xref: /freebsd/stand/efi/loader/main.c (revision 3877025f52ee205fe99ad4ff68229933d57e4bcb)
1 /*-
2  * Copyright (c) 2008-2010 Rui Paulo
3  * Copyright (c) 2006 Marcel Moolenaar
4  * All rights reserved.
5  *
6  * Copyright (c) 2016-2019 Netflix, Inc. written by M. Warner Losh
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  */
29 
30 #include <stand.h>
31 
32 #include <sys/disk.h>
33 #include <sys/param.h>
34 #include <sys/reboot.h>
35 #include <sys/boot.h>
36 #ifdef EFI_ZFS_BOOT
37 #include <sys/zfs_bootenv.h>
38 #endif
39 #include <paths.h>
40 #include <netinet/in.h>
41 #include <netinet/in_systm.h>
42 #include <stdint.h>
43 #include <string.h>
44 #include <setjmp.h>
45 #include <disk.h>
46 #include <dev_net.h>
47 #include <net.h>
48 #include <machine/_inttypes.h>
49 
50 #include <efi.h>
51 #include <efilib.h>
52 #include <efichar.h>
53 #include <efirng.h>
54 
55 #include <uuid.h>
56 
57 #include <bootstrap.h>
58 #include <smbios.h>
59 
60 #include <dev/random/fortuna.h>
61 #include <geom/eli/pkcs5v2.h>
62 
63 #include "efizfs.h"
64 #include "framebuffer.h"
65 
66 #include "platform/acfreebsd.h"
67 #include "acconfig.h"
68 #define ACPI_SYSTEM_XFACE
69 #include "actypes.h"
70 #include "actbl.h"
71 
72 #include "loader_efi.h"
73 
74 struct arch_switch archsw = {	/* MI/MD interface boundary */
75 	.arch_autoload = efi_autoload,
76 	.arch_getdev = efi_getdev,
77 	.arch_copyin = efi_copyin,
78 	.arch_copyout = efi_copyout,
79 #if defined(__amd64__) || defined(__i386__)
80 	.arch_hypervisor = x86_hypervisor,
81 #endif
82 	.arch_readin = efi_readin,
83 	.arch_zfs_probe = efi_zfs_probe,
84 };
85 
86 EFI_GUID acpi = ACPI_TABLE_GUID;
87 EFI_GUID acpi20 = ACPI_20_TABLE_GUID;
88 EFI_GUID devid = DEVICE_PATH_PROTOCOL;
89 EFI_GUID imgid = LOADED_IMAGE_PROTOCOL;
90 EFI_GUID mps = MPS_TABLE_GUID;
91 EFI_GUID netid = EFI_SIMPLE_NETWORK_PROTOCOL;
92 EFI_GUID smbios = SMBIOS_TABLE_GUID;
93 EFI_GUID smbios3 = SMBIOS3_TABLE_GUID;
94 EFI_GUID dxe = DXE_SERVICES_TABLE_GUID;
95 EFI_GUID hoblist = HOB_LIST_TABLE_GUID;
96 EFI_GUID lzmadecomp = LZMA_DECOMPRESSION_GUID;
97 EFI_GUID mpcore = ARM_MP_CORE_INFO_TABLE_GUID;
98 EFI_GUID esrt = ESRT_TABLE_GUID;
99 EFI_GUID memtype = MEMORY_TYPE_INFORMATION_TABLE_GUID;
100 EFI_GUID debugimg = DEBUG_IMAGE_INFO_TABLE_GUID;
101 EFI_GUID fdtdtb = FDT_TABLE_GUID;
102 EFI_GUID inputid = SIMPLE_TEXT_INPUT_PROTOCOL;
103 
104 /*
105  * Number of seconds to wait for a keystroke before exiting with failure
106  * in the event no currdev is found. -2 means always break, -1 means
107  * never break, 0 means poll once and then reboot, > 0 means wait for
108  * that many seconds. "fail_timeout" can be set in the environment as
109  * well.
110  */
111 static int fail_timeout = 5;
112 
113 /*
114  * Current boot variable
115  */
116 UINT16 boot_current;
117 
118 /*
119  * Image that we booted from.
120  */
121 EFI_LOADED_IMAGE *boot_img;
122 
123 /*
124  * RSDP base table.
125  */
126 ACPI_TABLE_RSDP *rsdp;
127 
128 static bool
129 has_keyboard(void)
130 {
131 	EFI_STATUS status;
132 	EFI_DEVICE_PATH *path;
133 	EFI_HANDLE *hin, *hin_end, *walker;
134 	UINTN sz;
135 	bool retval = false;
136 
137 	/*
138 	 * Find all the handles that support the SIMPLE_TEXT_INPUT_PROTOCOL and
139 	 * do the typical dance to get the right sized buffer.
