1 /*- 2 * Copyright (c) 2008-2010 Rui Paulo 3 * Copyright (c) 2006 Marcel Moolenaar 4 * All rights reserved. 5 * 6 * Copyright (c) 2018 Netflix, Inc. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <stand.h> 34 35 #include <sys/disk.h> 36 #include <sys/param.h> 37 #include <sys/reboot.h> 38 #include <sys/boot.h> 39 #include <stdint.h> 40 #include <string.h> 41 #include <setjmp.h> 42 #include <disk.h> 43 44 #include <efi.h> 45 #include <efilib.h> 46 #include <efichar.h> 47 48 #include <uuid.h> 49 50 #include <bootstrap.h> 51 #include <smbios.h> 52 53 #ifdef EFI_ZFS_BOOT 54 #include <libzfs.h> 55 #include "efizfs.h" 56 #endif 57 58 #include "loader_efi.h" 59 60 struct arch_switch archsw; /* MI/MD interface boundary */ 61 62 EFI_GUID acpi = ACPI_TABLE_GUID; 63 EFI_GUID acpi20 = ACPI_20_TABLE_GUID; 64 EFI_GUID devid = DEVICE_PATH_PROTOCOL; 65 EFI_GUID imgid = LOADED_IMAGE_PROTOCOL; 66 EFI_GUID mps = MPS_TABLE_GUID; 67 EFI_GUID netid = EFI_SIMPLE_NETWORK_PROTOCOL; 68 EFI_GUID smbios = SMBIOS_TABLE_GUID; 69 EFI_GUID smbios3 = SMBIOS3_TABLE_GUID; 70 EFI_GUID dxe = DXE_SERVICES_TABLE_GUID; 71 EFI_GUID hoblist = HOB_LIST_TABLE_GUID; 72 EFI_GUID lzmadecomp = LZMA_DECOMPRESSION_GUID; 73 EFI_GUID mpcore = ARM_MP_CORE_INFO_TABLE_GUID; 74 EFI_GUID esrt = ESRT_TABLE_GUID; 75 EFI_GUID memtype = MEMORY_TYPE_INFORMATION_TABLE_GUID; 76 EFI_GUID debugimg = DEBUG_IMAGE_INFO_TABLE_GUID; 77 EFI_GUID fdtdtb = FDT_TABLE_GUID; 78 EFI_GUID inputid = SIMPLE_TEXT_INPUT_PROTOCOL; 79 80 /* 81 * Number of seconds to wait for a keystroke before exiting with failure 82 * in the event no currdev is found. -2 means always break, -1 means 83 * never break, 0 means poll once and then reboot, > 0 means wait for 84 * that many seconds. "fail_timeout" can be set in the environment as 85 * well. 86 */ 87 static int fail_timeout = 5; 88 89 /* 90 * Current boot variable 91 */ 92 UINT16 boot_current; 93 94 static bool 95 has_keyboard(void) 96 { 97 EFI_STATUS status; 98 EFI_DEVICE_PATH *path; 99 EFI_HANDLE *hin, *hin_end, *walker; 100 UINTN sz; 101 bool retval = false; 102 103 /* 104 * Find all the handles that support the SIMPLE_TEXT_INPUT_PROTOCOL and 105 * do the typical dance to get the right sized buffer. 106 */ 107 sz = 0; 108 hin = NULL; 109 status = BS->LocateHandle(ByProtocol, &inputid, 0, &sz, 0); 110 if (status == EFI_BUFFER_TOO_SMALL) { 111 hin = (EFI_HANDLE *)malloc(sz); 112 status = BS->LocateHandle(ByProtocol, &inputid, 0, &sz, 113 hin); 114 if (EFI_ERROR(status)) 115 free(hin); 116 } 117 if (EFI_ERROR(status)) 118 return retval; 119 120 /* 121 * Look at each of the handles. If it supports the device path protocol, 122 * use it to get the device path for this handle. Then see if that 123 * device path matches either the USB device path for keyboards or the 124 * legacy device path for keyboards. 125 */ 126 hin_end = &hin[sz / sizeof(*hin)]; 127 for (walker = hin; walker < hin_end; walker++) { 128 status = BS->HandleProtocol(*walker, &devid, (VOID **)&path); 129 if (EFI_ERROR(status)) 130 continue; 131 132 while (!IsDevicePathEnd(path)) { 133 /* 134 * Check for the ACPI keyboard node. All PNP3xx nodes 135 * are keyboards of different flavors. Note: It is 136 * unclear of there's always a keyboard node when 137 * there's a keyboard controller, or if there's only one 138 * when a keyboard is detected at boot. 139 */ 140 if (DevicePathType(path) == ACPI_DEVICE_PATH && 141 (DevicePathSubType(path) == ACPI_DP || 142 DevicePathSubType(path) == ACPI_EXTENDED_DP)) { 143 ACPI_HID_DEVICE_PATH *acpi; 144 145 acpi = (ACPI_HID_DEVICE_PATH *)(void *)path; 146 if ((EISA_ID_TO_NUM(acpi->HID) & 0xff00) == 0x300 && 147 (acpi->HID & 0xffff) == PNP_EISA_ID_CONST) { 148 retval = true; 149 goto out; 150 } 151 /* 152 * Check for USB keyboard node, if present. Unlike a 153 * PS/2 keyboard, these definitely only appear when 154 * connected to the system. 155 */ 156 } else if (DevicePathType(path) == MESSAGING_DEVICE_PATH && 157 DevicePathSubType(path) == MSG_USB_CLASS_DP) { 158 USB_CLASS_DEVICE_PATH *usb; 159 160 usb = (USB_CLASS_DEVICE_PATH *)(void *)path; 161 if (usb->DeviceClass == 3 && /* HID */ 162 usb->DeviceSubClass == 1 && /* Boot devices */ 163 usb->DeviceProtocol == 1) { /* Boot keyboards */ 164 retval = true; 165 goto out; 166 } 167 } 168 path = NextDevicePathNode(path); 169 } 170 } 171 out: 172 free(hin); 173 return retval; 174 } 175 176 static void 177 set_currdev(const char *devname) 178 { 179 180 env_setenv("currdev", EV_VOLATILE, devname, efi_setcurrdev, env_nounset); 181 env_setenv("loaddev", EV_VOLATILE, devname, env_noset, env_nounset); 182 } 183 184 static void 185 set_currdev_devdesc(struct devdesc *currdev) 186 { 187 const char *devname; 188 189 devname = efi_fmtdev(currdev); 190 printf("Setting currdev to %s\n", devname); 191 set_currdev(devname); 192 } 193 194 static void 195 set_currdev_devsw(struct devsw *dev, int unit) 196 { 197 struct devdesc currdev; 198 199 currdev.d_dev = dev; 200 currdev.d_unit = unit; 201 202 set_currdev_devdesc(&currdev); 203 } 204 205 static void 206 set_currdev_pdinfo(pdinfo_t *dp) 207 { 208 209 /* 210 * Disks are special: they have partitions. if the parent 211 * pointer is non-null, we're a partition not a full disk 212 * and we need to adjust currdev appropriately. 