1 /*- 2 * Copyright (c) 2008-2010 Rui Paulo 3 * Copyright (c) 2006 Marcel Moolenaar 4 * All rights reserved. 5 * 6 * Copyright (c) 2016-2019 Netflix, Inc. written by M. Warner Losh 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 28 */ 29 30 #include <stand.h> 31 32 #include <sys/disk.h> 33 #include <sys/param.h> 34 #include <sys/reboot.h> 35 #include <sys/boot.h> 36 #ifdef EFI_ZFS_BOOT 37 #include <sys/zfs_bootenv.h> 38 #endif 39 #include <paths.h> 40 #include <netinet/in.h> 41 #include <netinet/in_systm.h> 42 #include <stdint.h> 43 #include <string.h> 44 #include <setjmp.h> 45 #include <disk.h> 46 #include <dev_net.h> 47 #include <net.h> 48 #include <machine/_inttypes.h> 49 50 #include <efi.h> 51 #include <efilib.h> 52 #include <efichar.h> 53 54 #include <Guid/DebugImageInfoTable.h> 55 #include <Guid/DxeServices.h> 56 #include <Guid/Mps.h> 57 #include <Guid/SmBios.h> 58 #include <Protocol/Rng.h> 59 #include <Protocol/SimpleNetwork.h> 60 #include <Protocol/SimpleTextIn.h> 61 62 #include <uuid.h> 63 64 #include <bootstrap.h> 65 #include <smbios.h> 66 67 #include <dev/random/fortuna.h> 68 #include <geom/eli/pkcs5v2.h> 69 70 #include "efizfs.h" 71 #include "framebuffer.h" 72 73 #include "platform/acfreebsd.h" 74 #include "acconfig.h" 75 #define ACPI_SYSTEM_XFACE 76 #include "actypes.h" 77 #include "actbl.h" 78 79 #include <acpi_detect.h> 80 81 #include "loader_efi.h" 82 83 struct arch_switch archsw = { /* MI/MD interface boundary */ 84 .arch_autoload = efi_autoload, 85 .arch_getdev = efi_getdev, 86 .arch_copyin = efi_copyin, 87 .arch_copyout = efi_copyout, 88 #if defined(__amd64__) || defined(__i386__) 89 .arch_hypervisor = x86_hypervisor, 90 #endif 91 .arch_readin = efi_readin, 92 .arch_zfs_probe = efi_zfs_probe, 93 }; 94 95 // XXX These are from ???? Maybe ACPI which needs to define them? 96 // XXX EDK2 doesn't (or didn't as of Feb 2025) 97 #define HOB_LIST_TABLE_GUID \ 98 { 0x7739f24c, 0x93d7, 0x11d4, {0x9a, 0x3a, 0x0, 0x90, 0x27, 0x3f, 0xc1, 0x4d} } 99 #define LZMA_DECOMPRESSION_GUID \ 100 { 0xee4e5898, 0x3914, 0x4259, {0x9d, 0x6e, 0xdc, 0x7b, 0xd7, 0x94, 0x3, 0xcf} } 101 #define ARM_MP_CORE_INFO_TABLE_GUID \ 102 { 0xa4ee0728, 0xe5d7, 0x4ac5, {0xb2, 0x1e, 0x65, 0x8e, 0xd8, 0x57, 0xe8, 0x34} } 103 #define ESRT_TABLE_GUID \ 104 { 0xb122a263, 0x3661, 0x4f68, {0x99, 0x29, 0x78, 0xf8, 0xb0, 0xd6, 0x21, 0x80} } 105 #define MEMORY_TYPE_INFORMATION_TABLE_GUID \ 106 { 0x4c19049f, 0x4137, 0x4dd3, {0x9c, 0x10, 0x8b, 0x97, 0xa8, 0x3f, 0xfd, 0xfa} } 107 #define FDT_TABLE_GUID \ 108 { 0xb1b621d5, 0xf19c, 0x41a5, {0x83, 0x0b, 0xd9, 0x15, 0x2c, 0x69, 0xaa, 0xe0} } 109 110 EFI_GUID devid = DEVICE_PATH_PROTOCOL; 111 EFI_GUID imgid = LOADED_IMAGE_PROTOCOL; 112 EFI_GUID mps = MPS_TABLE_GUID; 113 EFI_GUID netid = EFI_SIMPLE_NETWORK_PROTOCOL_GUID; 114 EFI_GUID smbios = SMBIOS_TABLE_GUID; 115 EFI_GUID smbios3 = SMBIOS3_TABLE_GUID; 116 EFI_GUID dxe = DXE_SERVICES_TABLE_GUID; 117 EFI_GUID hoblist = HOB_LIST_TABLE_GUID; 118 EFI_GUID lzmadecomp = LZMA_DECOMPRESSION_GUID; 119 EFI_GUID mpcore = ARM_MP_CORE_INFO_TABLE_GUID; 120 EFI_GUID esrt = ESRT_TABLE_GUID; 121 EFI_GUID memtype = MEMORY_TYPE_INFORMATION_TABLE_GUID; 122 EFI_GUID debugimg = EFI_DEBUG_IMAGE_INFO_TABLE_GUID; 123 EFI_GUID fdtdtb = FDT_TABLE_GUID; 124 EFI_GUID inputid = EFI_SIMPLE_TEXT_INPUT_PROTOCOL_GUID; 125 EFI_GUID rng_guid = EFI_RNG_PROTOCOL_GUID; 126 127 /* 128 * Number of seconds to wait for a keystroke before exiting with failure 129 * in the event no currdev is found. -2 means always break, -1 means 130 * never break, 0 means poll once and then reboot, > 0 means wait for 131 * that many seconds. "fail_timeout" can be set in the environment as 132 * well. 133 */ 134 static int fail_timeout = 5; 135 136 /* 137 * Current boot variable 138 */ 139 UINT16 boot_current; 140 141 /* 142 * Image that we booted from. 143 */ 144 EFI_LOADED_IMAGE *boot_img; 145 146 static bool 147 has_keyboard(void) 148 { 149 EFI_STATUS status; 150 EFI_DEVICE_PATH *path; 151 EFI_HANDLE *hin, *hin_end, *walker; 152 UINTN sz; 153 bool retval = false; 154 155 /* 156 * Find all the handles that support the SIMPLE_TEXT_INPUT_PROTOCOL and 157 * do the typical dance to get the right sized buffer. 158 */ 159 sz = 0; 160 hin = NULL; 161 status = BS->LocateHandle(ByProtocol, &inputid, 0, &sz, 0); 162 if (status == EFI_BUFFER_TOO_SMALL) { 163 hin = (EFI_HANDLE *)malloc(sz); 164 status = BS->LocateHandle(ByProtocol, &inputid, 0, &sz, 165 hin); 166 if (EFI_ERROR(status)) 167 free(hin); 168 } 169 if (EFI_ERROR(status)) 170 return retval; 171 172 /* 173 * Look at each of the handles. If it supports the device path protocol, 174 * use it to get the device path for this handle. Then see if that 175 * device path matches either the USB device path for keyboards or the 176 * legacy device path for keyboards. 177 */ 178 hin_end = &hin[sz / sizeof(*hin)]; 179 for (walker = hin; walker < hin_end; walker++) { 180 status = OpenProtocolByHandle(*walker, &devid, (void **)&path); 181 if (EFI_ERROR(status)) 182 continue; 183 184 while (!IsDevicePathEnd(path)) { 185 /* 186 * Check for the ACPI keyboard node. All PNP3xx nodes 187 * are keyboards of different flavors. Note: It is 188 * unclear of there's always a keyboard node when 189 * there's a keyboard controller, or if there's only one 190 * when a keyboard is detected at boot. 191 */ 192 if (DevicePathType(path) == ACPI_DEVICE_PATH && 193 (DevicePathSubType(path) == ACPI_DP || 194 DevicePathSubType(path) == ACPI_EXTENDED_DP)) { 195 ACPI_HID_DEVICE_PATH *acpi; 196 197 acpi = (ACPI_HID_DEVICE_PATH *)(void *)path; 198 if ((EISA_ID_TO_NUM(acpi->HID) & 0xff00) == 0x300 && 199 (acpi->HID & 0xffff) == PNP_EISA_ID_CONST) { 200 retval = true; 201 goto out; 202 } 203 /* 204 * Check for USB keyboard node, if present. Unlike a 205 * PS/2 keyboard, these definitely only appear when 206 * connected to the system. 207 */ 208 } else if (DevicePathType(path) == MESSAGING_DEVICE_PATH && 209 DevicePathSubType(path) == MSG_USB_CLASS_DP) { 210 USB_CLASS_DEVICE_PATH *usb; 211 212 usb = (USB_CLASS_DEVICE_PATH *)(void *)path; 213 if (usb->DeviceClass == 3 && /* HID */ 214 usb->DeviceSubClass == 1 && /* Boot devices */ 215 usb->DeviceProtocol == 1) { /* Boot keyboards */ 216 retval = true; 217 goto out; 218 } 219 } 220 path = NextDevicePathNode(path); 221 } 222 } 223 out: 224 free(hin); 225 return retval; 226 } 227 228 static void 229 set_currdev_devdesc(struct devdesc *currdev) 230 { 231 const char *devname; 232 233 devname = devformat(currdev); 234 printf("Setting currdev to %s\n", devname); 235 set_currdev(devname); 236 } 237 238 static void 239 set_currdev_devsw(struct devsw *dev, int unit) 240 { 241 struct devdesc currdev; 242 243 currdev.d_dev = dev; 244 currdev.d_unit = unit; 245 246 set_currdev_devdesc(&currdev); 247 } 248 249 static void 250 set_currdev_pdinfo(pdinfo_t *dp) 251 { 252 253 /* 254 * Disks are special: they have partitions. if the parent 255 * pointer is non-null, we're a partition not a full disk 256 * and we need to adjust currdev appropriately. 