
487 		switch (rv) {
488 		case BOOT_INFO_OK:	/* We found it */
489 			return (0);
490 		case BAD_CHOICE:	/* specified file not found -> error */
491 			/* XXX do we want to have an escape hatch for last in boot order? */
492 			return (ENOENT);
493 		} /* Nothing specified, try normal match */
494 	}
495 
496 #ifdef EFI_ZFS_BOOT
497 	/*
498 	 * Did efi_zfs_probe() detect the boot pool? If so, use the zpool
499 	 * it found, if it's sane. ZFS is the only thing that looks for
500 	 * disks and pools to boot. This may change in the future, however,
501 	 * if we allow specifying which pool to boot from via UEFI variables
502 	 * rather than the bootenv stuff that FreeBSD uses today.
503 	 */
504 	if (pool_guid != 0) {
505 		printf("Trying ZFS pool\n");
506 		if (probe_zfs_currdev(pool_guid))
507 			return (0);
508 	}
509 #endif /* EFI_ZFS_BOOT */
510 
511 	/*
512 	 * Try to find the block device by its handle based on the
513 	 * image we're booting. If we can't find a sane partition,
514 	 * search all the other partitions of the disk. We do not
515 	 * search other disks because it's a violation of the UEFI
516 	 * boot protocol to do so. We fail and let UEFI go on to
517 	 * the next candidate.
518 	 */
519 	dp = efiblk_get_pdinfo_by_handle(img->DeviceHandle);
520 	if (dp != NULL) {
521 		text = efi_devpath_name(dp->pd_devpath);
522 		if (text != NULL) {
523 			printf("Trying ESP: %S\n", text);
524 			efi_free_devpath_name(text);
525 		}
526 		set_currdev_pdinfo(dp);
527 		if (sanity_check_currdev())
528 			return (0);
529 		if (dp->pd_parent != NULL) {
530 			pdinfo_t *espdp = dp;
531 			dp = dp->pd_parent;
532 			STAILQ_FOREACH(pp, &dp->pd_part, pd_link) {
533 				/* Already tried the ESP */
534 				if (espdp == pp)
535 					continue;
536 				/*
537 				 * Roll up the ZFS special case
538 				 * for those partitions that have
539 				 * zpools on them.
540 				 */
541 				text = efi_devpath_name(pp->pd_devpath);
542 				if (text != NULL) {
543 					printf("Trying: %S\n", text);
544 					efi_free_devpath_name(text);
545 				}
546 				if (try_as_currdev(dp, pp))
547 					return (0);
548 			}
549 		}
550 	}
551 
552 	/*
553 	 * Try the device handle from our loaded image first.  If that
554 	 * fails, use the device path from the loaded image and see if
555 	 * any of the nodes in that path match one of the enumerated
556 	 * handles. Currently, this handle list is only for netboot.
557 	 */
558 	if (efi_handle_lookup(img->DeviceHandle, &dev, &unit, &extra) == 0) {
559 		set_currdev_devsw(dev, unit);
560 		if (sanity_check_currdev())
561 			return (0);
562 	}
563 
564 	copy = NULL;
565 	devpath = efi_lookup_image_devpath(IH);
566 	while (devpath != NULL) {
567 		h = efi_devpath_handle(devpath);
568 		if (h == NULL)
569 			break;
570 
571 		free(copy);
572 		copy = NULL;
573 
574 		if (efi_handle_lookup(h, &dev, &unit, &extra) == 0) {
575 			set_currdev_devsw(dev, unit);
576 			if (sanity_check_currdev())
577 				return (0);
578 		}
579 
580 		devpath = efi_lookup_devpath(h);
581 		if (devpath != NULL) {
582 			copy = efi_devpath_trim(devpath);
583 			devpath = copy;
584 		}
585 	}
586 	free(copy);
587 
588 	return (ENOENT);
589 }
590 
591 static bool
592 interactive_interrupt(const char *msg)
593 {
594 	time_t now, then, last;
595 
596 	last = 0;
597 	now = then = getsecs();
598 	printf("%s\n", msg);
599 	if (fail_timeout == -2)		/* Always break to OK */
600 		return (true);
601 	if (fail_timeout == -1)		/* Never break to OK */
602 		return (false);
603 	do {
604 		if (last != now) {
605 			printf("press any key to interrupt reboot in %d seconds\r",
606 			    fail_timeout - (int)(now - then));
607 			last = now;
608 		}
609 
610 		/* XXX no pause or timeout wait for char */
611 		if (ischar())
612 			return (true);
613 		now = getsecs();
614 	} while (now - then < fail_timeout);
615 	return (false);
616 }
617 
618 static int
619 parse_args(int argc, CHAR16 *argv[])
620 {
621 	int i, j, howto;
622 	bool vargood;
623 	char var[128];
624 
625 	/*
626 	 * Parse the args to set the console settings, etc
627 	 * boot1.efi passes these in, if it can read /boot.config or /boot/config
628 	 * or iPXE may be setup to pass these in. Or the optional argument in the
629 	 * boot environment was used to pass these arguments in (in which case
630 	 * neither /boot.config nor /boot/config are consulted).