213 */ 214 if (dp->pd_devsw->dv_type == DEVT_DISK) { 215 struct disk_devdesc currdev; 216 217 currdev.dd.d_dev = dp->pd_devsw; 218 if (dp->pd_parent == NULL) { 219 currdev.dd.d_unit = dp->pd_unit; 220 currdev.d_slice = -1; 221 currdev.d_partition = -1; 222 } else { 223 currdev.dd.d_unit = dp->pd_parent->pd_unit; 224 currdev.d_slice = dp->pd_unit; 225 currdev.d_partition = 255; /* Assumes GPT */ 226 } 227 set_currdev_devdesc((struct devdesc *)&currdev); 228 } else { 229 set_currdev_devsw(dp->pd_devsw, dp->pd_unit); 230 } 231 } 232 233 static bool 234 sanity_check_currdev(void) 235 { 236 struct stat st; 237 238 return (stat("/boot/defaults/loader.conf", &st) == 0 || 239 stat("/boot/kernel/kernel", &st) == 0); 240 } 241 242 #ifdef EFI_ZFS_BOOT 243 static bool 244 probe_zfs_currdev(uint64_t guid) 245 { 246 char *devname; 247 struct zfs_devdesc currdev; 248 249 currdev.dd.d_dev = &zfs_dev; 250 currdev.dd.d_unit = 0; 251 currdev.pool_guid = guid; 252 currdev.root_guid = 0; 253 set_currdev_devdesc((struct devdesc *)&currdev); 254 devname = efi_fmtdev(&currdev); 255 init_zfs_bootenv(devname); 256 257 return (sanity_check_currdev()); 258 } 259 #endif 260 261 static bool 262 try_as_currdev(pdinfo_t *hd, pdinfo_t *pp) 263 { 264 uint64_t guid; 265 266 #ifdef EFI_ZFS_BOOT 267 /* 268 * If there's a zpool on this device, try it as a ZFS 269 * filesystem, which has somewhat different setup than all 270 * other types of fs due to imperfect loader integration. 271 * This all stems from ZFS being both a device (zpool) and 272 * a filesystem, plus the boot env feature. 273 */ 274 if (efizfs_get_guid_by_handle(pp->pd_handle, &guid)) 275 return (probe_zfs_currdev(guid)); 276 #endif 277 /* 278 * All other filesystems just need the pdinfo 279 * initialized in the standard way. 280 */ 281 set_currdev_pdinfo(pp); 282 return (sanity_check_currdev()); 283 } 284 285 /* 286 * Sometimes we get filenames that are all upper case 287 * and/or have backslashes in them. Filter all this out 288 * if it looks like we need to do so. 289 */ 290 static void 291 fix_dosisms(char *p) 292 { 293 while (*p) { 294 if (isupper(*p)) 295 *p = tolower(*p); 296 else if (*p == '\\') 297 *p = '/'; 298 p++; 299 } 300 } 301 302 #define SIZE(dp, edp) (size_t)((intptr_t)(void *)edp - (intptr_t)(void *)dp) 303 304 enum { BOOT_INFO_OK = 0, BAD_CHOICE = 1, NOT_SPECIFIC = 2 }; 305 static int 306 match_boot_info(EFI_LOADED_IMAGE *img __unused, char *boot_info, size_t bisz) 307 { 308 uint32_t attr; 309 uint16_t fplen; 310 size_t len; 311 char *walker, *ep; 312 EFI_DEVICE_PATH *dp, *edp, *first_dp, *last_dp; 313 pdinfo_t *pp; 314 CHAR16 *descr; 315 char *kernel = NULL; 316 FILEPATH_DEVICE_PATH *fp; 317 struct stat st; 318 CHAR16 *text; 319 320 /* 321 * FreeBSD encodes it's boot loading path into the boot loader 322 * BootXXXX variable. We look for the last one in the path 323 * and use that to load the kernel. However, if we only fine 324 * one DEVICE_PATH, then there's nothing specific and we should 325 * fall back. 326 * 327 * In an ideal world, we'd look at the image handle we were 328 * passed, match up with the loader we are and then return the 329 * next one in the path. This would be most flexible and cover 330 * many chain booting scenarios where you need to use this 331 * boot loader to get to the next boot loader. However, that 332 * doesn't work. We rarely have the path to the image booted 333 * (just the device) so we can't count on that. So, we do the 334 * enxt best thing, we look through the device path(s) passed 335 * in the BootXXXX varaible. If there's only one, we return 336 * NOT_SPECIFIC. Otherwise, we look at the last one and try to 337 * load that. If we can, we return BOOT_INFO_OK. Otherwise we 338 * return BAD_CHOICE for the caller to sort out. 339 */ 340 if (bisz < sizeof(attr) + sizeof(fplen) + sizeof(CHAR16)) 341 return NOT_SPECIFIC; 342 walker = boot_info; 343 ep = walker + bisz; 344 memcpy(&attr, walker, sizeof(attr)); 345 walker += sizeof(attr); 346 memcpy(&fplen, walker, sizeof(fplen)); 347 walker += sizeof(fplen); 348 descr = (CHAR16 *)(intptr_t)walker; 349 len = ucs2len(descr); 350 walker += (len + 1) * sizeof(CHAR16); 351 last_dp = first_dp = dp = (EFI_DEVICE_PATH *)walker; 352 edp = (EFI_DEVICE_PATH *)(walker + fplen); 353 if ((char *)edp > ep) 354 return NOT_SPECIFIC; 355 while (dp < edp && SIZE(dp, edp) > sizeof(EFI_DEVICE_PATH)) { 356 text = efi_devpath_name(dp); 357 if (text != NULL) { 358 printf(" BootInfo Path: %S\n", text); 359 efi_free_devpath_name(text); 360 } 361 last_dp = dp; 362 dp = (EFI_DEVICE_PATH *)((char *)dp + efi_devpath_length(dp)); 363 } 364 365 /* 366 * If there's only one item in the list, then nothing was 367 * specified. Or if the last path doesn't have a media 368 * path in it. Those show up as various VenHw() nodes 369 * which are basically opaque to us. Don't count those 370 * as something specifc. 