257 */ 258 if (dp->pd_devsw->dv_type == DEVT_DISK) { 259 struct disk_devdesc currdev; 260 261 currdev.dd.d_dev = dp->pd_devsw; 262 if (dp->pd_parent == NULL) { 263 currdev.dd.d_unit = dp->pd_unit; 264 currdev.d_slice = D_SLICENONE; 265 currdev.d_partition = D_PARTNONE; 266 } else { 267 currdev.dd.d_unit = dp->pd_parent->pd_unit; 268 currdev.d_slice = dp->pd_unit; 269 currdev.d_partition = D_PARTISGPT; /* XXX Assumes GPT */ 270 } 271 set_currdev_devdesc((struct devdesc *)&currdev); 272 } else { 273 set_currdev_devsw(dp->pd_devsw, dp->pd_unit); 274 } 275 } 276 277 static bool 278 sanity_check_currdev(void) 279 { 280 struct stat st; 281 282 return (stat(PATH_DEFAULTS_LOADER_CONF, &st) == 0 || 283 #ifdef PATH_BOOTABLE_TOKEN 284 stat(PATH_BOOTABLE_TOKEN, &st) == 0 || /* non-standard layout */ 285 #endif 286 stat(PATH_KERNEL, &st) == 0); 287 } 288 289 #ifdef EFI_ZFS_BOOT 290 static bool 291 probe_zfs_currdev(uint64_t guid) 292 { 293 char buf[VDEV_PAD_SIZE]; 294 char *devname; 295 struct zfs_devdesc currdev; 296 297 currdev.dd.d_dev = &zfs_dev; 298 currdev.dd.d_unit = 0; 299 currdev.pool_guid = guid; 300 currdev.root_guid = 0; 301 devname = devformat(&currdev.dd); 302 set_currdev(devname); 303 printf("Setting currdev to %s\n", devname); 304 init_zfs_boot_options(devname); 305 306 if (zfs_get_bootonce(&currdev, OS_BOOTONCE, buf, sizeof(buf)) == 0) { 307 printf("zfs bootonce: %s\n", buf); 308 set_currdev(buf); 309 setenv("zfs-bootonce", buf, 1); 310 } 311 (void)zfs_attach_nvstore(&currdev); 312 313 return (sanity_check_currdev()); 314 } 315 #endif 316 317 #ifdef MD_IMAGE_SIZE 318 extern struct devsw md_dev; 319 320 static bool 321 probe_md_currdev(void) 322 { 323 bool rv; 324 325 set_currdev_devsw(&md_dev, 0); 326 rv = sanity_check_currdev(); 327 if (!rv) 328 printf("MD not present\n"); 329 return (rv); 330 } 331 #endif 332 333 static bool 334 try_as_currdev(pdinfo_t *hd, pdinfo_t *pp) 335 { 336 #ifdef EFI_ZFS_BOOT 337 uint64_t guid; 338 339 /* 340 * If there's a zpool on this device, try it as a ZFS 341 * filesystem, which has somewhat different setup than all 342 * other types of fs due to imperfect loader integration. 343 * This all stems from ZFS being both a device (zpool) and 344 * a filesystem, plus the boot env feature. 345 */ 346 if (efizfs_get_guid_by_handle(pp->pd_handle, &guid)) 347 return (probe_zfs_currdev(guid)); 348 #endif 349 /* 350 * All other filesystems just need the pdinfo 351 * initialized in the standard way. 352 */ 353 set_currdev_pdinfo(pp); 354 return (sanity_check_currdev()); 355 } 356 357 /* 358 * Sometimes we get filenames that are all upper case 359 * and/or have backslashes in them. Filter all this out 360 * if it looks like we need to do so. 361 */ 362 static void 363 fix_dosisms(char *p) 364 { 365 while (*p) { 366 if (isupper(*p)) 367 *p = tolower(*p); 368 else if (*p == '\\') 369 *p = '/'; 370 p++; 371 } 372 } 373 374 #define SIZE(dp, edp) (size_t)((intptr_t)(void *)edp - (intptr_t)(void *)dp) 375 376 enum { BOOT_INFO_OK = 0, BAD_CHOICE = 1, NOT_SPECIFIC = 2 }; 377 static int 378 match_boot_info(char *boot_info, size_t bisz) 379 { 380 uint32_t attr; 381 uint16_t fplen; 382 size_t len; 383 char *walker, *ep; 384 EFI_DEVICE_PATH *dp, *edp, *first_dp, *last_dp; 385 pdinfo_t *pp; 386 CHAR16 *descr; 387 char *kernel = NULL; 388 FILEPATH_DEVICE_PATH *fp; 389 struct stat st; 390 CHAR16 *text; 391 392 /* 393 * FreeBSD encodes its boot loading path into the boot loader 394 * BootXXXX variable. We look for the last one in the path 395 * and use that to load the kernel. However, if we only find 396 * one DEVICE_PATH, then there's nothing specific and we should 397 * fall back. 398 * 399 * In an ideal world, we'd look at the image handle we were 400 * passed, match up with the loader we are and then return the 401 * next one in the path. This would be most flexible and cover 402 * many chain booting scenarios where you need to use this 403 * boot loader to get to the next boot loader. However, that 404 * doesn't work. We rarely have the path to the image booted 405 * (just the device) so we can't count on that. So, we do the 406 * next best thing: we look through the device path(s) passed 407 * in the BootXXXX variable. If there's only one, we return 408 * NOT_SPECIFIC. Otherwise, we look at the last one and try to 409 * load that. If we can, we return BOOT_INFO_OK. Otherwise we 410 * return BAD_CHOICE for the caller to sort out. 411 */ 412 if (bisz < sizeof(attr) + sizeof(fplen) + sizeof(CHAR16)) 413 return NOT_SPECIFIC; 414 walker = boot_info; 415 ep = walker + bisz; 416 memcpy(&attr, walker, sizeof(attr)); 417 walker += sizeof(attr); 418 memcpy(&fplen, walker, sizeof(fplen)); 419 walker += sizeof(fplen); 420 descr = (CHAR16 *)(intptr_t)walker; 421 len = ucs2len(descr); 422 walker += (len + 1) * sizeof(CHAR16); 423 last_dp = first_dp = dp = (EFI_DEVICE_PATH *)walker; 424 edp = (EFI_DEVICE_PATH *)(walker + fplen); 425 if ((char *)edp > ep) 426 return NOT_SPECIFIC; 427 while (dp < edp && SIZE(dp, edp) > sizeof(EFI_DEVICE_PATH)) { 428 text = efi_devpath_name(dp); 429 if (text != NULL) { 430 printf(" BootInfo Path: %S\n", text); 431 efi_free_devpath_name(text); 432 } 433 last_dp = dp; 434 dp = (EFI_DEVICE_PATH *)((char *)dp + efi_devpath_length(dp)); 435 } 436 437 /* 438 * If there's only one item in the list, then nothing was 439 * specified. Or if the last path doesn't have a media 440 * path in it. Those show up as various VenHw() nodes 441 * which are basically opaque to us. Don't count those 442 * as something specifc. 443 */ 444 if (last_dp == first_dp) { 445 printf("Ignoring Boot%04x: Only one DP found\n", boot_current); 446 return NOT_SPECIFIC; 447 } 448 if (efi_devpath_to_media_path(last_dp) == NULL) { 449 printf("Ignoring Boot%04x: No Media Path\n", boot_current); 450 return NOT_SPECIFIC; 451 } 452 453 /* 454 * OK. At this point we either have a good path or a bad one. 455 * Let's check. 456 */ 457 pp = efiblk_get_pdinfo_by_device_path(last_dp); 458 if (pp == NULL) { 459 printf("Ignoring Boot%04x: Device Path not found\n", boot_current); 460 return BAD_CHOICE; 461 } 462 set_currdev_pdinfo(pp); 463 if (!sanity_check_currdev()) { 464 printf("Ignoring Boot%04x: sanity check failed\n", boot_current); 465 return BAD_CHOICE; 466 } 467 468 /* 469 * OK. We've found a device that matches, next we need to check the last 470 * component of the path. If it's a file, then we set the default kernel 471 * to that. Otherwise, just use this as the default root. 472 * 473 * Reminder: we're running very early, before we've parsed the defaults 474 * file, so we may need to have a hack override. 475 */ 476 dp = efi_devpath_last_node(last_dp); 477 if (DevicePathType(dp) != MEDIA_DEVICE_PATH || 478 DevicePathSubType(dp) != MEDIA_FILEPATH_DP) { 479 printf("Using Boot%04x for root partition\n", boot_current); 480 return (BOOT_INFO_OK); /* use currdir, default kernel */ 481 } 482 fp = (FILEPATH_DEVICE_PATH *)dp; 483 ucs2_to_utf8(fp->PathName, &kernel); 484 if (kernel == NULL) { 485 printf("Not using Boot%04x: can't decode kernel\n", boot_current); 486 return (BAD_CHOICE); 487 } 488 if (*kernel == '\\' || isupper(*kernel)) 489 fix_dosisms(kernel); 490 if (stat(kernel, &st) != 0) { 491 free(kernel); 492 printf("Not using Boot%04x: can't find %s\n", boot_current, 493 kernel); 494 return (BAD_CHOICE); 495 } 496 setenv("kernel", kernel, 1); 497 free(kernel); 498 text = efi_devpath_name(last_dp); 499 if (text) { 500 printf("Using Boot%04x %S + %s\n", boot_current, text, 501 kernel); 502 efi_free_devpath_name(text); 503 } 504 505 return (BOOT_INFO_OK); 506 } 507 508 /* 509 * Look at the passed-in boot_info, if any. If we find it then we need 510 * to see if we can find ourselves in the boot chain. If we can, and 511 * there's another specified thing to boot next, assume that the file 512 * is loaded from / and use that for the root filesystem. If can't 513 * find the specified thing, we must fail the boot. If we're last on 514 * the list, then we fallback to looking for the first available / 515 * candidate (ZFS, if there's a bootable zpool, otherwise a UFS 516 * partition that has either /boot/defaults/loader.conf on it or 517 * /boot/kernel/kernel (the default kernel) that we can use. 518 * 519 * We always fail if we can't find the right thing. However, as 520 * a concession to buggy UEFI implementations, like u-boot, if 521 * we have determined that the host is violating the UEFI boot 522 * manager protocol, we'll signal the rest of the program that 523 * a drop to the OK boot loader prompt is possible. 