140 	 */
141 	sz = 0;
142 	hin = NULL;
143 	status = BS->LocateHandle(ByProtocol, &inputid, 0, &sz, 0);
144 	if (status == EFI_BUFFER_TOO_SMALL) {
145 		hin = (EFI_HANDLE *)malloc(sz);
146 		status = BS->LocateHandle(ByProtocol, &inputid, 0, &sz,
147 		    hin);
148 		if (EFI_ERROR(status))
149 			free(hin);
150 	}
151 	if (EFI_ERROR(status))
152 		return retval;
153 
154 	/*
155 	 * Look at each of the handles. If it supports the device path protocol,
156 	 * use it to get the device path for this handle. Then see if that
157 	 * device path matches either the USB device path for keyboards or the
158 	 * legacy device path for keyboards.
159 	 */
160 	hin_end = &hin[sz / sizeof(*hin)];
161 	for (walker = hin; walker < hin_end; walker++) {
162 		status = OpenProtocolByHandle(*walker, &devid, (void **)&path);
163 		if (EFI_ERROR(status))
164 			continue;
165 
166 		while (!IsDevicePathEnd(path)) {
167 			/*
168 			 * Check for the ACPI keyboard node. All PNP3xx nodes
169 			 * are keyboards of different flavors. Note: It is
170 			 * unclear of there's always a keyboard node when
171 			 * there's a keyboard controller, or if there's only one
172 			 * when a keyboard is detected at boot.
173 			 */
174 			if (DevicePathType(path) == ACPI_DEVICE_PATH &&
175 			    (DevicePathSubType(path) == ACPI_DP ||
176 				DevicePathSubType(path) == ACPI_EXTENDED_DP)) {
177 				ACPI_HID_DEVICE_PATH  *acpi;
178 
179 				acpi = (ACPI_HID_DEVICE_PATH *)(void *)path;
180 				if ((EISA_ID_TO_NUM(acpi->HID) & 0xff00) == 0x300 &&
181 				    (acpi->HID & 0xffff) == PNP_EISA_ID_CONST) {
182 					retval = true;
183 					goto out;
184 				}
185 			/*
186 			 * Check for USB keyboard node, if present. Unlike a
187 			 * PS/2 keyboard, these definitely only appear when
188 			 * connected to the system.
189 			 */
190 			} else if (DevicePathType(path) == MESSAGING_DEVICE_PATH &&
191 			    DevicePathSubType(path) == MSG_USB_CLASS_DP) {
192 				USB_CLASS_DEVICE_PATH *usb;
193 
194 				usb = (USB_CLASS_DEVICE_PATH *)(void *)path;
195 				if (usb->DeviceClass == 3 && /* HID */
196 				    usb->DeviceSubClass == 1 && /* Boot devices */
197 				    usb->DeviceProtocol == 1) { /* Boot keyboards */
198 					retval = true;
199 					goto out;
200 				}
201 			}
202 			path = NextDevicePathNode(path);
203 		}
204 	}
205 out:
206 	free(hin);
207 	return retval;
208 }
209 
210 static void
211 set_currdev_devdesc(struct devdesc *currdev)
212 {
213 	const char *devname;
214 
215 	devname = devformat(currdev);
216 	printf("Setting currdev to %s\n", devname);
217 	set_currdev(devname);
218 }
219 
220 static void
221 set_currdev_devsw(struct devsw *dev, int unit)
222 {
223 	struct devdesc currdev;
224 
225 	currdev.d_dev = dev;
226 	currdev.d_unit = unit;
227 
228 	set_currdev_devdesc(&currdev);
229 }
230 
231 static void
232 set_currdev_pdinfo(pdinfo_t *dp)
233 {
234 
235 	/*
236 	 * Disks are special: they have partitions. if the parent
237 	 * pointer is non-null, we're a partition not a full disk
238 	 * and we need to adjust currdev appropriately.
