xref: /freebsd/stand/efi/loader/main.c (revision 43d1e6ee299ad4e143d90d3ad374d1c24bd3306f)
1 /*-
2  * Copyright (c) 2008-2010 Rui Paulo
3  * Copyright (c) 2006 Marcel Moolenaar
4  * All rights reserved.
5  *
6  * Copyright (c) 2018 Netflix, Inc.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <stand.h>
34 
35 #include <sys/disk.h>
36 #include <sys/param.h>
37 #include <sys/reboot.h>
38 #include <sys/boot.h>
39 #include <stdint.h>
40 #include <string.h>
41 #include <setjmp.h>
42 #include <disk.h>
43 
44 #include <efi.h>
45 #include <efilib.h>
46 #include <efichar.h>
47 
48 #include <uuid.h>
49 
50 #include <bootstrap.h>
51 #include <smbios.h>
52 
53 #include "efizfs.h"
54 
55 #include "loader_efi.h"
56 
57 struct arch_switch archsw;	/* MI/MD interface boundary */
58 
59 EFI_GUID acpi = ACPI_TABLE_GUID;
60 EFI_GUID acpi20 = ACPI_20_TABLE_GUID;
61 EFI_GUID devid = DEVICE_PATH_PROTOCOL;
62 EFI_GUID imgid = LOADED_IMAGE_PROTOCOL;
63 EFI_GUID mps = MPS_TABLE_GUID;
64 EFI_GUID netid = EFI_SIMPLE_NETWORK_PROTOCOL;
65 EFI_GUID smbios = SMBIOS_TABLE_GUID;
66 EFI_GUID smbios3 = SMBIOS3_TABLE_GUID;
67 EFI_GUID dxe = DXE_SERVICES_TABLE_GUID;
68 EFI_GUID hoblist = HOB_LIST_TABLE_GUID;
69 EFI_GUID lzmadecomp = LZMA_DECOMPRESSION_GUID;
70 EFI_GUID mpcore = ARM_MP_CORE_INFO_TABLE_GUID;
71 EFI_GUID esrt = ESRT_TABLE_GUID;
72 EFI_GUID memtype = MEMORY_TYPE_INFORMATION_TABLE_GUID;
73 EFI_GUID debugimg = DEBUG_IMAGE_INFO_TABLE_GUID;
74 EFI_GUID fdtdtb = FDT_TABLE_GUID;
75 EFI_GUID inputid = SIMPLE_TEXT_INPUT_PROTOCOL;
76 
77 /*
78  * Number of seconds to wait for a keystroke before exiting with failure
79  * in the event no currdev is found. -2 means always break, -1 means
80  * never break, 0 means poll once and then reboot, > 0 means wait for
81  * that many seconds. "fail_timeout" can be set in the environment as
82  * well.
83  */
84 static int fail_timeout = 5;
85 
86 /*
87  * Current boot variable
88  */
89 UINT16 boot_current;
90 
91 static bool
92 has_keyboard(void)
93 {
94 	EFI_STATUS status;
95 	EFI_DEVICE_PATH *path;
96 	EFI_HANDLE *hin, *hin_end, *walker;
97 	UINTN sz;
98 	bool retval = false;
99 
100 	/*
101 	 * Find all the handles that support the SIMPLE_TEXT_INPUT_PROTOCOL and
102 	 * do the typical dance to get the right sized buffer.
103 	 */
104 	sz = 0;
105 	hin = NULL;
106 	status = BS->LocateHandle(ByProtocol, &inputid, 0, &sz, 0);
107 	if (status == EFI_BUFFER_TOO_SMALL) {
108 		hin = (EFI_HANDLE *)malloc(sz);
109 		status = BS->LocateHandle(ByProtocol, &inputid, 0, &sz,
110 		    hin);
111 		if (EFI_ERROR(status))
112 			free(hin);
113 	}
114 	if (EFI_ERROR(status))
115 		return retval;
116 
117 	/*
118 	 * Look at each of the handles. If it supports the device path protocol,
119 	 * use it to get the device path for this handle. Then see if that
120 	 * device path matches either the USB device path for keyboards or the
121 	 * legacy device path for keyboards.
122 	 */
123 	hin_end = &hin[sz / sizeof(*hin)];
124 	for (walker = hin; walker < hin_end; walker++) {
125 		status = BS->HandleProtocol(*walker, &devid, (VOID **)&path);
126 		if (EFI_ERROR(status))
127 			continue;
128 
129 		while (!IsDevicePathEnd(path)) {
130 			/*
131 			 * Check for the ACPI keyboard node. All PNP3xx nodes
132 			 * are keyboards of different flavors. Note: It is
133 			 * unclear of there's always a keyboard node when
134 			 * there's a keyboard controller, or if there's only one
135 			 * when a keyboard is detected at boot.
136 			 */
137 			if (DevicePathType(path) == ACPI_DEVICE_PATH &&
138 			    (DevicePathSubType(path) == ACPI_DP ||
139 				DevicePathSubType(path) == ACPI_EXTENDED_DP)) {
140 				ACPI_HID_DEVICE_PATH  *acpi;
141 
142 				acpi = (ACPI_HID_DEVICE_PATH *)(void *)path;
143 				if ((EISA_ID_TO_NUM(acpi->HID) & 0xff00) == 0x300 &&
144 				    (acpi->HID & 0xffff) == PNP_EISA_ID_CONST) {
145 					retval = true;
146 					goto out;
147 				}
148 			/*
149 			 * Check for USB keyboard node, if present. Unlike a
150 			 * PS/2 keyboard, these definitely only appear when
151 			 * connected to the system.
152 			 */
153 			} else if (DevicePathType(path) == MESSAGING_DEVICE_PATH &&
154 			    DevicePathSubType(path) == MSG_USB_CLASS_DP) {
155 				USB_CLASS_DEVICE_PATH *usb;
156 
157 				usb = (USB_CLASS_DEVICE_PATH *)(void *)path;
158 				if (usb->DeviceClass == 3 && /* HID */
159 				    usb->DeviceSubClass == 1 && /* Boot devices */
160 				    usb->DeviceProtocol == 1) { /* Boot keyboards */
161 					retval = true;
162 					goto out;
163 				}
164 			}
165 			path = NextDevicePathNode(path);
166 		}
167 	}
168 out:
169 	free(hin);
170 	return retval;
171 }
172 
173 static void
174 set_currdev(const char *devname)
175 {
176 
177 	env_setenv("currdev", EV_VOLATILE, devname, efi_setcurrdev, env_nounset);
178 	env_setenv("loaddev", EV_VOLATILE, devname, env_noset, env_nounset);
179 }
180 
181 static void
182 set_currdev_devdesc(struct devdesc *currdev)
183 {
184 	const char *devname;
185 
186 	devname = efi_fmtdev(currdev);
187 	printf("Setting currdev to %s\n", devname);
188 	set_currdev(devname);
189 }
190 
191 static void
192 set_currdev_devsw(struct devsw *dev, int unit)
193 {
194 	struct devdesc currdev;
195 
196 	currdev.d_dev = dev;
197 	currdev.d_unit = unit;
198 
199 	set_currdev_devdesc(&currdev);
200 }
201 
202 static void
203 set_currdev_pdinfo(pdinfo_t *dp)
204 {
205 
206 	/*
207 	 * Disks are special: they have partitions. if the parent
208 	 * pointer is non-null, we're a partition not a full disk
209 	 * and we need to adjust currdev appropriately.
