xref: /freebsd/stand/efi/loader/main.c (revision 559af1ec16576f9f3e41318d66147f4df4fb8e87)
1 /*-
2  * Copyright (c) 2008-2010 Rui Paulo
3  * Copyright (c) 2006 Marcel Moolenaar
4  * All rights reserved.
5  *
6  * Copyright (c) 2018 Netflix, Inc.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <stand.h>
34 
35 #include <sys/disk.h>
36 #include <sys/param.h>
37 #include <sys/reboot.h>
38 #include <sys/boot.h>
39 #include <stdint.h>
40 #include <string.h>
41 #include <setjmp.h>
42 #include <disk.h>
43 
44 #include <efi.h>
45 #include <efilib.h>
46 #include <efichar.h>
47 
48 #include <uuid.h>
49 
50 #include <bootstrap.h>
51 #include <smbios.h>
52 
53 #ifdef EFI_ZFS_BOOT
54 #include <libzfs.h>
55 #include "efizfs.h"
56 #endif
57 
58 #include "loader_efi.h"
59 
60 struct arch_switch archsw;	/* MI/MD interface boundary */
61 
62 EFI_GUID acpi = ACPI_TABLE_GUID;
63 EFI_GUID acpi20 = ACPI_20_TABLE_GUID;
64 EFI_GUID devid = DEVICE_PATH_PROTOCOL;
65 EFI_GUID imgid = LOADED_IMAGE_PROTOCOL;
66 EFI_GUID mps = MPS_TABLE_GUID;
67 EFI_GUID netid = EFI_SIMPLE_NETWORK_PROTOCOL;
68 EFI_GUID smbios = SMBIOS_TABLE_GUID;
69 EFI_GUID smbios3 = SMBIOS3_TABLE_GUID;
70 EFI_GUID dxe = DXE_SERVICES_TABLE_GUID;
71 EFI_GUID hoblist = HOB_LIST_TABLE_GUID;
72 EFI_GUID lzmadecomp = LZMA_DECOMPRESSION_GUID;
73 EFI_GUID mpcore = ARM_MP_CORE_INFO_TABLE_GUID;
74 EFI_GUID esrt = ESRT_TABLE_GUID;
75 EFI_GUID memtype = MEMORY_TYPE_INFORMATION_TABLE_GUID;
76 EFI_GUID debugimg = DEBUG_IMAGE_INFO_TABLE_GUID;
77 EFI_GUID fdtdtb = FDT_TABLE_GUID;
78 EFI_GUID inputid = SIMPLE_TEXT_INPUT_PROTOCOL;
79 
80 /*
81  * Number of seconds to wait for a keystroke before exiting with failure
82  * in the event no currdev is found. -2 means always break, -1 means
83  * never break, 0 means poll once and then reboot, > 0 means wait for
84  * that many seconds. "fail_timeout" can be set in the environment as
85  * well.
86  */
87 static int fail_timeout = 5;
88 
89 /*
90  * Current boot variable
91  */
92 UINT16 boot_current;
93 
94 static bool
95 has_keyboard(void)
96 {
97 	EFI_STATUS status;
98 	EFI_DEVICE_PATH *path;
99 	EFI_HANDLE *hin, *hin_end, *walker;
100 	UINTN sz;
101 	bool retval = false;
102 
103 	/*
104 	 * Find all the handles that support the SIMPLE_TEXT_INPUT_PROTOCOL and
105 	 * do the typical dance to get the right sized buffer.
106 	 */
107 	sz = 0;
108 	hin = NULL;
109 	status = BS->LocateHandle(ByProtocol, &inputid, 0, &sz, 0);
110 	if (status == EFI_BUFFER_TOO_SMALL) {
111 		hin = (EFI_HANDLE *)malloc(sz);
112 		status = BS->LocateHandle(ByProtocol, &inputid, 0, &sz,
113 		    hin);
114 		if (EFI_ERROR(status))
115 			free(hin);
116 	}
117 	if (EFI_ERROR(status))
118 		return retval;
119 
120 	/*
121 	 * Look at each of the handles. If it supports the device path protocol,
122 	 * use it to get the device path for this handle. Then see if that
123 	 * device path matches either the USB device path for keyboards or the
124 	 * legacy device path for keyboards.
125 	 */
126 	hin_end = &hin[sz / sizeof(*hin)];
127 	for (walker = hin; walker < hin_end; walker++) {
128 		status = BS->HandleProtocol(*walker, &devid, (VOID **)&path);
129 		if (EFI_ERROR(status))
130 			continue;
131 
132 		while (!IsDevicePathEnd(path)) {
133 			/*
134 			 * Check for the ACPI keyboard node. All PNP3xx nodes
135 			 * are keyboards of different flavors. Note: It is
136 			 * unclear of there's always a keyboard node when
137 			 * there's a keyboard controller, or if there's only one
138 			 * when a keyboard is detected at boot.
139 			 */
140 			if (DevicePathType(path) == ACPI_DEVICE_PATH &&
141 			    (DevicePathSubType(path) == ACPI_DP ||
142 				DevicePathSubType(path) == ACPI_EXTENDED_DP)) {
143 				ACPI_HID_DEVICE_PATH  *acpi;
144 
145 				acpi = (ACPI_HID_DEVICE_PATH *)(void *)path;
146 				if ((EISA_ID_TO_NUM(acpi->HID) & 0xff00) == 0x300 &&
147 				    (acpi->HID & 0xffff) == PNP_EISA_ID_CONST) {
148 					retval = true;
149 					goto out;
150 				}
151 			/*
152 			 * Check for USB keyboard node, if present. Unlike a
153 			 * PS/2 keyboard, these definitely only appear when
154 			 * connected to the system.
155 			 */
156 			} else if (DevicePathType(path) == MESSAGING_DEVICE_PATH &&
157 			    DevicePathSubType(path) == MSG_USB_CLASS_DP) {
158 				USB_CLASS_DEVICE_PATH *usb;
159 
160 				usb = (USB_CLASS_DEVICE_PATH *)(void *)path;
161 				if (usb->DeviceClass == 3 && /* HID */
162 				    usb->DeviceSubClass == 1 && /* Boot devices */
163 				    usb->DeviceProtocol == 1) { /* Boot keyboards */
164 					retval = true;
165 					goto out;
166 				}
167 			}
168 			path = NextDevicePathNode(path);
169 		}
170 	}
171 out:
172 	free(hin);
173 	return retval;
174 }
175 
176 static void
177 set_currdev(const char *devname)
178 {
179 
180 	env_setenv("currdev", EV_VOLATILE, devname, efi_setcurrdev, env_nounset);
181 	env_setenv("loaddev", EV_VOLATILE, devname, env_noset, env_nounset);
182 }
183 
184 static void
185 set_currdev_devdesc(struct devdesc *currdev)
186 {
187 	const char *devname;
188 
189 	devname = efi_fmtdev(currdev);
190 	printf("Setting currdev to %s\n", devname);
191 	set_currdev(devname);
192 }
193 
194 static void
195 set_currdev_devsw(struct devsw *dev, int unit)
196 {
197 	struct devdesc currdev;
198 
199 	currdev.d_dev = dev;
200 	currdev.d_unit = unit;
201 
202 	set_currdev_devdesc(&currdev);
203 }
204 
205 static void
206 set_currdev_pdinfo(pdinfo_t *dp)
207 {
208 
209 	/*
210 	 * Disks are special: they have partitions. if the parent
211 	 * pointer is non-null, we're a partition not a full disk
212 	 * and we need to adjust currdev appropriately.