524 */ 525 static int 526 find_currdev(bool do_bootmgr, char *boot_info, size_t boot_info_sz) 527 { 528 pdinfo_t *dp, *pp; 529 EFI_DEVICE_PATH *devpath, *copy; 530 EFI_HANDLE h; 531 CHAR16 *text; 532 struct devsw *dev; 533 int unit; 534 uint64_t extra; 535 int rv; 536 char *rootdev; 537 538 /* 539 * First choice: if rootdev is already set, use that, even if 540 * it's wrong. 541 */ 542 rootdev = getenv("rootdev"); 543 if (rootdev != NULL && *rootdev != '\0') { 544 printf(" Setting currdev to configured rootdev %s\n", 545 rootdev); 546 set_currdev(rootdev); 547 return (0); 548 } 549 550 /* 551 * Second choice: If uefi_rootdev is set, translate that UEFI device 552 * path to the loader's internal name and use that. 553 */ 554 do { 555 rootdev = getenv("uefi_rootdev"); 556 if (rootdev == NULL) 557 break; 558 devpath = efi_name_to_devpath(rootdev); 559 if (devpath == NULL) 560 break; 561 dp = efiblk_get_pdinfo_by_device_path(devpath); 562 efi_devpath_free(devpath); 563 if (dp == NULL) 564 break; 565 printf(" Setting currdev to UEFI path %s\n", 566 rootdev); 567 set_currdev_pdinfo(dp); 568 return (0); 569 } while (0); 570 571 /* 572 * Third choice: If we can find out image boot_info, and there's 573 * a follow-on boot image in that boot_info, use that. In this 574 * case root will be the partition specified in that image and 575 * we'll load the kernel specified by the file path. Should there 576 * not be a filepath, we use the default. This filepath overrides 577 * loader.conf. 578 */ 579 if (do_bootmgr) { 580 rv = match_boot_info(boot_info, boot_info_sz); 581 switch (rv) { 582 case BOOT_INFO_OK: /* We found it */ 583 return (0); 584 case BAD_CHOICE: /* specified file not found -> error */ 585 /* XXX do we want to have an escape hatch for last in boot order? */ 586 return (ENOENT); 587 } /* Nothing specified, try normal match */ 588 } 589 590 #ifdef EFI_ZFS_BOOT 591 /* 592 * Did efi_zfs_probe() detect the boot pool? If so, use the zpool 593 * it found, if it's sane. ZFS is the only thing that looks for 594 * disks and pools to boot. This may change in the future, however, 595 * if we allow specifying which pool to boot from via UEFI variables 596 * rather than the bootenv stuff that FreeBSD uses today. 597 */ 598 if (pool_guid != 0) { 599 printf("Trying ZFS pool\n"); 600 if (probe_zfs_currdev(pool_guid)) 601 return (0); 602 } 603 #endif /* EFI_ZFS_BOOT */ 604 605 #ifdef MD_IMAGE_SIZE 606 /* 607 * If there is an embedded MD, try to use that. 608 */ 609 printf("Trying MD\n"); 610 if (probe_md_currdev()) 611 return (0); 612 #endif /* MD_IMAGE_SIZE */ 613 614 /* 615 * Try to find the block device by its handle based on the 616 * image we're booting. If we can't find a sane partition, 617 * search all the other partitions of the disk. We do not 618 * search other disks because it's a violation of the UEFI 619 * boot protocol to do so. We fail and let UEFI go on to 620 * the next candidate. 621 */ 622 dp = efiblk_get_pdinfo_by_handle(boot_img->DeviceHandle); 623 if (dp != NULL) { 624 text = efi_devpath_name(dp->pd_devpath); 625 if (text != NULL) { 626 printf("Trying ESP: %S\n", text); 627 efi_free_devpath_name(text); 628 } 629 set_currdev_pdinfo(dp); 630 if (sanity_check_currdev()) 631 return (0); 632 if (dp->pd_parent != NULL) { 633 pdinfo_t *espdp = dp; 634 dp = dp->pd_parent; 635 STAILQ_FOREACH(pp, &dp->pd_part, pd_link) { 636 /* Already tried the ESP */ 637 if (espdp == pp) 638 continue; 639 /* 640 * Roll up the ZFS special case 641 * for those partitions that have 642 * zpools on them. 643 */ 644 text = efi_devpath_name(pp->pd_devpath); 645 if (text != NULL) { 646 printf("Trying: %S\n", text); 647 efi_free_devpath_name(text); 648 } 649 if (try_as_currdev(dp, pp)) 650 return (0); 651 } 652 } 653 } 654 655 /* 656 * Try the device handle from our loaded image first. If that 657 * fails, use the device path from the loaded image and see if 658 * any of the nodes in that path match one of the enumerated 659 * handles. Currently, this handle list is only for netboot. 660 */ 661 if (efi_handle_lookup(boot_img->DeviceHandle, &dev, &unit, &extra) == 0) { 662 set_currdev_devsw(dev, unit); 663 if (sanity_check_currdev()) 664 return (0); 665 } 666 667 copy = NULL; 668 devpath = efi_lookup_image_devpath(IH); 669 while (devpath != NULL) { 670 h = efi_devpath_handle(devpath); 671 if (h == NULL) 672 break; 673 674 free(copy); 675 copy = NULL; 676 677 if (efi_handle_lookup(h, &dev, &unit, &extra) == 0) { 678 set_currdev_devsw(dev, unit); 679 if (sanity_check_currdev()) 680 return (0); 681 } 682 683 devpath = efi_lookup_devpath(h); 684 if (devpath != NULL) { 685 copy = efi_devpath_trim(devpath); 686 devpath = copy; 687 } 688 } 689 free(copy); 690 691 return (ENOENT); 692 } 693 694 static bool 695 interactive_interrupt(const char *msg) 696 { 697 time_t now, then, last; 698 699 last = 0; 700 now = then = getsecs(); 701 printf("%s\n", msg); 702 if (fail_timeout == -2) /* Always break to OK */ 703 return (true); 704 if (fail_timeout == -1) /* Never break to OK */ 705 return (false); 706 do { 707 if (last != now) { 708 printf("press any key to interrupt reboot in %d seconds\r", 709 fail_timeout - (int)(now - then)); 710 last = now; 711 } 712 713 /* XXX no pause or timeout wait for char */ 714 if (ischar()) 715 return (true); 716 now = getsecs(); 717 } while (now - then < fail_timeout); 718 return (false); 719 } 720 721 static int 722 parse_args(int argc, CHAR16 *argv[]) 723 { 724 int i, howto; 725 char var[128]; 726 727 /* 728 * Parse the args to set the console settings, etc 729 * boot1.efi passes these in, if it can read /boot.config or /boot/config 730 * or iPXE may be setup to pass these in. Or the optional argument in the 731 * boot environment was used to pass these arguments in (in which case 732 * neither /boot.config nor /boot/config are consulted). 733 * 734 * Loop through the args, and for each one that contains an '=' that is 735 * not the first character, add it to the environment. This allows 736 * loader and kernel env vars to be passed on the command line. Convert 737 * args from UCS-2 to ASCII (16 to 8 bit) as they are copied (though this 738 * method is flawed for non-ASCII characters). 