371 */ 372 if (last_dp == first_dp) { 373 printf("Ignoring Boot%04x: Only one DP found\n", boot_current); 374 return NOT_SPECIFIC; 375 } 376 if (efi_devpath_to_media_path(last_dp) == NULL) { 377 printf("Ignoring Boot%04x: No Media Path\n", boot_current); 378 return NOT_SPECIFIC; 379 } 380 381 /* 382 * OK. At this point we either have a good path or a bad one. 383 * Let's check. 384 */ 385 pp = efiblk_get_pdinfo_by_device_path(last_dp); 386 if (pp == NULL) { 387 printf("Ignoring Boot%04x: Device Path not found\n", boot_current); 388 return BAD_CHOICE; 389 } 390 set_currdev_pdinfo(pp); 391 if (!sanity_check_currdev()) { 392 printf("Ignoring Boot%04x: sanity check failed\n", boot_current); 393 return BAD_CHOICE; 394 } 395 396 /* 397 * OK. We've found a device that matches, next we need to check the last 398 * component of the path. If it's a file, then we set the default kernel 399 * to that. Otherwise, just use this as the default root. 400 * 401 * Reminder: we're running very early, before we've parsed the defaults 402 * file, so we may need to have a hack override. 403 */ 404 dp = efi_devpath_last_node(last_dp); 405 if (DevicePathType(dp) != MEDIA_DEVICE_PATH || 406 DevicePathSubType(dp) != MEDIA_FILEPATH_DP) { 407 printf("Using Boot%04x for root partition\n", boot_current); 408 return (BOOT_INFO_OK); /* use currdir, default kernel */ 409 } 410 fp = (FILEPATH_DEVICE_PATH *)dp; 411 ucs2_to_utf8(fp->PathName, &kernel); 412 if (kernel == NULL) { 413 printf("Not using Boot%04x: can't decode kernel\n", boot_current); 414 return (BAD_CHOICE); 415 } 416 if (*kernel == '\\' || isupper(*kernel)) 417 fix_dosisms(kernel); 418 if (stat(kernel, &st) != 0) { 419 free(kernel); 420 printf("Not using Boot%04x: can't find %s\n", boot_current, 421 kernel); 422 return (BAD_CHOICE); 423 } 424 setenv("kernel", kernel, 1); 425 free(kernel); 426 text = efi_devpath_name(last_dp); 427 if (text) { 428 printf("Using Boot%04x %S + %s\n", boot_current, text, 429 kernel); 430 efi_free_devpath_name(text); 431 } 432 433 return (BOOT_INFO_OK); 434 } 435 436 /* 437 * Look at the passed-in boot_info, if any. If we find it then we need 438 * to see if we can find ourselves in the boot chain. If we can, and 439 * there's another specified thing to boot next, assume that the file 440 * is loaded from / and use that for the root filesystem. If can't 441 * find the specified thing, we must fail the boot. If we're last on 442 * the list, then we fallback to looking for the first available / 443 * candidate (ZFS, if there's a bootable zpool, otherwise a UFS 444 * partition that has either /boot/defaults/loader.conf on it or 445 * /boot/kernel/kernel (the default kernel) that we can use. 446 * 447 * We always fail if we can't find the right thing. However, as 448 * a concession to buggy UEFI implementations, like u-boot, if 449 * we have determined that the host is violating the UEFI boot 450 * manager protocol, we'll signal the rest of the program that 451 * a drop to the OK boot loader prompt is possible. 452 */ 453 static int 454 find_currdev(EFI_LOADED_IMAGE *img, bool do_bootmgr, bool is_last, 455 char *boot_info, size_t boot_info_sz) 456 { 457 pdinfo_t *dp, *pp; 458 EFI_DEVICE_PATH *devpath, *copy; 459 EFI_HANDLE h; 460 CHAR16 *text; 461 struct devsw *dev; 462 int unit; 463 uint64_t extra; 464 int rv; 465 char *rootdev; 466 467 /* 468 * First choice: if rootdev is already set, use that, even if 469 * it's wrong. 470 */ 471 rootdev = getenv("rootdev"); 472 if (rootdev != NULL) { 473 printf("Setting currdev to configured rootdev %s\n", rootdev); 474 set_currdev(rootdev); 475 return (0); 476 } 477 478 /* 479 * Second choice: If we can find out image boot_info, and there's 480 * a follow-on boot image in that boot_info, use that. In this 481 * case root will be the partition specified in that image and 482 * we'll load the kernel specified by the file path. Should there 483 * not be a filepath, we use the default. This filepath overrides 484 * loader.conf. 485 */ 486 if (do_bootmgr) { 487 rv = match_boot_info(img, boot_info, boot_info_sz); 488 switch (rv) { 489 case BOOT_INFO_OK: /* We found it */ 490 return (0); 491 case BAD_CHOICE: /* specified file not found -> error */ 492 /* XXX do we want to have an escape hatch for last in boot order? */ 493 return (ENOENT); 494 } /* Nothing specified, try normal match */ 495 } 496 497 #ifdef EFI_ZFS_BOOT 498 /* 499 * Did efi_zfs_probe() detect the boot pool? If so, use the zpool 500 * it found, if it's sane. ZFS is the only thing that looks for 501 * disks and pools to boot. This may change in the future, however, 502 * if we allow specifying which pool to boot from via UEFI variables 503 * rather than the bootenv stuff that FreeBSD uses today. 504 */ 505 if (pool_guid != 0) { 506 printf("Trying ZFS pool\n"); 507 if (probe_zfs_currdev(pool_guid)) 508 return (0); 509 } 510 #endif /* EFI_ZFS_BOOT */ 511 512 /* 513 * Try to find the block device by its handle based on the 514 * image we're booting. If we can't find a sane partition, 515 * search all the other partitions of the disk. We do not 516 * search other disks because it's a violation of the UEFI 517 * boot protocol to do so. We fail and let UEFI go on to 518 * the next candidate. 