239 	 */
240 	if (dp->pd_devsw->dv_type == DEVT_DISK) {
241 		struct disk_devdesc currdev;
242 
243 		currdev.dd.d_dev = dp->pd_devsw;
244 		if (dp->pd_parent == NULL) {
245 			currdev.dd.d_unit = dp->pd_unit;
246 			currdev.d_slice = D_SLICENONE;
247 			currdev.d_partition = D_PARTNONE;
248 		} else {
249 			currdev.dd.d_unit = dp->pd_parent->pd_unit;
250 			currdev.d_slice = dp->pd_unit;
251 			currdev.d_partition = D_PARTISGPT; /* XXX Assumes GPT */
252 		}
253 		set_currdev_devdesc((struct devdesc *)&currdev);
254 	} else {
255 		set_currdev_devsw(dp->pd_devsw, dp->pd_unit);
256 	}
257 }
258 
259 static bool
260 sanity_check_currdev(void)
261 {
262 	struct stat st;
263 
264 	return (stat(PATH_DEFAULTS_LOADER_CONF, &st) == 0 ||
265 #ifdef PATH_BOOTABLE_TOKEN
266 	    stat(PATH_BOOTABLE_TOKEN, &st) == 0 || /* non-standard layout */
267 #endif
268 	    stat(PATH_KERNEL, &st) == 0);
269 }
270 
271 #ifdef EFI_ZFS_BOOT
272 static bool
273 probe_zfs_currdev(uint64_t guid)
274 {
275 	char buf[VDEV_PAD_SIZE];
276 	char *devname;
277 	struct zfs_devdesc currdev;
278 
279 	currdev.dd.d_dev = &zfs_dev;
280 	currdev.dd.d_unit = 0;
281 	currdev.pool_guid = guid;
282 	currdev.root_guid = 0;
283 	devname = devformat(&currdev.dd);
284 	set_currdev(devname);
285 	printf("Setting currdev to %s\n", devname);
286 	init_zfs_boot_options(devname);
287 
288 	if (zfs_get_bootonce(&currdev, OS_BOOTONCE, buf, sizeof(buf)) == 0) {
289 		printf("zfs bootonce: %s\n", buf);
290 		set_currdev(buf);
291 		setenv("zfs-bootonce", buf, 1);
292 	}
293 	(void)zfs_attach_nvstore(&currdev);
294 
295 	return (sanity_check_currdev());
296 }
297 #endif
298 
299 #ifdef MD_IMAGE_SIZE
300 extern struct devsw md_dev;
301 
302 static bool
303 probe_md_currdev(void)
304 {
305 	bool rv;
306 
307 	set_currdev_devsw(&md_dev, 0);
308 	rv = sanity_check_currdev();
309 	if (!rv)
310 		printf("MD not present\n");
311 	return (rv);
312 }
313 #endif
314 
315 static bool
316 try_as_currdev(pdinfo_t *hd, pdinfo_t *pp)
317 {
318 	uint64_t guid;
319 
320 #ifdef EFI_ZFS_BOOT
321 	/*
322 	 * If there's a zpool on this device, try it as a ZFS
323 	 * filesystem, which has somewhat different setup than all
324 	 * other types of fs due to imperfect loader integration.
325 	 * This all stems from ZFS being both a device (zpool) and
326 	 * a filesystem, plus the boot env feature.
327 	 */
328 	if (efizfs_get_guid_by_handle(pp->pd_handle, &guid))
329 		return (probe_zfs_currdev(guid));
330 #endif
331 	/*
332 	 * All other filesystems just need the pdinfo
333 	 * initialized in the standard way.
334 	 */
335 	set_currdev_pdinfo(pp);
336 	return (sanity_check_currdev());
337 }
338 
339 /*
340  * Sometimes we get filenames that are all upper case
341  * and/or have backslashes in them. Filter all this out
342  * if it looks like we need to do so.
343  */
344 static void
345 fix_dosisms(char *p)
346 {
347 	while (*p) {
348 		if (isupper(*p))
349 			*p = tolower(*p);
350 		else if (*p == '\\')
351 			*p = '/';
352 		p++;
353 	}
354 }
355 
356 #define SIZE(dp, edp) (size_t)((intptr_t)(void *)edp - (intptr_t)(void *)dp)
357 
358 enum { BOOT_INFO_OK = 0, BAD_CHOICE = 1, NOT_SPECIFIC = 2  };
359 static int
360 match_boot_info(char *boot_info, size_t bisz)
361 {
362 	uint32_t attr;
363 	uint16_t fplen;
364 	size_t len;
365 	char *walker, *ep;
366 	EFI_DEVICE_PATH *dp, *edp, *first_dp, *last_dp;
367 	pdinfo_t *pp;
368 	CHAR16 *descr;
369 	char *kernel = NULL;
370 	FILEPATH_DEVICE_PATH  *fp;
371 	struct stat st;
372 	CHAR16 *text;
373 
374 	/*
375 	 * FreeBSD encodes its boot loading path into the boot loader
376 	 * BootXXXX variable. We look for the last one in the path
377 	 * and use that to load the kernel. However, if we only find
378 	 * one DEVICE_PATH, then there's nothing specific and we should
379 	 * fall back.