631 	 *
632 	 * Loop through the args, and for each one that contains an '=' that is
633 	 * not the first character, add it to the environment.  This allows
634 	 * loader and kernel env vars to be passed on the command line.  Convert
635 	 * args from UCS-2 to ASCII (16 to 8 bit) as they are copied (though this
636 	 * method is flawed for non-ASCII characters).
637 	 */
638 	howto = 0;
639 	for (i = 1; i < argc; i++) {
640 		cpy16to8(argv[i], var, sizeof(var));
641 		howto |= boot_parse_arg(var);
642 	}
643 
644 	return (howto);
645 }
646 
647 static void
648 setenv_int(const char *key, int val)
649 {
650 	char buf[20];
651 
652 	snprintf(buf, sizeof(buf), "%d", val);
653 	setenv(key, buf, 1);
654 }
655 
656 /*
657  * Parse ConOut (the list of consoles active) and see if we can find a
658  * serial port and/or a video port. It would be nice to also walk the
659  * ACPI name space to map the UID for the serial port to a port. The
660  * latter is especially hard.
661  */
662 static int
663 parse_uefi_con_out(void)
664 {
665 	int how, rv;
666 	int vid_seen = 0, com_seen = 0, seen = 0;
667 	size_t sz;
668 	char buf[4096], *ep;
669 	EFI_DEVICE_PATH *node;
670 	ACPI_HID_DEVICE_PATH  *acpi;
671 	UART_DEVICE_PATH  *uart;
672 	bool pci_pending;
673 
674 	how = 0;
675 	sz = sizeof(buf);
676 	rv = efi_global_getenv("ConOut", buf, &sz);
677 	if (rv != EFI_SUCCESS)
678 		goto out;
679 	ep = buf + sz;
680 	node = (EFI_DEVICE_PATH *)buf;
681 	while ((char *)node < ep) {
682 		pci_pending = false;
683 		if (DevicePathType(node) == ACPI_DEVICE_PATH &&
684 		    DevicePathSubType(node) == ACPI_DP) {
685 			/* Check for Serial node */
686 			acpi = (void *)node;
687 			if (EISA_ID_TO_NUM(acpi->HID) == 0x501) {
688 				setenv_int("efi_8250_uid", acpi->UID);
689 				com_seen = ++seen;
690 			}
691 		} else if (DevicePathType(node) == MESSAGING_DEVICE_PATH &&
692 		    DevicePathSubType(node) == MSG_UART_DP) {
693 
694 			uart = (void *)node;
695 			setenv_int("efi_com_speed", uart->BaudRate);
696 		} else if (DevicePathType(node) == ACPI_DEVICE_PATH &&
697 		    DevicePathSubType(node) == ACPI_ADR_DP) {
698 			/* Check for AcpiAdr() Node for video */
699 			vid_seen = ++seen;
700 		} else if (DevicePathType(node) == HARDWARE_DEVICE_PATH &&
701 		    DevicePathSubType(node) == HW_PCI_DP) {
702 			/*
703 			 * Note, vmware fusion has a funky console device
704 			 *	PciRoot(0x0)/Pci(0xf,0x0)
705 			 * which we can only detect at the end since we also
706 			 * have to cope with:
707 			 *	PciRoot(0x0)/Pci(0x1f,0x0)/Serial(0x1)
708 			 * so only match it if it's last.
709 			 */
710 			pci_pending = true;
711 		}
712 		node = NextDevicePathNode(node); /* Skip the end node */
713 	}
714 	if (pci_pending && vid_seen == 0)
715 		vid_seen = ++seen;
716 
717 	/*
718 	 * Truth table for RB_MULTIPLE | RB_SERIAL
719 	 * Value		Result
720 	 * 0			Use only video console
721 	 * RB_SERIAL		Use only serial console
722 	 * RB_MULTIPLE		Use both video and serial console
723 	 *			(but video is primary so gets rc messages)
724 	 * both			Use both video and serial console
725 	 *			(but serial is primary so gets rc messages)
726 	 *
727 	 * Try to honor this as best we can. If only one of serial / video
728 	 * found, then use that. Otherwise, use the first one we found.