519 */ 520 dp = efiblk_get_pdinfo_by_handle(img->DeviceHandle); 521 if (dp != NULL) { 522 text = efi_devpath_name(dp->pd_devpath); 523 if (text != NULL) { 524 printf("Trying ESP: %S\n", text); 525 efi_free_devpath_name(text); 526 } 527 set_currdev_pdinfo(dp); 528 if (sanity_check_currdev()) 529 return (0); 530 if (dp->pd_parent != NULL) { 531 pdinfo_t *espdp = dp; 532 dp = dp->pd_parent; 533 STAILQ_FOREACH(pp, &dp->pd_part, pd_link) { 534 /* Already tried the ESP */ 535 if (espdp == pp) 536 continue; 537 /* 538 * Roll up the ZFS special case 539 * for those partitions that have 540 * zpools on them. 541 */ 542 text = efi_devpath_name(pp->pd_devpath); 543 if (text != NULL) { 544 printf("Trying: %S\n", text); 545 efi_free_devpath_name(text); 546 } 547 if (try_as_currdev(dp, pp)) 548 return (0); 549 } 550 } 551 } 552 553 /* 554 * Try the device handle from our loaded image first. If that 555 * fails, use the device path from the loaded image and see if 556 * any of the nodes in that path match one of the enumerated 557 * handles. Currently, this handle list is only for netboot. 558 */ 559 if (efi_handle_lookup(img->DeviceHandle, &dev, &unit, &extra) == 0) { 560 set_currdev_devsw(dev, unit); 561 if (sanity_check_currdev()) 562 return (0); 563 } 564 565 copy = NULL; 566 devpath = efi_lookup_image_devpath(IH); 567 while (devpath != NULL) { 568 h = efi_devpath_handle(devpath); 569 if (h == NULL) 570 break; 571 572 free(copy); 573 copy = NULL; 574 575 if (efi_handle_lookup(h, &dev, &unit, &extra) == 0) { 576 set_currdev_devsw(dev, unit); 577 if (sanity_check_currdev()) 578 return (0); 579 } 580 581 devpath = efi_lookup_devpath(h); 582 if (devpath != NULL) { 583 copy = efi_devpath_trim(devpath); 584 devpath = copy; 585 } 586 } 587 free(copy); 588 589 return (ENOENT); 590 } 591 592 static bool 593 interactive_interrupt(const char *msg) 594 { 595 time_t now, then, last; 596 597 last = 0; 598 now = then = getsecs(); 599 printf("%s\n", msg); 600 if (fail_timeout == -2) /* Always break to OK */ 601 return (true); 602 if (fail_timeout == -1) /* Never break to OK */ 603 return (false); 604 do { 605 if (last != now) { 606 printf("press any key to interrupt reboot in %d seconds\r", 607 fail_timeout - (int)(now - then)); 608 last = now; 609 } 610 611 /* XXX no pause or timeout wait for char */ 612 if (ischar()) 613 return (true); 614 now = getsecs(); 615 } while (now - then < fail_timeout); 616 return (false); 617 } 618 619 static int 620 parse_args(int argc, CHAR16 *argv[]) 621 { 622 int i, j, howto; 623 bool vargood; 624 char var[128]; 625 626 /* 627 * Parse the args to set the console settings, etc 628 * boot1.efi passes these in, if it can read /boot.config or /boot/config 629 * or iPXE may be setup to pass these in. Or the optional argument in the 630 * boot environment was used to pass these arguments in (in which case 631 * neither /boot.config nor /boot/config are consulted). 632 * 633 * Loop through the args, and for each one that contains an '=' that is 634 * not the first character, add it to the environment. This allows 635 * loader and kernel env vars to be passed on the command line. Convert 636 * args from UCS-2 to ASCII (16 to 8 bit) as they are copied (though this 637 * method is flawed for non-ASCII characters). 638 */ 639 howto = 0; 640 for (i = 1; i < argc; i++) { 641 cpy16to8(argv[i], var, sizeof(var)); 642 howto |= boot_parse_arg(var); 643 } 644 645 return (howto); 646 } 647 648 static void 649 setenv_int(const char *key, int val) 650 { 651 char buf[20]; 652 653 snprintf(buf, sizeof(buf), "%d", val); 654 setenv(key, buf, 1); 655 } 656 657 /* 658 * Parse ConOut (the list of consoles active) and see if we can find a 659 * serial port and/or a video port. It would be nice to also walk the 660 * ACPI name space to map the UID for the serial port to a port. The 661 * latter is especially hard. 662 */ 663 static int 664 parse_uefi_con_out(void) 665 { 666 int how, rv; 667 int vid_seen = 0, com_seen = 0, seen = 0; 668 size_t sz; 669 char buf[4096], *ep; 670 EFI_DEVICE_PATH *node; 671 ACPI_HID_DEVICE_PATH *acpi; 672 UART_DEVICE_PATH *uart; 673 bool pci_pending; 674 675 how = 0; 676 sz = sizeof(buf); 677 rv = efi_global_getenv("ConOut", buf, &sz); 678 if (rv != EFI_SUCCESS) 679 goto out; 680 ep = buf + sz; 681 node = (EFI_DEVICE_PATH *)buf; 682 while ((char *)node < ep) { 683 pci_pending = false; 684 if (DevicePathType(node) == ACPI_DEVICE_PATH && 685 DevicePathSubType(node) == ACPI_DP) { 686 /* Check for Serial node */ 687 acpi = (void *)node; 688 if (EISA_ID_TO_NUM(acpi->HID) == 0x501) { 689 setenv_int("efi_8250_uid", acpi->UID); 690 com_seen = ++seen; 691 } 692 } else if (DevicePathType(node) == MESSAGING_DEVICE_PATH && 693 DevicePathSubType(node) == MSG_UART_DP) { 694 695 uart = (void *)node; 696 setenv_int("efi_com_speed", uart->BaudRate); 697 } else if (DevicePathType(node) == ACPI_DEVICE_PATH && 698 DevicePathSubType(node) == ACPI_ADR_DP) { 699 /* Check for AcpiAdr() Node for video */ 700 vid_seen = ++seen; 701 } else if (DevicePathType(node) == HARDWARE_DEVICE_PATH && 702 DevicePathSubType(node) == HW_PCI_DP) { 703 /* 704 * Note, vmware fusion has a funky console device 705 * PciRoot(0x0)/Pci(0xf,0x0) 706 * which we can only detect at the end since we also 707 * have to cope with: 708 * PciRoot(0x0)/Pci(0x1f,0x0)/Serial(0x1) 709 * so only match it if it's last. 710 */ 711 pci_pending = true; 712 } 713 node = NextDevicePathNode(node); /* Skip the end node */ 714 } 715 if (pci_pending && vid_seen == 0) 716 vid_seen = ++seen; 717 718 /* 719 * Truth table for RB_MULTIPLE | RB_SERIAL 720 * Value Result 721 * 0 Use only video console 722 * RB_SERIAL Use only serial console 723 * RB_MULTIPLE Use both video and serial console 724 * (but video is primary so gets rc messages) 725 * both Use both video and serial console 726 * (but serial is primary so gets rc messages) 727 * 728 * Try to honor this as best we can. If only one of serial / video 729 * found, then use that. Otherwise, use the first one we found. 730 * This also implies if we found nothing, default to video. 731 */ 732 how = 0; 733 if (vid_seen && com_seen) { 734 how |= RB_MULTIPLE; 735 if (com_seen < vid_seen) 736 how |= RB_SERIAL; 737 } else if (com_seen) 738 how |= RB_SERIAL; 739 out: 740 return (how); 741 } 742 743 EFI_STATUS 744 main(int argc, CHAR16 *argv[]) 745 { 746 EFI_GUID *guid; 747 int howto, i, uhowto; 748 UINTN k; 749 bool has_kbd, is_last; 750 char *s; 751 EFI_DEVICE_PATH *imgpath; 752 CHAR16 *text; 753 EFI_STATUS rv; 754 size_t sz, bosz = 0, bisz = 0; 755 UINT16 boot_order[100]; 756 char boot_info[4096]; 757 EFI_LOADED_IMAGE *img; 758 char buf[32]; 759 bool uefi_boot_mgr; 760 761 archsw.arch_autoload = efi_autoload; 762 archsw.arch_getdev = efi_getdev; 763 archsw.arch_copyin = efi_copyin; 764 archsw.arch_copyout = efi_copyout; 765 archsw.arch_readin = efi_readin; 766 #ifdef EFI_ZFS_BOOT 767 /* Note this needs to be set before ZFS init. */ 768 archsw.arch_zfs_probe = efi_zfs_probe; 769 #endif 770 771 /* Get our loaded image protocol interface structure. */ 772 BS->HandleProtocol(IH, &imgid, (VOID**)&img); 773 774 #ifdef EFI_ZFS_BOOT 775 /* Tell ZFS probe code where we booted from */ 776 efizfs_set_preferred(img->DeviceHandle); 777 #endif 778 /* Init the time source */ 779 efi_time_init(); 780 781 has_kbd = has_keyboard(); 782 783 /* 784 * XXX Chicken-and-egg problem; we want to have console output 785 * early, but some console attributes may depend on reading from 786 * eg. the boot device, which we can't do yet. We can use 787 * printf() etc. once this is done. 788 */ 789 setenv("console", "efi", 1); 790 cons_probe(); 791 792 /* 793 * Initialise the block cache. Set the upper limit. 794 */ 795 bcache_init(32768, 512); 796 797 howto = parse_args(argc, argv); 798 if (!has_kbd && (howto & RB_PROBE)) 799 howto |= RB_SERIAL | RB_MULTIPLE; 800 howto &= ~RB_PROBE; 801 uhowto = parse_uefi_con_out(); 802 803 /* 804 * We now have two notions of console. howto should be viewed as 805 * overrides. If console is already set, don't set it again. 806 */ 807 #define VIDEO_ONLY 0 808 #define SERIAL_ONLY RB_SERIAL 809 #define VID_SER_BOTH RB_MULTIPLE 810 #define SER_VID_BOTH (RB_SERIAL | RB_MULTIPLE) 811 #define CON_MASK (RB_SERIAL | RB_MULTIPLE) 812 if (strcmp(getenv("console"), "efi") == 0) { 813 if ((howto & CON_MASK) == 0) { 814 /* No override, uhowto is controlling and efi cons is perfect */ 815 howto = howto | (uhowto & CON_MASK); 816 setenv("console", "efi", 1); 817 } else if ((howto & CON_MASK) == (uhowto & CON_MASK)) { 818 /* override matches what UEFI told us, efi console is perfect */ 819 setenv("console", "efi", 1); 820 } else if ((uhowto & (CON_MASK)) != 0) { 821 /* 822 * We detected a serial console on ConOut. All possible 823 * overrides include serial. We can't really override what efi 824 * gives us, so we use it knowing it's the best choice. 825 */ 826 setenv("console", "efi", 1); 827 } else { 828 /* 829 * We detected some kind of serial in the override, but ConOut 830 * has no serial, so we have to sort out which case it really is. 831 */ 832 switch (howto & CON_MASK) { 833 case SERIAL_ONLY: 834 setenv("console", "comconsole", 1); 835 break; 836 case VID_SER_BOTH: 837 setenv("console", "efi comconsole", 1); 838 break; 839 case SER_VID_BOTH: 840 setenv("console", "comconsole efi", 1); 841 break; 842 /* case VIDEO_ONLY can't happen -- it's the first if above */ 843 } 844 } 845 } 846 847 /* 848 * howto is set now how we want to export the flags to the kernel, so 849 * set the env based on it. 850 */ 851 boot_howto_to_env(howto); 852 853 if (efi_copy_init()) { 854 printf("failed to allocate staging area\n"); 855 return (EFI_BUFFER_TOO_SMALL); 856 } 857 858 if ((s = getenv("fail_timeout")) != NULL) 859 fail_timeout = strtol(s, NULL, 10); 860 861 /* 862 * Scan the BLOCK IO MEDIA handles then 863 * march through the device switch probing for things. 