1 /*- 2 * Copyright (c) 2008-2010 Rui Paulo 3 * Copyright (c) 2006 Marcel Moolenaar 4 * All rights reserved. 5 * 6 * Copyright (c) 2016-2019 Netflix, Inc. written by M. Warner Losh 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <stand.h> 34 35 #include <sys/disk.h> 36 #include <sys/param.h> 37 #include <sys/reboot.h> 38 #include <sys/boot.h> 39 #ifdef EFI_ZFS_BOOT 40 #include <sys/zfs_bootenv.h> 41 #endif 42 #include <paths.h> 43 #include <stdint.h> 44 #include <string.h> 45 #include <setjmp.h> 46 #include <disk.h> 47 48 #include <efi.h> 49 #include <efilib.h> 50 #include <efichar.h> 51 52 #include <uuid.h> 53 54 #include <bootstrap.h> 55 #include <smbios.h> 56 57 #include "efizfs.h" 58 59 #include "loader_efi.h" 60 61 struct arch_switch archsw; /* MI/MD interface boundary */ 62 63 EFI_GUID acpi = ACPI_TABLE_GUID; 64 EFI_GUID acpi20 = ACPI_20_TABLE_GUID; 65 EFI_GUID devid = DEVICE_PATH_PROTOCOL; 66 EFI_GUID imgid = LOADED_IMAGE_PROTOCOL; 67 EFI_GUID mps = MPS_TABLE_GUID; 68 EFI_GUID netid = EFI_SIMPLE_NETWORK_PROTOCOL; 69 EFI_GUID smbios = SMBIOS_TABLE_GUID; 70 EFI_GUID smbios3 = SMBIOS3_TABLE_GUID; 71 EFI_GUID dxe = DXE_SERVICES_TABLE_GUID; 72 EFI_GUID hoblist = HOB_LIST_TABLE_GUID; 73 EFI_GUID lzmadecomp = LZMA_DECOMPRESSION_GUID; 74 EFI_GUID mpcore = ARM_MP_CORE_INFO_TABLE_GUID; 75 EFI_GUID esrt = ESRT_TABLE_GUID; 76 EFI_GUID memtype = MEMORY_TYPE_INFORMATION_TABLE_GUID; 77 EFI_GUID debugimg = DEBUG_IMAGE_INFO_TABLE_GUID; 78 EFI_GUID fdtdtb = FDT_TABLE_GUID; 79 EFI_GUID inputid = SIMPLE_TEXT_INPUT_PROTOCOL; 80 81 /* 82 * Number of seconds to wait for a keystroke before exiting with failure 83 * in the event no currdev is found. -2 means always break, -1 means 84 * never break, 0 means poll once and then reboot, > 0 means wait for 85 * that many seconds. "fail_timeout" can be set in the environment as 86 * well. 87 */ 88 static int fail_timeout = 5; 89 90 /* 91 * Current boot variable 92 */ 93 UINT16 boot_current; 94 95 /* 96 * Image that we booted from. 97 */ 98 EFI_LOADED_IMAGE *boot_img; 99 100 static bool 101 has_keyboard(void) 102 { 103 EFI_STATUS status; 104 EFI_DEVICE_PATH *path; 105 EFI_HANDLE *hin, *hin_end, *walker; 106 UINTN sz; 107 bool retval = false; 108 109 /* 110 * Find all the handles that support the SIMPLE_TEXT_INPUT_PROTOCOL and 111 * do the typical dance to get the right sized buffer. 112 */ 113 sz = 0; 114 hin = NULL; 115 status = BS->LocateHandle(ByProtocol, &inputid, 0, &sz, 0); 116 if (status == EFI_BUFFER_TOO_SMALL) { 117 hin = (EFI_HANDLE *)malloc(sz); 118 status = BS->LocateHandle(ByProtocol, &inputid, 0, &sz, 119 hin); 120 if (EFI_ERROR(status)) 121 free(hin); 122 } 123 if (EFI_ERROR(status)) 124 return retval; 125 126 /* 127 * Look at each of the handles. If it supports the device path protocol, 128 * use it to get the device path for this handle. Then see if that 129 * device path matches either the USB device path for keyboards or the 130 * legacy device path for keyboards. 131 */ 132 hin_end = &hin[sz / sizeof(*hin)]; 133 for (walker = hin; walker < hin_end; walker++) { 134 status = OpenProtocolByHandle(*walker, &devid, (void **)&path); 135 if (EFI_ERROR(status)) 136 continue; 137 138 while (!IsDevicePathEnd(path)) { 139 /* 140 * Check for the ACPI keyboard node. All PNP3xx nodes 141 * are keyboards of different flavors. Note: It is 142 * unclear of there's always a keyboard node when 143 * there's a keyboard controller, or if there's only one 144 * when a keyboard is detected at boot. 145 */ 146 if (DevicePathType(path) == ACPI_DEVICE_PATH && 147 (DevicePathSubType(path) == ACPI_DP || 148 DevicePathSubType(path) == ACPI_EXTENDED_DP)) { 149 ACPI_HID_DEVICE_PATH *acpi; 150 151 acpi = (ACPI_HID_DEVICE_PATH *)(void *)path; 152 if ((EISA_ID_TO_NUM(acpi->HID) & 0xff00) == 0x300 && 153 (acpi->HID & 0xffff) == PNP_EISA_ID_CONST) { 154 retval = true; 155 goto out; 156 } 157 /* 158 * Check for USB keyboard node, if present. Unlike a 159 * PS/2 keyboard, these definitely only appear when 160 * connected to the system. 161 */ 162 } else if (DevicePathType(path) == MESSAGING_DEVICE_PATH && 163 DevicePathSubType(path) == MSG_USB_CLASS_DP) { 164 USB_CLASS_DEVICE_PATH *usb; 165 166 usb = (USB_CLASS_DEVICE_PATH *)(void *)path; 167 if (usb->DeviceClass == 3 && /* HID */ 168 usb->DeviceSubClass == 1 && /* Boot devices */ 169 usb->DeviceProtocol == 1) { /* Boot keyboards */ 170 retval = true; 171 goto out; 172 } 173 } 174 path = NextDevicePathNode(path); 175 } 176 } 177 out: 178 free(hin); 179 return retval; 180 } 181 182 static void 183 set_currdev(const char *devname) 184 { 185 186 /* 187 * Don't execute hooks here; we may need to try setting these more than 188 * once here if we're probing for the ZFS pool we're supposed to boot. 189 * The currdev hook is intended to just validate user input anyways, 190 * while the loaddev hook makes it immutable once we've determined what 191 * the proper currdev is. 192 */ 193 env_setenv("currdev", EV_VOLATILE | EV_NOHOOK, devname, efi_setcurrdev, 194 env_nounset); 195 env_setenv("loaddev", EV_VOLATILE | EV_NOHOOK, devname, env_noset, 196 env_nounset); 197 } 198 199 static void 200 set_currdev_devdesc(struct devdesc *currdev) 201 { 202 const char *devname; 203 204 devname = efi_fmtdev(currdev); 205 printf("Setting currdev to %s\n", devname); 206 set_currdev(devname); 207 } 208 209 static void 210 set_currdev_devsw(struct devsw *dev, int unit) 211 { 212 struct devdesc currdev; 213 214 currdev.d_dev = dev; 215 currdev.d_unit = unit; 216 217 set_currdev_devdesc(&currdev); 218 } 219 220 static void 221 set_currdev_pdinfo(pdinfo_t *dp) 222 { 223 224 /* 225 * Disks are special: they have partitions. if the parent 226 * pointer is non-null, we're a partition not a full disk 227 * and we need to adjust currdev appropriately. 