739 */ 740 howto = 0; 741 for (i = 0; i < argc; i++) { 742 cpy16to8(argv[i], var, sizeof(var)); 743 howto |= boot_parse_arg(var); 744 } 745 746 return (howto); 747 } 748 749 static void 750 setenv_int(const char *key, int val) 751 { 752 char buf[20]; 753 754 snprintf(buf, sizeof(buf), "%d", val); 755 setenv(key, buf, 1); 756 } 757 758 static void * 759 acpi_map_sdt(vm_offset_t addr) 760 { 761 /* PA == VA */ 762 return ((void *)addr); 763 } 764 765 static int 766 acpi_checksum(void *p, size_t length) 767 { 768 uint8_t *bp; 769 uint8_t sum; 770 771 bp = p; 772 sum = 0; 773 while (length--) 774 sum += *bp++; 775 776 return (sum); 777 } 778 779 static void * 780 acpi_find_table(uint8_t *sig) 781 { 782 int entries, i, addr_size; 783 ACPI_TABLE_HEADER *sdp; 784 ACPI_TABLE_RSDT *rsdt; 785 ACPI_TABLE_XSDT *xsdt; 786 vm_offset_t addr; 787 788 if (rsdp == NULL) 789 return (NULL); 790 791 rsdt = (ACPI_TABLE_RSDT *)(uintptr_t)rsdp->RsdtPhysicalAddress; 792 xsdt = (ACPI_TABLE_XSDT *)(uintptr_t)rsdp->XsdtPhysicalAddress; 793 if (rsdp->Revision < 2) { 794 sdp = (ACPI_TABLE_HEADER *)rsdt; 795 addr_size = sizeof(uint32_t); 796 } else { 797 sdp = (ACPI_TABLE_HEADER *)xsdt; 798 addr_size = sizeof(uint64_t); 799 } 800 entries = (sdp->Length - sizeof(ACPI_TABLE_HEADER)) / addr_size; 801 for (i = 0; i < entries; i++) { 802 if (addr_size == 4) 803 addr = le32toh(rsdt->TableOffsetEntry[i]); 804 else 805 addr = le64toh(xsdt->TableOffsetEntry[i]); 806 if (addr == 0) 807 continue; 808 sdp = (ACPI_TABLE_HEADER *)acpi_map_sdt(addr); 809 if (acpi_checksum(sdp, sdp->Length)) { 810 printf("RSDT entry %d (sig %.4s) is corrupt", i, 811 sdp->Signature); 812 continue; 813 } 814 if (memcmp(sig, sdp->Signature, 4) == 0) 815 return (sdp); 816 } 817 return (NULL); 818 } 819 820 /* 821 * Convert the InterfaceType in the SPCR. These are encoded the same for DBG2 822 * tables as well (though we don't parse those here). 823 */ 824 static const char * 825 acpi_uart_type(UINT8 t) 826 { 827 static const char *types[] = { 828 [0x00] = "ns8250", /* Full 16550 */ 829 [0x01] = "ns8250", /* DBGP Rev 1 16550 subset */ 830 [0x03] = "pl011", /* Arm PL011 */ 831 [0x05] = "ns8250", /* Nvidia 16550 */ 832 [0x0d] = "pl011", /* Arm SBSA 32-bit width */ 833 [0x0e] = "pl011", /* Arm SBSA generic */ 834 [0x12] = "ns8250", /* 16550 defined in SerialPort */ 835 }; 836 837 if (t >= nitems(types)) 838 return (NULL); 839 return (types[t]); 840 } 841 842 static int 843 acpi_uart_baud(UINT8 b) 844 { 845 static int baud[] = { 0, -1, -1, 9600, 19200, -1, 57600, 115200 }; 846 847 if (b > 7) 848 return (-1); 849 return (baud[b]); 850 } 851 852 static int 853 acpi_uart_regionwidth(UINT8 rw) 854 { 855 if (rw == 0) 856 return (1); 857 if (rw > 4) 858 return (-1); 859 return (1 << (rw - 1)); 860 } 861 862 static const char * 863 acpi_uart_parity(UINT8 p) 864 { 865 /* Some of these SPCR entires get this wrong, hard wire none */ 866 return ("none"); 867 } 868 869 /* 870 * See if we can find a SPCR ACPI table in the static tables. If so, then it 871 * describes the serial console that's been redirected to, so we know that at 872 * least there's a serial console. this is most important for embedded systems 873 * that don't have traidtional PC serial ports. 874 * 875 * All the two letter variables in this function correspond to their usage in 876 * the uart(4) console string. We use io == -1 to select between I/O ports and 877 * memory mapped addresses. Set both hw.uart.console and hw.uart.consol.extra 878 * to communicate settings from SPCR to the kernel. 879 */ 880 static int 881 check_acpi_spcr(void) 882 { 883 ACPI_TABLE_SPCR *spcr; 884 int br, db, io, rs, rw, xo, pv, pd; 885 uintmax_t mm; 886 const char *dt, *pa; 887 char *val = NULL; 888 889 spcr = acpi_find_table(ACPI_SIG_SPCR); 890 if (spcr == NULL) 891 return (0); 892 dt = acpi_uart_type(spcr->InterfaceType); 893 if (dt == NULL) { /* Kernel can't use unknown types */ 894 printf("UART Type %d not known\n", spcr->InterfaceType); 895 return (0); 896 } 897 898 /* I/O vs Memory mapped vs PCI device */ 899 io = -1; 900 pv = spcr->PciVendorId; 901 pd = spcr->PciDeviceId; 902 if (pv == 0xffff && pd == 0xffff) { 903 if (spcr->SerialPort.SpaceId == 1) 904 io = spcr->SerialPort.Address; 905 else { 906 mm = spcr->SerialPort.Address; 907 rs = ffs(spcr->SerialPort.BitWidth) - 4; 908 rw = acpi_uart_regionwidth(spcr->SerialPort.AccessWidth); 909 } 910 } else { 911 /* XXX todo: bus:device:function + flags and segment */ 912 } 913 914 /* Uart settings */ 915 pa = acpi_uart_parity(spcr->Parity); 916 db = 8; 917 918 /* 919 * UartClkFreq is 3 and newer. We always use it then (it's only valid if 920 * it isn't 0, but if it is 0, we want to use 0 to have the kernel 921 * guess). 922 */ 923 if (spcr->Header.Revision <= 2) 924 xo = 0; 925 else 926 xo = spcr->UartClkFreq; 927 928 /* 929 * PreciseBaudrate, when non-zero, is to be preferred. It's only valid, 930 * though, for rev 4 and newer. So when it's 0 or the version is too 931 * old, we do the old-style table lookup. Otherwise we believe it. 932 */ 933 if (spcr->Header.Revision <= 3 || spcr->PreciseBaudrate == 0) 934 br = acpi_uart_baud(spcr->BaudRate); 935 else 936 br = spcr->PreciseBaudrate; 937 938 if (io != -1) { 939 asprintf(&val, "db:%d,dt:%s,io:%#x,pa:%s,br:%d,xo=%d", 940 db, dt, io, pa, br, xo); 941 } else if (pv != 0xffff && pd != 0xffff) { 942 asprintf(&val, "db:%d,dt:%s,pv:%#x,pd:%#x,pa:%s,br:%d,xo=%d", 943 db, dt, pv, pd, pa, br, xo); 944 } else { 945 asprintf(&val, "db:%d,dt:%s,mm:%#jx,rs:%d,rw:%d,pa:%s,br:%d,xo=%d", 946 db, dt, mm, rs, rw, pa, br, xo); 947 } 948 env_setenv("hw.uart.console", EV_VOLATILE, val, NULL, NULL); 949 free(val); 950 951 return (RB_SERIAL); 952 } 953 954 955 /* 956 * Parse ConOut (the list of consoles active) and see if we can find a serial 957 * port and/or a video port. It would be nice to also walk the ACPI DSDT to map 958 * the UID for the serial port to a port since there's no standard mapping. Also 959 * check for ConIn as well. This will be enough to determine if we have serial, 960 * and if we don't, we default to video. If there's a dual-console situation 961 * with only ConIn defined, this will currently fail. 962 */ 963 int 964 parse_uefi_con_out(void) 965 { 966 int how, rv; 967 int vid_seen = 0, com_seen = 0, seen = 0; 968 size_t sz; 969 char buf[4096], *ep; 970 EFI_DEVICE_PATH *node; 971 ACPI_HID_DEVICE_PATH *acpi; 972 UART_DEVICE_PATH *uart; 973 bool pci_pending; 974 975 /* 976 * A SPCR in the ACPI fixed tables documents a serial port used for the 977 * console. It may mirror a video console, or may be stand alone. If it 978 * is present, we return RB_SERIAL and will use it for the kernel. 979 */ 980 how = check_acpi_spcr(); 981 sz = sizeof(buf); 982 rv = efi_global_getenv("ConOut", buf, &sz); 983 if (rv != EFI_SUCCESS) 984 rv = efi_global_getenv("ConOutDev", buf, &sz); 985 if (rv != EFI_SUCCESS) 986 rv = efi_global_getenv("ConIn", buf, &sz); 987 if (rv != EFI_SUCCESS) { 988 /* 989 * If we don't have any Con* variable use both. If we have GOP 990 * make video primary, otherwise set serial primary. In either 991 * case, try to use both the 'efi' console which will use the 992 * GOP, if present and serial. If there's an EFI BIOS that omits 993 * this, but has a serial port redirect, we'll unavioidably get 994 * doubled characters, but we'll be right in all the other more 995 * common cases. 