864 */ 865 i = efipart_inithandles(); 866 if (i != 0 && i != ENOENT) { 867 printf("efipart_inithandles failed with ERRNO %d, expect " 868 "failures\n", i); 869 } 870 871 for (i = 0; devsw[i] != NULL; i++) 872 if (devsw[i]->dv_init != NULL) 873 (devsw[i]->dv_init)(); 874 875 printf("%s\n", bootprog_info); 876 printf(" Command line arguments:"); 877 for (i = 0; i < argc; i++) 878 printf(" %S", argv[i]); 879 printf("\n"); 880 881 printf(" EFI version: %d.%02d\n", ST->Hdr.Revision >> 16, 882 ST->Hdr.Revision & 0xffff); 883 printf(" EFI Firmware: %S (rev %d.%02d)\n", ST->FirmwareVendor, 884 ST->FirmwareRevision >> 16, ST->FirmwareRevision & 0xffff); 885 printf(" Console: %s (%#x)\n", getenv("console"), howto); 886 887 888 889 /* Determine the devpath of our image so we can prefer it. */ 890 text = efi_devpath_name(img->FilePath); 891 if (text != NULL) { 892 printf(" Load Path: %S\n", text); 893 efi_setenv_freebsd_wcs("LoaderPath", text); 894 efi_free_devpath_name(text); 895 } 896 897 rv = BS->HandleProtocol(img->DeviceHandle, &devid, (void **)&imgpath); 898 if (rv == EFI_SUCCESS) { 899 text = efi_devpath_name(imgpath); 900 if (text != NULL) { 901 printf(" Load Device: %S\n", text); 902 efi_setenv_freebsd_wcs("LoaderDev", text); 903 efi_free_devpath_name(text); 904 } 905 } 906 907 uefi_boot_mgr = true; 908 boot_current = 0; 909 sz = sizeof(boot_current); 910 rv = efi_global_getenv("BootCurrent", &boot_current, &sz); 911 if (rv == EFI_SUCCESS) 912 printf(" BootCurrent: %04x\n", boot_current); 913 else { 914 boot_current = 0xffff; 915 uefi_boot_mgr = false; 916 } 917 918 sz = sizeof(boot_order); 919 rv = efi_global_getenv("BootOrder", &boot_order, &sz); 920 if (rv == EFI_SUCCESS) { 921 printf(" BootOrder:"); 922 for (i = 0; i < sz / sizeof(boot_order[0]); i++) 923 printf(" %04x%s", boot_order[i], 924 boot_order[i] == boot_current ? "[*]" : ""); 925 printf("\n"); 926 is_last = boot_order[(sz / sizeof(boot_order[0])) - 1] == boot_current; 927 bosz = sz; 928 } else if (uefi_boot_mgr) { 929 /* 930 * u-boot doesn't set BootOrder, but otherwise participates in the 931 * boot manager protocol. So we fake it here and don't consider it 932 * a failure. 933 */ 934 bosz = sizeof(boot_order[0]); 935 boot_order[0] = boot_current; 936 is_last = true; 937 } 938 939 /* 940 * Next, find the boot info structure the UEFI boot manager is 941 * supposed to setup. We need this so we can walk through it to 942 * find where we are in the booting process and what to try to 943 * boot next. 944 */ 945 if (uefi_boot_mgr) { 946 snprintf(buf, sizeof(buf), "Boot%04X", boot_current); 947 sz = sizeof(boot_info); 948 rv = efi_global_getenv(buf, &boot_info, &sz); 949 if (rv == EFI_SUCCESS) 950 bisz = sz; 951 else 952 uefi_boot_mgr = false; 953 } 954 955 /* 956 * Disable the watchdog timer. By default the boot manager sets 957 * the timer to 5 minutes before invoking a boot option. If we 958 * want to return to the boot manager, we have to disable the 959 * watchdog timer and since we're an interactive program, we don't 960 * want to wait until the user types "quit". The timer may have 961 * fired by then. We don't care if this fails. It does not prevent 962 * normal functioning in any way... 963 */ 964 BS->SetWatchdogTimer(0, 0, 0, NULL); 965 966 /* 967 * Try and find a good currdev based on the image that was booted. 968 * It might be desirable here to have a short pause to allow falling 969 * through to the boot loader instead of returning instantly to follow 970 * the boot protocol and also allow an escape hatch for users wishing 971 * to try something different. 972 */ 973 if (find_currdev(img, uefi_boot_mgr, is_last, boot_info, bisz) != 0) 974 if (!interactive_interrupt("Failed to find bootable partition")) 975 return (EFI_NOT_FOUND); 976 977 efi_init_environment(); 978 979 #if !defined(__arm__) 980 for (k = 0; k < ST->NumberOfTableEntries; k++) { 981 guid = &ST->ConfigurationTable[k].VendorGuid; 982 if (!memcmp(guid, &smbios, sizeof(EFI_GUID))) { 983 char buf[40]; 984 985 snprintf(buf, sizeof(buf), "%p", 986 ST->ConfigurationTable[k].VendorTable); 987 setenv("hint.smbios.0.mem", buf, 1); 988 smbios_detect(ST->ConfigurationTable[k].VendorTable); 989 break; 990 } 991 } 992 #endif 993 994 interact(); /* doesn't return */ 995 996 return (EFI_SUCCESS); /* keep compiler happy */ 997 } 998 999 COMMAND_SET(poweroff, "poweroff", "power off the system", command_poweroff); 1000 1001 static int 1002 command_poweroff(int argc __unused, char *argv[] __unused) 1003 { 1004 int i; 1005 1006 for (i = 0; devsw[i] != NULL; ++i) 1007 if (devsw[i]->dv_cleanup != NULL) 1008 (devsw[i]->dv_cleanup)(); 1009 1010 RS->ResetSystem(EfiResetShutdown, EFI_SUCCESS, 0, NULL); 1011 1012 /* NOTREACHED */ 1013 return (CMD_ERROR); 1014 } 1015 1016 COMMAND_SET(reboot, "reboot", "reboot the system", command_reboot); 1017 1018 static int 1019 command_reboot(int argc, char *argv[]) 1020 { 1021 int i; 1022 1023 for (i = 0; devsw[i] != NULL; ++i) 1024 if (devsw[i]->dv_cleanup != NULL) 1025 (devsw[i]->dv_cleanup)(); 1026 1027 RS->ResetSystem(EfiResetCold, EFI_SUCCESS, 0, NULL); 1028 1029 /* NOTREACHED */ 1030 return (CMD_ERROR); 1031 } 1032 1033 COMMAND_SET(quit, "quit", "exit the