228 */ 229 if (dp->pd_devsw->dv_type == DEVT_DISK) { 230 struct disk_devdesc currdev; 231 232 currdev.dd.d_dev = dp->pd_devsw; 233 if (dp->pd_parent == NULL) { 234 currdev.dd.d_unit = dp->pd_unit; 235 currdev.d_slice = D_SLICENONE; 236 currdev.d_partition = D_PARTNONE; 237 } else { 238 currdev.dd.d_unit = dp->pd_parent->pd_unit; 239 currdev.d_slice = dp->pd_unit; 240 currdev.d_partition = D_PARTISGPT; /* XXX Assumes GPT */ 241 } 242 set_currdev_devdesc((struct devdesc *)&currdev); 243 } else { 244 set_currdev_devsw(dp->pd_devsw, dp->pd_unit); 245 } 246 } 247 248 static bool 249 sanity_check_currdev(void) 250 { 251 struct stat st; 252 253 return (stat(PATH_DEFAULTS_LOADER_CONF, &st) == 0 || 254 #ifdef PATH_BOOTABLE_TOKEN 255 stat(PATH_BOOTABLE_TOKEN, &st) == 0 || /* non-standard layout */ 256 #endif 257 stat(PATH_KERNEL, &st) == 0); 258 } 259 260 #ifdef EFI_ZFS_BOOT 261 static bool 262 probe_zfs_currdev(uint64_t guid) 263 { 264 char *devname; 265 struct zfs_devdesc currdev; 266 char *buf = NULL; 267 bool rv; 268 269 currdev.dd.d_dev = &zfs_dev; 270 currdev.dd.d_unit = 0; 271 currdev.pool_guid = guid; 272 currdev.root_guid = 0; 273 set_currdev_devdesc((struct devdesc *)&currdev); 274 devname = efi_fmtdev(&currdev); 275 init_zfs_boot_options(devname); 276 277 rv = sanity_check_currdev(); 278 if (rv) { 279 buf = malloc(VDEV_PAD_SIZE); 280 if (buf != NULL) { 281 if (zfs_get_bootonce(&currdev, OS_BOOTONCE, buf, 282 VDEV_PAD_SIZE) == 0) { 283 printf("zfs bootonce: %s\n", buf); 284 set_currdev(buf); 285 setenv("zfs-bootonce", buf, 1); 286 } 287 free(buf); 288 (void) zfs_attach_nvstore(&currdev); 289 } 290 } 291 return (rv); 292 } 293 #endif 294 295 static bool 296 try_as_currdev(pdinfo_t *hd, pdinfo_t *pp) 297 { 298 uint64_t guid; 299 300 #ifdef EFI_ZFS_BOOT 301 /* 302 * If there's a zpool on this device, try it as a ZFS 303 * filesystem, which has somewhat different setup than all 304 * other types of fs due to imperfect loader integration. 305 * This all stems from ZFS being both a device (zpool) and 306 * a filesystem, plus the boot env feature. 307 */ 308 if (efizfs_get_guid_by_handle(pp->pd_handle, &guid)) 309 return (probe_zfs_currdev(guid)); 310 #endif 311 /* 312 * All other filesystems just need the pdinfo 313 * initialized in the standard way. 314 */ 315 set_currdev_pdinfo(pp); 316 return (sanity_check_currdev()); 317 } 318 319 /* 320 * Sometimes we get filenames that are all upper case 321 * and/or have backslashes in them. Filter all this out 322 * if it looks like we need to do so. 323 */ 324 static void 325 fix_dosisms(char *p) 326 { 327 while (*p) { 328 if (isupper(*p)) 329 *p = tolower(*p); 330 else if (*p == '\\') 331 *p = '/'; 332 p++; 333 } 334 } 335 336 #define SIZE(dp, edp) (size_t)((intptr_t)(void *)edp - (intptr_t)(void *)dp) 337 338 enum { BOOT_INFO_OK = 0, BAD_CHOICE = 1, NOT_SPECIFIC = 2 }; 339 static int 340 match_boot_info(char *boot_info, size_t bisz) 341 { 342 uint32_t attr; 343 uint16_t fplen; 344 size_t len; 345 char *walker, *ep; 346 EFI_DEVICE_PATH *dp, *edp, *first_dp, *last_dp; 347 pdinfo_t *pp; 348 CHAR16 *descr; 349 char *kernel = NULL; 350 FILEPATH_DEVICE_PATH *fp; 351 struct stat st; 352 CHAR16 *text; 353 354 /* 355 * FreeBSD encodes it's boot loading path into the boot loader 356 * BootXXXX variable. We look for the last one in the path 357 * and use that to load the kernel. However, if we only fine 358 * one DEVICE_PATH, then there's nothing specific and we should 359 * fall back. 360 * 361 * In an ideal world, we'd look at the image handle we were 362 * passed, match up with the loader we are and then return the 363 * next one in the path. This would be most flexible and cover 364 * many chain booting scenarios where you need to use this 365 * boot loader to get to the next boot loader. However, that 366 * doesn't work. We rarely have the path to the image booted 367 * (just the device) so we can't count on that. So, we do the 368 * enxt best thing, we look through the device path(s) passed 369 * in the BootXXXX varaible. If there's only one, we return 370 * NOT_SPECIFIC. Otherwise, we look at the last one and try to 371 * load that. If we can, we return BOOT_INFO_OK. Otherwise we 372 * return BAD_CHOICE for the caller to sort out. 373 */ 374 if (bisz < sizeof(attr) + sizeof(fplen) + sizeof(CHAR16)) 375 return NOT_SPECIFIC; 376 walker = boot_info; 377 ep = walker + bisz; 378 memcpy(&attr, walker, sizeof(attr)); 379 walker += sizeof(attr); 380 memcpy(&fplen, walker, sizeof(fplen)); 381 walker += sizeof(fplen); 382 descr = (CHAR16 *)(intptr_t)walker; 383 len = ucs2len(descr); 384 walker += (len + 1) * sizeof(CHAR16); 385 last_dp = first_dp = dp = (EFI_DEVICE_PATH *)walker; 386 edp = (EFI_DEVICE_PATH *)(walker + fplen); 387 if ((char *)edp > ep) 388 return NOT_SPECIFIC; 389 while (dp < edp && SIZE(dp, edp) > sizeof(EFI_DEVICE_PATH)) { 390 text = efi_devpath_name(dp); 391 if (text != NULL) { 392 printf(" BootInfo Path: %S\n", text); 393 efi_free_devpath_name(text); 394 } 395 last_dp = dp; 396 dp = (EFI_DEVICE_PATH *)((char *)dp + efi_devpath_length(dp)); 397 } 398 399 /* 400 * If there's only one item in the list, then nothing was 401 * specified. Or if the last path doesn't have a media 402 * path in it. Those show up as various VenHw() nodes 403 * which are basically opaque to us. Don't count those 404 * as something specifc. 405 */ 406 if (last_dp == first_dp) { 407 printf("Ignoring Boot%04x: Only one DP found\n", boot_current); 408 return NOT_SPECIFIC; 409 } 410 if (efi_devpath_to_media_path(last_dp) == NULL) { 411 printf("Ignoring Boot%04x: No Media Path\n", boot_current); 412 return NOT_SPECIFIC; 413 } 414 415 /* 416 * OK. At this point we either have a good path or a bad one. 417 * Let's check. 