996 */ 997 if (efi_has_gop()) 998 how |= RB_MULTIPLE; 999 else 1000 how |= RB_MULTIPLE | RB_SERIAL; 1001 setenv("console", "efi,comconsole", 1); 1002 goto out; 1003 } 1004 ep = buf + sz; 1005 node = (EFI_DEVICE_PATH *)buf; 1006 while ((char *)node < ep) { 1007 if (IsDevicePathEndType(node)) { 1008 if (pci_pending && vid_seen == 0) 1009 vid_seen = ++seen; 1010 } 1011 pci_pending = false; 1012 if (DevicePathType(node) == ACPI_DEVICE_PATH && 1013 (DevicePathSubType(node) == ACPI_DP || 1014 DevicePathSubType(node) == ACPI_EXTENDED_DP)) { 1015 /* Check for Serial node */ 1016 acpi = (void *)node; 1017 if (EISA_ID_TO_NUM(acpi->HID) == 0x501) { 1018 setenv_int("efi_8250_uid", acpi->UID); 1019 com_seen = ++seen; 1020 } 1021 } else if (DevicePathType(node) == MESSAGING_DEVICE_PATH && 1022 DevicePathSubType(node) == MSG_UART_DP) { 1023 com_seen = ++seen; 1024 uart = (void *)node; 1025 setenv_int("efi_com_speed", uart->BaudRate); 1026 } else if (DevicePathType(node) == ACPI_DEVICE_PATH && 1027 DevicePathSubType(node) == ACPI_ADR_DP) { 1028 /* Check for AcpiAdr() Node for video */ 1029 vid_seen = ++seen; 1030 } else if (DevicePathType(node) == HARDWARE_DEVICE_PATH && 1031 DevicePathSubType(node) == HW_PCI_DP) { 1032 /* 1033 * Note, vmware fusion has a funky console device 1034 * PciRoot(0x0)/Pci(0xf,0x0) 1035 * which we can only detect at the end since we also 1036 * have to cope with: 1037 * PciRoot(0x0)/Pci(0x1f,0x0)/Serial(0x1) 1038 * so only match it if it's last. 1039 */ 1040 pci_pending = true; 1041 } 1042 node = NextDevicePathNode(node); 1043 } 1044 1045 /* 1046 * Truth table for RB_MULTIPLE | RB_SERIAL 1047 * Value Result 1048 * 0 Use only video console 1049 * RB_SERIAL Use only serial console 1050 * RB_MULTIPLE Use both video and serial console 1051 * (but video is primary so gets rc messages) 1052 * both Use both video and serial console 1053 * (but serial is primary so gets rc messages) 1054 * 1055 * Try to honor this as best we can. If only one of serial / video 1056 * found, then use that. Otherwise, use the first one we found. 1057 * This also implies if we found nothing, default to video. 1058 */ 1059 how = 0; 1060 if (vid_seen && com_seen) { 1061 how |= RB_MULTIPLE; 1062 if (com_seen < vid_seen) 1063 how |= RB_SERIAL; 1064 } else if (com_seen) 1065 how |= RB_SERIAL; 1066 out: 1067 return (how); 1068 } 1069 1070 void 1071 parse_loader_efi_config(EFI_HANDLE h, const char *env_fn) 1072 { 1073 pdinfo_t *dp; 1074 struct stat st; 1075 int fd = -1; 1076 char *env = NULL; 1077 1078 dp = efiblk_get_pdinfo_by_handle(h); 1079 if (dp == NULL) 1080 return; 1081 set_currdev_pdinfo(dp); 1082 if (stat(env_fn, &st) != 0) 1083 return; 1084 fd = open(env_fn, O_RDONLY); 1085 if (fd == -1) 1086 return; 1087 env = malloc(st.st_size + 1); 1088 if (env == NULL) 1089 goto out; 1090 if (read(fd, env, st.st_size) != st.st_size) 1091 goto out; 1092 env[st.st_size] = '\0'; 1093 boot_parse_cmdline(env); 1094 out: 1095 free(env); 1096 close(fd); 1097 } 1098 1099 static void 1100 read_loader_env(const char *name, char *def_fn, bool once) 1101 { 1102 UINTN len; 1103 char *fn, *freeme = NULL; 1104 1105 len = 0; 1106 fn = def_fn; 1107 if (efi_freebsd_getenv(name, NULL, &len) == EFI_BUFFER_TOO_SMALL) { 1108 freeme = fn = malloc(len + 1); 1109 if (fn != NULL) { 1110 if (efi_freebsd_getenv(name, fn, &len) != EFI_SUCCESS) { 1111 free(fn); 1112 fn = NULL; 1113 printf( 1114 "Can't fetch FreeBSD::%s we know is there\n", name); 1115 } else { 1116 /* 1117 * if tagged as 'once' delete the env variable so we 1118 * only use it once. 1119 */ 1120 if (once) 1121 efi_freebsd_delenv(name); 1122 /* 1123 * We malloced 1 more than len above, then redid the call. 1124 * so now we have room at the end of the string to NUL terminate 1125 * it here, even if the typical idium would have '- 1' here to 1126 * not overflow. len should be the same on return both times. 1127 */ 1128 fn[len] = '\0'; 1129 } 1130 } else { 1131 printf( 1132 "Can't allocate %d bytes to fetch FreeBSD::%s env var\n", 1133 len, name); 1134 } 1135 } 1136 if (fn) { 1137 printf(" Reading loader env vars from %s\n", fn); 1138 parse_loader_efi_config(boot_img->DeviceHandle, fn); 1139 } 1140 1141 free(freeme); 1142 } 1143 1144 caddr_t 1145 ptov(uintptr_t x) 1146 { 1147 return ((caddr_t)x); 1148 } 1149 1150 static void 1151 efi_smbios_detect(void) 1152 { 1153 VOID *smbios_v2_ptr = NULL; 1154 UINTN k; 1155 1156 for (k = 0; k < ST->NumberOfTableEntries; k++) { 1157 EFI_GUID *guid; 1158 VOID *const VT = ST->ConfigurationTable[k].VendorTable; 1159 char buf[40]; 1160 bool is_smbios_v2, is_smbios_v3; 1161 1162 guid = &ST->ConfigurationTable[k].VendorGuid; 1163 is_smbios_v2 = memcmp(guid, &smbios, sizeof(*guid)) == 0; 1164 is_smbios_v3 = memcmp(guid, &smbios3, sizeof(*guid)) == 0; 1165 1166 if (!is_smbios_v2 && !is_smbios_v3) 1167 continue; 1168 1169 snprintf(buf, sizeof(buf), "%p", VT); 1170 setenv("hint.smbios.0.mem", buf, 1); 1171 if (is_smbios_v2) 1172 /* 1173 * We will parse a v2 table only if we don't find a v3 1174 * table. In the meantime, store the address. 1175 */ 1176 smbios_v2_ptr = VT; 1177 else if (smbios_detect(VT) != NULL) 1178 /* v3 parsing succeeded, we are done. */ 1179 return; 1180 } 1181 if (smbios_v2_ptr != NULL) 1182 (void)smbios_detect(smbios_v2_ptr); 1183 } 1184 1185 EFI_STATUS 1186 main(int argc, CHAR16 *argv[]) 1187 { 1188 int howto, i, uhowto; 1189 bool has_kbd; 1190 char *s; 1191 EFI_DEVICE_PATH *imgpath; 1192 CHAR16 *text; 1193 EFI_STATUS rv; 1194 size_t sz, bisz = 0; 1195 UINT16 boot_order[100]; 1196 char boot_info[4096]; 1197 char buf[32]; 1198 bool uefi_boot_mgr; 1199 1200 #if !defined(__arm__) 1201 efi_smbios_detect(); 1202 #endif 1203 1204 /* Get our loaded image protocol interface structure. */ 1205 (void) OpenProtocolByHandle(IH, &imgid, (void **)&boot_img); 1206 1207 /* Report the RSDP early. */ 1208 acpi_detect(); 1209 1210 /* 1211 * Chicken-and-egg problem; we want to have console output early, but 1212 * some console attributes may depend on reading from eg. the boot 1213 * device, which we can't do yet. We can use printf() etc. once this is 1214 * done. So, we set it to the efi console, then call console init. This 1215 * gets us printf early, but also primes the pump for all future console 1216 * changes to take effect, regardless of where they come from. 1217 */ 1218 setenv("console", "efi", 1); 1219 uhowto = parse_uefi_con_out(); 1220 #if defined(__riscv) 1221 /* 1222 * This workaround likely is papering over a real issue 1223 */ 1224 if ((uhowto & RB_SERIAL) != 0) 1225 setenv("console", "comconsole", 1); 1226 #endif 1227 cons_probe(); 1228 1229 /* Set print_delay variable to have hooks in place. */ 1230 env_setenv("print_delay", EV_VOLATILE, "", setprint_delay, env_nounset); 1231 1232 /* Set up currdev variable to have hooks in place. */ 1233 env_setenv("currdev", EV_VOLATILE, "", gen_setcurrdev, env_nounset); 1234 1235 /* Init the time source */ 1236 efi_time_init(); 1237 1238 /* 1239 * Initialise the block cache. Set the upper limit. 1240 */ 1241 bcache_init(32768, 512); 1242 1243 /* 1244 * Scan the BLOCK IO MEDIA handles then 1245 * march through the device switch probing for things. 1246 */ 1247 i = efipart_inithandles(); 1248 if (i != 0 && i != ENOENT) { 1249 printf("efipart_inithandles failed with ERRNO %d, expect " 1250 "failures\n", i); 1251 } 1252 1253 devinit(); 1254 1255 /* 1256 * Detect console settings two different ways: one via the command 1257 * args (eg -h) or via the UEFI ConOut variable. 