729 	 * This also implies if we found nothing, default to video.
730 	 */
731 	how = 0;
732 	if (vid_seen && com_seen) {
733 		how |= RB_MULTIPLE;
734 		if (com_seen < vid_seen)
735 			how |= RB_SERIAL;
736 	} else if (com_seen)
737 		how |= RB_SERIAL;
738 out:
739 	return (how);
740 }
741 
742 EFI_STATUS
743 main(int argc, CHAR16 *argv[])
744 {
745 	EFI_GUID *guid;
746 	int howto, i, uhowto;
747 	UINTN k;
748 	bool has_kbd, is_last;
749 	char *s;
750 	EFI_DEVICE_PATH *imgpath;
751 	CHAR16 *text;
752 	EFI_STATUS rv;
753 	size_t sz, bosz = 0, bisz = 0;
754 	UINT16 boot_order[100];
755 	char boot_info[4096];
756 	EFI_LOADED_IMAGE *img;
757 	char buf[32];
758 	bool uefi_boot_mgr;
759 
760 	archsw.arch_autoload = efi_autoload;
761 	archsw.arch_getdev = efi_getdev;
762 	archsw.arch_copyin = efi_copyin;
763 	archsw.arch_copyout = efi_copyout;
764 	archsw.arch_readin = efi_readin;
765 #ifdef EFI_ZFS_BOOT
766 	/* Note this needs to be set before ZFS init. */
767 	archsw.arch_zfs_probe = efi_zfs_probe;
768 #endif
769 
770         /* Get our loaded image protocol interface structure. */
771 	BS->HandleProtocol(IH, &imgid, (VOID**)&img);
772 
773 #ifdef EFI_ZFS_BOOT
774 	/* Tell ZFS probe code where we booted from */
775 	efizfs_set_preferred(img->DeviceHandle);
776 #endif
777 	/* Init the time source */
778 	efi_time_init();
779 
780 	has_kbd = has_keyboard();
781 
782 	/*
783 	 * XXX Chicken-and-egg problem; we want to have console output
784 	 * early, but some console attributes may depend on reading from
785 	 * eg. the boot device, which we can't do yet.  We can use
786 	 * printf() etc. once this is done.
787 	 */
788 	setenv("console", "efi", 1);
789 	cons_probe();
790 
791 	/*
792 	 * Initialise the block cache. Set the upper limit.
793 	 */
794 	bcache_init(32768, 512);
795 
796 	howto = parse_args(argc, argv);
797 	if (!has_kbd && (howto & RB_PROBE))
798 		howto |= RB_SERIAL | RB_MULTIPLE;
799 	howto &= ~RB_PROBE;
800 	uhowto = parse_uefi_con_out();
801 
802 	/*
803 	 * We now have two notions of console. howto should be viewed as
804 	 * overrides. If console is already set, don't set it again.
805 	 */
806 #define	VIDEO_ONLY	0
807 #define	SERIAL_ONLY	RB_SERIAL
808 #define	VID_SER_BOTH	RB_MULTIPLE
809 #define	SER_VID_BOTH	(RB_SERIAL | RB_MULTIPLE)
810 #define	CON_MASK	(RB_SERIAL | RB_MULTIPLE)
811 	if (strcmp(getenv("console"), "efi") == 0) {
812 		if ((howto & CON_MASK) == 0) {
813 			/* No override, uhowto is controlling and efi cons is perfect */
814 			howto = howto | (uhowto & CON_MASK);
815 			setenv("console", "efi", 1);
816 		} else if ((howto & CON_MASK) == (uhowto & CON_MASK)) {
817 			/* override matches what UEFI told us, efi console is perfect */
818 			setenv("console", "efi", 1);
819 		} else if ((uhowto & (CON_MASK)) != 0) {
820 			/*
821 			 * We detected a serial console on ConOut. All possible
822 			 * overrides include serial. We can't really override what efi
823 			 * gives us, so we use it knowing it's the best choice.
824 			 */
825 			setenv("console", "efi", 1);
826 		} else {
827 			/*
828 			 * We detected some kind of serial in the override, but ConOut
829 			 * has no serial, so we have to sort out which case it really is.
830 			 */
831 			switch (howto & CON_MASK) {
832 			case SERIAL_ONLY:
833 				setenv("console", "comconsole", 1);
834 				break;
835 			case VID_SER_BOTH:
836 				setenv("console", "efi comconsole", 1);
837 				break;
838 			case SER_VID_BOTH:
839 				setenv("console", "comconsole efi", 1);
840 				break;
841 				/* case VIDEO_ONLY can't happen -- it's the first if above */
842 			}
843 		}
844 	}
845 
846 	/*
847 	 * howto is set now how we want to export the flags to the kernel, so
848 	 * set the env based on it.