418 */ 419 pp = efiblk_get_pdinfo_by_device_path(last_dp); 420 if (pp == NULL) { 421 printf("Ignoring Boot%04x: Device Path not found\n", boot_current); 422 return BAD_CHOICE; 423 } 424 set_currdev_pdinfo(pp); 425 if (!sanity_check_currdev()) { 426 printf("Ignoring Boot%04x: sanity check failed\n", boot_current); 427 return BAD_CHOICE; 428 } 429 430 /* 431 * OK. We've found a device that matches, next we need to check the last 432 * component of the path. If it's a file, then we set the default kernel 433 * to that. Otherwise, just use this as the default root. 434 * 435 * Reminder: we're running very early, before we've parsed the defaults 436 * file, so we may need to have a hack override. 437 */ 438 dp = efi_devpath_last_node(last_dp); 439 if (DevicePathType(dp) != MEDIA_DEVICE_PATH || 440 DevicePathSubType(dp) != MEDIA_FILEPATH_DP) { 441 printf("Using Boot%04x for root partition\n", boot_current); 442 return (BOOT_INFO_OK); /* use currdir, default kernel */ 443 } 444 fp = (FILEPATH_DEVICE_PATH *)dp; 445 ucs2_to_utf8(fp->PathName, &kernel); 446 if (kernel == NULL) { 447 printf("Not using Boot%04x: can't decode kernel\n", boot_current); 448 return (BAD_CHOICE); 449 } 450 if (*kernel == '\\' || isupper(*kernel)) 451 fix_dosisms(kernel); 452 if (stat(kernel, &st) != 0) { 453 free(kernel); 454 printf("Not using Boot%04x: can't find %s\n", boot_current, 455 kernel); 456 return (BAD_CHOICE); 457 } 458 setenv("kernel", kernel, 1); 459 free(kernel); 460 text = efi_devpath_name(last_dp); 461 if (text) { 462 printf("Using Boot%04x %S + %s\n", boot_current, text, 463 kernel); 464 efi_free_devpath_name(text); 465 } 466 467 return (BOOT_INFO_OK); 468 } 469 470 /* 471 * Look at the passed-in boot_info, if any. If we find it then we need 472 * to see if we can find ourselves in the boot chain. If we can, and 473 * there's another specified thing to boot next, assume that the file 474 * is loaded from / and use that for the root filesystem. If can't 475 * find the specified thing, we must fail the boot. If we're last on 476 * the list, then we fallback to looking for the first available / 477 * candidate (ZFS, if there's a bootable zpool, otherwise a UFS 478 * partition that has either /boot/defaults/loader.conf on it or 479 * /boot/kernel/kernel (the default kernel) that we can use. 480 * 481 * We always fail if we can't find the right thing. However, as 482 * a concession to buggy UEFI implementations, like u-boot, if 483 * we have determined that the host is violating the UEFI boot 484 * manager protocol, we'll signal the rest of the program that 485 * a drop to the OK boot loader prompt is possible. 486 */ 487 static int 488 find_currdev(bool do_bootmgr, bool is_last, 489 char *boot_info, size_t boot_info_sz) 490 { 491 pdinfo_t *dp, *pp; 492 EFI_DEVICE_PATH *devpath, *copy; 493 EFI_HANDLE h; 494 CHAR16 *text; 495 struct devsw *dev; 496 int unit; 497 uint64_t extra; 498 int rv; 499 char *rootdev; 500 501 /* 502 * First choice: if rootdev is already set, use that, even if 503 * it's wrong. 504 */ 505 rootdev = getenv("rootdev"); 506 if (rootdev != NULL) { 507 printf(" Setting currdev to configured rootdev %s\n", 508 rootdev); 509 set_currdev(rootdev); 510 return (0); 511 } 512 513 /* 514 * Second choice: If uefi_rootdev is set, translate that UEFI device 515 * path to the loader's internal name and use that. 516 */ 517 do { 518 rootdev = getenv("uefi_rootdev"); 519 if (rootdev == NULL) 520 break; 521 devpath = efi_name_to_devpath(rootdev); 522 if (devpath == NULL) 523 break; 524 dp = efiblk_get_pdinfo_by_device_path(devpath); 525 efi_devpath_free(devpath); 526 if (dp == NULL) 527 break; 528 printf(" Setting currdev to UEFI path %s\n", 529 rootdev); 530 set_currdev_pdinfo(dp); 531 return (0); 532 } while (0); 533 534 /* 535 * Third choice: If we can find out image boot_info, and there's 536 * a follow-on boot image in that boot_info, use that. In this 537 * case root will be the partition specified in that image and 538 * we'll load the kernel specified by the file path. Should there 539 * not be a filepath, we use the default. This filepath overrides 540 * loader.conf. 541 */ 542 if (do_bootmgr) { 543 rv = match_boot_info(boot_info, boot_info_sz); 544 switch (rv) { 545 case BOOT_INFO_OK: /* We found it */ 546 return (0); 547 case BAD_CHOICE: /* specified file not found -> error */ 548 /* XXX do we want to have an escape hatch for last in boot order? */ 549 return (ENOENT); 550 } /* Nothing specified, try normal match */ 551 } 552 553 #ifdef EFI_ZFS_BOOT 554 /* 555 * Did efi_zfs_probe() detect the boot pool? If so, use the zpool 556 * it found, if it's sane. ZFS is the only thing that looks for 557 * disks and pools to boot. This may change in the future, however, 558 * if we allow specifying which pool to boot from via UEFI variables 559 * rather than the bootenv stuff that FreeBSD uses today. 560 */ 561 if (pool_guid != 0) { 562 printf("Trying ZFS pool\n"); 563 if (probe_zfs_currdev(pool_guid)) 564 return (0); 565 } 566 #endif /* EFI_ZFS_BOOT */ 567 568 /* 569 * Try to find the block device by its handle based on the 570 * image we're booting. If we can't find a sane partition, 571 * search all the other partitions of the disk. We do not 572 * search other disks because it's a violation of the UEFI 573 * boot protocol to do so. We fail and let UEFI go on to 574 * the next candidate. 