213 	 */
214 	if (dp->pd_devsw->dv_type == DEVT_DISK) {
215 		struct disk_devdesc currdev;
216 
217 		currdev.dd.d_dev = dp->pd_devsw;
218 		if (dp->pd_parent == NULL) {
219 			currdev.dd.d_unit = dp->pd_unit;
220 			currdev.d_slice = -1;
221 			currdev.d_partition = -1;
222 		} else {
223 			currdev.dd.d_unit = dp->pd_parent->pd_unit;
224 			currdev.d_slice = dp->pd_unit;
225 			currdev.d_partition = 255;	/* Assumes GPT */
226 		}
227 		set_currdev_devdesc((struct devdesc *)&currdev);
228 	} else {
229 		set_currdev_devsw(dp->pd_devsw, dp->pd_unit);
230 	}
231 }
232 
233 static bool
234 sanity_check_currdev(void)
235 {
236 	struct stat st;
237 
238 	return (stat("/boot/defaults/loader.conf", &st) == 0 ||
239 	    stat("/boot/kernel/kernel", &st) == 0);
240 }
241 
242 #ifdef EFI_ZFS_BOOT
243 static bool
244 probe_zfs_currdev(uint64_t guid)
245 {
246 	char *devname;
247 	struct zfs_devdesc currdev;
248 
249 	currdev.dd.d_dev = &zfs_dev;
250 	currdev.dd.d_unit = 0;
251 	currdev.pool_guid = guid;
252 	currdev.root_guid = 0;
253 	set_currdev_devdesc((struct devdesc *)&currdev);
254 	devname = efi_fmtdev(&currdev);
255 	init_zfs_bootenv(devname);
256 
257 	return (sanity_check_currdev());
258 }
259 #endif
260 
261 static bool
262 try_as_currdev(pdinfo_t *hd, pdinfo_t *pp)
263 {
264 	uint64_t guid;
265 
266 #ifdef EFI_ZFS_BOOT
267 	/*
268 	 * If there's a zpool on this device, try it as a ZFS
269 	 * filesystem, which has somewhat different setup than all
270 	 * other types of fs due to imperfect loader integration.
271 	 * This all stems from ZFS being both a device (zpool) and
272 	 * a filesystem, plus the boot env feature.
273 	 */
274 	if (efizfs_get_guid_by_handle(pp->pd_handle, &guid))
275 		return (probe_zfs_currdev(guid));
276 #endif
277 	/*
278 	 * All other filesystems just need the pdinfo
279 	 * initialized in the standard way.
280 	 */
281 	set_currdev_pdinfo(pp);
282 	return (sanity_check_currdev());
283 }
284 
285 /*
286  * Sometimes we get filenames that are all upper case
287  * and/or have backslashes in them. Filter all this out
288  * if it looks like we need to do so.
289  */
290 static void
291 fix_dosisms(char *p)
292 {
293 	while (*p) {
294 		if (isupper(*p))
295 			*p = tolower(*p);
296 		else if (*p == '\\')
297 			*p = '/';
298 		p++;
299 	}
300 }
301 
302 #define SIZE(dp, edp) (size_t)((intptr_t)(void *)edp - (intptr_t)(void *)dp)
303 
304 enum { BOOT_INFO_OK = 0, BAD_CHOICE = 1, NOT_SPECIFIC = 2  };
305 static int
306 match_boot_info(EFI_LOADED_IMAGE *img __unused, char *boot_info, size_t bisz)
307 {
308 	uint32_t attr;
309 	uint16_t fplen;
310 	size_t len;
311 	char *walker, *ep;
312 	EFI_DEVICE_PATH *dp, *edp, *first_dp, *last_dp;
313 	pdinfo_t *pp;
314 	CHAR16 *descr;
315 	char *kernel = NULL;
316 	FILEPATH_DEVICE_PATH  *fp;
317 	struct stat st;
318 	CHAR16 *text;
319 
320 	/*
321 	 * FreeBSD encodes it's boot loading path into the boot loader
322 	 * BootXXXX variable. We look for the last one in the path
323 	 * and use that to load the kernel. However, if we only fine
324 	 * one DEVICE_PATH, then there's nothing specific and we should
325 	 * fall back.
326 	 *
327 	 * In an ideal world, we'd look at the image handle we were
328 	 * passed, match up with the loader we are and then return the
329 	 * next one in the path. This would be most flexible and cover
330 	 * many chain booting scenarios where you need to use this
331 	 * boot loader to get to the next boot loader. However, that
332 	 * doesn't work. We rarely have the path to the image booted
333 	 * (just the device) so we can't count on that. So, we do the
334 	 * enxt best thing, we look through the device path(s) passed
335 	 * in the BootXXXX varaible. If there's only one, we return
336 	 * NOT_SPECIFIC. Otherwise, we look at the last one and try to
337 	 * load that. If we can, we return BOOT_INFO_OK. Otherwise we
338 	 * return BAD_CHOICE for the caller to sort out.
339 	 */
340 	if (bisz < sizeof(attr) + sizeof(fplen) + sizeof(CHAR16))
341 		return NOT_SPECIFIC;
342 	walker = boot_info;
343 	ep = walker + bisz;
344 	memcpy(&attr, walker, sizeof(attr));
345 	walker += sizeof(attr);
346 	memcpy(&fplen, walker, sizeof(fplen));
347 	walker += sizeof(fplen);
348 	descr = (CHAR16 *)(intptr_t)walker;
349 	len = ucs2len(descr);
350 	walker += (len + 1) * sizeof(CHAR16);
351 	last_dp = first_dp = dp = (EFI_DEVICE_PATH *)walker;
352 	edp = (EFI_DEVICE_PATH *)(walker + fplen);
353 	if ((char *)edp > ep)
354 		return NOT_SPECIFIC;
355 	while (dp < edp && SIZE(dp, edp) > sizeof(EFI_DEVICE_PATH)) {
356 		text = efi_devpath_name(dp);
357 		if (text != NULL) {
358 			printf("   BootInfo Path: %S\n", text);
359 			efi_free_devpath_name(text);
360 		}
361 		last_dp = dp;
362 		dp = (EFI_DEVICE_PATH *)((char *)dp + efi_devpath_length(dp));
363 	}
364 
365 	/*
366 	 * If there's only one item in the list, then nothing was
367 	 * specified. Or if the last path doesn't have a media
368 	 * path in it. Those show up as various VenHw() nodes
369 	 * which are basically opaque to us. Don't count those
370 	 * as something specifc.