849 	 */
850 	boot_howto_to_env(howto);
851 
852 	if (efi_copy_init()) {
853 		printf("failed to allocate staging area\n");
854 		return (EFI_BUFFER_TOO_SMALL);
855 	}
856 
857 	if ((s = getenv("fail_timeout")) != NULL)
858 		fail_timeout = strtol(s, NULL, 10);
859 
860 	/*
861 	 * Scan the BLOCK IO MEDIA handles then
862 	 * march through the device switch probing for things.
863 	 */
864 	i = efipart_inithandles();
865 	if (i != 0 && i != ENOENT) {
866 		printf("efipart_inithandles failed with ERRNO %d, expect "
867 		    "failures\n", i);
868 	}
869 
870 	for (i = 0; devsw[i] != NULL; i++)
871 		if (devsw[i]->dv_init != NULL)
872 			(devsw[i]->dv_init)();
873 
874 	printf("%s\n", bootprog_info);
875 	printf("   Command line arguments:");
876 	for (i = 0; i < argc; i++)
877 		printf(" %S", argv[i]);
878 	printf("\n");
879 
880 	printf("   EFI version: %d.%02d\n", ST->Hdr.Revision >> 16,
881 	    ST->Hdr.Revision & 0xffff);
882 	printf("   EFI Firmware: %S (rev %d.%02d)\n", ST->FirmwareVendor,
883 	    ST->FirmwareRevision >> 16, ST->FirmwareRevision & 0xffff);
884 	printf("   Console: %s (%#x)\n", getenv("console"), howto);
885 
886 
887 
888 	/* Determine the devpath of our image so we can prefer it. */
889 	text = efi_devpath_name(img->FilePath);
890 	if (text != NULL) {
891 		printf("   Load Path: %S\n", text);
892 		efi_setenv_freebsd_wcs("LoaderPath", text);
893 		efi_free_devpath_name(text);
894 	}
895 
896 	rv = BS->HandleProtocol(img->DeviceHandle, &devid, (void **)&imgpath);
897 	if (rv == EFI_SUCCESS) {
898 		text = efi_devpath_name(imgpath);
899 		if (text != NULL) {
900 			printf("   Load Device: %S\n", text);
901 			efi_setenv_freebsd_wcs("LoaderDev", text);
902 			efi_free_devpath_name(text);
903 		}
904 	}
905 
906 	uefi_boot_mgr = true;
907 	boot_current = 0;
908 	sz = sizeof(boot_current);
909 	rv = efi_global_getenv("BootCurrent", &boot_current, &sz);
910 	if (rv == EFI_SUCCESS)
911 		printf("   BootCurrent: %04x\n", boot_current);
912 	else {
913 		boot_current = 0xffff;
914 		uefi_boot_mgr = false;
915 	}
916 
917 	sz = sizeof(boot_order);
918 	rv = efi_global_getenv("BootOrder", &boot_order, &sz);
919 	if (rv == EFI_SUCCESS) {
920 		printf("   BootOrder:");
921 		for (i = 0; i < sz / sizeof(boot_order[0]); i++)
922 			printf(" %04x%s", boot_order[i],
923 			    boot_order[i] == boot_current ? "[*]" : "");
924 		printf("\n");
925 		is_last = boot_order[(sz / sizeof(boot_order[0])) - 1] == boot_current;
926 		bosz = sz;
927 	} else if (uefi_boot_mgr) {
928 		/*
929 		 * u-boot doesn't set BootOrder, but otherwise participates in the
930 		 * boot manager protocol. So we fake it here and don't consider it
931 		 * a failure.
932 		 */
933 		bosz = sizeof(boot_order[0]);
934 		boot_order[0] = boot_current;
935 		is_last = true;
936 	}
937 
938 	/*
939 	 * Next, find the boot info structure the UEFI boot manager is
940 	 * supposed to setup. We need this so we can walk through it to
941 	 * find where we are in the booting process and what to try to
942 	 * boot next.