210 	 */
211 	if (dp->pd_devsw->dv_type == DEVT_DISK) {
212 		struct disk_devdesc currdev;
213 
214 		currdev.dd.d_dev = dp->pd_devsw;
215 		if (dp->pd_parent == NULL) {
216 			currdev.dd.d_unit = dp->pd_unit;
217 			currdev.d_slice = D_SLICENONE;
218 			currdev.d_partition = D_PARTNONE;
219 		} else {
220 			currdev.dd.d_unit = dp->pd_parent->pd_unit;
221 			currdev.d_slice = dp->pd_unit;
222 			currdev.d_partition = D_PARTISGPT; /* XXX Assumes GPT */
223 		}
224 		set_currdev_devdesc((struct devdesc *)&currdev);
225 	} else {
226 		set_currdev_devsw(dp->pd_devsw, dp->pd_unit);
227 	}
228 }
229 
230 static bool
231 sanity_check_currdev(void)
232 {
233 	struct stat st;
234 
235 	return (stat("/boot/defaults/loader.conf", &st) == 0 ||
236 	    stat("/boot/kernel/kernel", &st) == 0);
237 }
238 
239 #ifdef EFI_ZFS_BOOT
240 static bool
241 probe_zfs_currdev(uint64_t guid)
242 {
243 	char *devname;
244 	struct zfs_devdesc currdev;
245 
246 	currdev.dd.d_dev = &zfs_dev;
247 	currdev.dd.d_unit = 0;
248 	currdev.pool_guid = guid;
249 	currdev.root_guid = 0;
250 	set_currdev_devdesc((struct devdesc *)&currdev);
251 	devname = efi_fmtdev(&currdev);
252 	init_zfs_bootenv(devname);
253 
254 	return (sanity_check_currdev());
255 }
256 #endif
257 
258 static bool
259 try_as_currdev(pdinfo_t *hd, pdinfo_t *pp)
260 {
261 	uint64_t guid;
262 
263 #ifdef EFI_ZFS_BOOT
264 	/*
265 	 * If there's a zpool on this device, try it as a ZFS
266 	 * filesystem, which has somewhat different setup than all
267 	 * other types of fs due to imperfect loader integration.
268 	 * This all stems from ZFS being both a device (zpool) and
269 	 * a filesystem, plus the boot env feature.
270 	 */
271 	if (efizfs_get_guid_by_handle(pp->pd_handle, &guid))
272 		return (probe_zfs_currdev(guid));
273 #endif
274 	/*
275 	 * All other filesystems just need the pdinfo
276 	 * initialized in the standard way.
277 	 */
278 	set_currdev_pdinfo(pp);
279 	return (sanity_check_currdev());
280 }
281 
282 /*
283  * Sometimes we get filenames that are all upper case
284  * and/or have backslashes in them. Filter all this out
285  * if it looks like we need to do so.
286  */
287 static void
288 fix_dosisms(char *p)
289 {
290 	while (*p) {
291 		if (isupper(*p))
292 			*p = tolower(*p);
293 		else if (*p == '\\')
294 			*p = '/';
295 		p++;
296 	}
297 }
298 
299 #define SIZE(dp, edp) (size_t)((intptr_t)(void *)edp - (intptr_t)(void *)dp)
300 
301 enum { BOOT_INFO_OK = 0, BAD_CHOICE = 1, NOT_SPECIFIC = 2  };
302 static int
303 match_boot_info(EFI_LOADED_IMAGE *img __unused, char *boot_info, size_t bisz)
304 {
305 	uint32_t attr;
306 	uint16_t fplen;
307 	size_t len;
308 	char *walker, *ep;
309 	EFI_DEVICE_PATH *dp, *edp, *first_dp, *last_dp;
310 	pdinfo_t *pp;
311 	CHAR16 *descr;
312 	char *kernel = NULL;
313 	FILEPATH_DEVICE_PATH  *fp;
314 	struct stat st;
315 	CHAR16 *text;
316 
317 	/*
318 	 * FreeBSD encodes it's boot loading path into the boot loader
319 	 * BootXXXX variable. We look for the last one in the path
320 	 * and use that to load the kernel. However, if we only fine
321 	 * one DEVICE_PATH, then there's nothing specific and we should
322 	 * fall back.
323 	 *
324 	 * In an ideal world, we'd look at the image handle we were
325 	 * passed, match up with the loader we are and then return the
326 	 * next one in the path. This would be most flexible and cover
327 	 * many chain booting scenarios where you need to use this
328 	 * boot loader to get to the next boot loader. However, that
329 	 * doesn't work. We rarely have the path to the image booted
330 	 * (just the device) so we can't count on that. So, we do the
331 	 * enxt best thing, we look through the device path(s) passed
332 	 * in the BootXXXX varaible. If there's only one, we return
333 	 * NOT_SPECIFIC. Otherwise, we look at the last one and try to
334 	 * load that. If we can, we return BOOT_INFO_OK. Otherwise we
335 	 * return BAD_CHOICE for the caller to sort out.
336 	 */
337 	if (bisz < sizeof(attr) + sizeof(fplen) + sizeof(CHAR16))
338 		return NOT_SPECIFIC;
339 	walker = boot_info;
340 	ep = walker + bisz;
341 	memcpy(&attr, walker, sizeof(attr));
342 	walker += sizeof(attr);
343 	memcpy(&fplen, walker, sizeof(fplen));
344 	walker += sizeof(fplen);
345 	descr = (CHAR16 *)(intptr_t)walker;
346 	len = ucs2len(descr);
347 	walker += (len + 1) * sizeof(CHAR16);
348 	last_dp = first_dp = dp = (EFI_DEVICE_PATH *)walker;
349 	edp = (EFI_DEVICE_PATH *)(walker + fplen);
350 	if ((char *)edp > ep)
351 		return NOT_SPECIFIC;
352 	while (dp < edp && SIZE(dp, edp) > sizeof(EFI_DEVICE_PATH)) {
353 		text = efi_devpath_name(dp);
354 		if (text != NULL) {
355 			printf("   BootInfo Path: %S\n", text);
356 			efi_free_devpath_name(text);
357 		}
358 		last_dp = dp;
359 		dp = (EFI_DEVICE_PATH *)((char *)dp + efi_devpath_length(dp));
360 	}
361 
362 	/*
363 	 * If there's only one item in the list, then nothing was
364 	 * specified. Or if the last path doesn't have a media
365 	 * path in it. Those show up as various VenHw() nodes
366 	 * which are basically opaque to us. Don't count those
367 	 * as something specifc.