380 	 *
381 	 * In an ideal world, we'd look at the image handle we were
382 	 * passed, match up with the loader we are and then return the
383 	 * next one in the path. This would be most flexible and cover
384 	 * many chain booting scenarios where you need to use this
385 	 * boot loader to get to the next boot loader. However, that
386 	 * doesn't work. We rarely have the path to the image booted
387 	 * (just the device) so we can't count on that. So, we do the
388 	 * next best thing: we look through the device path(s) passed
389 	 * in the BootXXXX variable. If there's only one, we return
390 	 * NOT_SPECIFIC. Otherwise, we look at the last one and try to
391 	 * load that. If we can, we return BOOT_INFO_OK. Otherwise we
392 	 * return BAD_CHOICE for the caller to sort out.
393 	 */
394 	if (bisz < sizeof(attr) + sizeof(fplen) + sizeof(CHAR16))
395 		return NOT_SPECIFIC;
396 	walker = boot_info;
397 	ep = walker + bisz;
398 	memcpy(&attr, walker, sizeof(attr));
399 	walker += sizeof(attr);
400 	memcpy(&fplen, walker, sizeof(fplen));
401 	walker += sizeof(fplen);
402 	descr = (CHAR16 *)(intptr_t)walker;
403 	len = ucs2len(descr);
404 	walker += (len + 1) * sizeof(CHAR16);
405 	last_dp = first_dp = dp = (EFI_DEVICE_PATH *)walker;
406 	edp = (EFI_DEVICE_PATH *)(walker + fplen);
407 	if ((char *)edp > ep)
408 		return NOT_SPECIFIC;
409 	while (dp < edp && SIZE(dp, edp) > sizeof(EFI_DEVICE_PATH)) {
410 		text = efi_devpath_name(dp);
411 		if (text != NULL) {
412 			printf("   BootInfo Path: %S\n", text);
413 			efi_free_devpath_name(text);
414 		}
415 		last_dp = dp;
416 		dp = (EFI_DEVICE_PATH *)((char *)dp + efi_devpath_length(dp));
417 	}
418 
419 	/*
420 	 * If there's only one item in the list, then nothing was
421 	 * specified. Or if the last path doesn't have a media
422 	 * path in it. Those show up as various VenHw() nodes
423 	 * which are basically opaque to us. Don't count those
424 	 * as something specifc.
425 	 */
426 	if (last_dp == first_dp) {
427 		printf("Ignoring Boot%04x: Only one DP found\n", boot_current);
428 		return NOT_SPECIFIC;
429 	}
430 	if (efi_devpath_to_media_path(last_dp) == NULL) {
431 		printf("Ignoring Boot%04x: No Media Path\n", boot_current);
432 		return NOT_SPECIFIC;
433 	}
434 
435 	/*
436 	 * OK. At this point we either have a good path or a bad one.
437 	 * Let's check.
438 	 */
439 	pp = efiblk_get_pdinfo_by_device_path(last_dp);
440 	if (pp == NULL) {
441 		printf("Ignoring Boot%04x: Device Path not found\n", boot_current);
442 		return BAD_CHOICE;
443 	}
444 	set_currdev_pdinfo(pp);
445 	if (!sanity_check_currdev()) {
446 		printf("Ignoring Boot%04x: sanity check failed\n", boot_current);
447 		return BAD_CHOICE;
448 	}
449 
450 	/*
451 	 * OK. We've found a device that matches, next we need to check the last
452 	 * component of the path. If it's a file, then we set the default kernel
453 	 * to that. Otherwise, just use this as the default root.
454 	 *
455 	 * Reminder: we're running very early, before we've parsed the defaults
456 	 * file, so we may need to have a hack override.
457 	 */
458 	dp = efi_devpath_last_node(last_dp);
459 	if (DevicePathType(dp) !=  MEDIA_DEVICE_PATH ||
460 	    DevicePathSubType(dp) != MEDIA_FILEPATH_DP) {
461 		printf("Using Boot%04x for root partition\n", boot_current);
462 		return (BOOT_INFO_OK);		/* use currdir, default kernel */
463 	}
464 	fp = (FILEPATH_DEVICE_PATH *)dp;
465 	ucs2_to_utf8(fp->PathName, &kernel);
466 	if (kernel == NULL) {
467 		printf("Not using Boot%04x: can't decode kernel\n", boot_current);
468 		return (BAD_CHOICE);
469 	}
470 	if (*kernel == '\\' || isupper(*kernel))
471 		fix_dosisms(kernel);
472 	if (stat(kernel, &st) != 0) {
473 		free(kernel);
474 		printf("Not using Boot%04x: can't find %s\n", boot_current,
475 		    kernel);
476 		return (BAD_CHOICE);
477 	}
478 	setenv("kernel", kernel, 1);
479 	free(kernel);
480 	text = efi_devpath_name(last_dp);
481 	if (text) {
482 		printf("Using Boot%04x %S + %s\n", boot_current, text,
483 		    kernel);
484 		efi_free_devpath_name(text);
485 	}
486 
487 	return (BOOT_INFO_OK);
488 }
489 
490 /*
491  * Look at the passed-in boot_info, if any. If we find it then we need
492  * to see if we can find ourselves in the boot chain. If we can, and
493  * there's another specified thing to boot next, assume that the file
494  * is loaded from / and use that for the root filesystem. If can't
495  * find the specified thing, we must fail the boot. If we're last on
496  * the list, then we fallback to looking for the first available /
497  * candidate (ZFS, if there's a bootable zpool, otherwise a UFS
498  * partition that has either /boot/defaults/loader.conf on it or
499  * /boot/kernel/kernel (the default kernel) that we can use.