943 	 */
944 	if (uefi_boot_mgr) {
945 		snprintf(buf, sizeof(buf), "Boot%04X", boot_current);
946 		sz = sizeof(boot_info);
947 		rv = efi_global_getenv(buf, &boot_info, &sz);
948 		if (rv == EFI_SUCCESS)
949 			bisz = sz;
950 		else
951 			uefi_boot_mgr = false;
952 	}
953 
954 	/*
955 	 * Disable the watchdog timer. By default the boot manager sets
956 	 * the timer to 5 minutes before invoking a boot option. If we
957 	 * want to return to the boot manager, we have to disable the
958 	 * watchdog timer and since we're an interactive program, we don't
959 	 * want to wait until the user types "quit". The timer may have
960 	 * fired by then. We don't care if this fails. It does not prevent
961 	 * normal functioning in any way...
962 	 */
963 	BS->SetWatchdogTimer(0, 0, 0, NULL);
964 
965 	/*
966 	 * Try and find a good currdev based on the image that was booted.
967 	 * It might be desirable here to have a short pause to allow falling
968 	 * through to the boot loader instead of returning instantly to follow
969 	 * the boot protocol and also allow an escape hatch for users wishing
970 	 * to try something different.
971 	 */
972 	if (find_currdev(img, uefi_boot_mgr, is_last, boot_info, bisz) != 0)
973 		if (!interactive_interrupt("Failed to find bootable partition"))
974 			return (EFI_NOT_FOUND);
975 
976 	efi_init_environment();
977 
978 #if !defined(__arm__)
979 	for (k = 0; k < ST->NumberOfTableEntries; k++) {
980 		guid = &ST->ConfigurationTable[k].VendorGuid;
981 		if (!memcmp(guid, &smbios, sizeof(EFI_GUID))) {
982 			char buf[40];
983 
984 			snprintf(buf, sizeof(buf), "%p",
985 			    ST->ConfigurationTable[k].VendorTable);
986 			setenv("hint.smbios.0.mem", buf, 1);
987 			smbios_detect(ST->ConfigurationTable[k].VendorTable);
988 			break;
989 		}
990 	}
991 #endif
992 
993 	interact();			/* doesn't return */
994 
995 	return (EFI_SUCCESS);		/* keep compiler happy */
996 }
997 
998 COMMAND_SET(poweroff, "poweroff", "power off the system", command_poweroff);
999 
1000 static int
1001 command_poweroff(int argc __unused, char *argv[] __unused)
1002 {
1003 	int i;
1004 
1005 	for (i = 0; devsw[i] != NULL; ++i)
1006 		if (devsw[i]->dv_cleanup != NULL)
1007 			(devsw[i]->dv_cleanup)();
1008 
1009 	RS->ResetSystem(EfiResetShutdown, EFI_SUCCESS, 0, NULL);
1010 
1011 	/* NOTREACHED */
1012 	return (CMD_ERROR);
1013 }
1014 
1015 COMMAND_SET(reboot, "reboot", "reboot the system", command_reboot);
1016 
1017 static int
1018 command_reboot(int argc, char *argv[])
1019 {
1020 	int i;
1021 
1022 	for (i = 0; devsw[i] != NULL; ++i)
1023 		if (devsw[i]->dv_cleanup != NULL)
1024 			(devsw[i]->dv_cleanup)();
1025 
1026 	RS->ResetSystem(EfiResetCold, EFI_SUCCESS, 0, NULL);
1027 
1028 	/* NOTREACHED */
1029 	return (CMD_ERROR);
1030 }
1031 
1032 COMMAND_SET(quit, "quit", "exit the loader", command_quit);
1033 
1034 static int
1035 command_quit(int argc, char *argv[])
1036 {
1037 	exit(0);
1038 	return (CMD_OK);
1039 }
1040 
1041 COMMAND_SET(memmap, "memmap", "print memory map", command_memmap);
1042 
1043 static int
1044 command_memmap(int argc, char *argv[])
1045 {
1046 	UINTN sz;
1047 	EFI_MEMORY_DESCRIPTOR *map, *p;
1048 	UINTN key, dsz;
1049 	UINT32 dver;
1050 	EFI_STATUS status;
1051 	int i, ndesc;
1052 	char line[80];
1053 	static char *types[] = {
1054 	    "Reserved",