371 	 */
372 	if (last_dp == first_dp) {
373 		printf("Ignoring Boot%04x: Only one DP found\n", boot_current);
374 		return NOT_SPECIFIC;
375 	}
376 	if (efi_devpath_to_media_path(last_dp) == NULL) {
377 		printf("Ignoring Boot%04x: No Media Path\n", boot_current);
378 		return NOT_SPECIFIC;
379 	}
380 
381 	/*
382 	 * OK. At this point we either have a good path or a bad one.
383 	 * Let's check.
384 	 */
385 	pp = efiblk_get_pdinfo_by_device_path(last_dp);
386 	if (pp == NULL) {
387 		printf("Ignoring Boot%04x: Device Path not found\n", boot_current);
388 		return BAD_CHOICE;
389 	}
390 	set_currdev_pdinfo(pp);
391 	if (!sanity_check_currdev()) {
392 		printf("Ignoring Boot%04x: sanity check failed\n", boot_current);
393 		return BAD_CHOICE;
394 	}
395 
396 	/*
397 	 * OK. We've found a device that matches, next we need to check the last
398 	 * component of the path. If it's a file, then we set the default kernel
399 	 * to that. Otherwise, just use this as the default root.
400 	 *
401 	 * Reminder: we're running very early, before we've parsed the defaults
402 	 * file, so we may need to have a hack override.
403 	 */
404 	dp = efi_devpath_last_node(last_dp);
405 	if (DevicePathType(dp) !=  MEDIA_DEVICE_PATH ||
406 	    DevicePathSubType(dp) != MEDIA_FILEPATH_DP) {
407 		printf("Using Boot%04x for root partition\n", boot_current);
408 		return (BOOT_INFO_OK);		/* use currdir, default kernel */
409 	}
410 	fp = (FILEPATH_DEVICE_PATH *)dp;
411 	ucs2_to_utf8(fp->PathName, &kernel);
412 	if (kernel == NULL) {
413 		printf("Not using Boot%04x: can't decode kernel\n", boot_current);
414 		return (BAD_CHOICE);
415 	}
416 	if (*kernel == '\\' || isupper(*kernel))
417 		fix_dosisms(kernel);
418 	if (stat(kernel, &st) != 0) {
419 		free(kernel);
420 		printf("Not using Boot%04x: can't find %s\n", boot_current,
421 		    kernel);
422 		return (BAD_CHOICE);
423 	}
424 	setenv("kernel", kernel, 1);
425 	free(kernel);
426 	text = efi_devpath_name(last_dp);
427 	if (text) {
428 		printf("Using Boot%04x %S + %s\n", boot_current, text,
429 		    kernel);
430 		efi_free_devpath_name(text);
431 	}
432 
433 	return (BOOT_INFO_OK);
434 }
435 
436 /*
437  * Look at the passed-in boot_info, if any. If we find it then we need
438  * to see if we can find ourselves in the boot chain. If we can, and
439  * there's another specified thing to boot next, assume that the file
440  * is loaded from / and use that for the root filesystem. If can't
441  * find the specified thing, we must fail the boot. If we're last on
442  * the list, then we fallback to looking for the first available /
443  * candidate (ZFS, if there's a bootable zpool, otherwise a UFS
444  * partition that has either /boot/defaults/loader.conf on it or
445  * /boot/kernel/kernel (the default kernel) that we can use.
446  *
447  * We always fail if we can't find the right thing. However, as
448  * a concession to buggy UEFI implementations, like u-boot, if
449  * we have determined that the host is violating the UEFI boot
450  * manager protocol, we'll signal the rest of the program that
451  * a drop to the OK boot loader prompt is possible.
452  */
453 static int
454 find_currdev(EFI_LOADED_IMAGE *img, bool do_bootmgr, bool is_last,
455     char *boot_info, size_t boot_info_sz)
456 {
457 	pdinfo_t *dp, *pp;
458 	EFI_DEVICE_PATH *devpath, *copy;
459 	EFI_HANDLE h;
460 	CHAR16 *text;
461 	struct devsw *dev;
462 	int unit;
463 	uint64_t extra;
464 	int rv;
465 	char *rootdev;
466 
467 	/*
468 	 * First choice: if rootdev is already set, use that, even if
469 	 * it's wrong.
470 	 */
471 	rootdev = getenv("rootdev");
472 	if (rootdev != NULL) {
473 		printf("Setting currdev to configured rootdev %s\n", rootdev);
474 		set_currdev(rootdev);
475 		return (0);
476 	}
477 
478 	/*
479 	 * Second choice: If we can find out image boot_info, and there's
480 	 * a follow-on boot image in that boot_info, use that. In this
481 	 * case root will be the partition specified in that image and
482 	 * we'll load the kernel specified by the file path. Should there
483 	 * not be a filepath, we use the default. This filepath overrides
484 	 * loader.conf.
485 	 */
486 	if (do_bootmgr) {
487 		rv = match_boot_info(img, boot_info, boot_info_sz);
488 		switch (rv) {
489 		case BOOT_INFO_OK:	/* We found it */
490 			return (0);
491 		case BAD_CHOICE:	/* specified file not found -> error */
492 			/* XXX do we want to have an escape hatch for last in boot order? */
493 			return (ENOENT);
494 		} /* Nothing specified, try normal match */
495 	}
496 
497 #ifdef EFI_ZFS_BOOT
498 	/*
499 	 * Did efi_zfs_probe() detect the boot pool? If so, use the zpool
500 	 * it found, if it's sane. ZFS is the only thing that looks for
501 	 * disks and pools to boot. This may change in the future, however,
502 	 * if we allow specifying which pool to boot from via UEFI variables
503 	 * rather than the bootenv stuff that FreeBSD uses today.
504 	 */
505 	if (pool_guid != 0) {
506 		printf("Trying ZFS pool\n");
507 		if (probe_zfs_currdev(pool_guid))
508 			return (0);
509 	}
510 #endif /* EFI_ZFS_BOOT */
511 
512 	/*
513 	 * Try to find the block device by its handle based on the
514 	 * image we're booting. If we can't find a sane partition,
515 	 * search all the other partitions of the disk. We do not
516 	 * search other disks because it's a violation of the UEFI
517 	 * boot protocol to do so. We fail and let UEFI go on to
518 	 * the next candidate.