500  *
501  * We always fail if we can't find the right thing. However, as
502  * a concession to buggy UEFI implementations, like u-boot, if
503  * we have determined that the host is violating the UEFI boot
504  * manager protocol, we'll signal the rest of the program that
505  * a drop to the OK boot loader prompt is possible.
506  */
507 static int
508 find_currdev(bool do_bootmgr, char *boot_info, size_t boot_info_sz)
509 {
510 	pdinfo_t *dp, *pp;
511 	EFI_DEVICE_PATH *devpath, *copy;
512 	EFI_HANDLE h;
513 	CHAR16 *text;
514 	struct devsw *dev;
515 	int unit;
516 	uint64_t extra;
517 	int rv;
518 	char *rootdev;
519 
520 	/*
521 	 * First choice: if rootdev is already set, use that, even if
522 	 * it's wrong.
523 	 */
524 	rootdev = getenv("rootdev");
525 	if (rootdev != NULL && *rootdev != '\0') {
526 		printf("    Setting currdev to configured rootdev %s\n",
527 		    rootdev);
528 		set_currdev(rootdev);
529 		return (0);
530 	}
531 
532 	/*
533 	 * Second choice: If uefi_rootdev is set, translate that UEFI device
534 	 * path to the loader's internal name and use that.
535 	 */
536 	do {
537 		rootdev = getenv("uefi_rootdev");
538 		if (rootdev == NULL)
539 			break;
540 		devpath = efi_name_to_devpath(rootdev);
541 		if (devpath == NULL)
542 			break;
543 		dp = efiblk_get_pdinfo_by_device_path(devpath);
544 		efi_devpath_free(devpath);
545 		if (dp == NULL)
546 			break;
547 		printf("    Setting currdev to UEFI path %s\n",
548 		    rootdev);
549 		set_currdev_pdinfo(dp);
550 		return (0);
551 	} while (0);
552 
553 	/*
554 	 * Third choice: If we can find out image boot_info, and there's
555 	 * a follow-on boot image in that boot_info, use that. In this
556 	 * case root will be the partition specified in that image and
557 	 * we'll load the kernel specified by the file path. Should there
558 	 * not be a filepath, we use the default. This filepath overrides
559 	 * loader.conf.
560 	 */
561 	if (do_bootmgr) {
562 		rv = match_boot_info(boot_info, boot_info_sz);
563 		switch (rv) {
564 		case BOOT_INFO_OK:	/* We found it */
565 			return (0);
566 		case BAD_CHOICE:	/* specified file not found -> error */
567 			/* XXX do we want to have an escape hatch for last in boot order? */
568 			return (ENOENT);
569 		} /* Nothing specified, try normal match */
570 	}
571 
572 #ifdef EFI_ZFS_BOOT
573 	/*
574 	 * Did efi_zfs_probe() detect the boot pool? If so, use the zpool
575 	 * it found, if it's sane. ZFS is the only thing that looks for
576 	 * disks and pools to boot. This may change in the future, however,
577 	 * if we allow specifying which pool to boot from via UEFI variables
578 	 * rather than the bootenv stuff that FreeBSD uses today.
579 	 */
580 	if (pool_guid != 0) {
581 		printf("Trying ZFS pool\n");
582 		if (probe_zfs_currdev(pool_guid))
583 			return (0);
584 	}
585 #endif /* EFI_ZFS_BOOT */
586 
587 #ifdef MD_IMAGE_SIZE
588 	/*
589 	 * If there is an embedded MD, try to use that.