1055 	    "LoaderCode",
1056 	    "LoaderData",
1057 	    "BootServicesCode",
1058 	    "BootServicesData",
1059 	    "RuntimeServicesCode",
1060 	    "RuntimeServicesData",
1061 	    "ConventionalMemory",
1062 	    "UnusableMemory",
1063 	    "ACPIReclaimMemory",
1064 	    "ACPIMemoryNVS",
1065 	    "MemoryMappedIO",
1066 	    "MemoryMappedIOPortSpace",
1067 	    "PalCode"
1068 	};
1069 
1070 	sz = 0;
1071 	status = BS->GetMemoryMap(&sz, 0, &key, &dsz, &dver);
1072 	if (status != EFI_BUFFER_TOO_SMALL) {
1073 		printf("Can't determine memory map size\n");
1074 		return (CMD_ERROR);
1075 	}
1076 	map = malloc(sz);
1077 	status = BS->GetMemoryMap(&sz, map, &key, &dsz, &dver);
1078 	if (EFI_ERROR(status)) {
1079 		printf("Can't read memory map\n");
1080 		return (CMD_ERROR);
1081 	}
1082 
1083 	ndesc = sz / dsz;
1084 	snprintf(line, sizeof(line), "%23s %12s %12s %8s %4s\n",
1085 	    "Type", "Physical", "Virtual", "#Pages", "Attr");
1086 	pager_open();
1087 	if (pager_output(line)) {
1088 		pager_close();
1089 		return (CMD_OK);
1090 	}
1091 
1092 	for (i = 0, p = map; i < ndesc;
1093 	     i++, p = NextMemoryDescriptor(p, dsz)) {
1094 		printf("%23s %012jx %012jx %08jx ", types[p->Type],
1095 		    (uintmax_t)p->PhysicalStart, (uintmax_t)p->VirtualStart,
1096 		    (uintmax_t)p->NumberOfPages);
1097 		if (p->Attribute & EFI_MEMORY_UC)
1098 			printf("UC ");
1099 		if (p->Attribute & EFI_MEMORY_WC)
1100 			printf("WC ");
1101 		if (p->Attribute & EFI_MEMORY_WT)
1102 			printf("WT ");
1103 		if (p->Attribute & EFI_MEMORY_WB)
1104 			printf("WB ");
1105 		if (p->Attribute & EFI_MEMORY_UCE)
1106 			printf("UCE ");
1107 		if (p->Attribute & EFI_MEMORY_WP)
1108 			printf("WP ");
1109 		if (p->Attribute & EFI_MEMORY_RP)
1110 			printf("RP ");
1111 		if (p->Attribute & EFI_MEMORY_XP)
1112 			printf("XP ");
1113 		if (pager_output("\n"))
1114 			break;
1115 	}
1116 
1117 	pager_close();
1118 	return (CMD_OK);
1119 }
1120 
1121 COMMAND_SET(configuration, "configuration", "print configuration tables",
1122     command_configuration);
1123 
1124 static const char *
1125 guid_to_string(EFI_GUID *guid)
1126 {
1127 	static char buf[40];
1128 
1129 	sprintf(buf, "%08x-%04x-%04x-%02x%02x-%02x%02x%02x%02x%02x%02x",
1130 	    guid->Data1, guid->Data2, guid->Data3, guid->Data4[0],
1131 	    guid->Data4[1], guid->Data4[2], guid->Data4[3], guid->Data4[4],
1132 	    guid->Data4[5], guid->Data4[6], guid->Data4[7]);
1133 	return (buf);
1134 }
1135 
1136 static int
1137 command_configuration(int argc, char *argv[])
1138 {
1139 	char line[80];
1140 	UINTN i;
1141 
1142 	snprintf(line, sizeof(line), "NumberOfTableEntries=%lu\n",
1143 		(unsigned long)ST->NumberOfTableEntries);
1144 	pager_open();
1145 	if (pager_output(line)) {
1146 		pager_close();
1147 		return (CMD_OK);
1148 	}
1149 
1150 	for (i = 0; i < ST->NumberOfTableEntries; i++) {
1151 		EFI_GUID *guid;
1152 
1153 		printf("  ");
1154 		guid = &ST->ConfigurationTable[i].VendorGuid;
1155 		if (!memcmp(guid, &mps, sizeof(EFI_GUID)))
1156 			printf("MPS Table");
1157 		else if (!memcmp(guid, &acpi, sizeof(EFI_GUID)))
1158 			printf("ACPI Table");
1159 		else if (!memcmp(guid, &acpi20, sizeof(EFI_GUID)))
1160 			printf("ACPI 2.0 Table");
1161 		else if (!memcmp(guid, &smbios, sizeof(EFI_GUID)))
1162 			printf("SMBIOS Table %p",
1163 			    ST->ConfigurationTable[i].VendorTable);