519 	 */
520 	dp = efiblk_get_pdinfo_by_handle(img->DeviceHandle);
521 	if (dp != NULL) {
522 		text = efi_devpath_name(dp->pd_devpath);
523 		if (text != NULL) {
524 			printf("Trying ESP: %S\n", text);
525 			efi_free_devpath_name(text);
526 		}
527 		set_currdev_pdinfo(dp);
528 		if (sanity_check_currdev())
529 			return (0);
530 		if (dp->pd_parent != NULL) {
531 			pdinfo_t *espdp = dp;
532 			dp = dp->pd_parent;
533 			STAILQ_FOREACH(pp, &dp->pd_part, pd_link) {
534 				/* Already tried the ESP */
535 				if (espdp == pp)
536 					continue;
537 				/*
538 				 * Roll up the ZFS special case
539 				 * for those partitions that have
540 				 * zpools on them.
541 				 */
542 				text = efi_devpath_name(pp->pd_devpath);
543 				if (text != NULL) {
544 					printf("Trying: %S\n", text);
545 					efi_free_devpath_name(text);
546 				}
547 				if (try_as_currdev(dp, pp))
548 					return (0);
549 			}
550 		}
551 	}
552 
553 	/*
554 	 * Try the device handle from our loaded image first.  If that
555 	 * fails, use the device path from the loaded image and see if
556 	 * any of the nodes in that path match one of the enumerated
557 	 * handles. Currently, this handle list is only for netboot.
558 	 */
559 	if (efi_handle_lookup(img->DeviceHandle, &dev, &unit, &extra) == 0) {
560 		set_currdev_devsw(dev, unit);
561 		if (sanity_check_currdev())
562 			return (0);
563 	}
564 
565 	copy = NULL;
566 	devpath = efi_lookup_image_devpath(IH);
567 	while (devpath != NULL) {
568 		h = efi_devpath_handle(devpath);
569 		if (h == NULL)
570 			break;
571 
572 		free(copy);
573 		copy = NULL;
574 
575 		if (efi_handle_lookup(h, &dev, &unit, &extra) == 0) {
576 			set_currdev_devsw(dev, unit);
577 			if (sanity_check_currdev())
578 				return (0);
579 		}
580 
581 		devpath = efi_lookup_devpath(h);
582 		if (devpath != NULL) {
583 			copy = efi_devpath_trim(devpath);
584 			devpath = copy;
585 		}
586 	}
587 	free(copy);
588 
589 	return (ENOENT);
590 }
591 
592 static bool
593 interactive_interrupt(const char *msg)
594 {
595 	time_t now, then, last;
596 
597 	last = 0;
598 	now = then = getsecs();
599 	printf("%s\n", msg);
600 	if (fail_timeout == -2)		/* Always break to OK */
601 		return (true);
602 	if (fail_timeout == -1)		/* Never break to OK */
603 		return (false);
604 	do {
605 		if (last != now) {
606 			printf("press any key to interrupt reboot in %d seconds\r",
607 			    fail_timeout - (int)(now - then));
608 			last = now;
609 		}
610 
611 		/* XXX no pause or timeout wait for char */
612 		if (ischar())
613 			return (true);
614 		now = getsecs();
615 	} while (now - then < fail_timeout);
616 	return (false);
617 }
618 
619 static int
620 parse_args(int argc, CHAR16 *argv[])
621 {
622 	int i, j, howto;
623 	bool vargood;
624 	char var[128];
625 
626 	/*
627 	 * Parse the args to set the console settings, etc
628 	 * boot1.efi passes these in, if it can read /boot.config or /boot/config
629 	 * or iPXE may be setup to pass these in. Or the optional argument in the
630 	 * boot environment was used to pass these arguments in (in which case
631 	 * neither /boot.config nor /boot/config are consulted).
632 	 *
633 	 * Loop through the args, and for each one that contains an '=' that is
634 	 * not the first character, add it to the environment.  This allows
635 	 * loader and kernel env vars to be passed on the command line.  Convert
636 	 * args from UCS-2 to ASCII (16 to 8 bit) as they are copied (though this
637 	 * method is flawed for non-ASCII characters).
638 	 */
639 	howto = 0;
640 	for (i = 1; i < argc; i++) {
641 		cpy16to8(argv[i], var, sizeof(var));
642 		howto |= boot_parse_arg(var);
643 	}
644 
645 	return (howto);
646 }
647 
648 static void
649 setenv_int(const char *key, int val)
650 {
651 	char buf[20];
652 
653 	snprintf(buf, sizeof(buf), "%d", val);
654 	setenv(key, buf, 1);
655 }
656 
657 /*
658  * Parse ConOut (the list of consoles active) and see if we can find a
659  * serial port and/or a video port. It would be nice to also walk the
660  * ACPI name space to map the UID for the serial port to a port. The
661  * latter is especially hard.
662  */
663 static int
664 parse_uefi_con_out(void)
665 {
666 	int how, rv;
667 	int vid_seen = 0, com_seen = 0, seen = 0;
668 	size_t sz;
669 	char buf[4096], *ep;
670 	EFI_DEVICE_PATH *node;
671 	ACPI_HID_DEVICE_PATH  *acpi;
672 	UART_DEVICE_PATH  *uart;
673 	bool pci_pending;
674 
675 	how = 0;
676 	sz = sizeof(buf);
677 	rv = efi_global_getenv("ConOut", buf, &sz);
678 	if (rv != EFI_SUCCESS)
679 		goto out;
680 	ep = buf + sz;
681 	node = (EFI_DEVICE_PATH *)buf;
682 	while ((char *)node < ep) {
683 		pci_pending = false;
684 		if (DevicePathType(node) == ACPI_DEVICE_PATH &&
685 		    DevicePathSubType(node) == ACPI_DP) {
686 			/* Check for Serial node */
687 			acpi = (void *)node;
688 			if (EISA_ID_TO_NUM(acpi->HID) == 0x501) {
689 				setenv_int("efi_8250_uid", acpi->UID);
690 				com_seen = ++seen;
691 			}
692 		} else if (DevicePathType(node) == MESSAGING_DEVICE_PATH &&
693 		    DevicePathSubType(node) == MSG_UART_DP) {
694 
695 			uart = (void *)node;
696 			setenv_int("efi_com_speed", uart->BaudRate);
697 		} else if (DevicePathType(node) == ACPI_DEVICE_PATH &&
698 		    DevicePathSubType(node) == ACPI_ADR_DP) {
699 			/* Check for AcpiAdr() Node for video */
700 			vid_seen = ++seen;
701 		} else if (DevicePathType(node) == HARDWARE_DEVICE_PATH &&
702 		    DevicePathSubType(node) == HW_PCI_DP) {
703 			/*
704 			 * Note, vmware fusion has a funky console device
705 			 *	PciRoot(0x0)/Pci(0xf,0x0)
706 			 * which we can only detect at the end since we also
707 			 * have to cope with:
708 			 *	PciRoot(0x0)/Pci(0x1f,0x0)/Serial(0x1)
709 			 * so only match it if it's last.