590 	 */
591 	printf("Trying MD\n");
592 	if (probe_md_currdev())
593 		return (0);
594 #endif /* MD_IMAGE_SIZE */
595 
596 	/*
597 	 * Try to find the block device by its handle based on the
598 	 * image we're booting. If we can't find a sane partition,
599 	 * search all the other partitions of the disk. We do not
600 	 * search other disks because it's a violation of the UEFI
601 	 * boot protocol to do so. We fail and let UEFI go on to
602 	 * the next candidate.
603 	 */
604 	dp = efiblk_get_pdinfo_by_handle(boot_img->DeviceHandle);
605 	if (dp != NULL) {
606 		text = efi_devpath_name(dp->pd_devpath);
607 		if (text != NULL) {
608 			printf("Trying ESP: %S\n", text);
609 			efi_free_devpath_name(text);
610 		}
611 		set_currdev_pdinfo(dp);
612 		if (sanity_check_currdev())
613 			return (0);
614 		if (dp->pd_parent != NULL) {
615 			pdinfo_t *espdp = dp;
616 			dp = dp->pd_parent;
617 			STAILQ_FOREACH(pp, &dp->pd_part, pd_link) {
618 				/* Already tried the ESP */
619 				if (espdp == pp)
620 					continue;
621 				/*
622 				 * Roll up the ZFS special case
623 				 * for those partitions that have
624 				 * zpools on them.
625 				 */
626 				text = efi_devpath_name(pp->pd_devpath);
627 				if (text != NULL) {
628 					printf("Trying: %S\n", text);
629 					efi_free_devpath_name(text);
630 				}
631 				if (try_as_currdev(dp, pp))
632 					return (0);
633 			}
634 		}
635 	}
636 
637 	/*
638 	 * Try the device handle from our loaded image first.  If that
639 	 * fails, use the device path from the loaded image and see if
640 	 * any of the nodes in that path match one of the enumerated
641 	 * handles. Currently, this handle list is only for netboot.
642 	 */
643 	if (efi_handle_lookup(boot_img->DeviceHandle, &dev, &unit, &extra) == 0) {
644 		set_currdev_devsw(dev, unit);
645 		if (sanity_check_currdev())
646 			return (0);
647 	}
648 
649 	copy = NULL;
650 	devpath = efi_lookup_image_devpath(IH);
651 	while (devpath != NULL) {
652 		h = efi_devpath_handle(devpath);
653 		if (h == NULL)
654 			break;
655 
656 		free(copy);
657 		copy = NULL;
658 
659 		if (efi_handle_lookup(h, &dev, &unit, &extra) == 0) {
660 			set_currdev_devsw(dev, unit);
661 			if (sanity_check_currdev())
662 				return (0);
663 		}
664 
665 		devpath = efi_lookup_devpath(h);
666 		if (devpath != NULL) {
667 			copy = efi_devpath_trim(devpath);
668 			devpath = copy;
669 		}
670 	}
671 	free(copy);
672 
673 	return (ENOENT);
674 }
675 
676 static bool
677 interactive_interrupt(const char *msg)
678 {
679 	time_t now, then, last;
680 
681 	last = 0;
682 	now = then = getsecs();
683 	printf("%s\n", msg);
684 	if (fail_timeout == -2)		/* Always break to OK */
685 		return (true);
686 	if (fail_timeout == -1)		/* Never break to OK */
687 		return (false);
688 	do {
689 		if (last != now) {
690 			printf("press any key to interrupt reboot in %d seconds\r",
691 			    fail_timeout - (int)(now - then));
692 			last = now;
693 		}
694 
695 		/* XXX no pause or timeout wait for char */
696 		if (ischar())
697 			return (true);
698 		now = getsecs();
699 	} while (now - then < fail_timeout);
700 	return (false);
701 }
702 
703 static int
704 parse_args(int argc, CHAR16 *argv[])
705 {
706 	int i, howto;
707 	char var[128];
708 
709 	/*
710 	 * Parse the args to set the console settings, etc
711 	 * boot1.efi passes these in, if it can read /boot.config or /boot/config
712 	 * or iPXE may be setup to pass these in. Or the optional argument in the
713 	 * boot environment was used to pass these arguments in (in which case
714 	 * neither /boot.config nor /boot/config are consulted).
715 	 *
716 	 * Loop through the args, and for each one that contains an '=' that is
717 	 * not the first character, add it to the environment.  This allows
718 	 * loader and kernel env vars to be passed on the command line.  Convert
719 	 * args from UCS-2 to ASCII (16 to 8 bit) as they are copied (though this
720 	 * method is flawed for non-ASCII characters).