loader", command_quit); 1034 1035 static int 1036 command_quit(int argc, char *argv[]) 1037 { 1038 exit(0); 1039 return (CMD_OK); 1040 } 1041 1042 COMMAND_SET(memmap, "memmap", "print memory map", command_memmap); 1043 1044 static int 1045 command_memmap(int argc __unused, char *argv[] __unused) 1046 { 1047 UINTN sz; 1048 EFI_MEMORY_DESCRIPTOR *map, *p; 1049 UINTN key, dsz; 1050 UINT32 dver; 1051 EFI_STATUS status; 1052 int i, ndesc; 1053 char line[80]; 1054 1055 sz = 0; 1056 status = BS->GetMemoryMap(&sz, 0, &key, &dsz, &dver); 1057 if (status != EFI_BUFFER_TOO_SMALL) { 1058 printf("Can't determine memory map size\n"); 1059 return (CMD_ERROR); 1060 } 1061 map = malloc(sz); 1062 status = BS->GetMemoryMap(&sz, map, &key, &dsz, &dver); 1063 if (EFI_ERROR(status)) { 1064 printf("Can't read memory map\n"); 1065 return (CMD_ERROR); 1066 } 1067 1068 ndesc = sz / dsz; 1069 snprintf(line, sizeof(line), "%23s %12s %12s %8s %4s\n", 1070 "Type", "Physical", "Virtual", "#Pages", "Attr"); 1071 pager_open(); 1072 if (pager_output(line)) { 1073 pager_close(); 1074 return (CMD_OK); 1075 } 1076 1077 for (i = 0, p = map; i < ndesc; 1078 i++, p = NextMemoryDescriptor(p, dsz)) { 1079 snprintf(line, sizeof(line), "%23s %012jx %012jx %08jx ", 1080 efi_memory_type(p->Type), (uintmax_t)p->PhysicalStart, 1081 (uintmax_t)p->VirtualStart, (uintmax_t)p->NumberOfPages); 1082 if (pager_output(line)) 1083 break; 1084 1085 if (p->Attribute & EFI_MEMORY_UC) 1086 printf("UC "); 1087 if (p->Attribute & EFI_MEMORY_WC) 1088 printf("WC "); 1089 if (p->Attribute & EFI_MEMORY_WT) 1090 printf("WT "); 1091 if (p->Attribute & EFI_MEMORY_WB) 1092 printf("WB "); 1093 if (p->Attribute & EFI_MEMORY_UCE) 1094 printf("UCE "); 1095 if (p->Attribute & EFI_MEMORY_WP) 1096 printf("WP "); 1097 if (p->Attribute & EFI_MEMORY_RP) 1098 printf("RP "); 1099 if (p->Attribute & EFI_MEMORY_XP) 1100 printf("XP "); 1101 if (p->Attribute & EFI_MEMORY_NV) 1102 printf("NV "); 1103 if (p->Attribute & EFI_MEMORY_MORE_RELIABLE) 1104 printf("MR "); 1105 if (p->Attribute & EFI_MEMORY_RO) 1106 printf("RO "); 1107 if (pager_output("\n")) 1108 break; 1109 } 1110 1111 pager_close(); 1112 return (CMD_OK); 1113 } 1114 1115 COMMAND_SET(configuration, "configuration", "print configuration tables", 1116 command_configuration); 1117 1118 static int 1119 command_configuration(int argc, char *argv[]) 1120 { 1121 UINTN i; 1122 char *name; 1123 1124 printf("NumberOfTableEntries=%lu\n", 1125 (unsigned long)ST->NumberOfTableEntries); 1126 1127 for (i = 0; i < ST->NumberOfTableEntries; i++) { 1128 EFI_GUID *guid; 1129 1130 printf(" "); 1131 guid = &ST->ConfigurationTable[i].VendorGuid; 1132 1133 if (efi_guid_to_name(guid, &name) == true) { 1134 printf(name); 1135 free(name); 1136 } else { 1137 printf("Error while translating UUID to name"); 1138 } 1139 printf(" at %p\n", ST->ConfigurationTable[i].VendorTable); 1140 } 1141 1142 return (CMD_OK); 1143 } 1144 1145 1146 COMMAND_SET(mode, "mode", "change or display EFI text modes", command_mode); 1147 1148 static int 1149 command_mode(int argc, char *argv[]) 1150 { 1151 UINTN cols, rows; 1152 unsigned int mode; 1153 int i; 1154 char *cp; 1155 char rowenv[8]; 1156 EFI_STATUS status; 1157 SIMPLE_TEXT_OUTPUT_INTERFACE *conout; 1158 extern void HO(void); 1159 1160 conout = ST->ConOut; 1161 1162 if (argc > 1) { 1163 mode = strtol(argv[1], &cp, 0); 1164 if (cp[0] != '\0') { 1165 printf("Invalid mode\n"); 1166 return (CMD_ERROR); 1167 } 1168 status = conout->QueryMode(conout, mode, &cols, &rows); 1169 if (EFI_ERROR(status)) { 1170 printf("invalid mode %d\n", mode); 1171 return (CMD_ERROR); 1172 } 1173 status = conout->SetMode(conout, mode); 1174 if (EFI_ERROR(status)) { 1175 printf("couldn't set mode %d\n", mode); 1176 return (CMD_ERROR); 1177 } 1178 sprintf(rowenv, "%u", (unsigned)rows); 1179 setenv("LINES", rowenv, 1); 1180 HO(); /* set cursor */ 1181 return (CMD_OK); 1182 } 1183 1184 printf("Current mode: %d\n", conout->Mode->Mode); 1185 for (i = 0; i <= conout->Mode->MaxMode; i++) { 1186 status = conout->QueryMode(conout, i, &cols, &rows); 1187 if (EFI_ERROR(status)) 1188 continue; 1189 printf("Mode %d: %u columns, %u rows\n", i, (unsigned)cols, 1190 (unsigned)rows); 1191 } 1192 1193 if (i != 0) 1194 printf("Select a mode with the command \"mode <number>\"\n"); 1195 1196 return (CMD_OK); 1197 } 1198 1199 COMMAND_SET(lsefi, "lsefi", "list EFI handles", command_lsefi); 1200 1201 static int 1202 command_lsefi(int argc __unused, char *argv[] __unused) 1203 { 1204 char *name; 1205 EFI_HANDLE *buffer = NULL; 1206 EFI_HANDLE handle; 1207 UINTN bufsz = 0, i, j; 1208 EFI_STATUS status; 1209 int ret; 1210 1211 status = BS->LocateHandle(AllHandles, NULL, NULL, &bufsz, buffer); 1212 if (status != EFI_BUFFER_TOO_SMALL) { 1213 snprintf(command_errbuf, sizeof (command_errbuf), 1214 "unexpected error: %lld", (long long)status); 1215 return (CMD_ERROR); 1216 } 1217 if ((buffer = malloc(bufsz)) == NULL) { 1218 sprintf(command_errbuf, "out of memory"); 1219 return (CMD_ERROR); 1220 } 1221 1222 status = BS->LocateHandle(AllHandles, NULL, NULL, &bufsz, buffer); 