575 */ 576 dp = efiblk_get_pdinfo_by_handle(boot_img->DeviceHandle); 577 if (dp != NULL) { 578 text = efi_devpath_name(dp->pd_devpath); 579 if (text != NULL) { 580 printf("Trying ESP: %S\n", text); 581 efi_free_devpath_name(text); 582 } 583 set_currdev_pdinfo(dp); 584 if (sanity_check_currdev()) 585 return (0); 586 if (dp->pd_parent != NULL) { 587 pdinfo_t *espdp = dp; 588 dp = dp->pd_parent; 589 STAILQ_FOREACH(pp, &dp->pd_part, pd_link) { 590 /* Already tried the ESP */ 591 if (espdp == pp) 592 continue; 593 /* 594 * Roll up the ZFS special case 595 * for those partitions that have 596 * zpools on them. 597 */ 598 text = efi_devpath_name(pp->pd_devpath); 599 if (text != NULL) { 600 printf("Trying: %S\n", text); 601 efi_free_devpath_name(text); 602 } 603 if (try_as_currdev(dp, pp)) 604 return (0); 605 } 606 } 607 } 608 609 /* 610 * Try the device handle from our loaded image first. If that 611 * fails, use the device path from the loaded image and see if 612 * any of the nodes in that path match one of the enumerated 613 * handles. Currently, this handle list is only for netboot. 614 */ 615 if (efi_handle_lookup(boot_img->DeviceHandle, &dev, &unit, &extra) == 0) { 616 set_currdev_devsw(dev, unit); 617 if (sanity_check_currdev()) 618 return (0); 619 } 620 621 copy = NULL; 622 devpath = efi_lookup_image_devpath(IH); 623 while (devpath != NULL) { 624 h = efi_devpath_handle(devpath); 625 if (h == NULL) 626 break; 627 628 free(copy); 629 copy = NULL; 630 631 if (efi_handle_lookup(h, &dev, &unit, &extra) == 0) { 632 set_currdev_devsw(dev, unit); 633 if (sanity_check_currdev()) 634 return (0); 635 } 636 637 devpath = efi_lookup_devpath(h); 638 if (devpath != NULL) { 639 copy = efi_devpath_trim(devpath); 640 devpath = copy; 641 } 642 } 643 free(copy); 644 645 return (ENOENT); 646 } 647 648 static bool 649 interactive_interrupt(const char *msg) 650 { 651 time_t now, then, last; 652 653 last = 0; 654 now = then = getsecs(); 655 printf("%s\n", msg); 656 if (fail_timeout == -2) /* Always break to OK */ 657 return (true); 658 if (fail_timeout == -1) /* Never break to OK */ 659 return (false); 660 do { 661 if (last != now) { 662 printf("press any key to interrupt reboot in %d seconds\r", 663 fail_timeout - (int)(now - then)); 664 last = now; 665 } 666 667 /* XXX no pause or timeout wait for char */ 668 if (ischar()) 669 return (true); 670 now = getsecs(); 671 } while (now - then < fail_timeout); 672 return (false); 673 } 674 675 static int 676 parse_args(int argc, CHAR16 *argv[]) 677 { 678 int i, j, howto; 679 bool vargood; 680 char var[128]; 681 682 /* 683 * Parse the args to set the console settings, etc 684 * boot1.efi passes these in, if it can read /boot.config or /boot/config 685 * or iPXE may be setup to pass these in. Or the optional argument in the 686 * boot environment was used to pass these arguments in (in which case 687 * neither /boot.config nor /boot/config are consulted). 688 * 689 * Loop through the args, and for each one that contains an '=' that is 690 * not the first character, add it to the environment. This allows 691 * loader and kernel env vars to be passed on the command line. Convert 692 * args from UCS-2 to ASCII (16 to 8 bit) as they are copied (though this 693 * method is flawed for non-ASCII characters). 694 */ 695 howto = 0; 696 for (i = 1; i < argc; i++) { 697 cpy16to8(argv[i], var, sizeof(var)); 698 howto |= boot_parse_arg(var); 699 } 700 701 return (howto); 702 } 703 704 static void 705 setenv_int(const char *key, int val) 706 { 707 char buf[20]; 708 709 snprintf(buf, sizeof(buf), "%d", val); 710 setenv(key, buf, 1); 711 } 712 713 /* 714 * Parse ConOut (the list of consoles active) and see if we can find a 715 * serial port and/or a video port. It would be nice to also walk the 716 * ACPI name space to map the UID for the serial port to a port. The 717 * latter is especially hard. 718 */ 719 int 720 parse_uefi_con_out(void) 721 { 722 int how, rv; 723 int vid_seen = 0, com_seen = 0, seen = 0; 724 size_t sz; 725 char buf[4096], *ep; 726 EFI_DEVICE_PATH *node; 727 ACPI_HID_DEVICE_PATH *acpi; 728 UART_DEVICE_PATH *uart; 729 bool pci_pending; 730 731 how = 0; 732 sz = sizeof(buf); 733 rv = efi_global_getenv("ConOut", buf, &sz); 734 if (rv != EFI_SUCCESS) { 735 /* If we don't have any ConOut default to serial */ 736 how = RB_SERIAL; 737 goto out; 738 } 739 ep = buf + sz; 740 node = (EFI_DEVICE_PATH *)buf; 741 while ((char *)node < ep) { 742 pci_pending = false; 743 if (DevicePathType(node) == ACPI_DEVICE_PATH && 744 (DevicePathSubType(node) == ACPI_DP || 745 DevicePathSubType(node) == ACPI_EXTENDED_DP)) { 746 /* Check for Serial node */ 747 acpi = (void *)node; 748 if (EISA_ID_TO_NUM(acpi->HID) == 0x501) { 749 setenv_int("efi_8250_uid", acpi->UID); 750 com_seen = ++seen; 751 } 752 } else if (DevicePathType(node) == MESSAGING_DEVICE_PATH && 753 DevicePathSubType(node) == MSG_UART_DP) { 754 com_seen = ++seen; 755 uart = (void *)node; 756 setenv_int("efi_com_speed", uart->BaudRate); 757 } else if (DevicePathType(node) == ACPI_DEVICE_PATH && 758 DevicePathSubType(node) == ACPI_ADR_DP) { 759 /* Check for AcpiAdr() Node for video */ 760 vid_seen = ++seen; 761 } else if (DevicePathType(node) == HARDWARE_DEVICE_PATH && 762 DevicePathSubType(node) == HW_PCI_DP) { 763 /* 764 * Note, vmware fusion has a funky console device 765 * PciRoot(0x0)/Pci(0xf,0x0) 766 * which we can only detect at the end since we also 767 * have to cope with: 768 * PciRoot(0x0)/Pci(0x1f,0x0)/Serial(0x1) 769 * so only match it if it's last. 770 */ 771 pci_pending = true; 772 } 773 node = NextDevicePathNode(node); 774 } 775 if (pci_pending && vid_seen == 0) 776 vid_seen = ++seen; 777 778 /* 779 * Truth table for RB_MULTIPLE | RB_SERIAL 780 * Value Result 781 * 0 Use only video console 782 * RB_SERIAL Use only serial console 783 * RB_MULTIPLE Use both video and serial console 784 * (but video is primary so gets rc messages) 785 * both Use both video and serial console 786 * (but serial is primary so gets rc messages) 787 * 788 * Try to honor this as best we can. If only one of serial / video 789 * found, then use that. Otherwise, use the first one we found. 790 * This also implies if we found nothing, default to video. 