710 			 */
711 			pci_pending = true;
712 		}
713 		node = NextDevicePathNode(node); /* Skip the end node */
714 	}
715 	if (pci_pending && vid_seen == 0)
716 		vid_seen = ++seen;
717 
718 	/*
719 	 * Truth table for RB_MULTIPLE | RB_SERIAL
720 	 * Value		Result
721 	 * 0			Use only video console
722 	 * RB_SERIAL		Use only serial console
723 	 * RB_MULTIPLE		Use both video and serial console
724 	 *			(but video is primary so gets rc messages)
725 	 * both			Use both video and serial console
726 	 *			(but serial is primary so gets rc messages)
727 	 *
728 	 * Try to honor this as best we can. If only one of serial / video
729 	 * found, then use that. Otherwise, use the first one we found.
730 	 * This also implies if we found nothing, default to video.
731 	 */
732 	how = 0;
733 	if (vid_seen && com_seen) {
734 		how |= RB_MULTIPLE;
735 		if (com_seen < vid_seen)
736 			how |= RB_SERIAL;
737 	} else if (com_seen)
738 		how |= RB_SERIAL;
739 out:
740 	return (how);
741 }
742 
743 EFI_STATUS
744 main(int argc, CHAR16 *argv[])
745 {
746 	EFI_GUID *guid;
747 	int howto, i, uhowto;
748 	UINTN k;
749 	bool has_kbd, is_last;
750 	char *s;
751 	EFI_DEVICE_PATH *imgpath;
752 	CHAR16 *text;
753 	EFI_STATUS rv;
754 	size_t sz, bosz = 0, bisz = 0;
755 	UINT16 boot_order[100];
756 	char boot_info[4096];
757 	EFI_LOADED_IMAGE *img;
758 	char buf[32];
759 	bool uefi_boot_mgr;
760 
761 	archsw.arch_autoload = efi_autoload;
762 	archsw.arch_getdev = efi_getdev;
763 	archsw.arch_copyin = efi_copyin;
764 	archsw.arch_copyout = efi_copyout;
765 	archsw.arch_readin = efi_readin;
766 #ifdef EFI_ZFS_BOOT
767 	/* Note this needs to be set before ZFS init. */
768 	archsw.arch_zfs_probe = efi_zfs_probe;
769 #endif
770 
771         /* Get our loaded image protocol interface structure. */
772 	BS->HandleProtocol(IH, &imgid, (VOID**)&img);
773 
774 #ifdef EFI_ZFS_BOOT
775 	/* Tell ZFS probe code where we booted from */
776 	efizfs_set_preferred(img->DeviceHandle);
777 #endif
778 	/* Init the time source */
779 	efi_time_init();
780 
781 	has_kbd = has_keyboard();
782 
783 	/*
784 	 * XXX Chicken-and-egg problem; we want to have console output
785 	 * early, but some console attributes may depend on reading from
786 	 * eg. the boot device, which we can't do yet.  We can use
787 	 * printf() etc. once this is done.
788 	 */
789 	setenv("console", "efi", 1);
790 	cons_probe();
791 
792 	/*
793 	 * Initialise the block cache. Set the upper limit.
794 	 */
795 	bcache_init(32768, 512);
796 
797 	howto = parse_args(argc, argv);
798 	if (!has_kbd && (howto & RB_PROBE))
799 		howto |= RB_SERIAL | RB_MULTIPLE;
800 	howto &= ~RB_PROBE;
801 	uhowto = parse_uefi_con_out();
802 
803 	/*
804 	 * We now have two notions of console. howto should be viewed as
805 	 * overrides. If console is already set, don't set it again.
806 	 */
807 #define	VIDEO_ONLY	0
808 #define	SERIAL_ONLY	RB_SERIAL
809 #define	VID_SER_BOTH	RB_MULTIPLE
810 #define	SER_VID_BOTH	(RB_SERIAL | RB_MULTIPLE)
811 #define	CON_MASK	(RB_SERIAL | RB_MULTIPLE)
812 	if (strcmp(getenv("console"), "efi") == 0) {
813 		if ((howto & CON_MASK) == 0) {
814 			/* No override, uhowto is controlling and efi cons is perfect */
815 			howto = howto | (uhowto & CON_MASK);
816 			setenv("console", "efi", 1);
817 		} else if ((howto & CON_MASK) == (uhowto & CON_MASK)) {
818 			/* override matches what UEFI told us, efi console is perfect */
819 			setenv("console", "efi", 1);
820 		} else if ((uhowto & (CON_MASK)) != 0) {
821 			/*
822 			 * We detected a serial console on ConOut. All possible
823 			 * overrides include serial. We can't really override what efi
824 			 * gives us, so we use it knowing it's the best choice.
825 			 */
826 			setenv("console", "efi", 1);
827 		} else {
828 			/*
829 			 * We detected some kind of serial in the override, but ConOut
830 			 * has no serial, so we have to sort out which case it really is.
831 			 */
832 			switch (howto & CON_MASK) {
833 			case SERIAL_ONLY:
834 				setenv("console", "comconsole", 1);
835 				break;
836 			case VID_SER_BOTH:
837 				setenv("console", "efi comconsole", 1);
838 				break;
839 			case SER_VID_BOTH:
840 				setenv("console", "comconsole efi", 1);
841 				break;
842 				/* case VIDEO_ONLY can't happen -- it's the first if above */
843 			}
844 		}
845 	}
846 
847 	/*
848 	 * howto is set now how we want to export the flags to the kernel, so
849 	 * set the env based on it.
850 	 */
851 	boot_howto_to_env(howto);
852 
853 	if (efi_copy_init()) {
854 		printf("failed to allocate staging area\n");
855 		return (EFI_BUFFER_TOO_SMALL);
856 	}
857 
858 	if ((s = getenv("fail_timeout")) != NULL)
859 		fail_timeout = strtol(s, NULL, 10);
860 
861 	/*
862 	 * Scan the BLOCK IO MEDIA handles then
863 	 * march through the device switch probing for things.