368 	 */
369 	if (last_dp == first_dp) {
370 		printf("Ignoring Boot%04x: Only one DP found\n", boot_current);
371 		return NOT_SPECIFIC;
372 	}
373 	if (efi_devpath_to_media_path(last_dp) == NULL) {
374 		printf("Ignoring Boot%04x: No Media Path\n", boot_current);
375 		return NOT_SPECIFIC;
376 	}
377 
378 	/*
379 	 * OK. At this point we either have a good path or a bad one.
380 	 * Let's check.
381 	 */
382 	pp = efiblk_get_pdinfo_by_device_path(last_dp);
383 	if (pp == NULL) {
384 		printf("Ignoring Boot%04x: Device Path not found\n", boot_current);
385 		return BAD_CHOICE;
386 	}
387 	set_currdev_pdinfo(pp);
388 	if (!sanity_check_currdev()) {
389 		printf("Ignoring Boot%04x: sanity check failed\n", boot_current);
390 		return BAD_CHOICE;
391 	}
392 
393 	/*
394 	 * OK. We've found a device that matches, next we need to check the last
395 	 * component of the path. If it's a file, then we set the default kernel
396 	 * to that. Otherwise, just use this as the default root.
397 	 *
398 	 * Reminder: we're running very early, before we've parsed the defaults
399 	 * file, so we may need to have a hack override.
400 	 */
401 	dp = efi_devpath_last_node(last_dp);
402 	if (DevicePathType(dp) !=  MEDIA_DEVICE_PATH ||
403 	    DevicePathSubType(dp) != MEDIA_FILEPATH_DP) {
404 		printf("Using Boot%04x for root partition\n", boot_current);
405 		return (BOOT_INFO_OK);		/* use currdir, default kernel */
406 	}
407 	fp = (FILEPATH_DEVICE_PATH *)dp;
408 	ucs2_to_utf8(fp->PathName, &kernel);
409 	if (kernel == NULL) {
410 		printf("Not using Boot%04x: can't decode kernel\n", boot_current);
411 		return (BAD_CHOICE);
412 	}
413 	if (*kernel == '\\' || isupper(*kernel))
414 		fix_dosisms(kernel);
415 	if (stat(kernel, &st) != 0) {
416 		free(kernel);
417 		printf("Not using Boot%04x: can't find %s\n", boot_current,
418 		    kernel);
419 		return (BAD_CHOICE);
420 	}
421 	setenv("kernel", kernel, 1);
422 	free(kernel);
423 	text = efi_devpath_name(last_dp);
424 	if (text) {
425 		printf("Using Boot%04x %S + %s\n", boot_current, text,
426 		    kernel);
427 		efi_free_devpath_name(text);
428 	}
429 
430 	return (BOOT_INFO_OK);
431 }
432 
433 /*
434  * Look at the passed-in boot_info, if any. If we find it then we need
435  * to see if we can find ourselves in the boot chain. If we can, and
436  * there's another specified thing to boot next, assume that the file
437  * is loaded from / and use that for the root filesystem. If can't
438  * find the specified thing, we must fail the boot. If we're last on
439  * the list, then we fallback to looking for the first available /
440  * candidate (ZFS, if there's a bootable zpool, otherwise a UFS
441  * partition that has either /boot/defaults/loader.conf on it or
442  * /boot/kernel/kernel (the default kernel) that we can use.
443  *
444  * We always fail if we can't find the right thing. However, as
445  * a concession to buggy UEFI implementations, like u-boot, if
446  * we have determined that the host is violating the UEFI boot
447  * manager protocol, we'll signal the rest of the program that
448  * a drop to the OK boot loader prompt is possible.
449  */
450 static int
451 find_currdev(EFI_LOADED_IMAGE *img, bool do_bootmgr, bool is_last,
452     char *boot_info, size_t boot_info_sz)
453 {
454 	pdinfo_t *dp, *pp;
455 	EFI_DEVICE_PATH *devpath, *copy;
456 	EFI_HANDLE h;
457 	CHAR16 *text;
458 	struct devsw *dev;
459 	int unit;
460 	uint64_t extra;
461 	int rv;
462 	char *rootdev;
463 
464 	/*
465 	 * First choice: if rootdev is already set, use that, even if
466 	 * it's wrong.
467 	 */
468 	rootdev = getenv("rootdev");
469 	if (rootdev != NULL) {
470 		printf("Setting currdev to configured rootdev %s\n", rootdev);
471 		set_currdev(rootdev);
472 		return (0);
473 	}
474 
475 	/*
476 	 * Second choice: If we can find out image boot_info, and there's
477 	 * a follow-on boot image in that boot_info, use that. In this
478 	 * case root will be the partition specified in that image and
479 	 * we'll load the kernel specified by the file path. Should there
480 	 * not be a filepath, we use the default. This filepath overrides
481 	 * loader.conf.
482 	 */
483 	if (do_bootmgr) {
484 		rv = match_boot_info(img, boot_info, boot_info_sz);
485 		switch (rv) {
486 		case BOOT_INFO_OK:	/* We found it */
487 			return (0);
488 		case BAD_CHOICE:	/* specified file not found -> error */
489 			/* XXX do we want to have an escape hatch for last in boot order? */
490 			return (ENOENT);
491 		} /* Nothing specified, try normal match */
492 	}
493 
494 #ifdef EFI_ZFS_BOOT
495 	/*
496 	 * Did efi_zfs_probe() detect the boot pool? If so, use the zpool
497 	 * it found, if it's sane. ZFS is the only thing that looks for
498 	 * disks and pools to boot. This may change in the future, however,
499 	 * if we allow specifying which pool to boot from via UEFI variables
500 	 * rather than the bootenv stuff that FreeBSD uses today.
501 	 */
502 	if (pool_guid != 0) {
503 		printf("Trying ZFS pool\n");
504 		if (probe_zfs_currdev(pool_guid))
505 			return (0);
506 	}
507 #endif /* EFI_ZFS_BOOT */
508 
509 	/*
510 	 * Try to find the block device by its handle based on the
511 	 * image we're booting. If we can't find a sane partition,
512 	 * search all the other partitions of the disk. We do not
513 	 * search other disks because it's a violation of the UEFI
514 	 * boot protocol to do so. We fail and let UEFI go on to
515 	 * the next candidate.
516 	 */
517 	dp = efiblk_get_pdinfo_by_handle(img->DeviceHandle);
518 	if (dp != NULL) {
519 		text = efi_devpath_name(dp->pd_devpath);
520 		if (text != NULL) {
521 			printf("Trying ESP: %S\n", text);
522 			efi_free_devpath_name(text);
523 		}
524 		set_currdev_pdinfo(dp);
525 		if (sanity_check_currdev())
526 			return (0);
527 		if (dp->pd_parent != NULL) {
528 			pdinfo_t *espdp = dp;
529 			dp = dp->pd_parent;
530 			STAILQ_FOREACH(pp, &dp->pd_part, pd_link) {
531 				/* Already tried the ESP */
532 				if (espdp == pp)
533 					continue;
534 				/*
535 				 * Roll up the ZFS special case
536 				 * for those partitions that have
537 				 * zpools on them.