1164 		else if (!memcmp(guid, &smbios3, sizeof(EFI_GUID)))
1165 			printf("SMBIOS3 Table");
1166 		else if (!memcmp(guid, &dxe, sizeof(EFI_GUID)))
1167 			printf("DXE Table");
1168 		else if (!memcmp(guid, &hoblist, sizeof(EFI_GUID)))
1169 			printf("HOB List Table");
1170 		else if (!memcmp(guid, &lzmadecomp, sizeof(EFI_GUID)))
1171 			printf("LZMA Compression");
1172 		else if (!memcmp(guid, &mpcore, sizeof(EFI_GUID)))
1173 			printf("ARM MpCore Information Table");
1174 		else if (!memcmp(guid, &esrt, sizeof(EFI_GUID)))
1175 			printf("ESRT Table");
1176 		else if (!memcmp(guid, &memtype, sizeof(EFI_GUID)))
1177 			printf("Memory Type Information Table");
1178 		else if (!memcmp(guid, &debugimg, sizeof(EFI_GUID)))
1179 			printf("Debug Image Info Table");
1180 		else if (!memcmp(guid, &fdtdtb, sizeof(EFI_GUID)))
1181 			printf("FDT Table");
1182 		else
1183 			printf("Unknown Table (%s)", guid_to_string(guid));
1184 		snprintf(line, sizeof(line), " at %p\n",
1185 		    ST->ConfigurationTable[i].VendorTable);
1186 		if (pager_output(line))
1187 			break;
1188 	}
1189 
1190 	pager_close();
1191 	return (CMD_OK);
1192 }
1193 
1194 
1195 COMMAND_SET(mode, "mode", "change or display EFI text modes", command_mode);
1196 
1197 static int
1198 command_mode(int argc, char *argv[])
1199 {
1200 	UINTN cols, rows;
1201 	unsigned int mode;
1202 	int i;
1203 	char *cp;
1204 	char rowenv[8];
1205 	EFI_STATUS status;
1206 	SIMPLE_TEXT_OUTPUT_INTERFACE *conout;
1207 	extern void HO(void);
1208 
1209 	conout = ST->ConOut;
1210 
1211 	if (argc > 1) {
1212 		mode = strtol(argv[1], &cp, 0);
1213 		if (cp[0] != '\0') {
1214 			printf("Invalid mode\n");
1215 			return (CMD_ERROR);
1216 		}
1217 		status = conout->QueryMode(conout, mode, &cols, &rows);
1218 		if (EFI_ERROR(status)) {
1219 			printf("invalid mode %d\n", mode);
1220 			return (CMD_ERROR);
1221 		}
1222 		status = conout->SetMode(conout, mode);
1223 		if (EFI_ERROR(status)) {
1224 			printf("couldn't set mode %d\n", mode);
1225 			return (CMD_ERROR);
1226 		}
1227 		sprintf(rowenv, "%u", (unsigned)rows);
1228 		setenv("LINES", rowenv, 1);
1229 		HO();		/* set cursor */
1230 		return (CMD_OK);
1231 	}
1232 
1233 	printf("Current mode: %d\n", conout->Mode->Mode);
1234 	for (i = 0; i <= conout->Mode->MaxMode; i++) {
1235 		status = conout->QueryMode(conout, i, &cols, &rows);
1236 		if (EFI_ERROR(status))
1237 			continue;
1238 		printf("Mode %d: %u columns, %u rows\n", i, (unsigned)cols,
1239 		    (unsigned)rows);
1240 	}
1241 
1242 	if (i != 0)
1243 		printf("Select a mode with the command \"mode <number>\"\n");
1244 
1245 	return (CMD_OK);
1246 }
1247 
1248 #ifdef LOADER_FDT_SUPPORT
1249 extern int command_fdt_internal(int argc, char *argv[]);
1250 
1251 /*
1252  * Since proper fdt command handling function is defined in fdt_loader_cmd.c,
1253  * and declaring it as extern is in contradiction with COMMAND_SET() macro
1254  * (which uses static pointer), we're defining wrapper function, which
1255  * calls the proper fdt handling routine.
1256  */
1257 static int
1258 command_fdt(int argc, char *argv[])
1259 {
1260 
1261 	return (command_fdt_internal(argc, argv));
1262 }
1263 
1264 COMMAND_SET(fdt, "fdt", "flattened device tree handling", command_fdt);
1265 #endif
1266 
1267 /*
1268  * Chain load another efi loader.