721 	 */
722 	howto = 0;
723 	for (i = 0; i < argc; i++) {
724 		cpy16to8(argv[i], var, sizeof(var));
725 		howto |= boot_parse_arg(var);
726 	}
727 
728 	return (howto);
729 }
730 
731 static void
732 setenv_int(const char *key, int val)
733 {
734 	char buf[20];
735 
736 	snprintf(buf, sizeof(buf), "%d", val);
737 	setenv(key, buf, 1);
738 }
739 
740 static void *
741 acpi_map_sdt(vm_offset_t addr)
742 {
743 	/* PA == VA */
744 	return ((void *)addr);
745 }
746 
747 static int
748 acpi_checksum(void *p, size_t length)
749 {
750 	uint8_t *bp;
751 	uint8_t sum;
752 
753 	bp = p;
754 	sum = 0;
755 	while (length--)
756 		sum += *bp++;
757 
758 	return (sum);
759 }
760 
761 static void *
762 acpi_find_table(uint8_t *sig)
763 {
764 	int entries, i, addr_size;
765 	ACPI_TABLE_HEADER *sdp;
766 	ACPI_TABLE_RSDT *rsdt;
767 	ACPI_TABLE_XSDT *xsdt;
768 	vm_offset_t addr;
769 
770 	if (rsdp == NULL)
771 		return (NULL);
772 
773 	rsdt = (ACPI_TABLE_RSDT *)(uintptr_t)rsdp->RsdtPhysicalAddress;
774 	xsdt = (ACPI_TABLE_XSDT *)(uintptr_t)rsdp->XsdtPhysicalAddress;
775 	if (rsdp->Revision < 2) {
776 		sdp = (ACPI_TABLE_HEADER *)rsdt;
777 		addr_size = sizeof(uint32_t);
778 	} else {
779 		sdp = (ACPI_TABLE_HEADER *)xsdt;
780 		addr_size = sizeof(uint64_t);
781 	}
782 	entries = (sdp->Length - sizeof(ACPI_TABLE_HEADER)) / addr_size;
783 	for (i = 0; i < entries; i++) {
784 		if (addr_size == 4)
785 			addr = le32toh(rsdt->TableOffsetEntry[i]);
786 		else
787 			addr = le64toh(xsdt->TableOffsetEntry[i]);
788 		if (addr == 0)
789 			continue;
790 		sdp = (ACPI_TABLE_HEADER *)acpi_map_sdt(addr);
791 		if (acpi_checksum(sdp, sdp->Length)) {
792 			printf("RSDT entry %d (sig %.4s) is corrupt", i,
793 			    sdp->Signature);
794 			continue;
795 		}
796 		if (memcmp(sig, sdp->Signature, 4) == 0)
797 			return (sdp);
798 	}
799 	return (NULL);
800 }
801 
802 /*
803  * Convert the InterfaceType in the SPCR. These are encoded the same for DBG2
804  * tables as well (though we don't parse those here).
805  */
806 static const char *
807 acpi_uart_type(UINT8 t)
808 {
809 	static const char *types[] = {
810 		[0x00] = "ns8250",	/* Full 16550 */
811 		[0x01] = "ns8250",	/* DBGP Rev 1 16550 subset */
812 		[0x03] = "pl011",	/* Arm PL011 */
813 		[0x05] = "ns8250",	/* Nvidia 16550 */
814 		[0x0d] = "pl011",	/* Arm SBSA 32-bit width */
815 		[0x0e] = "pl011",	/* Arm SBSA generic */
816 		[0x12] = "ns8250",	/* 16550 defined in SerialPort */
817 	};
818 
819 	if (t >= nitems(types))
820 		return (NULL);
821 	return (types[t]);
822 }
823 
824 static int
825 acpi_uart_baud(UINT8 b)
826 {
827 	static int baud[] = { 0, -1, -1, 9600, 19200, -1, 57600, 115200 };
828 
829 	if (b > 7)
830 		return (-1);
831 	return (baud[b]);
832 }
833 
834 static int
835 acpi_uart_regionwidth(UINT8 rw)
836 {
837 	if (rw == 0)
838 		return (1);
839 	if (rw > 4)
840 		return (-1);
841 	return (1 << (rw - 1));
842 }
843 
844 static const char *
845 acpi_uart_parity(UINT8 p)
846 {
847 	/* Some of these SPCR entires get this wrong, hard wire none */
848 	return ("none");
849 }
850 
851 /*
852  * See if we can find a SPCR ACPI table in the static tables. If so, then it
853  * describes the serial console that's been redirected to, so we know that at
854  * least there's a serial console. this is most important for embedded systems
855  * that don't have traidtional PC serial ports.
856  *
857  * All the two letter variables in this function correspond to their usage in
858  * the uart(4) console string. We use io == -1 to select between I/O ports and
859  * memory mapped addresses. Set both hw.uart.console and hw.uart.consol.extra
860  * to communicate settings from SPCR to the kernel.