864 	 */
865 	i = efipart_inithandles();
866 	if (i != 0 && i != ENOENT) {
867 		printf("efipart_inithandles failed with ERRNO %d, expect "
868 		    "failures\n", i);
869 	}
870 
871 	for (i = 0; devsw[i] != NULL; i++)
872 		if (devsw[i]->dv_init != NULL)
873 			(devsw[i]->dv_init)();
874 
875 	printf("%s\n", bootprog_info);
876 	printf("   Command line arguments:");
877 	for (i = 0; i < argc; i++)
878 		printf(" %S", argv[i]);
879 	printf("\n");
880 
881 	printf("   EFI version: %d.%02d\n", ST->Hdr.Revision >> 16,
882 	    ST->Hdr.Revision & 0xffff);
883 	printf("   EFI Firmware: %S (rev %d.%02d)\n", ST->FirmwareVendor,
884 	    ST->FirmwareRevision >> 16, ST->FirmwareRevision & 0xffff);
885 	printf("   Console: %s (%#x)\n", getenv("console"), howto);
886 
887 
888 
889 	/* Determine the devpath of our image so we can prefer it. */
890 	text = efi_devpath_name(img->FilePath);
891 	if (text != NULL) {
892 		printf("   Load Path: %S\n", text);
893 		efi_setenv_freebsd_wcs("LoaderPath", text);
894 		efi_free_devpath_name(text);
895 	}
896 
897 	rv = BS->HandleProtocol(img->DeviceHandle, &devid, (void **)&imgpath);
898 	if (rv == EFI_SUCCESS) {
899 		text = efi_devpath_name(imgpath);
900 		if (text != NULL) {
901 			printf("   Load Device: %S\n", text);
902 			efi_setenv_freebsd_wcs("LoaderDev", text);
903 			efi_free_devpath_name(text);
904 		}
905 	}
906 
907 	uefi_boot_mgr = true;
908 	boot_current = 0;
909 	sz = sizeof(boot_current);
910 	rv = efi_global_getenv("BootCurrent", &boot_current, &sz);
911 	if (rv == EFI_SUCCESS)
912 		printf("   BootCurrent: %04x\n", boot_current);
913 	else {
914 		boot_current = 0xffff;
915 		uefi_boot_mgr = false;
916 	}
917 
918 	sz = sizeof(boot_order);
919 	rv = efi_global_getenv("BootOrder", &boot_order, &sz);
920 	if (rv == EFI_SUCCESS) {
921 		printf("   BootOrder:");
922 		for (i = 0; i < sz / sizeof(boot_order[0]); i++)
923 			printf(" %04x%s", boot_order[i],
924 			    boot_order[i] == boot_current ? "[*]" : "");
925 		printf("\n");
926 		is_last = boot_order[(sz / sizeof(boot_order[0])) - 1] == boot_current;
927 		bosz = sz;
928 	} else if (uefi_boot_mgr) {
929 		/*
930 		 * u-boot doesn't set BootOrder, but otherwise participates in the
931 		 * boot manager protocol. So we fake it here and don't consider it
932 		 * a failure.
933 		 */
934 		bosz = sizeof(boot_order[0]);
935 		boot_order[0] = boot_current;
936 		is_last = true;
937 	}
938 
939 	/*
940 	 * Next, find the boot info structure the UEFI boot manager is
941 	 * supposed to setup. We need this so we can walk through it to
942 	 * find where we are in the booting process and what to try to
943 	 * boot next.
944 	 */
945 	if (uefi_boot_mgr) {
946 		snprintf(buf, sizeof(buf), "Boot%04X", boot_current);
947 		sz = sizeof(boot_info);
948 		rv = efi_global_getenv(buf, &boot_info, &sz);
949 		if (rv == EFI_SUCCESS)
950 			bisz = sz;
951 		else
952 			uefi_boot_mgr = false;
953 	}
954 
955 	/*
956 	 * Disable the watchdog timer. By default the boot manager sets
957 	 * the timer to 5 minutes before invoking a boot option. If we
958 	 * want to return to the boot manager, we have to disable the
959 	 * watchdog timer and since we're an interactive program, we don't
960 	 * want to wait until the user types "quit". The timer may have
961 	 * fired by then. We don't care if this fails. It does not prevent
962 	 * normal functioning in any way...
963 	 */
964 	BS->SetWatchdogTimer(0, 0, 0, NULL);
965 
966 	/*
967 	 * Try and find a good currdev based on the image that was booted.
968 	 * It might be desirable here to have a short pause to allow falling
969 	 * through to the boot loader instead of returning instantly to follow
970 	 * the boot protocol and also allow an escape hatch for users wishing
971 	 * to try something different.
972 	 */
973 	if (find_currdev(img, uefi_boot_mgr, is_last, boot_info, bisz) != 0)
974 		if (!interactive_interrupt("Failed to find bootable partition"))
975 			return (EFI_NOT_FOUND);
976 
977 	efi_init_environment();
978 
979 #if !defined(__arm__)
980 	for (k = 0; k < ST->NumberOfTableEntries; k++) {
981 		guid = &ST->ConfigurationTable[k].VendorGuid;
982 		if (!memcmp(guid, &smbios, sizeof(EFI_GUID))) {
983 			char buf[40];
984 
985 			snprintf(buf, sizeof(buf), "%p",
986 			    ST->ConfigurationTable[k].VendorTable);
987 			setenv("hint.smbios.0.mem", buf, 1);
988 			smbios_detect(ST->ConfigurationTable[k].VendorTable);
989 			break;
990 		}
991 	}
992 #endif
993 
994 	interact();			/* doesn't return */
995 
996 	return (EFI_SUCCESS);		/* keep compiler happy */
997 }
998 
999 COMMAND_SET(poweroff, "poweroff", "power off the system", command_poweroff);
1000 
1001 static int
1002 command_poweroff(int argc __unused, char *argv[] __unused)
1003 {
1004 	int i;
1005 
1006 	for (i = 0; devsw[i] != NULL; ++i)
1007 		if (devsw[i]->dv_cleanup != NULL)
1008 			(devsw[i]->dv_cleanup)();
1009 
1010 	RS->ResetSystem(EfiResetShutdown, EFI_SUCCESS, 0, NULL);
1011 
1012 	/* NOTREACHED */
1013 	return (CMD_ERROR);
1014 }
1015 
1016 COMMAND_SET(reboot, "reboot", "reboot the system", command_reboot);
1017 
1018 static int
1019 command_reboot(int argc, char *argv[])
1020 {
1021 	int i;
1022 
1023 	for (i = 0; devsw[i] != NULL; ++i)
1024 		if (devsw[i]->dv_cleanup != NULL)
1025 			(devsw[i]->dv_cleanup)();
1026 
1027 	RS->ResetSystem(EfiResetCold, EFI_SUCCESS, 0, NULL);
1028 
1029 	/* NOTREACHED */
1030 	return (CMD_ERROR);
1031 }
1032 
1033 COMMAND_SET(quit, "quit", "exit the loader", command_quit);
1034 
1035 static int
1036 command_quit(int argc, char *argv[])
1037 {
1038 	exit(0);
1039 	return (CMD_OK);
1040 }
1041 
1042 COMMAND_SET(memmap, "memmap", "print memory map", command_memmap);
1043 
1044 static int
1045 command_memmap(int argc __unused, char *argv[] __unused)
1046 {
1047 	UINTN sz;
1048 	EFI_MEMORY_DESCRIPTOR *map, *p;
1049 	UINTN key, dsz;
1050 	UINT32 dver;
1051 	EFI_STATUS status;
1052 	int i, ndesc;
1053 	char line[80];
1054 
1055 	sz = 0;
1056 	status = BS->GetMemoryMap(&sz, 0, &key, &dsz, &dver);
1057 	if (status != EFI_BUFFER_TOO_SMALL) {
1058 		printf("Can't determine memory map size\n");
1059 		return (CMD_ERROR);
1060 	}
1061 	map = malloc(sz);
1062 	status = BS->GetMemoryMap(&sz, map, &key, &dsz, &dver);