538 				 */
539 				text = efi_devpath_name(pp->pd_devpath);
540 				if (text != NULL) {
541 					printf("Trying: %S\n", text);
542 					efi_free_devpath_name(text);
543 				}
544 				if (try_as_currdev(dp, pp))
545 					return (0);
546 			}
547 		}
548 	}
549 
550 	/*
551 	 * Try the device handle from our loaded image first.  If that
552 	 * fails, use the device path from the loaded image and see if
553 	 * any of the nodes in that path match one of the enumerated
554 	 * handles. Currently, this handle list is only for netboot.
555 	 */
556 	if (efi_handle_lookup(img->DeviceHandle, &dev, &unit, &extra) == 0) {
557 		set_currdev_devsw(dev, unit);
558 		if (sanity_check_currdev())
559 			return (0);
560 	}
561 
562 	copy = NULL;
563 	devpath = efi_lookup_image_devpath(IH);
564 	while (devpath != NULL) {
565 		h = efi_devpath_handle(devpath);
566 		if (h == NULL)
567 			break;
568 
569 		free(copy);
570 		copy = NULL;
571 
572 		if (efi_handle_lookup(h, &dev, &unit, &extra) == 0) {
573 			set_currdev_devsw(dev, unit);
574 			if (sanity_check_currdev())
575 				return (0);
576 		}
577 
578 		devpath = efi_lookup_devpath(h);
579 		if (devpath != NULL) {
580 			copy = efi_devpath_trim(devpath);
581 			devpath = copy;
582 		}
583 	}
584 	free(copy);
585 
586 	return (ENOENT);
587 }
588 
589 static bool
590 interactive_interrupt(const char *msg)
591 {
592 	time_t now, then, last;
593 
594 	last = 0;
595 	now = then = getsecs();
596 	printf("%s\n", msg);
597 	if (fail_timeout == -2)		/* Always break to OK */
598 		return (true);
599 	if (fail_timeout == -1)		/* Never break to OK */
600 		return (false);
601 	do {
602 		if (last != now) {
603 			printf("press any key to interrupt reboot in %d seconds\r",
604 			    fail_timeout - (int)(now - then));
605 			last = now;
606 		}
607 
608 		/* XXX no pause or timeout wait for char */
609 		if (ischar())
610 			return (true);
611 		now = getsecs();
612 	} while (now - then < fail_timeout);
613 	return (false);
614 }
615 
616 static int
617 parse_args(int argc, CHAR16 *argv[])
618 {
619 	int i, j, howto;
620 	bool vargood;
621 	char var[128];
622 
623 	/*
624 	 * Parse the args to set the console settings, etc
625 	 * boot1.efi passes these in, if it can read /boot.config or /boot/config
626 	 * or iPXE may be setup to pass these in. Or the optional argument in the
627 	 * boot environment was used to pass these arguments in (in which case
628 	 * neither /boot.config nor /boot/config are consulted).
629 	 *
630 	 * Loop through the args, and for each one that contains an '=' that is
631 	 * not the first character, add it to the environment.  This allows
632 	 * loader and kernel env vars to be passed on the command line.  Convert
633 	 * args from UCS-2 to ASCII (16 to 8 bit) as they are copied (though this
634 	 * method is flawed for non-ASCII characters).
635 	 */
636 	howto = 0;
637 	for (i = 1; i < argc; i++) {
638 		cpy16to8(argv[i], var, sizeof(var));
639 		howto |= boot_parse_arg(var);
640 	}
641 
642 	return (howto);
643 }
644 
645 static void
646 setenv_int(const char *key, int val)
647 {
648 	char buf[20];
649 
650 	snprintf(buf, sizeof(buf), "%d", val);
651 	setenv(key, buf, 1);
652 }
653 
654 /*
655  * Parse ConOut (the list of consoles active) and see if we can find a
656  * serial port and/or a video port. It would be nice to also walk the
657  * ACPI name space to map the UID for the serial port to a port. The
658  * latter is especially hard.
659  */
660 static int
661 parse_uefi_con_out(void)
662 {
663 	int how, rv;
664 	int vid_seen = 0, com_seen = 0, seen = 0;
665 	size_t sz;
666 	char buf[4096], *ep;
667 	EFI_DEVICE_PATH *node;
668 	ACPI_HID_DEVICE_PATH  *acpi;
669 	UART_DEVICE_PATH  *uart;
670 	bool pci_pending;
671 
672 	how = 0;
673 	sz = sizeof(buf);
674 	rv = efi_global_getenv("ConOut", buf, &sz);
675 	if (rv != EFI_SUCCESS)
676 		goto out;
677 	ep = buf + sz;
678 	node = (EFI_DEVICE_PATH *)buf;
679 	while ((char *)node < ep) {
680 		pci_pending = false;
681 		if (DevicePathType(node) == ACPI_DEVICE_PATH &&
682 		    DevicePathSubType(node) == ACPI_DP) {
683 			/* Check for Serial node */
684 			acpi = (void *)node;
685 			if (EISA_ID_TO_NUM(acpi->HID) == 0x501) {
686 				setenv_int("efi_8250_uid", acpi->UID);
687 				com_seen = ++seen;
688 			}
689 		} else if (DevicePathType(node) == MESSAGING_DEVICE_PATH &&
690 		    DevicePathSubType(node) == MSG_UART_DP) {
691 
692 			uart = (void *)node;
693 			setenv_int("efi_com_speed", uart->BaudRate);
694 		} else if (DevicePathType(node) == ACPI_DEVICE_PATH &&
695 		    DevicePathSubType(node) == ACPI_ADR_DP) {
696 			/* Check for AcpiAdr() Node for video */
697 			vid_seen = ++seen;
698 		} else if (DevicePathType(node) == HARDWARE_DEVICE_PATH &&
699 		    DevicePathSubType(node) == HW_PCI_DP) {
700 			/*
701 			 * Note, vmware fusion has a funky console device
702 			 *	PciRoot(0x0)/Pci(0xf,0x0)
703 			 * which we can only detect at the end since we also
704 			 * have to cope with:
705 			 *	PciRoot(0x0)/Pci(0x1f,0x0)/Serial(0x1)
706 			 * so only match it if it's last.