791 */ 792 how = 0; 793 if (vid_seen && com_seen) { 794 how |= RB_MULTIPLE; 795 if (com_seen < vid_seen) 796 how |= RB_SERIAL; 797 } else if (com_seen) 798 how |= RB_SERIAL; 799 out: 800 return (how); 801 } 802 803 void 804 parse_loader_efi_config(EFI_HANDLE h, const char *env_fn) 805 { 806 pdinfo_t *dp; 807 struct stat st; 808 int fd = -1; 809 char *env = NULL; 810 811 dp = efiblk_get_pdinfo_by_handle(h); 812 if (dp == NULL) 813 return; 814 set_currdev_pdinfo(dp); 815 if (stat(env_fn, &st) != 0) 816 return; 817 fd = open(env_fn, O_RDONLY); 818 if (fd == -1) 819 return; 820 env = malloc(st.st_size + 1); 821 if (env == NULL) 822 goto out; 823 if (read(fd, env, st.st_size) != st.st_size) 824 goto out; 825 env[st.st_size] = '\0'; 826 boot_parse_cmdline(env); 827 out: 828 free(env); 829 close(fd); 830 } 831 832 static void 833 read_loader_env(const char *name, char *def_fn, bool once) 834 { 835 UINTN len; 836 char *fn, *freeme = NULL; 837 838 len = 0; 839 fn = def_fn; 840 if (efi_freebsd_getenv(name, NULL, &len) == EFI_BUFFER_TOO_SMALL) { 841 freeme = fn = malloc(len + 1); 842 if (fn != NULL) { 843 if (efi_freebsd_getenv(name, fn, &len) != EFI_SUCCESS) { 844 free(fn); 845 fn = NULL; 846 printf( 847 "Can't fetch FreeBSD::%s we know is there\n", name); 848 } else { 849 /* 850 * if tagged as 'once' delete the env variable so we 851 * only use it once. 852 */ 853 if (once) 854 efi_freebsd_delenv(name); 855 /* 856 * We malloced 1 more than len above, then redid the call. 857 * so now we have room at the end of the string to NUL terminate 858 * it here, even if the typical idium would have '- 1' here to 859 * not overflow. len should be the same on return both times. 860 */ 861 fn[len] = '\0'; 862 } 863 } else { 864 printf( 865 "Can't allocate %d bytes to fetch FreeBSD::%s env var\n", 866 len, name); 867 } 868 } 869 if (fn) { 870 printf(" Reading loader env vars from %s\n", fn); 871 parse_loader_efi_config(boot_img->DeviceHandle, fn); 872 } 873 } 874 875 caddr_t 876 ptov(uintptr_t x) 877 { 878 return ((caddr_t)x); 879 } 880 881 EFI_STATUS 882 main(int argc, CHAR16 *argv[]) 883 { 884 EFI_GUID *guid; 885 int howto, i, uhowto; 886 UINTN k; 887 bool has_kbd, is_last; 888 char *s; 889 EFI_DEVICE_PATH *imgpath; 890 CHAR16 *text; 891 EFI_STATUS rv; 892 size_t sz, bosz = 0, bisz = 0; 893 UINT16 boot_order[100]; 894 char boot_info[4096]; 895 char buf[32]; 896 bool uefi_boot_mgr; 897 898 archsw.arch_autoload = efi_autoload; 899 archsw.arch_getdev = efi_getdev; 900 archsw.arch_copyin = efi_copyin; 901 archsw.arch_copyout = efi_copyout; 902 #ifdef __amd64__ 903 archsw.arch_hypervisor = x86_hypervisor; 904 #endif 905 archsw.arch_readin = efi_readin; 906 archsw.arch_zfs_probe = efi_zfs_probe; 907 908 /* Get our loaded image protocol interface structure. */ 909 (void) OpenProtocolByHandle(IH, &imgid, (void **)&boot_img); 910 911 /* 912 * Chicken-and-egg problem; we want to have console output early, but 913 * some console attributes may depend on reading from eg. the boot 914 * device, which we can't do yet. We can use printf() etc. once this is 915 * done. So, we set it to the efi console, then call console init. This 916 * gets us printf early, but also primes the pump for all future console 917 * changes to take effect, regardless of where they come from. 918 */ 919 setenv("console", "efi", 1); 920 uhowto = parse_uefi_con_out(); 921 #if defined(__aarch64__) || defined(__arm__) || defined(__riscv) 922 if ((uhowto & RB_SERIAL) != 0) 923 setenv("console", "comconsole", 1); 924 #endif 925 cons_probe(); 926 927 /* Init the time source */ 928 efi_time_init(); 929 930 /* 931 * Initialise the block cache. Set the upper limit. 932 */ 933 bcache_init(32768, 512); 934 935 /* 936 * Scan the BLOCK IO MEDIA handles then 937 * march through the device switch probing for things. 938 */ 939 i = efipart_inithandles(); 940 if (i != 0 && i != ENOENT) { 941 printf("efipart_inithandles failed with ERRNO %d, expect " 942 "failures\n", i); 943 } 944 945 for (i = 0; devsw[i] != NULL; i++) 946 if (devsw[i]->dv_init != NULL) 947 (devsw[i]->dv_init)(); 948 949 /* 950 * Detect console settings two different ways: one via the command 951 * args (eg -h) or via the UEFI ConOut variable. 952 */ 953 has_kbd = has_keyboard(); 954 howto = parse_args(argc, argv); 955 if (!has_kbd && (howto & RB_PROBE)) 956 howto |= RB_SERIAL | RB_MULTIPLE; 957 howto &= ~RB_PROBE; 958 959 /* 960 * Read additional environment variables from the boot device's 961 * "LoaderEnv" file. Any boot loader environment variable may be set 962 * there, which are subtly different than loader.conf variables. Only 963 * the 'simple' ones may be set so things like foo_load="YES" won't work 964 * for two reasons. First, the parser is simplistic and doesn't grok 965 * quotes. Second, because the variables that cause an action to happen 966 * are parsed by the lua, 4th or whatever code that's not yet 967 * loaded. This is relative to the root directory when loader.efi is 968 * loaded off the UFS root drive (when chain booted), or from the ESP 969 * when directly loaded by the BIOS. 970 * 971 * We also read in NextLoaderEnv if it was specified. This allows next boot 972 * functionality to be implemented and to override anything in LoaderEnv. 973 */ 974 read_loader_env("LoaderEnv", "/efi/freebsd/loader.env", false); 975 read_loader_env("NextLoaderEnv", NULL, true); 976 977 /* 978 * We now have two notions of console. howto should be viewed as 979 * overrides. If console is already set, don't set it again. 