1063 	if (EFI_ERROR(status)) {
1064 		printf("Can't read memory map\n");
1065 		return (CMD_ERROR);
1066 	}
1067 
1068 	ndesc = sz / dsz;
1069 	snprintf(line, sizeof(line), "%23s %12s %12s %8s %4s\n",
1070 	    "Type", "Physical", "Virtual", "#Pages", "Attr");
1071 	pager_open();
1072 	if (pager_output(line)) {
1073 		pager_close();
1074 		return (CMD_OK);
1075 	}
1076 
1077 	for (i = 0, p = map; i < ndesc;
1078 	     i++, p = NextMemoryDescriptor(p, dsz)) {
1079 		snprintf(line, sizeof(line), "%23s %012jx %012jx %08jx ",
1080 		    efi_memory_type(p->Type), (uintmax_t)p->PhysicalStart,
1081 		    (uintmax_t)p->VirtualStart, (uintmax_t)p->NumberOfPages);
1082 		if (pager_output(line))
1083 			break;
1084 
1085 		if (p->Attribute & EFI_MEMORY_UC)
1086 			printf("UC ");
1087 		if (p->Attribute & EFI_MEMORY_WC)
1088 			printf("WC ");
1089 		if (p->Attribute & EFI_MEMORY_WT)
1090 			printf("WT ");
1091 		if (p->Attribute & EFI_MEMORY_WB)
1092 			printf("WB ");
1093 		if (p->Attribute & EFI_MEMORY_UCE)
1094 			printf("UCE ");
1095 		if (p->Attribute & EFI_MEMORY_WP)
1096 			printf("WP ");
1097 		if (p->Attribute & EFI_MEMORY_RP)
1098 			printf("RP ");
1099 		if (p->Attribute & EFI_MEMORY_XP)
1100 			printf("XP ");
1101 		if (p->Attribute & EFI_MEMORY_NV)
1102 			printf("NV ");
1103 		if (p->Attribute & EFI_MEMORY_MORE_RELIABLE)
1104 			printf("MR ");
1105 		if (p->Attribute & EFI_MEMORY_RO)
1106 			printf("RO ");
1107 		if (pager_output("\n"))
1108 			break;
1109 	}
1110 
1111 	pager_close();
1112 	return (CMD_OK);
1113 }
1114 
1115 COMMAND_SET(configuration, "configuration", "print configuration tables",
1116     command_configuration);
1117 
1118 static int
1119 command_configuration(int argc, char *argv[])
1120 {
1121 	UINTN i;
1122 	char *name;
1123 
1124 	printf("NumberOfTableEntries=%lu\n",
1125 		(unsigned long)ST->NumberOfTableEntries);
1126 
1127 	for (i = 0; i < ST->NumberOfTableEntries; i++) {
1128 		EFI_GUID *guid;
1129 
1130 		printf("  ");
1131 		guid = &ST->ConfigurationTable[i].VendorGuid;
1132 
1133 		if (efi_guid_to_name(guid, &name) == true) {
1134 			printf(name);
1135 			free(name);
1136 		} else {
1137 			printf("Error while translating UUID to name");
1138 		}
1139 		printf(" at %p\n", ST->ConfigurationTable[i].VendorTable);
1140 	}
1141 
1142 	return (CMD_OK);
1143 }
1144 
1145 
1146 COMMAND_SET(mode, "mode", "change or display EFI text modes", command_mode);
1147 
1148 static int
1149 command_mode(int argc, char *argv[])
1150 {
1151 	UINTN cols, rows;
1152 	unsigned int mode;
1153 	int i;
1154 	char *cp;
1155 	char rowenv[8];
1156 	EFI_STATUS status;
1157 	SIMPLE_TEXT_OUTPUT_INTERFACE *conout;
1158 	extern void HO(void);
1159 
1160 	conout = ST->ConOut;
1161 
1162 	if (argc > 1) {
1163 		mode = strtol(argv[1], &cp, 0);
1164 		if (cp[0] != '\0') {
1165 			printf("Invalid mode\n");
1166 			return (CMD_ERROR);
1167 		}
1168 		status = conout->QueryMode(conout, mode, &cols, &rows);
1169 		if (EFI_ERROR(status)) {
1170 			printf("invalid mode %d\n", mode);
1171 			return (CMD_ERROR);
1172 		}
1173 		status = conout->SetMode(conout, mode);
1174 		if (EFI_ERROR(status)) {
1175 			printf("couldn't set mode %d\n", mode);
1176 			return (CMD_ERROR);
1177 		}
1178 		sprintf(rowenv, "%u", (unsigned)rows);
1179 		setenv("LINES", rowenv, 1);
1180 		HO();		/* set cursor */
1181 		return (CMD_OK);
1182 	}
1183 
1184 	printf("Current mode: %d\n", conout->Mode->Mode);
1185 	for (i = 0; i <= conout->Mode->MaxMode; i++) {
1186 		status = conout->QueryMode(conout, i, &cols, &rows);
1187 		if (EFI_ERROR(status))
1188 			continue;
1189 		printf("Mode %d: %u columns, %u rows\n", i, (unsigned)cols,
1190 		    (unsigned)rows);
1191 	}
1192 
1193 	if (i != 0)
1194 		printf("Select a mode with the command \"mode <number>\"\n");
1195 
1196 	return (CMD_OK);
1197 }
1198 
1199 COMMAND_SET(lsefi, "lsefi", "list EFI handles", command_lsefi);
1200 
1201 static int
1202 command_lsefi(int argc __unused, char *argv[] __unused)
1203 {
1204 	char *name;
1205 	EFI_HANDLE *buffer = NULL;
1206 	EFI_HANDLE handle;
1207 	UINTN bufsz = 0, i, j;
1208 	EFI_STATUS status;
1209 	int ret;
1210 
1211 	status = BS->LocateHandle(AllHandles, NULL, NULL, &bufsz, buffer);
1212 	if (status != EFI_BUFFER_TOO_SMALL) {
1213 		snprintf(command_errbuf, sizeof (command_errbuf),
1214 		    "unexpected error: %lld", (long long)status);
1215 		return (CMD_ERROR);
1216 	}
1217 	if ((buffer = malloc(bufsz)) == NULL) {
1218 		sprintf(command_errbuf, "out of memory");
1219 		return (CMD_ERROR);
1220 	}
1221 
1222 	status = BS->LocateHandle(AllHandles, NULL, NULL, &bufsz, buffer);
1223 	if (EFI_ERROR(status)) {
1224 		free(buffer);
1225 		snprintf(command_errbuf, sizeof (command_errbuf),
1226 		    "LocateHandle() error: %lld", (long long)status);
1227 		return (CMD_ERROR);
1228 	}
1229 
1230 	pager_open();
1231 	for (i = 0; i < (bufsz / sizeof (EFI_HANDLE)); i++) {
1232 		UINTN nproto = 0;
1233 		EFI_GUID **protocols = NULL;
1234 
1235 		handle = buffer[i];
1236 		printf("Handle %p", handle);
1237 		if (pager_output("\n"))
1238 			break;
1239 		/* device path */
1240 
1241 		status = BS->ProtocolsPerHandle(handle, &protocols, &nproto);
1242 		if (EFI_ERROR(status)) {
1243 			snprintf(command_errbuf, sizeof (command_errbuf),
1244 			    "ProtocolsPerHandle() error: %lld",
1245 			    (long long)status);
1246 			continue;
1247 		}
1248 
1249 		for (j = 0; j < nproto; j++) {
1250 			if (efi_guid_to_name(protocols[j], &name) == true) {
1251 				printf("  %s", name);
1252 				free(name);
1253 			} else {
1254 				printf("Error while translating UUID to name");
1255 			}
1256 			if ((ret = pager_output("\n")) != 0)
1257 				break;
1258 		}
1259 		BS->FreePool(protocols);
1260 		if (ret != 0)
1261 			break;
1262 	}
1263 	pager_close();
1264 	free(buffer);
1265 	return (CMD_OK);
1266 }
1267 
1268 #ifdef LOADER_FDT_SUPPORT
1269 extern int command_fdt_internal(int argc, char *argv[]);
1270 
1271 /*
1272  * Since proper fdt command handling function is defined in fdt_loader_cmd.c,
1273  * and declaring it as extern is in contradiction with COMMAND_SET() macro
1274  * (which uses static pointer), we're defining wrapper function, which
1275  * calls the proper fdt handling routine.