707 			 */
708 			pci_pending = true;
709 		}
710 		node = NextDevicePathNode(node); /* Skip the end node */
711 	}
712 	if (pci_pending && vid_seen == 0)
713 		vid_seen = ++seen;
714 
715 	/*
716 	 * Truth table for RB_MULTIPLE | RB_SERIAL
717 	 * Value		Result
718 	 * 0			Use only video console
719 	 * RB_SERIAL		Use only serial console
720 	 * RB_MULTIPLE		Use both video and serial console
721 	 *			(but video is primary so gets rc messages)
722 	 * both			Use both video and serial console
723 	 *			(but serial is primary so gets rc messages)
724 	 *
725 	 * Try to honor this as best we can. If only one of serial / video
726 	 * found, then use that. Otherwise, use the first one we found.
727 	 * This also implies if we found nothing, default to video.
728 	 */
729 	how = 0;
730 	if (vid_seen && com_seen) {
731 		how |= RB_MULTIPLE;
732 		if (com_seen < vid_seen)
733 			how |= RB_SERIAL;
734 	} else if (com_seen)
735 		how |= RB_SERIAL;
736 out:
737 	return (how);
738 }
739 
740 EFI_STATUS
741 main(int argc, CHAR16 *argv[])
742 {
743 	EFI_GUID *guid;
744 	int howto, i, uhowto;
745 	UINTN k;
746 	bool has_kbd, is_last;
747 	char *s;
748 	EFI_DEVICE_PATH *imgpath;
749 	CHAR16 *text;
750 	EFI_STATUS rv;
751 	size_t sz, bosz = 0, bisz = 0;
752 	UINT16 boot_order[100];
753 	char boot_info[4096];
754 	EFI_LOADED_IMAGE *img;
755 	char buf[32];
756 	bool uefi_boot_mgr;
757 
758 	archsw.arch_autoload = efi_autoload;
759 	archsw.arch_getdev = efi_getdev;
760 	archsw.arch_copyin = efi_copyin;
761 	archsw.arch_copyout = efi_copyout;
762 	archsw.arch_readin = efi_readin;
763 	archsw.arch_zfs_probe = efi_zfs_probe;
764 
765         /* Get our loaded image protocol interface structure. */
766 	BS->HandleProtocol(IH, &imgid, (VOID**)&img);
767 
768 	/* Tell ZFS probe code where we booted from, if zfs configured */
769 	efizfs_set_preferred(img->DeviceHandle);
770 
771 	/* Init the time source */
772 	efi_time_init();
773 
774 	has_kbd = has_keyboard();
775 
776 	/*
777 	 * XXX Chicken-and-egg problem; we want to have console output
778 	 * early, but some console attributes may depend on reading from
779 	 * eg. the boot device, which we can't do yet.  We can use
780 	 * printf() etc. once this is done.
781 	 */
782 	setenv("console", "efi", 1);
783 	cons_probe();
784 
785 	/*
786 	 * Initialise the block cache. Set the upper limit.
787 	 */
788 	bcache_init(32768, 512);
789 
790 	howto = parse_args(argc, argv);
791 	if (!has_kbd && (howto & RB_PROBE))
792 		howto |= RB_SERIAL | RB_MULTIPLE;
793 	howto &= ~RB_PROBE;
794 	uhowto = parse_uefi_con_out();
795 
796 	/*
797 	 * We now have two notions of console. howto should be viewed as
798 	 * overrides. If console is already set, don't set it again.
799 	 */
800 #define	VIDEO_ONLY	0
801 #define	SERIAL_ONLY	RB_SERIAL
802 #define	VID_SER_BOTH	RB_MULTIPLE
803 #define	SER_VID_BOTH	(RB_SERIAL | RB_MULTIPLE)
804 #define	CON_MASK	(RB_SERIAL | RB_MULTIPLE)
805 	if (strcmp(getenv("console"), "efi") == 0) {
806 		if ((howto & CON_MASK) == 0) {
807 			/* No override, uhowto is controlling and efi cons is perfect */
808 			howto = howto | (uhowto & CON_MASK);
809 			setenv("console", "efi", 1);
810 		} else if ((howto & CON_MASK) == (uhowto & CON_MASK)) {
811 			/* override matches what UEFI told us, efi console is perfect */
812 			setenv("console", "efi", 1);
813 		} else if ((uhowto & (CON_MASK)) != 0) {
814 			/*
815 			 * We detected a serial console on ConOut. All possible
816 			 * overrides include serial. We can't really override what efi
817 			 * gives us, so we use it knowing it's the best choice.
818 			 */
819 			setenv("console", "efi", 1);
820 		} else {
821 			/*
822 			 * We detected some kind of serial in the override, but ConOut
823 			 * has no serial, so we have to sort out which case it really is.
824 			 */
825 			switch (howto & CON_MASK) {
826 			case SERIAL_ONLY:
827 				setenv("console", "comconsole", 1);
828 				break;
829 			case VID_SER_BOTH:
830 				setenv("console", "efi comconsole", 1);
831 				break;
832 			case SER_VID_BOTH:
833 				setenv("console", "comconsole efi", 1);
834 				break;
835 				/* case VIDEO_ONLY can't happen -- it's the first if above */
836 			}
837 		}
838 	}
839 
840 	/*
841 	 * howto is set now how we want to export the flags to the kernel, so
842 	 * set the env based on it.
843 	 */
844 	boot_howto_to_env(howto);
845 
846 	if (efi_copy_init()) {
847 		printf("failed to allocate staging area\n");
848 		return (EFI_BUFFER_TOO_SMALL);
849 	}
850 
851 	if ((s = getenv("fail_timeout")) != NULL)
852 		fail_timeout = strtol(s, NULL, 10);
853 
854 	/*
855 	 * Scan the BLOCK IO MEDIA handles then
856 	 * march through the device switch probing for things.