980 */ 981 #define VIDEO_ONLY 0 982 #define SERIAL_ONLY RB_SERIAL 983 #define VID_SER_BOTH RB_MULTIPLE 984 #define SER_VID_BOTH (RB_SERIAL | RB_MULTIPLE) 985 #define CON_MASK (RB_SERIAL | RB_MULTIPLE) 986 if (strcmp(getenv("console"), "efi") == 0) { 987 if ((howto & CON_MASK) == 0) { 988 /* No override, uhowto is controlling and efi cons is perfect */ 989 howto = howto | (uhowto & CON_MASK); 990 } else if ((howto & CON_MASK) == (uhowto & CON_MASK)) { 991 /* override matches what UEFI told us, efi console is perfect */ 992 } else if ((uhowto & (CON_MASK)) != 0) { 993 /* 994 * We detected a serial console on ConOut. All possible 995 * overrides include serial. We can't really override what efi 996 * gives us, so we use it knowing it's the best choice. 997 */ 998 /* Do nothing */ 999 } else { 1000 /* 1001 * We detected some kind of serial in the override, but ConOut 1002 * has no serial, so we have to sort out which case it really is. 1003 */ 1004 switch (howto & CON_MASK) { 1005 case SERIAL_ONLY: 1006 setenv("console", "comconsole", 1); 1007 break; 1008 case VID_SER_BOTH: 1009 setenv("console", "efi comconsole", 1); 1010 break; 1011 case SER_VID_BOTH: 1012 setenv("console", "comconsole efi", 1); 1013 break; 1014 /* case VIDEO_ONLY can't happen -- it's the first if above */ 1015 } 1016 } 1017 } 1018 1019 /* 1020 * howto is set now how we want to export the flags to the kernel, so 1021 * set the env based on it. 1022 */ 1023 boot_howto_to_env(howto); 1024 1025 if (efi_copy_init()) { 1026 printf("failed to allocate staging area\n"); 1027 return (EFI_BUFFER_TOO_SMALL); 1028 } 1029 1030 if ((s = getenv("fail_timeout")) != NULL) 1031 fail_timeout = strtol(s, NULL, 10); 1032 1033 printf("%s\n", bootprog_info); 1034 printf(" Command line arguments:"); 1035 for (i = 0; i < argc; i++) 1036 printf(" %S", argv[i]); 1037 printf("\n"); 1038 1039 printf(" Image base: 0x%lx\n", (unsigned long)boot_img->ImageBase); 1040 printf(" EFI version: %d.%02d\n", ST->Hdr.Revision >> 16, 1041 ST->Hdr.Revision & 0xffff); 1042 printf(" EFI Firmware: %S (rev %d.%02d)\n", ST->FirmwareVendor, 1043 ST->FirmwareRevision >> 16, ST->FirmwareRevision & 0xffff); 1044 printf(" Console: %s (%#x)\n", getenv("console"), howto); 1045 1046 /* Determine the devpath of our image so we can prefer it. */ 1047 text = efi_devpath_name(boot_img->FilePath); 1048 if (text != NULL) { 1049 printf(" Load Path: %S\n", text); 1050 efi_setenv_freebsd_wcs("LoaderPath", text); 1051 efi_free_devpath_name(text); 1052 } 1053 1054 rv = OpenProtocolByHandle(boot_img->DeviceHandle, &devid, 1055 (void **)&imgpath); 1056 if (rv == EFI_SUCCESS) { 1057 text = efi_devpath_name(imgpath); 1058 if (text != NULL) { 1059 printf(" Load Device: %S\n", text); 1060 efi_setenv_freebsd_wcs("LoaderDev", text); 1061 efi_free_devpath_name(text); 1062 } 1063 } 1064 1065 if (getenv("uefi_ignore_boot_mgr") != NULL) { 1066 printf(" Ignoring UEFI boot manager\n"); 1067 uefi_boot_mgr = false; 1068 } else { 1069 uefi_boot_mgr = true; 1070 boot_current = 0; 1071 sz = sizeof(boot_current); 1072 rv = efi_global_getenv("BootCurrent", &boot_current, &sz); 1073 if (rv == EFI_SUCCESS) 1074 printf(" BootCurrent: %04x\n", boot_current); 1075 else { 1076 boot_current = 0xffff; 1077 uefi_boot_mgr = false; 1078 } 1079 1080 sz = sizeof(boot_order); 1081 rv = efi_global_getenv("BootOrder", &boot_order, &sz); 1082 if (rv == EFI_SUCCESS) { 1083 printf(" BootOrder:"); 1084 for (i = 0; i < sz / sizeof(boot_order[0]); i++) 1085 printf(" %04x%s", boot_order[i], 1086 boot_order[i] == boot_current ? "[*]" : ""); 1087 printf("\n"); 1088 is_last = boot_order[(sz / sizeof(boot_order[0])) - 1] == boot_current; 1089 bosz = sz; 1090 } else if (uefi_boot_mgr) { 1091 /* 1092 * u-boot doesn't set BootOrder, but otherwise participates in the 1093 * boot manager protocol. So we fake it here and don't consider it 1094 * a failure. 1095 */ 1096 bosz = sizeof(boot_order[0]); 1097 boot_order[0] = boot_current; 1098 is_last = true; 1099 } 1100 } 1101 1102 /* 1103 * Next, find the boot info structure the UEFI boot manager is 1104 * supposed to setup. We need this so we can walk through it to 1105 * find where we are in the booting process and what to try to 1106 * boot next. 1107 */ 1108 if (uefi_boot_mgr) { 1109 snprintf(buf, sizeof(buf), "Boot%04X", boot_current); 1110 sz = sizeof(boot_info); 1111 rv = efi_global_getenv(buf, &boot_info, &sz); 1112 if (rv == EFI_SUCCESS) 1113 bisz = sz; 1114 else 1115 uefi_boot_mgr = false; 1116 } 1117 1118 /* 1119 * Disable the watchdog timer. By default the boot manager sets 1120 * the timer to 5 minutes before invoking a boot option. If we 1121 * want to return to the boot manager, we have to disable the 1122 * watchdog timer and since we're an interactive program, we don't 1123 * want to wait until the user types "quit". The timer may have 1124 * fired by then. We don't care if this fails. It does not prevent 1125 * normal functioning in any way... 1126 */ 1127 BS->SetWatchdogTimer(0, 0, 0, NULL); 1128 1129 /* 1130 * Initialize the trusted/forbidden certificates from UEFI. 1131 * They will be later used to verify the manifest(s), 1132 * which should contain hashes of verified files. 1133 * This needs to be initialized before any configuration files 1134 * are loaded. 1135 */ 1136 #ifdef EFI_SECUREBOOT 1137 ve_efi_init(); 1138 #endif 1139 1140 /* 1141 * Try and find a good currdev based on the image that was booted. 1142 * It might be desirable here to have a short pause to allow falling 1143 * through to the boot loader instead of returning instantly to follow 1144 * the boot protocol and also allow an escape hatch for users wishing 1145 * to try something different. 