1258 */ 1259 has_kbd = has_keyboard(); 1260 howto = parse_args(argc, argv); 1261 if (!has_kbd && (howto & RB_PROBE)) 1262 howto |= RB_SERIAL | RB_MULTIPLE; 1263 howto &= ~RB_PROBE; 1264 1265 /* 1266 * Read additional environment variables from the boot device's 1267 * "LoaderEnv" file. Any boot loader environment variable may be set 1268 * there, which are subtly different than loader.conf variables. Only 1269 * the 'simple' ones may be set so things like foo_load="YES" won't work 1270 * for two reasons. First, the parser is simplistic and doesn't grok 1271 * quotes. Second, because the variables that cause an action to happen 1272 * are parsed by the lua, 4th or whatever code that's not yet 1273 * loaded. This is relative to the root directory when loader.efi is 1274 * loaded off the UFS root drive (when chain booted), or from the ESP 1275 * when directly loaded by the BIOS. 1276 * 1277 * We also read in NextLoaderEnv if it was specified. This allows next boot 1278 * functionality to be implemented and to override anything in LoaderEnv. 1279 */ 1280 read_loader_env("LoaderEnv", "/efi/freebsd/loader.env", false); 1281 read_loader_env("NextLoaderEnv", NULL, true); 1282 1283 /* 1284 * We now have two notions of console. howto should be viewed as 1285 * overrides. If console is already set, don't set it again. 1286 */ 1287 #define VIDEO_ONLY 0 1288 #define SERIAL_ONLY RB_SERIAL 1289 #define VID_SER_BOTH RB_MULTIPLE 1290 #define SER_VID_BOTH (RB_SERIAL | RB_MULTIPLE) 1291 #define CON_MASK (RB_SERIAL | RB_MULTIPLE) 1292 if (strcmp(getenv("console"), "efi") == 0) { 1293 if ((howto & CON_MASK) == 0) { 1294 /* No override, uhowto is controlling and efi cons is perfect */ 1295 howto = howto | (uhowto & CON_MASK); 1296 } else if ((howto & CON_MASK) == (uhowto & CON_MASK)) { 1297 /* override matches what UEFI told us, efi console is perfect */ 1298 } else if ((uhowto & (CON_MASK)) != 0) { 1299 /* 1300 * We detected a serial console on ConOut. All possible 1301 * overrides include serial. We can't really override what efi 1302 * gives us, so we use it knowing it's the best choice. 1303 */ 1304 /* Do nothing */ 1305 } else { 1306 /* 1307 * We detected some kind of serial in the override, but ConOut 1308 * has no serial, so we have to sort out which case it really is. 1309 */ 1310 switch (howto & CON_MASK) { 1311 case SERIAL_ONLY: 1312 setenv("console", "comconsole", 1); 1313 break; 1314 case VID_SER_BOTH: 1315 setenv("console", "efi comconsole", 1); 1316 break; 1317 case SER_VID_BOTH: 1318 setenv("console", "comconsole efi", 1); 1319 break; 1320 /* case VIDEO_ONLY can't happen -- it's the first if above */ 1321 } 1322 } 1323 } 1324 1325 /* 1326 * howto is set now how we want to export the flags to the kernel, so 1327 * set the env based on it. 1328 */ 1329 boot_howto_to_env(howto); 1330 1331 if (efi_copy_init()) 1332 return (EFI_BUFFER_TOO_SMALL); 1333 1334 if ((s = getenv("fail_timeout")) != NULL) 1335 fail_timeout = strtol(s, NULL, 10); 1336 1337 printf("%s\n", bootprog_info); 1338 printf(" Command line arguments:"); 1339 for (i = 0; i < argc; i++) 1340 printf(" %S", argv[i]); 1341 printf("\n"); 1342 1343 printf(" Image base: 0x%lx\n", (unsigned long)boot_img->ImageBase); 1344 printf(" EFI version: %d.%02d\n", ST->Hdr.Revision >> 16, 1345 ST->Hdr.Revision & 0xffff); 1346 printf(" EFI Firmware: %S (rev %d.%02d)\n", ST->FirmwareVendor, 1347 ST->FirmwareRevision >> 16, ST->FirmwareRevision & 0xffff); 1348 printf(" Console: %s (%#x)\n", getenv("console"), howto); 1349 1350 /* Determine the devpath of our image so we can prefer it. */ 1351 text = efi_devpath_name(boot_img->FilePath); 1352 if (text != NULL) { 1353 printf(" Load Path: %S\n", text); 1354 efi_setenv_freebsd_wcs("LoaderPath", text); 1355 efi_free_devpath_name(text); 1356 } 1357 1358 rv = OpenProtocolByHandle(boot_img->DeviceHandle, &devid, 1359 (void **)&imgpath); 1360 if (rv == EFI_SUCCESS) { 1361 text = efi_devpath_name(imgpath); 1362 if (text != NULL) { 1363 printf(" Load Device: %S\n", text); 1364 efi_setenv_freebsd_wcs("LoaderDev", text); 1365 efi_free_devpath_name(text); 1366 } 1367 } 1368 1369 if (getenv("uefi_ignore_boot_mgr") != NULL) { 1370 printf(" Ignoring UEFI boot manager\n"); 1371 uefi_boot_mgr = false; 1372 } else { 1373 uefi_boot_mgr = true; 1374 boot_current = 0; 1375 sz = sizeof(boot_current); 1376 rv = efi_global_getenv("BootCurrent", &boot_current, &sz); 1377 if (rv == EFI_SUCCESS) 1378 printf(" BootCurrent: %04x\n", boot_current); 1379 else { 1380 boot_current = 0xffff; 1381 uefi_boot_mgr = false; 1382 } 1383 1384 sz = sizeof(boot_order); 1385 rv = efi_global_getenv("BootOrder", &boot_order, &sz); 1386 if (rv == EFI_SUCCESS) { 1387 printf(" BootOrder:"); 1388 for (i = 0; i < sz / sizeof(boot_order[0]); i++) 1389 printf(" %04x%s", boot_order[i], 1390 boot_order[i] == boot_current ? "[*]" : ""); 1391 printf("\n"); 1392 } else if (uefi_boot_mgr) { 1393 /* 1394 * u-boot doesn't set BootOrder, but otherwise participates in the 1395 * boot manager protocol. So we fake it here and don't consider it 1396 * a failure. 1397 */ 1398 boot_order[0] = boot_current; 1399 } 1400 } 1401 1402 /* 1403 * Next, find the boot info structure the UEFI boot manager is 1404 * supposed to setup. We need this so we can walk through it to 1405 * find where we are in the booting process and what to try to 1406 * boot next. 1407 */ 1408 if (uefi_boot_mgr) { 1409 snprintf(buf, sizeof(buf), "Boot%04X", boot_current); 1410 sz = sizeof(boot_info); 1411 rv = efi_global_getenv(buf, &boot_info, &sz); 1412 if (rv == EFI_SUCCESS) 1413 bisz = sz; 1414 else 1415 uefi_boot_mgr = false; 1416 } 1417 1418 /* 1419 * Disable the watchdog timer. By default the boot manager sets 1420 * the timer to 5 minutes before invoking a boot option. If we 1421 * want to return to the boot manager, we have to disable the 1422 * watchdog timer and since we're an interactive program, we don't 1423 * want to wait until the user types "quit". The timer may have 1424 * fired by then. We don't care if this fails. It does not prevent 1425 * normal functioning in any way... 1426 */ 1427 BS->SetWatchdogTimer(0, 0, 0, NULL); 1428 1429 /* 1430 * Initialize the trusted/forbidden certificates from UEFI. 1431 * They will be later used to verify the manifest(s), 1432 * which should contain hashes of verified files. 1433 * This needs to be initialized before any configuration files 1434 * are loaded. 1435 */ 1436 #ifdef EFI_SECUREBOOT 1437 ve_efi_init(); 1438 #endif 1439 1440 /* 1441 * Try and find a good currdev based on the image that was booted. 1442 * It might be desirable here to have a short pause to allow falling 1443 * through to the boot loader instead of returning instantly to follow 1444 * the boot protocol and also allow an escape hatch for users wishing 1445 * to try something different. 