857 	 */
858 	i = efipart_inithandles();
859 	if (i != 0 && i != ENOENT) {
860 		printf("efipart_inithandles failed with ERRNO %d, expect "
861 		    "failures\n", i);
862 	}
863 
864 	for (i = 0; devsw[i] != NULL; i++)
865 		if (devsw[i]->dv_init != NULL)
866 			(devsw[i]->dv_init)();
867 
868 	printf("%s\n", bootprog_info);
869 	printf("   Command line arguments:");
870 	for (i = 0; i < argc; i++)
871 		printf(" %S", argv[i]);
872 	printf("\n");
873 
874 	printf("   EFI version: %d.%02d\n", ST->Hdr.Revision >> 16,
875 	    ST->Hdr.Revision & 0xffff);
876 	printf("   EFI Firmware: %S (rev %d.%02d)\n", ST->FirmwareVendor,
877 	    ST->FirmwareRevision >> 16, ST->FirmwareRevision & 0xffff);
878 	printf("   Console: %s (%#x)\n", getenv("console"), howto);
879 
880 
881 
882 	/* Determine the devpath of our image so we can prefer it. */
883 	text = efi_devpath_name(img->FilePath);
884 	if (text != NULL) {
885 		printf("   Load Path: %S\n", text);
886 		efi_setenv_freebsd_wcs("LoaderPath", text);
887 		efi_free_devpath_name(text);
888 	}
889 
890 	rv = BS->HandleProtocol(img->DeviceHandle, &devid, (void **)&imgpath);
891 	if (rv == EFI_SUCCESS) {
892 		text = efi_devpath_name(imgpath);
893 		if (text != NULL) {
894 			printf("   Load Device: %S\n", text);
895 			efi_setenv_freebsd_wcs("LoaderDev", text);
896 			efi_free_devpath_name(text);
897 		}
898 	}
899 
900 	uefi_boot_mgr = true;
901 	boot_current = 0;
902 	sz = sizeof(boot_current);
903 	rv = efi_global_getenv("BootCurrent", &boot_current, &sz);
904 	if (rv == EFI_SUCCESS)
905 		printf("   BootCurrent: %04x\n", boot_current);
906 	else {
907 		boot_current = 0xffff;
908 		uefi_boot_mgr = false;
909 	}
910 
911 	sz = sizeof(boot_order);
912 	rv = efi_global_getenv("BootOrder", &boot_order, &sz);
913 	if (rv == EFI_SUCCESS) {
914 		printf("   BootOrder:");
915 		for (i = 0; i < sz / sizeof(boot_order[0]); i++)
916 			printf(" %04x%s", boot_order[i],
917 			    boot_order[i] == boot_current ? "[*]" : "");
918 		printf("\n");
919 		is_last = boot_order[(sz / sizeof(boot_order[0])) - 1] == boot_current;
920 		bosz = sz;
921 	} else if (uefi_boot_mgr) {
922 		/*
923 		 * u-boot doesn't set BootOrder, but otherwise participates in the
924 		 * boot manager protocol. So we fake it here and don't consider it
925 		 * a failure.
926 		 */
927 		bosz = sizeof(boot_order[0]);
928 		boot_order[0] = boot_current;
929 		is_last = true;
930 	}
931 
932 	/*
933 	 * Next, find the boot info structure the UEFI boot manager is
934 	 * supposed to setup. We need this so we can walk through it to
935 	 * find where we are in the booting process and what to try to
936 	 * boot next.
937 	 */
938 	if (uefi_boot_mgr) {
939 		snprintf(buf, sizeof(buf), "Boot%04X", boot_current);
940 		sz = sizeof(boot_info);
941 		rv = efi_global_getenv(buf, &boot_info, &sz);
942 		if (rv == EFI_SUCCESS)
943 			bisz = sz;
944 		else
945 			uefi_boot_mgr = false;
946 	}
947 
948 	/*
949 	 * Disable the watchdog timer. By default the boot manager sets
950 	 * the timer to 5 minutes before invoking a boot option. If we
951 	 * want to return to the boot manager, we have to disable the
952 	 * watchdog timer and since we're an interactive program, we don't
953 	 * want to wait until the user types "quit". The timer may have
954 	 * fired by then. We don't care if this fails. It does not prevent
955 	 * normal functioning in any way...
956 	 */
957 	BS->SetWatchdogTimer(0, 0, 0, NULL);
958 
959 	/*
960 	 * Initialize the trusted/forbidden certificates from UEFI.
961 	 * They will be later used to verify the manifest(s),
962 	 * which should contain hashes of verified files.
963 	 * This needs to be initialized before any configuration files
964 	 * are loaded.
965 	 */
966 #ifdef EFI_SECUREBOOT
967 	ve_efi_init();
968 #endif
969 
970 	/*
971 	 * Try and find a good currdev based on the image that was booted.
972 	 * It might be desirable here to have a short pause to allow falling
973 	 * through to the boot loader instead of returning instantly to follow
974 	 * the boot protocol and also allow an escape hatch for users wishing
975 	 * to try something different.
976 	 */
977 	if (find_currdev(img, uefi_boot_mgr, is_last, boot_info, bisz) != 0)
978 		if (!interactive_interrupt("Failed to find bootable partition"))
979 			return (EFI_NOT_FOUND);
980 
981 	efi_init_environment();
982 
983 #if !defined(__arm__)
984 	for (k = 0; k < ST->NumberOfTableEntries; k++) {
985 		guid = &ST->ConfigurationTable[k].VendorGuid;
986 		if (!memcmp(guid, &smbios, sizeof(EFI_GUID))) {
987 			char buf[40];
988 
989 			snprintf(buf, sizeof(buf), "%p",
990 			    ST->ConfigurationTable[k].VendorTable);
991 			setenv("hint.smbios.0.mem", buf, 1);
992 			smbios_detect(ST->ConfigurationTable[k].VendorTable);
993 			break;
994 		}
995 	}
996 #endif
997 
998 	interact();			/* doesn't return */
999 
1000 	return (EFI_SUCCESS);		/* keep compiler happy */
1001 }
1002 
1003 COMMAND_SET(poweroff, "poweroff", "power off the system", command_poweroff);
1004 
1005 static int
1006 command_poweroff(int argc __unused, char *argv[] __unused)
1007 {
1008 	int i;
1009 
1010 	for (i = 0; devsw[i] != NULL; ++i)
1011 		if (devsw[i]->dv_cleanup != NULL)
1012 			(devsw[i]->dv_cleanup)();
1013 
1014 	RS->ResetSystem(EfiResetShutdown, EFI_SUCCESS, 0, NULL);
1015 
1016 	/* NOTREACHED */
1017 	return (CMD_ERROR);
1018 }
1019 
1020 COMMAND_SET(reboot, "reboot", "reboot the system", command_reboot);
1021 
1022 static int
1023 command_reboot(int argc, char *argv[])
1024 {
1025 	int i;
1026 
1027 	for (i = 0; devsw[i] != NULL; ++i)
1028 		if (devsw[i]->dv_cleanup != NULL)
1029 			(devsw[i]->dv_cleanup)();
1030 
1031 	RS->ResetSystem(EfiResetCold, EFI_SUCCESS, 0, NULL);
1032 
1033 	/* NOTREACHED */
1034 	return (CMD_ERROR);
1035 }
1036 
1037 COMMAND_SET(quit, "quit", "exit the loader", command_quit);
1038 
1039 static int
1040 command_quit(int argc, char *argv[])
1041 {
1042 	exit(0);
1043 	return (CMD_OK);
1044 }
1045 
1046 COMMAND_SET(memmap, "memmap", "print memory map", command_memmap);
1047 
1048 static int
1049 command_memmap(int argc __unused, char *argv[] __unused)
1050 {
1051 	UINTN sz;
1052 	EFI_MEMORY_DESCRIPTOR *map, *p;
1053 	UINTN key, dsz;
1054 	UINT32 dver;
1055 	EFI_STATUS status;
1056 	int i, ndesc;
1057 	char line[80];
1058 
1059 	sz = 0;
1060 	status = BS->GetMemoryMap(&sz, 0, &key, &dsz, &dver);
1061 	if (status != EFI_BUFFER_TOO_SMALL) {