1269  */
1270 static int
1271 command_chain(int argc, char *argv[])
1272 {
1273 	EFI_GUID LoadedImageGUID = LOADED_IMAGE_PROTOCOL;
1274 	EFI_HANDLE loaderhandle;
1275 	EFI_LOADED_IMAGE *loaded_image;
1276 	EFI_STATUS status;
1277 	struct stat st;
1278 	struct devdesc *dev;
1279 	char *name, *path;
1280 	void *buf;
1281 	int fd;
1282 
1283 	if (argc < 2) {
1284 		command_errmsg = "wrong number of arguments";
1285 		return (CMD_ERROR);
1286 	}
1287 
1288 	name = argv[1];
1289 
1290 	if ((fd = open(name, O_RDONLY)) < 0) {
1291 		command_errmsg = "no such file";
1292 		return (CMD_ERROR);
1293 	}
1294 
1295 	if (fstat(fd, &st) < -1) {
1296 		command_errmsg = "stat failed";
1297 		close(fd);
1298 		return (CMD_ERROR);
1299 	}
1300 
1301 	status = BS->AllocatePool(EfiLoaderCode, (UINTN)st.st_size, &buf);
1302 	if (status != EFI_SUCCESS) {
1303 		command_errmsg = "failed to allocate buffer";
1304 		close(fd);
1305 		return (CMD_ERROR);
1306 	}
1307 	if (read(fd, buf, st.st_size) != st.st_size) {
1308 		command_errmsg = "error while reading the file";
1309 		(void)BS->FreePool(buf);
1310 		close(fd);
1311 		return (CMD_ERROR);
1312 	}
1313 	close(fd);
1314 	status = BS->LoadImage(FALSE, IH, NULL, buf, st.st_size, &loaderhandle);
1315 	(void)BS->FreePool(buf);
1316 	if (status != EFI_SUCCESS) {
1317 		command_errmsg = "LoadImage failed";
1318 		return (CMD_ERROR);
1319 	}
1320 	status = BS->HandleProtocol(loaderhandle, &LoadedImageGUID,
1321 	    (void **)&loaded_image);
1322 
1323 	if (argc > 2) {
1324 		int i, len = 0;
1325 		CHAR16 *argp;
1326 
1327 		for (i = 2; i < argc; i++)
1328 			len += strlen(argv[i]) + 1;
1329 
1330 		len *= sizeof (*argp);
1331 		loaded_image->LoadOptions = argp = malloc (len);
1332 		loaded_image->LoadOptionsSize = len;
1333 		for (i = 2; i < argc; i++) {
1334 			char *ptr = argv[i];
1335 			while (*ptr)
1336 				*(argp++) = *(ptr++);
1337 			*(argp++) = ' ';
1338 		}
1339 		*(--argv) = 0;
1340 	}
1341 
1342 	if (efi_getdev((void **)&dev, name, (const char **)&path) == 0) {
1343 #ifdef EFI_ZFS_BOOT
1344 		struct zfs_devdesc *z_dev;
1345 #endif
1346 		struct disk_devdesc *d_dev;
1347 		pdinfo_t *hd, *pd;
1348 
1349 		switch (dev->d_dev->dv_type) {
1350 #ifdef EFI_ZFS_BOOT
1351 		case DEVT_ZFS:
1352 			z_dev = (struct zfs_devdesc *)dev;
1353 			loaded_image->DeviceHandle =
1354 			    efizfs_get_handle_by_guid(z_dev->pool_guid);
1355 			break;
1356 #endif
1357 		case DEVT_NET:
1358 			loaded_image->DeviceHandle =
1359 			    efi_find_handle(dev->d_dev, dev->d_unit);
1360 			break;
1361 		default:
1362 			hd = efiblk_get_pdinfo(dev);
1363 			if (STAILQ_EMPTY(&hd->pd_part)) {
1364 				loaded_image->DeviceHandle = hd->pd_handle;
1365 				break;
1366 			}
1367 			d_dev = (struct disk_devdesc *)dev;
1368 			STAILQ_FOREACH(pd, &hd->pd_part, pd_link) {
1369 				/*
1370 				 * d_partition should be 255
1371 				 */
1372 				if (pd->pd_unit == (uint32_t)d_dev->d_slice) {
1373 					loaded_image->DeviceHandle =
1374 					    pd->pd_handle;
1375 					break;
1376 				}
1377 			}
1378 			break;
1379 		}
1380 	}
1381 
1382 	dev_cleanup();
1383 	status = BS->StartImage(loaderhandle, NULL, NULL);
1384 	if (status != EFI_SUCCESS) {
1385 		command_errmsg = "StartImage failed";
1386 		free(loaded_image->LoadOptions);
1387 		loaded_image->LoadOptions = NULL;
1388 		status = BS->UnloadImage(loaded_image);
1389 		return (CMD_ERROR);
1390 	}
1391 
1392 	return (CMD_ERROR);	/* not reached */
1393 }
1394 
1395 COMMAND_SET(chain, "chain", "chain load file", command_chain);
1396