1223 if (EFI_ERROR(status)) { 1224 free(buffer); 1225 snprintf(command_errbuf, sizeof (command_errbuf), 1226 "LocateHandle() error: %lld", (long long)status); 1227 return (CMD_ERROR); 1228 } 1229 1230 pager_open(); 1231 for (i = 0; i < (bufsz / sizeof (EFI_HANDLE)); i++) { 1232 UINTN nproto = 0; 1233 EFI_GUID **protocols = NULL; 1234 1235 handle = buffer[i]; 1236 printf("Handle %p", handle); 1237 if (pager_output("\n")) 1238 break; 1239 /* device path */ 1240 1241 status = BS->ProtocolsPerHandle(handle, &protocols, &nproto); 1242 if (EFI_ERROR(status)) { 1243 snprintf(command_errbuf, sizeof (command_errbuf), 1244 "ProtocolsPerHandle() error: %lld", 1245 (long long)status); 1246 continue; 1247 } 1248 1249 for (j = 0; j < nproto; j++) { 1250 if (efi_guid_to_name(protocols[j], &name) == true) { 1251 printf(" %s", name); 1252 free(name); 1253 } else { 1254 printf("Error while translating UUID to name"); 1255 } 1256 if ((ret = pager_output("\n")) != 0) 1257 break; 1258 } 1259 BS->FreePool(protocols); 1260 if (ret != 0) 1261 break; 1262 } 1263 pager_close(); 1264 free(buffer); 1265 return (CMD_OK); 1266 } 1267 1268 #ifdef LOADER_FDT_SUPPORT 1269 extern int command_fdt_internal(int argc, char *argv[]); 1270 1271 /* 1272 * Since proper fdt command handling function is defined in fdt_loader_cmd.c, 1273 * and declaring it as extern is in contradiction with COMMAND_SET() macro 1274 * (which uses static pointer), we're defining wrapper function, which 1275 * calls the proper fdt handling routine. 1276 */ 1277 static int 1278 command_fdt(int argc, char *argv[]) 1279 { 1280 1281 return (command_fdt_internal(argc, argv)); 1282 } 1283 1284 COMMAND_SET(fdt, "fdt", "flattened device tree handling", command_fdt); 1285 #endif 1286 1287 /* 1288 * Chain load another efi loader. 1289 */ 1290 static int 1291 command_chain(int argc, char *argv[]) 1292 { 1293 EFI_GUID LoadedImageGUID = LOADED_IMAGE_PROTOCOL; 1294 EFI_HANDLE loaderhandle; 1295 EFI_LOADED_IMAGE *loaded_image; 1296 EFI_STATUS status; 1297 struct stat st; 1298 struct devdesc *dev; 1299 char *name, *path; 1300 void *buf; 1301 int fd; 1302 1303 if (argc < 2) { 1304 command_errmsg = "wrong number of arguments"; 1305 return (CMD_ERROR); 1306 } 1307 1308 name = argv[1]; 1309 1310 if ((fd = open(name, O_RDONLY)) < 0) { 1311 command_errmsg = "no such file"; 1312 return (CMD_ERROR); 1313 } 1314 1315 if (fstat(fd, &st) < -1) { 1316 command_errmsg = "stat failed"; 1317 close(fd); 1318 return (CMD_ERROR); 1319 } 1320 1321 status = BS->AllocatePool(EfiLoaderCode, (UINTN)st.st_size, &buf); 1322 if (status != EFI_SUCCESS) { 1323 command_errmsg = "failed to allocate buffer"; 1324 close(fd); 1325 return (CMD_ERROR); 1326 } 1327 if (read(fd, buf, st.st_size) != st.st_size) { 1328 command_errmsg = "error while reading the file"; 1329 (void)BS->FreePool(buf); 1330 close(fd); 1331 return (CMD_ERROR); 1332 } 1333 close(fd); 1334 status = BS->LoadImage(FALSE, IH, NULL, buf, st.st_size, &loaderhandle); 1335 (void)BS->FreePool(buf); 1336 if (status != EFI_SUCCESS) { 1337 command_errmsg = "LoadImage failed"; 1338 return (CMD_ERROR); 1339 } 1340 status = BS->HandleProtocol(loaderhandle, &LoadedImageGUID, 1341 (void **)&loaded_image); 1342 1343 if (argc > 2) { 1344 int i, len = 0; 1345 CHAR16 *argp; 1346 1347 for (i = 2; i < argc; i++) 1348 len += strlen(argv[i]) + 1; 1349 1350 len *= sizeof (*argp); 1351 loaded_image->LoadOptions = argp = malloc (len); 1352 loaded_image->LoadOptionsSize = len; 1353 for (i = 2; i < argc; i++) { 1354 char *ptr = argv[i]; 1355 while (*ptr) 1356 *(argp++) = *(ptr++); 1357 *(argp++) = ' '; 1358 } 1359 *(--argv) = 0; 1360 } 1361 1362 if (efi_getdev((void **)&dev, name, (const char **)&path) == 0) { 1363 #ifdef EFI_ZFS_BOOT 1364 struct zfs_devdesc *z_dev; 1365 #endif 1366 struct disk_devdesc *d_dev; 1367 pdinfo_t *hd, *pd; 1368 1369 switch (dev->d_dev->dv_type) { 1370 #ifdef EFI_ZFS_BOOT 1371 case DEVT_ZFS: 1372 z_dev = (struct zfs_devdesc *)dev; 1373 loaded_image->DeviceHandle = 1374 efizfs_get_handle_by_guid(z_dev->pool_guid); 1375 break; 1376 #endif 1377 case DEVT_NET: 1378 loaded_image->DeviceHandle = 1379 efi_find_handle(dev->d_dev, dev->d_unit); 1380 break; 1381 default: 1382 hd = efiblk_get_pdinfo(dev); 1383 if (STAILQ_EMPTY(&hd->pd_part)) { 1384 loaded_image->DeviceHandle = hd->pd_handle; 1385 break; 1386 } 1387 d_dev = (struct disk_devdesc *)dev; 1388 STAILQ_FOREACH(pd, &hd->pd_part, pd_link) { 1389 /* 1390 * d_partition should be 255 1391 */ 1392 if (pd->pd_unit == (uint32_t)d_dev->d_slice) { 1393 loaded_image->DeviceHandle = 1394 pd->pd_handle; 1395 break; 1396 } 1397 } 1398 break; 1399 } 1400 } 1401 1402 dev_cleanup(); 1403 status = BS->StartImage(loaderhandle, NULL, NULL); 1404 if (status != EFI_SUCCESS) { 1405 command_errmsg = "StartImage failed"; 1406 free(loaded_image->LoadOptions); 1407 loaded_image->LoadOptions = NULL; 1408 status = BS->UnloadImage(loaded_image); 1409 return (CMD_ERROR); 1410 } 1411 1412 return (CMD_ERROR); /* not reached */ 1413 } 1414 1415 COMMAND_SET(chain, "chain", "chain load file", command_chain); 1416