1062 		printf("Can't determine memory map size\n");
1063 		return (CMD_ERROR);
1064 	}
1065 	map = malloc(sz);
1066 	status = BS->GetMemoryMap(&sz, map, &key, &dsz, &dver);
1067 	if (EFI_ERROR(status)) {
1068 		printf("Can't read memory map\n");
1069 		return (CMD_ERROR);
1070 	}
1071 
1072 	ndesc = sz / dsz;
1073 	snprintf(line, sizeof(line), "%23s %12s %12s %8s %4s\n",
1074 	    "Type", "Physical", "Virtual", "#Pages", "Attr");
1075 	pager_open();
1076 	if (pager_output(line)) {
1077 		pager_close();
1078 		return (CMD_OK);
1079 	}
1080 
1081 	for (i = 0, p = map; i < ndesc;
1082 	     i++, p = NextMemoryDescriptor(p, dsz)) {
1083 		snprintf(line, sizeof(line), "%23s %012jx %012jx %08jx ",
1084 		    efi_memory_type(p->Type), (uintmax_t)p->PhysicalStart,
1085 		    (uintmax_t)p->VirtualStart, (uintmax_t)p->NumberOfPages);
1086 		if (pager_output(line))
1087 			break;
1088 
1089 		if (p->Attribute & EFI_MEMORY_UC)
1090 			printf("UC ");
1091 		if (p->Attribute & EFI_MEMORY_WC)
1092 			printf("WC ");
1093 		if (p->Attribute & EFI_MEMORY_WT)
1094 			printf("WT ");
1095 		if (p->Attribute & EFI_MEMORY_WB)
1096 			printf("WB ");
1097 		if (p->Attribute & EFI_MEMORY_UCE)
1098 			printf("UCE ");
1099 		if (p->Attribute & EFI_MEMORY_WP)
1100 			printf("WP ");
1101 		if (p->Attribute & EFI_MEMORY_RP)
1102 			printf("RP ");
1103 		if (p->Attribute & EFI_MEMORY_XP)
1104 			printf("XP ");
1105 		if (p->Attribute & EFI_MEMORY_NV)
1106 			printf("NV ");
1107 		if (p->Attribute & EFI_MEMORY_MORE_RELIABLE)
1108 			printf("MR ");
1109 		if (p->Attribute & EFI_MEMORY_RO)
1110 			printf("RO ");
1111 		if (pager_output("\n"))
1112 			break;
1113 	}
1114 
1115 	pager_close();
1116 	return (CMD_OK);
1117 }
1118 
1119 COMMAND_SET(configuration, "configuration", "print configuration tables",
1120     command_configuration);
1121 
1122 static int
1123 command_configuration(int argc, char *argv[])
1124 {
1125 	UINTN i;
1126 	char *name;
1127 
1128 	printf("NumberOfTableEntries=%lu\n",
1129 		(unsigned long)ST->NumberOfTableEntries);
1130 
1131 	for (i = 0; i < ST->NumberOfTableEntries; i++) {
1132 		EFI_GUID *guid;
1133 
1134 		printf("  ");
1135 		guid = &ST->ConfigurationTable[i].VendorGuid;
1136 
1137 		if (efi_guid_to_name(guid, &name) == true) {
1138 			printf(name);
1139 			free(name);
1140 		} else {
1141 			printf("Error while translating UUID to name");
1142 		}
1143 		printf(" at %p\n", ST->ConfigurationTable[i].VendorTable);
1144 	}
1145 
1146 	return (CMD_OK);
1147 }
1148 
1149 
1150 COMMAND_SET(mode, "mode", "change or display EFI text modes", command_mode);
1151 
1152 static int
1153 command_mode(int argc, char *argv[])
1154 {
1155 	UINTN cols, rows;
1156 	unsigned int mode;
1157 	int i;
1158 	char *cp;
1159 	char rowenv[8];
1160 	EFI_STATUS status;
1161 	SIMPLE_TEXT_OUTPUT_INTERFACE *conout;
1162 	extern void HO(void);
1163 
1164 	conout = ST->ConOut;
1165 
1166 	if (argc > 1) {
1167 		mode = strtol(argv[1], &cp, 0);
1168 		if (cp[0] != '\0') {
1169 			printf("Invalid mode\n");
1170 			return (CMD_ERROR);
1171 		}
1172 		status = conout->QueryMode(conout, mode, &cols, &rows);
1173 		if (EFI_ERROR(status)) {
1174 			printf("invalid mode %d\n", mode);
1175 			return (CMD_ERROR);
1176 		}
1177 		status = conout->SetMode(conout, mode);
1178 		if (EFI_ERROR(status)) {
1179 			printf("couldn't set mode %d\n", mode);
1180 			return (CMD_ERROR);
1181 		}
1182 		sprintf(rowenv, "%u", (unsigned)rows);
1183 		setenv("LINES", rowenv, 1);
1184 		HO();		/* set cursor */
1185 		return (CMD_OK);
1186 	}
1187 
1188 	printf("Current mode: %d\n", conout->Mode->Mode);
1189 	for (i = 0; i <= conout->Mode->MaxMode; i++) {
1190 		status = conout->QueryMode(conout, i, &cols, &rows);
1191 		if (EFI_ERROR(status))
1192 			continue;
1193 		printf("Mode %d: %u columns, %u rows\n", i, (unsigned)cols,
1194 		    (unsigned)rows);
1195 	}
1196 
1197 	if (i != 0)
1198 		printf("Select a mode with the command \"mode <number>\"\n");
1199 
1200 	return (CMD_OK);
1201 }
1202 
1203 COMMAND_SET(lsefi, "lsefi", "list EFI handles", command_lsefi);
1204 
1205 static int
1206 command_lsefi(int argc __unused, char *argv[] __unused)
1207 {
1208 	char *name;
1209 	EFI_HANDLE *buffer = NULL;
1210 	EFI_HANDLE handle;
1211 	UINTN bufsz = 0, i, j;
1212 	EFI_STATUS status;
1213 	int ret = 0;
1214 
1215 	status = BS->LocateHandle(AllHandles, NULL, NULL, &bufsz, buffer);
1216 	if (status != EFI_BUFFER_TOO_SMALL) {
1217 		snprintf(command_errbuf, sizeof (command_errbuf),
1218 		    "unexpected error: %lld", (long long)status);
1219 		return (CMD_ERROR);
1220 	}
1221 	if ((buffer = malloc(bufsz)) == NULL) {
1222 		sprintf(command_errbuf, "out of memory");
1223 		return (CMD_ERROR);
1224 	}
1225 
1226 	status = BS->LocateHandle(AllHandles, NULL, NULL, &bufsz, buffer);
1227 	if (EFI_ERROR(status)) {
1228 		free(buffer);
1229 		snprintf(command_errbuf, sizeof (command_errbuf),
1230 		    "LocateHandle() error: %lld", (long long)status);
1231 		return (CMD_ERROR);
1232 	}
1233 
1234 	pager_open();
1235 	for (i = 0; i < (bufsz / sizeof (EFI_HANDLE)); i++) {
1236 		UINTN nproto = 0;
1237 		EFI_GUID **protocols = NULL;
1238 
1239 		handle = buffer[i];
1240 		printf("Handle %p", handle);
1241 		if (pager_output("\n"))
1242 			break;
1243 		/* device path */
1244 
1245 		status = BS->ProtocolsPerHandle(handle, &protocols, &nproto);
1246 		if (EFI_ERROR(status)) {
1247 			snprintf(command_errbuf, sizeof (command_errbuf),
1248 			    "ProtocolsPerHandle() error: %lld",
1249 			    (long long)status);
1250 			continue;
1251 		}
1252 
1253 		for (j = 0; j < nproto; j++) {
1254 			if (efi_guid_to_name(protocols[j], &name) == true) {
1255 				printf("  %s", name);
1256 				free(name);
1257 			} else {
1258 				printf("Error while translating UUID to name");
1259 			}
1260 			if ((ret = pager_output("\n")) != 0)
1261 				break;
1262 		}
1263 		BS->FreePool(protocols);
1264 		if (ret != 0)
1265 			break;
1266 	}
1267 	pager_close();
1268 	free(buffer);
1269 	return (CMD_OK);
1270 }
1271 
1272 #ifdef LOADER_FDT_SUPPORT
1273 extern int command_fdt_internal(int argc, char *argv[]);
1274 
1275 /*
1276  * Since proper fdt command handling function is defined in fdt_loader_cmd.c,
1277  * and declaring it as extern is in contradiction with COMMAND_SET() macro
1278  * (which uses static pointer), we're defining wrapper function, which
1279  * calls the proper fdt handling routine.