1446 */ 1447 if (find_currdev(uefi_boot_mgr, boot_info, bisz) != 0) 1448 if (uefi_boot_mgr && 1449 !interactive_interrupt("Failed to find bootable partition")) 1450 return (EFI_NOT_FOUND); 1451 1452 autoload_font(false); /* Set up the font list for console. */ 1453 efi_init_environment(); 1454 1455 interact(); /* doesn't return */ 1456 1457 return (EFI_SUCCESS); /* keep compiler happy */ 1458 } 1459 1460 COMMAND_SET(efi_seed_entropy, "efi-seed-entropy", "try to get entropy from the EFI RNG", command_seed_entropy); 1461 1462 static int 1463 command_seed_entropy(int argc, char *argv[]) 1464 { 1465 EFI_STATUS status; 1466 EFI_RNG_PROTOCOL *rng; 1467 unsigned int size_efi = RANDOM_FORTUNA_DEFPOOLSIZE * RANDOM_FORTUNA_NPOOLS; 1468 unsigned int size = RANDOM_FORTUNA_DEFPOOLSIZE * RANDOM_FORTUNA_NPOOLS; 1469 void *buf_efi; 1470 void *buf; 1471 1472 if (argc > 1) { 1473 size_efi = strtol(argv[1], NULL, 0); 1474 1475 /* Don't *compress* the entropy we get from EFI. */ 1476 if (size_efi > size) 1477 size = size_efi; 1478 1479 /* 1480 * If the amount of entropy we get from EFI is less than the 1481 * size of a single Fortuna pool -- i.e. not enough to ensure 1482 * that Fortuna is safely seeded -- don't expand it since we 1483 * don't want to trick Fortuna into thinking that it has been 1484 * safely seeded when it has not. 1485 */ 1486 if (size_efi < RANDOM_FORTUNA_DEFPOOLSIZE) 1487 size = size_efi; 1488 } 1489 1490 status = BS->LocateProtocol(&rng_guid, NULL, (VOID **)&rng); 1491 if (status != EFI_SUCCESS) { 1492 command_errmsg = "RNG protocol not found"; 1493 return (CMD_ERROR); 1494 } 1495 1496 if ((buf = malloc(size)) == NULL) { 1497 command_errmsg = "out of memory"; 1498 return (CMD_ERROR); 1499 } 1500 1501 if ((buf_efi = malloc(size_efi)) == NULL) { 1502 free(buf); 1503 command_errmsg = "out of memory"; 1504 return (CMD_ERROR); 1505 } 1506 1507 TSENTER2("rng->GetRNG"); 1508 status = rng->GetRNG(rng, NULL, size_efi, (UINT8 *)buf_efi); 1509 TSEXIT(); 1510 if (status != EFI_SUCCESS) { 1511 free(buf_efi); 1512 free(buf); 1513 command_errmsg = "GetRNG failed"; 1514 return (CMD_ERROR); 1515 } 1516 if (size_efi < size) 1517 pkcs5v2_genkey_raw(buf, size, "", 0, buf_efi, size_efi, 1); 1518 else 1519 memcpy(buf, buf_efi, size); 1520 1521 if (file_addbuf("efi_rng_seed", "boot_entropy_platform", size, buf) != 0) { 1522 free(buf_efi); 1523 free(buf); 1524 return (CMD_ERROR); 1525 } 1526 1527 explicit_bzero(buf_efi, size_efi); 1528 free(buf_efi); 1529 free(buf); 1530 return (CMD_OK); 1531 } 1532 1533 COMMAND_SET(poweroff, "poweroff", "power off the system", command_poweroff); 1534 COMMAND_SET(halt, "halt", "power off the system", command_poweroff); 1535 1536 static int 1537 command_poweroff(int argc __unused, char *argv[] __unused) 1538 { 1539 int i; 1540 1541 for (i = 0; devsw[i] != NULL; ++i) 1542 if (devsw[i]->dv_cleanup != NULL) 1543 (devsw[i]->dv_cleanup)(); 1544 1545 RS->ResetSystem(EfiResetShutdown, EFI_SUCCESS, 0, NULL); 1546 1547 /* NOTREACHED */ 1548 return (CMD_ERROR); 1549 } 1550 1551 COMMAND_SET(reboot, "reboot", "reboot the system", command_reboot); 1552 1553 static int 1554 command_reboot(int argc, char *argv[]) 1555 { 1556 int i; 1557 1558 for (i = 0; devsw[i] != NULL; ++i) 1559 if (devsw[i]->dv_cleanup != NULL) 1560 (devsw[i]->dv_cleanup)(); 1561 1562 RS->ResetSystem(EfiResetCold, EFI_SUCCESS, 0, NULL); 1563 1564 /* NOTREACHED */ 1565 return (CMD_ERROR); 1566 } 1567 1568 COMMAND_SET(memmap, "memmap", "print memory map", command_memmap); 1569 1570 static int 1571 command_memmap(int argc __unused, char *argv[] __unused) 1572 { 1573 UINTN sz; 1574 EFI_MEMORY_DESCRIPTOR *map, *p; 1575 UINTN key, dsz; 1576 UINT32 dver; 1577 EFI_STATUS status; 1578 int i, ndesc; 1579 char line[80]; 1580 1581 sz = 0; 1582 status = BS->GetMemoryMap(&sz, 0, &key, &dsz, &dver); 1583 if (status != EFI_BUFFER_TOO_SMALL) { 1584 printf("Can't determine memory map size\n"); 1585 return (CMD_ERROR); 1586 } 1587 map = malloc(sz); 1588 status = BS->GetMemoryMap(&sz, map, &key, &dsz, &dver); 1589 if (EFI_ERROR(status)) { 1590 printf("Can't read memory map\n"); 1591 return (CMD_ERROR); 1592 } 1593 1594 ndesc = sz / dsz; 1595 snprintf(line, sizeof(line), "%23s %12s %12s %8s %4s\n", 1596 "Type", "Physical", "Virtual", "#Pages", "Attr"); 1597 pager_open(); 1598 if (pager_output(line)) { 1599 pager_close(); 1600 return (CMD_OK); 1601 } 1602 1603 for (i = 0, p = map; i < ndesc; 1604 i++, p = NextMemoryDescriptor(p, dsz)) { 1605 snprintf(line, sizeof(line), "%23s %012jx %012jx %08jx ", 1606 efi_memory_type(p->Type), (uintmax_t)p->PhysicalStart, 1607 (uintmax_t)p->VirtualStart, (uintmax_t)p->NumberOfPages); 1608 if (pager_output(line)) 1609 break; 1610 1611 if (p->Attribute & EFI_MEMORY_UC) 1612 printf("UC "); 1613 if (p->Attribute & EFI_MEMORY_WC) 1614 printf("WC "); 1615 if (p->Attribute & EFI_MEMORY_WT) 1616 printf("WT "); 1617 if (p->Attribute & EFI_MEMORY_WB) 1618 printf("WB "); 1619 if (p->Attribute & EFI_MEMORY_UCE) 1620 printf("UCE "); 1621 if (p->Attribute & EFI_MEMORY_WP) 1622 printf("WP "); 1623 if (p->Attribute & EFI_MEMORY_RP) 1624 printf("RP "); 1625 if (p->Attribute & EFI_MEMORY_XP) 1626 printf("XP "); 1627 if (p->Attribute & EFI_MEMORY_NV) 1628 printf("NV "); 1629 if (p->Attribute & EFI_MEMORY_MORE_RELIABLE) 1630 printf("MR "); 1631 if (p->Attribute & EFI_MEMORY_RO) 1632 printf("RO "); 1633 if (pager_output("\n")) 1634 break; 1635 } 1636 1637 pager_close(); 1638 return (CMD_OK); 1639 } 1640 1641 COMMAND_SET(configuration, "configuration", "print configuration tables", 1642 command_configuration); 1643 1644 static int 1645 command_configuration(int argc, char *argv[]) 1646 { 1647 UINTN i; 1648 char *name; 1649 1650 printf("NumberOfTableEntries=%lu\n", 1651 (unsigned long)ST->NumberOfTableEntries); 1652 1653 for (i = 0; i < ST->NumberOfTableEntries; i++) { 1654 EFI_GUID *guid; 1655 1656 printf(" "); 1657 guid = &ST->ConfigurationTable[i].VendorGuid; 1658 1659 if (efi_guid_to_name(guid, &name) == true) { 1660 printf(name); 1661 free(name); 1662 } else { 1663 printf("Error while translating UUID to name"); 1664 } 1665 printf(" at %p\n", ST->ConfigurationTable[i].VendorTable); 1666 } 1667 1668 return (CMD_OK); 1669 } 1670 1671 1672 COMMAND_SET(mode, "mode", "change or display EFI text modes", command_mode); 1673 1674 static int 1675 command_mode(int argc, char *argv[]) 1676 { 1677 UINTN cols, rows; 1678 unsigned int mode; 1679 int i; 1680 char *cp; 1681 EFI_STATUS status; 1682 SIMPLE_TEXT_OUTPUT_INTERFACE *conout; 1683 1684 conout = ST->ConOut; 1685 1686 if (argc > 1) { 1687 mode = strtol(argv[1], &cp, 0); 1688 if (cp[0] != '\0') { 1689 printf("Invalid mode\n"); 1690 return (CMD_ERROR); 1691 } 1692 status = conout->QueryMode(conout, mode, &cols, &rows); 1693 if (EFI_ERROR(status)) { 1694 printf("invalid mode %d\n", mode); 1695 return (CMD_ERROR); 1696 } 1697 status = conout->SetMode(conout, mode); 1698 if (EFI_ERROR(status)) { 1699 printf("couldn't set mode %d\n", mode); 1700 return (CMD_ERROR); 1701 } 1702 (void) cons_update_mode(true); 1703 return (CMD_OK); 1704 } 1705 1706 printf("Current mode: %d\n", conout->Mode->Mode); 1707 for (i = 0; i <= conout->Mode->MaxMode; i++) { 1708 status = conout->QueryMode(conout, i, &cols, &rows); 1709 if (EFI_ERROR(status)) 1710 continue; 1711 printf("Mode %d: %u columns, %u rows\n", i, (unsigned)cols, 1712 (unsigned)rows); 1713 } 1714 1715 if (i != 0) 1716 printf("Select a mode with the command \"mode <number>\"\n"); 1717 1718 return (CMD_OK); 1719 } 1720 1721 COMMAND_SET(lsefi, "lsefi", "list EFI handles", command_lsefi); 1722 1723 static void 1724 lsefi_print_handle_info(EFI_HANDLE handle) 1725 { 1726 EFI_DEVICE_PATH *devpath; 1727 EFI_DEVICE_PATH *imagepath; 1728 CHAR16 *dp_name; 1729 1730 imagepath = efi_lookup_image_devpath(handle); 1731 if (imagepath != NULL) { 1732 dp_name = efi_devpath_name(imagepath); 1733 printf("Handle for image %S", dp_name); 1734 efi_free_devpath_name(dp_name); 1735 return; 1736 } 1737 devpath = efi_lookup_devpath(handle); 