1146 */ 1147 if (find_currdev(uefi_boot_mgr, is_last, boot_info, bisz) != 0) 1148 if (uefi_boot_mgr && 1149 !interactive_interrupt("Failed to find bootable partition")) 1150 return (EFI_NOT_FOUND); 1151 1152 efi_init_environment(); 1153 1154 #if !defined(__arm__) 1155 for (k = 0; k < ST->NumberOfTableEntries; k++) { 1156 guid = &ST->ConfigurationTable[k].VendorGuid; 1157 if (!memcmp(guid, &smbios, sizeof(EFI_GUID))) { 1158 char buf[40]; 1159 1160 snprintf(buf, sizeof(buf), "%p", 1161 ST->ConfigurationTable[k].VendorTable); 1162 setenv("hint.smbios.0.mem", buf, 1); 1163 smbios_detect(ST->ConfigurationTable[k].VendorTable); 1164 break; 1165 } 1166 } 1167 #endif 1168 1169 interact(); /* doesn't return */ 1170 1171 return (EFI_SUCCESS); /* keep compiler happy */ 1172 } 1173 1174 COMMAND_SET(poweroff, "poweroff", "power off the system", command_poweroff); 1175 1176 static int 1177 command_poweroff(int argc __unused, char *argv[] __unused) 1178 { 1179 int i; 1180 1181 for (i = 0; devsw[i] != NULL; ++i) 1182 if (devsw[i]->dv_cleanup != NULL) 1183 (devsw[i]->dv_cleanup)(); 1184 1185 RS->ResetSystem(EfiResetShutdown, EFI_SUCCESS, 0, NULL); 1186 1187 /* NOTREACHED */ 1188 return (CMD_ERROR); 1189 } 1190 1191 COMMAND_SET(reboot, "reboot", "reboot the system", command_reboot); 1192 1193 static int 1194 command_reboot(int argc, char *argv[]) 1195 { 1196 int i; 1197 1198 for (i = 0; devsw[i] != NULL; ++i) 1199 if (devsw[i]->dv_cleanup != NULL) 1200 (devsw[i]->dv_cleanup)(); 1201 1202 RS->ResetSystem(EfiResetCold, EFI_SUCCESS, 0, NULL); 1203 1204 /* NOTREACHED */ 1205 return (CMD_ERROR); 1206 } 1207 1208 COMMAND_SET(quit, "quit", "exit the loader", command_quit); 1209 1210 static int 1211 command_quit(int argc, char *argv[]) 1212 { 1213 exit(0); 1214 return (CMD_OK); 1215 } 1216 1217 COMMAND_SET(memmap, "memmap", "print memory map", command_memmap); 1218 1219 static int 1220 command_memmap(int argc __unused, char *argv[] __unused) 1221 { 1222 UINTN sz; 1223 EFI_MEMORY_DESCRIPTOR *map, *p; 1224 UINTN key, dsz; 1225 UINT32 dver; 1226 EFI_STATUS status; 1227 int i, ndesc; 1228 char line[80]; 1229 1230 sz = 0; 1231 status = BS->GetMemoryMap(&sz, 0, &key, &dsz, &dver); 1232 if (status != EFI_BUFFER_TOO_SMALL) { 1233 printf("Can't determine memory map size\n"); 1234 return (CMD_ERROR); 1235 } 1236 map = malloc(sz); 1237 status = BS->GetMemoryMap(&sz, map, &key, &dsz, &dver); 1238 if (EFI_ERROR(status)) { 1239 printf("Can't read memory map\n"); 1240 return (CMD_ERROR); 1241 } 1242 1243 ndesc = sz / dsz; 1244 snprintf(line, sizeof(line), "%23s %12s %12s %8s %4s\n", 1245 "Type", "Physical", "Virtual", "#Pages", "Attr"); 1246 pager_open(); 1247 if (pager_output(line)) { 1248 pager_close(); 1249 return (CMD_OK); 1250 } 1251 1252 for (i = 0, p = map; i < ndesc; 1253 i++, p = NextMemoryDescriptor(p, dsz)) { 1254 snprintf(line, sizeof(line), "%23s %012jx %012jx %08jx ", 1255 efi_memory_type(p->Type), (uintmax_t)p->PhysicalStart, 1256 (uintmax_t)p->VirtualStart, (uintmax_t)p->NumberOfPages); 1257 if (pager_output(line)) 1258 break; 1259 1260 if (p->Attribute & EFI_MEMORY_UC) 1261 printf("UC "); 1262 if (p->Attribute & EFI_MEMORY_WC) 1263 printf("WC "); 1264 if (p->Attribute & EFI_MEMORY_WT) 1265 printf("WT "); 1266 if (p->Attribute & EFI_MEMORY_WB) 1267 printf("WB "); 1268 if (p->Attribute & EFI_MEMORY_UCE) 1269 printf("UCE "); 1270 if (p->Attribute & EFI_MEMORY_WP) 1271 printf("WP "); 1272 if (p->Attribute & EFI_MEMORY_RP) 1273 printf("RP "); 1274 if (p->Attribute & EFI_MEMORY_XP) 1275 printf("XP "); 1276 if (p->Attribute & EFI_MEMORY_NV) 1277 printf("NV "); 1278 if (p->Attribute & EFI_MEMORY_MORE_RELIABLE) 1279 printf("MR "); 1280 if (p->Attribute & EFI_MEMORY_RO) 1281 printf("RO "); 1282 if (pager_output("\n")) 1283 break; 1284 } 1285 1286 pager_close(); 1287 return (CMD_OK); 1288 } 1289 1290 COMMAND_SET(configuration, "configuration", "print configuration tables", 1291 command_configuration); 1292 1293 static int 1294 command_configuration(int argc, char *argv[]) 1295 { 1296 UINTN i; 1297 char *name; 1298 1299 printf("NumberOfTableEntries=%lu\n", 1300 (unsigned long)ST->NumberOfTableEntries); 1301 1302 for (i = 0; i < ST->NumberOfTableEntries; i++) { 1303 EFI_GUID *guid; 1304 1305 printf(" "); 1306 guid = &ST->ConfigurationTable[i].VendorGuid; 1307 1308 if (efi_guid_to_name(guid, &name) == true) { 1309 printf(name); 1310 free(name); 1311 } else { 1312 printf("Error while translating UUID to name"); 1313 } 1314 printf(" at %p\n", ST->ConfigurationTable[i].VendorTable); 1315 } 1316 1317 return (CMD_OK); 1318 } 1319 1320 1321 COMMAND_SET(mode, "mode", "change or display EFI text modes", command_mode); 1322 1323 static int 1324 command_mode(int argc, char *argv[]) 1325 { 1326 UINTN cols, rows; 1327 unsigned int mode; 1328 int i; 1329 char *cp; 1330 EFI_STATUS status; 1331 SIMPLE_TEXT_OUTPUT_INTERFACE *conout; 1332 1333 conout = ST->ConOut; 1334 1335 if (argc > 1) { 1336 mode = strtol(argv[1], &cp, 0); 1337 if (cp[0] != '\0') { 1338 printf("Invalid mode\n"); 1339 return (CMD_ERROR); 1340 } 1341 status = conout->QueryMode(conout, mode, &cols, &rows); 1342 if (EFI_ERROR(status)) { 1343 printf("invalid mode %d\n", mode); 1344 return (CMD_ERROR); 1345 } 1346 status = conout->SetMode(conout, mode); 1347 if (EFI_ERROR(status)) { 1348 printf("couldn't set mode %d\n", mode); 1349 return (CMD_ERROR); 1350 } 1351 (void) efi_cons_update_mode(); 1352 return (CMD_OK); 1353 } 1354 1355 printf("Current mode: %d\n", conout->Mode->Mode); 1356 for (i = 0; i <= conout->Mode->MaxMode; i++) { 1357 status = conout->QueryMode(conout, i, &cols, &rows); 1358 if (EFI_ERROR(status)) 1359 continue; 1360 printf("Mode %d: %u columns, %u rows\n", i, (unsigned)cols, 1361 (unsigned)rows); 1362 } 1363 1364 if (i != 0) 1365 printf("Select a mode with the command \"mode <number>\"\n"); 1366 1367 return (CMD_OK); 1368 } 1369 1370 COMMAND_SET(lsefi, "lsefi", "list EFI handles", command_lsefi); 1371 1372 static int 1373 command_lsefi(int argc __unused, char *argv[] __unused) 1374 { 1375 char *name; 1376 EFI_HANDLE *buffer = NULL; 1377 EFI_HANDLE handle; 1378 UINTN bufsz = 0, i, j; 1379 