1280  */
1281 static int
1282 command_fdt(int argc, char *argv[])
1283 {
1284 
1285 	return (command_fdt_internal(argc, argv));
1286 }
1287 
1288 COMMAND_SET(fdt, "fdt", "flattened device tree handling", command_fdt);
1289 #endif
1290 
1291 /*
1292  * Chain load another efi loader.
1293  */
1294 static int
1295 command_chain(int argc, char *argv[])
1296 {
1297 	EFI_GUID LoadedImageGUID = LOADED_IMAGE_PROTOCOL;
1298 	EFI_HANDLE loaderhandle;
1299 	EFI_LOADED_IMAGE *loaded_image;
1300 	EFI_STATUS status;
1301 	struct stat st;
1302 	struct devdesc *dev;
1303 	char *name, *path;
1304 	void *buf;
1305 	int fd;
1306 
1307 	if (argc < 2) {
1308 		command_errmsg = "wrong number of arguments";
1309 		return (CMD_ERROR);
1310 	}
1311 
1312 	name = argv[1];
1313 
1314 	if ((fd = open(name, O_RDONLY)) < 0) {
1315 		command_errmsg = "no such file";
1316 		return (CMD_ERROR);
1317 	}
1318 
1319 	if (fstat(fd, &st) < -1) {
1320 		command_errmsg = "stat failed";
1321 		close(fd);
1322 		return (CMD_ERROR);
1323 	}
1324 
1325 	status = BS->AllocatePool(EfiLoaderCode, (UINTN)st.st_size, &buf);
1326 	if (status != EFI_SUCCESS) {
1327 		command_errmsg = "failed to allocate buffer";
1328 		close(fd);
1329 		return (CMD_ERROR);
1330 	}
1331 	if (read(fd, buf, st.st_size) != st.st_size) {
1332 		command_errmsg = "error while reading the file";
1333 		(void)BS->FreePool(buf);
1334 		close(fd);
1335 		return (CMD_ERROR);
1336 	}
1337 	close(fd);
1338 	status = BS->LoadImage(FALSE, IH, NULL, buf, st.st_size, &loaderhandle);
1339 	(void)BS->FreePool(buf);
1340 	if (status != EFI_SUCCESS) {
1341 		command_errmsg = "LoadImage failed";
1342 		return (CMD_ERROR);
1343 	}
1344 	status = BS->HandleProtocol(loaderhandle, &LoadedImageGUID,
1345 	    (void **)&loaded_image);
1346 
1347 	if (argc > 2) {
1348 		int i, len = 0;
1349 		CHAR16 *argp;
1350 
1351 		for (i = 2; i < argc; i++)
1352 			len += strlen(argv[i]) + 1;
1353 
1354 		len *= sizeof (*argp);
1355 		loaded_image->LoadOptions = argp = malloc (len);
1356 		loaded_image->LoadOptionsSize = len;
1357 		for (i = 2; i < argc; i++) {
1358 			char *ptr = argv[i];
1359 			while (*ptr)
1360 				*(argp++) = *(ptr++);
1361 			*(argp++) = ' ';
1362 		}
1363 		*(--argv) = 0;
1364 	}
1365 
1366 	if (efi_getdev((void **)&dev, name, (const char **)&path) == 0) {
1367 #ifdef EFI_ZFS_BOOT
1368 		struct zfs_devdesc *z_dev;
1369 #endif
1370 		struct disk_devdesc *d_dev;
1371 		pdinfo_t *hd, *pd;
1372 
1373 		switch (dev->d_dev->dv_type) {
1374 #ifdef EFI_ZFS_BOOT
1375 		case DEVT_ZFS:
1376 			z_dev = (struct zfs_devdesc *)dev;
1377 			loaded_image->DeviceHandle =
1378 			    efizfs_get_handle_by_guid(z_dev->pool_guid);
1379 			break;
1380 #endif
1381 		case DEVT_NET:
1382 			loaded_image->DeviceHandle =
1383 			    efi_find_handle(dev->d_dev, dev->d_unit);
1384 			break;
1385 		default:
1386 			hd = efiblk_get_pdinfo(dev);
1387 			if (STAILQ_EMPTY(&hd->pd_part)) {
1388 				loaded_image->DeviceHandle = hd->pd_handle;
1389 				break;
1390 			}
1391 			d_dev = (struct disk_devdesc *)dev;
1392 			STAILQ_FOREACH(pd, &hd->pd_part, pd_link) {
1393 				/*
1394 				 * d_partition should be 255
1395 				 */
1396 				if (pd->pd_unit == (uint32_t)d_dev->d_slice) {
1397 					loaded_image->DeviceHandle =
1398 					    pd->pd_handle;
1399 					break;
1400 				}
1401 			}
1402 			break;
1403 		}
1404 	}
1405 
1406 	dev_cleanup();
1407 	status = BS->StartImage(loaderhandle, NULL, NULL);
1408 	if (status != EFI_SUCCESS) {
1409 		command_errmsg = "StartImage failed";
1410 		free(loaded_image->LoadOptions);
1411 		loaded_image->LoadOptions = NULL;
1412 		status = BS->UnloadImage(loaded_image);
1413 		return (CMD_ERROR);
1414 	}
1415 
1416 	return (CMD_ERROR);	/* not reached */
1417 }
1418 
1419 COMMAND_SET(chain, "chain", "chain load file", command_chain);
1420