1738 if (devpath != NULL) { 1739 dp_name = efi_devpath_name(devpath); 1740 printf("Handle for device %S", dp_name); 1741 efi_free_devpath_name(dp_name); 1742 return; 1743 } 1744 printf("Handle %p", handle); 1745 } 1746 1747 static int 1748 command_lsefi(int argc __unused, char *argv[] __unused) 1749 { 1750 char *name; 1751 EFI_HANDLE *buffer = NULL; 1752 EFI_HANDLE handle; 1753 UINTN bufsz = 0, i, j; 1754 EFI_STATUS status; 1755 int ret = 0; 1756 1757 status = BS->LocateHandle(AllHandles, NULL, NULL, &bufsz, buffer); 1758 if (status != EFI_BUFFER_TOO_SMALL) { 1759 snprintf(command_errbuf, sizeof (command_errbuf), 1760 "unexpected error: %lld", (long long)status); 1761 return (CMD_ERROR); 1762 } 1763 if ((buffer = malloc(bufsz)) == NULL) { 1764 sprintf(command_errbuf, "out of memory"); 1765 return (CMD_ERROR); 1766 } 1767 1768 status = BS->LocateHandle(AllHandles, NULL, NULL, &bufsz, buffer); 1769 if (EFI_ERROR(status)) { 1770 free(buffer); 1771 snprintf(command_errbuf, sizeof (command_errbuf), 1772 "LocateHandle() error: %lld", (long long)status); 1773 return (CMD_ERROR); 1774 } 1775 1776 pager_open(); 1777 for (i = 0; i < (bufsz / sizeof (EFI_HANDLE)); i++) { 1778 UINTN nproto = 0; 1779 EFI_GUID **protocols = NULL; 1780 1781 handle = buffer[i]; 1782 lsefi_print_handle_info(handle); 1783 if (pager_output("\n")) 1784 break; 1785 /* device path */ 1786 1787 status = BS->ProtocolsPerHandle(handle, &protocols, &nproto); 1788 if (EFI_ERROR(status)) { 1789 snprintf(command_errbuf, sizeof (command_errbuf), 1790 "ProtocolsPerHandle() error: %lld", 1791 (long long)status); 1792 continue; 1793 } 1794 1795 for (j = 0; j < nproto; j++) { 1796 if (efi_guid_to_name(protocols[j], &name) == true) { 1797 printf(" %s", name); 1798 free(name); 1799 } else { 1800 printf("Error while translating UUID to name"); 1801 } 1802 if ((ret = pager_output("\n")) != 0) 1803 break; 1804 } 1805 BS->FreePool(protocols); 1806 if (ret != 0) 1807 break; 1808 } 1809 pager_close(); 1810 free(buffer); 1811 return (CMD_OK); 1812 } 1813 1814 #ifdef LOADER_FDT_SUPPORT 1815 extern int command_fdt_internal(int argc, char *argv[]); 1816 1817 /* 1818 * Since proper fdt command handling function is defined in fdt_loader_cmd.c, 1819 * and declaring it as extern is in contradiction with COMMAND_SET() macro 1820 * (which uses static pointer), we're defining wrapper function, which 1821 * calls the proper fdt handling routine. 1822 */ 1823 static int 1824 command_fdt(int argc, char *argv[]) 1825 { 1826 1827 return (command_fdt_internal(argc, argv)); 1828 } 1829 1830 COMMAND_SET(fdt, "fdt", "flattened device tree handling", command_fdt); 1831 #endif 1832 1833 /* 1834 * Chain load another efi loader. 1835 */ 1836 static int 1837 command_chain(int argc, char *argv[]) 1838 { 1839 EFI_GUID LoadedImageGUID = LOADED_IMAGE_PROTOCOL; 1840 EFI_HANDLE loaderhandle; 1841 EFI_LOADED_IMAGE *loaded_image; 1842 UINTN ExitDataSize; 1843 CHAR16 *ExitData = NULL; 1844 EFI_STATUS status; 1845 struct stat st; 1846 struct devdesc *dev; 1847 char *name, *path; 1848 void *buf; 1849 int fd; 1850 1851 if (argc < 2) { 1852 command_errmsg = "wrong number of arguments"; 1853 return (CMD_ERROR); 1854 } 1855 1856 name = argv[1]; 1857 1858 if ((fd = open(name, O_RDONLY)) < 0) { 1859 command_errmsg = "no such file"; 1860 return (CMD_ERROR); 1861 } 1862 1863 #ifdef LOADER_VERIEXEC 1864 if (verify_file(fd, name, 0, VE_MUST, __func__) < 0) { 1865 sprintf(command_errbuf, "can't verify: %s", name); 1866 close(fd); 1867 return (CMD_ERROR); 1868 } 1869 #endif 1870 1871 if (fstat(fd, &st) < -1) { 1872 command_errmsg = "stat failed"; 1873 close(fd); 1874 return (CMD_ERROR); 1875 } 1876 1877 status = BS->AllocatePool(EfiLoaderCode, (UINTN)st.st_size, &buf); 1878 if (status != EFI_SUCCESS) { 1879 command_errmsg = "failed to allocate buffer"; 1880 close(fd); 1881 return (CMD_ERROR); 1882 } 1883 if (read(fd, buf, st.st_size) != st.st_size) { 1884 command_errmsg = "error while reading the file"; 1885 (void)BS->FreePool(buf); 1886 close(fd); 1887 return (CMD_ERROR); 1888 } 1889 close(fd); 1890 status = BS->LoadImage(FALSE, IH, NULL, buf, st.st_size, &loaderhandle); 1891 (void)BS->FreePool(buf); 1892 if (status != EFI_SUCCESS) { 1893 command_errmsg = "LoadImage failed"; 1894 return (CMD_ERROR); 1895 } 1896 status = OpenProtocolByHandle(loaderhandle, &LoadedImageGUID, 1897 (void **)&loaded_image); 1898 1899 if (argc > 2) { 1900 int i, len = 0; 1901 CHAR16 *argp; 1902 1903 for (i = 2; i < argc; i++) 1904 len += strlen(argv[i]) + 1; 1905 1906 len *= sizeof (*argp); 1907 loaded_image->LoadOptions = argp = malloc (len); 1908 loaded_image->LoadOptionsSize = len; 1909 for (i = 2; i < argc; i++) { 1910 char *ptr = argv[i]; 1911 while (*ptr) 1912 *(argp++) = *(ptr++); 1913 *(argp++) = ' '; 1914 } 1915 *(--argv) = 0; 1916 } 1917 1918 if (efi_getdev((void **)&dev, name, (const char **)&path) == 0) { 1919 #ifdef EFI_ZFS_BOOT 1920 struct zfs_devdesc *z_dev; 1921 #endif 1922 struct disk_devdesc *d_dev; 1923 pdinfo_t *hd, *pd; 1924 1925 switch (dev->d_dev->dv_type) { 1926 #ifdef EFI_ZFS_BOOT 1927 case DEVT_ZFS: 1928 z_dev = (struct zfs_devdesc *)dev; 1929 loaded_image->DeviceHandle = 1930 efizfs_get_handle_by_guid(z_dev->pool_guid); 1931 break; 1932 #endif 1933 case DEVT_NET: 1934 loaded_image->DeviceHandle = 1935 efi_find_handle(dev->d_dev, dev->d_unit); 1936 break; 1937 default: 1938 hd = efiblk_get_pdinfo(dev); 1939 if (STAILQ_EMPTY(&hd->pd_part)) { 1940 loaded_image->DeviceHandle = hd->pd_handle; 1941 break; 1942 } 1943 d_dev = (struct disk_devdesc *)dev; 1944 STAILQ_FOREACH(pd, &hd->pd_part, pd_link) { 1945 /* 1946 * d_partition should be 255 1947 */ 1948 if (pd->pd_unit == (uint32_t)d_dev->d_slice) { 1949 loaded_image->DeviceHandle = 1950 pd->pd_handle; 1951 break; 1952 } 1953 } 1954 break; 1955 } 1956 } 1957 1958 dev_cleanup(); 1959 1960 status = BS->StartImage(loaderhandle, &ExitDataSize, &ExitData); 1961 if (status != EFI_SUCCESS) { 1962 printf("StartImage failed (%lu)", DECODE_ERROR(status)); 1963 if (ExitData != NULL) { 1964 printf(": %S", ExitData); 1965 BS->FreePool(ExitData); 1966 } 1967 putchar('\n'); 1968 command_errmsg = ""; 1969 free(loaded_image->LoadOptions); 1970 loaded_image->LoadOptions = NULL; 1971 status = BS->UnloadImage(loaded_image); 1972 return (CMD_ERROR); 1973 } 1974 1975 return (CMD_ERROR); /* not reached */ 1976 } 1977 1978 COMMAND_SET(chain, "chain", "chain load file", command_chain); 1979 1980 #if defined(LOADER_NET_SUPPORT) 1981 extern struct in_addr servip; 1982 static int 1983 command_netserver(int argc, char *argv[]) 1984 { 1985 char *proto; 1986 n_long rootaddr; 1987 1988 if (argc > 2) { 1989 command_errmsg = "wrong number of arguments"; 1990 return (CMD_ERROR); 1991 } 1992 if (argc < 2) { 1993 proto = netproto == NET_TFTP ? "tftp://" : "nfs://"; 1994 printf("Netserver URI: %s%s%s\n", proto, intoa(rootip.s_addr), 1995 rootpath); 1996 return (CMD_OK); 1997 } 1998 if (argc == 2) { 1999 strncpy(rootpath, argv[1], sizeof(rootpath)); 2000 rootpath[sizeof(rootpath) -1] = '\0'; 2001 if ((rootaddr = net_parse_rootpath()) != INADDR_NONE) 2002 servip.s_addr = rootip.s_addr = rootaddr; 2003 return (CMD_OK); 2004 } 2005 return (CMD_ERROR); /* not reached */ 2006 2007 } 2008 2009 COMMAND_SET(netserver, "netserver", "change or display netserver URI", 2010 command_netserver); 2011 #endif 2012