EFI_STATUS status; 1380 int ret = 0; 1381 1382 status = BS->LocateHandle(AllHandles, NULL, NULL, &bufsz, buffer); 1383 if (status != EFI_BUFFER_TOO_SMALL) { 1384 snprintf(command_errbuf, sizeof (command_errbuf), 1385 "unexpected error: %lld", (long long)status); 1386 return (CMD_ERROR); 1387 } 1388 if ((buffer = malloc(bufsz)) == NULL) { 1389 sprintf(command_errbuf, "out of memory"); 1390 return (CMD_ERROR); 1391 } 1392 1393 status = BS->LocateHandle(AllHandles, NULL, NULL, &bufsz, buffer); 1394 if (EFI_ERROR(status)) { 1395 free(buffer); 1396 snprintf(command_errbuf, sizeof (command_errbuf), 1397 "LocateHandle() error: %lld", (long long)status); 1398 return (CMD_ERROR); 1399 } 1400 1401 pager_open(); 1402 for (i = 0; i < (bufsz / sizeof (EFI_HANDLE)); i++) { 1403 UINTN nproto = 0; 1404 EFI_GUID **protocols = NULL; 1405 1406 handle = buffer[i]; 1407 printf("Handle %p", handle); 1408 if (pager_output("\n")) 1409 break; 1410 /* device path */ 1411 1412 status = BS->ProtocolsPerHandle(handle, &protocols, &nproto); 1413 if (EFI_ERROR(status)) { 1414 snprintf(command_errbuf, sizeof (command_errbuf), 1415 "ProtocolsPerHandle() error: %lld", 1416 (long long)status); 1417 continue; 1418 } 1419 1420 for (j = 0; j < nproto; j++) { 1421 if (efi_guid_to_name(protocols[j], &name) == true) { 1422 printf(" %s", name); 1423 free(name); 1424 } else { 1425 printf("Error while translating UUID to name"); 1426 } 1427 if ((ret = pager_output("\n")) != 0) 1428 break; 1429 } 1430 BS->FreePool(protocols); 1431 if (ret != 0) 1432 break; 1433 } 1434 pager_close(); 1435 free(buffer); 1436 return (CMD_OK); 1437 } 1438 1439 #ifdef LOADER_FDT_SUPPORT 1440 extern int command_fdt_internal(int argc, char *argv[]); 1441 1442 /* 1443 * Since proper fdt command handling function is defined in fdt_loader_cmd.c, 1444 * and declaring it as extern is in contradiction with COMMAND_SET() macro 1445 * (which uses static pointer), we're defining wrapper function, which 1446 * calls the proper fdt handling routine. 1447 */ 1448 static int 1449 command_fdt(int argc, char *argv[]) 1450 { 1451 1452 return (command_fdt_internal(argc, argv)); 1453 } 1454 1455 COMMAND_SET(fdt, "fdt", "flattened device tree handling", command_fdt); 1456 #endif 1457 1458 /* 1459 * Chain load another efi loader. 1460 */ 1461 static int 1462 command_chain(int argc, char *argv[]) 1463 { 1464 EFI_GUID LoadedImageGUID = LOADED_IMAGE_PROTOCOL; 1465 EFI_HANDLE loaderhandle; 1466 EFI_LOADED_IMAGE *loaded_image; 1467 EFI_STATUS status; 1468 struct stat st; 1469 struct devdesc *dev; 1470 char *name, *path; 1471 void *buf; 1472 int fd; 1473 1474 if (argc < 2) { 1475 command_errmsg = "wrong number of arguments"; 1476 return (CMD_ERROR); 1477 } 1478 1479 name = argv[1]; 1480 1481 if ((fd = open(name, O_RDONLY)) < 0) { 1482 command_errmsg = "no such file"; 1483 return (CMD_ERROR); 1484 } 1485 1486 #ifdef LOADER_VERIEXEC 1487 if (verify_file(fd, name, 0, VE_MUST, __func__) < 0) { 1488 sprintf(command_errbuf, "can't verify: %s", name); 1489 close(fd); 1490 return (CMD_ERROR); 1491 } 1492 #endif 1493 1494 if (fstat(fd, &st) < -1) { 1495 command_errmsg = "stat failed"; 1496 close(fd); 1497 return (CMD_ERROR); 1498 } 1499 1500 status = BS->AllocatePool(EfiLoaderCode, (UINTN)st.st_size, &buf); 1501 if (status != EFI_SUCCESS) { 1502 command_errmsg = "failed to allocate buffer"; 1503 close(fd); 1504 return (CMD_ERROR); 1505 } 1506 if (read(fd, buf, st.st_size) != st.st_size) { 1507 command_errmsg = "error while reading the file"; 1508 (void)BS->FreePool(buf); 1509 close(fd); 1510 return (CMD_ERROR); 1511 } 1512 close(fd); 1513 status = BS->LoadImage(FALSE, IH, NULL, buf, st.st_size, &loaderhandle); 1514 (void)BS->FreePool(buf); 1515 if (status != EFI_SUCCESS) { 1516 command_errmsg = "LoadImage failed"; 1517 return (CMD_ERROR); 1518 } 1519 status = OpenProtocolByHandle(loaderhandle, &LoadedImageGUID, 1520 (void **)&loaded_image); 1521 1522 if (argc > 2) { 1523 int i, len = 0; 1524 CHAR16 *argp; 1525 1526 for (i = 2; i < argc; i++) 1527 len += strlen(argv[i]) + 1; 1528 1529 len *= sizeof (*argp); 1530 loaded_image->LoadOptions = argp = malloc (len); 1531 loaded_image->LoadOptionsSize = len; 1532 for (i = 2; i < argc; i++) { 1533 char *ptr = argv[i]; 1534 while (*ptr) 1535 *(argp++) = *(ptr++); 1536 *(argp++) = ' '; 1537 } 1538 *(--argv) = 0; 1539 } 1540 1541 if (efi_getdev((void **)&dev, name, (const char **)&path) == 0) { 1542 #ifdef EFI_ZFS_BOOT 1543 struct zfs_devdesc *z_dev; 1544 #endif 1545 struct disk_devdesc *d_dev; 1546 pdinfo_t *hd, *pd; 1547 1548 switch (dev->d_dev->dv_type) { 1549 #ifdef EFI_ZFS_BOOT 1550 case DEVT_ZFS: 1551 z_dev = (struct zfs_devdesc *)dev; 1552 loaded_image->DeviceHandle = 1553 efizfs_get_handle_by_guid(z_dev->pool_guid); 1554 break; 1555 #endif 1556 case DEVT_NET: 1557 loaded_image->DeviceHandle = 1558 efi_find_handle(dev->d_dev, dev->d_unit); 1559 break; 1560 default: 1561 hd = efiblk_get_pdinfo(dev); 1562 if (STAILQ_EMPTY(&hd->pd_part)) { 1563 loaded_image->DeviceHandle = hd->pd_handle; 1564 break; 1565 } 1566 d_dev = (struct disk_devdesc *)dev; 1567 STAILQ_FOREACH(pd, &hd->pd_part, pd_link) { 1568 /* 1569 * d_partition should be 255 1570 */ 1571 if (pd->pd_unit == (uint32_t)d_dev->d_slice) { 1572 loaded_image->DeviceHandle = 1573 pd->pd_handle; 1574 break; 1575 } 1576 } 1577 break; 1578 } 1579 } 1580 1581 dev_cleanup(); 1582 status = BS->StartImage(loaderhandle, NULL, NULL); 1583 if (status != EFI_SUCCESS) { 1584 command_errmsg = "StartImage failed"; 1585 free(loaded_image->LoadOptions); 1586 loaded_image->LoadOptions = NULL; 1587 status = BS->UnloadImage(loaded_image); 1588 return (CMD_ERROR); 1589 } 1590 1591 return (CMD_ERROR); /* not reached */ 1592 } 1593 1594 COMMAND_SET(chain, "chain", "chain load file", command_chain); 1595