1276  */
1277 static int
1278 command_fdt(int argc, char *argv[])
1279 {
1280 
1281 	return (command_fdt_internal(argc, argv));
1282 }
1283 
1284 COMMAND_SET(fdt, "fdt", "flattened device tree handling", command_fdt);
1285 #endif
1286 
1287 /*
1288  * Chain load another efi loader.
1289  */
1290 static int
1291 command_chain(int argc, char *argv[])
1292 {
1293 	EFI_GUID LoadedImageGUID = LOADED_IMAGE_PROTOCOL;
1294 	EFI_HANDLE loaderhandle;
1295 	EFI_LOADED_IMAGE *loaded_image;
1296 	EFI_STATUS status;
1297 	struct stat st;
1298 	struct devdesc *dev;
1299 	char *name, *path;
1300 	void *buf;
1301 	int fd;
1302 
1303 	if (argc < 2) {
1304 		command_errmsg = "wrong number of arguments";
1305 		return (CMD_ERROR);
1306 	}
1307 
1308 	name = argv[1];
1309 
1310 	if ((fd = open(name, O_RDONLY)) < 0) {
1311 		command_errmsg = "no such file";
1312 		return (CMD_ERROR);
1313 	}
1314 
1315 	if (fstat(fd, &st) < -1) {
1316 		command_errmsg = "stat failed";
1317 		close(fd);
1318 		return (CMD_ERROR);
1319 	}
1320 
1321 	status = BS->AllocatePool(EfiLoaderCode, (UINTN)st.st_size, &buf);
1322 	if (status != EFI_SUCCESS) {
1323 		command_errmsg = "failed to allocate buffer";
1324 		close(fd);
1325 		return (CMD_ERROR);
1326 	}
1327 	if (read(fd, buf, st.st_size) != st.st_size) {
1328 		command_errmsg = "error while reading the file";
1329 		(void)BS->FreePool(buf);
1330 		close(fd);
1331 		return (CMD_ERROR);
1332 	}
1333 	close(fd);
1334 	status = BS->LoadImage(FALSE, IH, NULL, buf, st.st_size, &loaderhandle);
1335 	(void)BS->FreePool(buf);
1336 	if (status != EFI_SUCCESS) {
1337 		command_errmsg = "LoadImage failed";
1338 		return (CMD_ERROR);
1339 	}
1340 	status = BS->HandleProtocol(loaderhandle, &LoadedImageGUID,
1341 	    (void **)&loaded_image);
1342 
1343 	if (argc > 2) {
1344 		int i, len = 0;
1345 		CHAR16 *argp;
1346 
1347 		for (i = 2; i < argc; i++)
1348 			len += strlen(argv[i]) + 1;
1349 
1350 		len *= sizeof (*argp);
1351 		loaded_image->LoadOptions = argp = malloc (len);
1352 		loaded_image->LoadOptionsSize = len;
1353 		for (i = 2; i < argc; i++) {
1354 			char *ptr = argv[i];
1355 			while (*ptr)
1356 				*(argp++) = *(ptr++);
1357 			*(argp++) = ' ';
1358 		}
1359 		*(--argv) = 0;
1360 	}
1361 
1362 	if (efi_getdev((void **)&dev, name, (const char **)&path) == 0) {
1363 #ifdef EFI_ZFS_BOOT
1364 		struct zfs_devdesc *z_dev;
1365 #endif
1366 		struct disk_devdesc *d_dev;
1367 		pdinfo_t *hd, *pd;
1368 
1369 		switch (dev->d_dev->dv_type) {
1370 #ifdef EFI_ZFS_BOOT
1371 		case DEVT_ZFS:
1372 			z_dev = (struct zfs_devdesc *)dev;
1373 			loaded_image->DeviceHandle =
1374 			    efizfs_get_handle_by_guid(z_dev->pool_guid);
1375 			break;
1376 #endif
1377 		case DEVT_NET:
1378 			loaded_image->DeviceHandle =
1379 			    efi_find_handle(dev->d_dev, dev->d_unit);
1380 			break;
1381 		default:
1382 			hd = efiblk_get_pdinfo(dev);
1383 			if (STAILQ_EMPTY(&hd->pd_part)) {
1384 				loaded_image->DeviceHandle = hd->pd_handle;
1385 				break;
1386 			}
1387 			d_dev = (struct disk_devdesc *)dev;
1388 			STAILQ_FOREACH(pd, &hd->pd_part, pd_link) {
1389 				/*
1390 				 * d_partition should be 255
1391 				 */
1392 				if (pd->pd_unit == (uint32_t)d_dev->d_slice) {
1393 					loaded_image->DeviceHandle =
1394 					    pd->pd_handle;
1395 					break;
1396 				}
1397 			}
1398 			break;
1399 		}
1400 	}
1401 
1402 	dev_cleanup();
1403 	status = BS->StartImage(loaderhandle, NULL, NULL);
1404 	if (status != EFI_SUCCESS) {
1405 		command_errmsg = "StartImage failed";
1406 		free(loaded_image->LoadOptions);
1407 		loaded_image->LoadOptions = NULL;
1408 		status = BS->UnloadImage(loaded_image);
1409 		return (CMD_ERROR);
1410 	}
1411 
1412 	return (CMD_ERROR);	/* not reached */
1413 }
1414 
1415 COMMAND_SET(chain, "chain", "chain load file", command_chain);
1416