861  */
862 static int
863 check_acpi_spcr(void)
864 {
865 	ACPI_TABLE_SPCR *spcr;
866 	int br, db, io, rs, rw, xo, pv, pd;
867 	uintmax_t mm;
868 	const char *dt, *pa;
869 	char *val = NULL;
870 
871 	spcr = acpi_find_table(ACPI_SIG_SPCR);
872 	if (spcr == NULL)
873 		return (0);
874 	dt = acpi_uart_type(spcr->InterfaceType);
875 	if (dt == NULL)	{ 	/* Kernel can't use unknown types */
876 		printf("UART Type %d not known\n", spcr->InterfaceType);
877 		return (0);
878 	}
879 
880 	/* I/O vs Memory mapped vs PCI device */
881 	io = -1;
882 	pv = spcr->PciVendorId;
883 	pd = spcr->PciDeviceId;
884 	if (pv == 0xffff && pd == 0xffff) {
885 		if (spcr->SerialPort.SpaceId == 1)
886 			io = spcr->SerialPort.Address;
887 		else {
888 			mm = spcr->SerialPort.Address;
889 			rs = ffs(spcr->SerialPort.BitWidth) - 4;
890 			rw = acpi_uart_regionwidth(spcr->SerialPort.AccessWidth);
891 		}
892 	} else {
893 		/* XXX todo: bus:device:function + flags and segment */
894 	}
895 
896 	/* Uart settings */
897 	pa = acpi_uart_parity(spcr->Parity);
898 	db = 8;
899 
900 	/*
901 	 * UartClkFreq is 3 and newer. We always use it then (it's only valid if
902 	 * it isn't 0, but if it is 0, we want to use 0 to have the kernel
903 	 * guess).
904 	 */
905 	if (spcr->Header.Revision <= 2)
906 		xo = 0;
907 	else
908 		xo = spcr->UartClkFreq;
909 
910 	/*
911 	 * PreciseBaudrate, when non-zero, is to be preferred. It's only valid,
912 	 * though, for rev 4 and newer. So when it's 0 or the version is too
913 	 * old, we do the old-style table lookup. Otherwise we believe it.
914 	 */
915 	if (spcr->Header.Revision <= 3 || spcr->PreciseBaudrate == 0)
916 		br = acpi_uart_baud(spcr->BaudRate);
917 	else
918 		br = spcr->PreciseBaudrate;
919 
920 	if (io != -1) {
921 		asprintf(&val, "db:%d,dt:%s,io:%#x,pa:%s,br:%d,xo=%d",
922 		    db, dt, io, pa, br, xo);
923 	} else if (pv != 0xffff && pd != 0xffff) {
924 		asprintf(&val, "db:%d,dt:%s,pv:%#x,pd:%#x,pa:%s,br:%d,xo=%d",
925 		    db, dt, pv, pd, pa, br, xo);
926 	} else {
927 		asprintf(&val, "db:%d,dt:%s,mm:%#jx,rs:%d,rw:%d,pa:%s,br:%d,xo=%d",
928 		    db, dt, mm, rs, rw, pa, br, xo);
929 	}
930 	env_setenv("hw.uart.console", EV_VOLATILE, val, NULL, NULL);
931 	free(val);
932 
933 	return (RB_SERIAL);
934 }
935 
936 
937 /*
938  * Parse ConOut (the list of consoles active) and see if we can find a serial
939  * port and/or a video port. It would be nice to also walk the ACPI DSDT to map
940  * the UID for the serial port to a port since there's no standard mapping. Also
941  * check for ConIn as well. This will be enough to determine if we have serial,
942  * and if we don't, we default to video. If there's a dual-console situation
943  * with only ConIn defined, this will currently fail.
944  */
945 int
946 parse_uefi_con_out(void)
947 {
948 	int how, rv;
949 	int vid_seen = 0, com_seen = 0, seen = 0;
950 	size_t sz;
951 	char buf[4096], *ep;
952 	EFI_DEVICE_PATH *node;
953 	ACPI_HID_DEVICE_PATH  *acpi;
954 	UART_DEVICE_PATH  *uart;
955 	bool pci_pending;
956 
957 	/*
958 	 * A SPCR in the ACPI fixed tables documents a serial port used for the
959 	 * console. It may mirror a video console, or may be stand alone. If it
960 	 * is present, we return RB_SERIAL and will use it for the kernel.
961 	 */
962 	how = check_acpi_spcr();
963 	sz = sizeof(buf);
964 	rv = efi_global_getenv("ConOut", buf, &sz);
965 	if (rv != EFI_SUCCESS)
966 		rv = efi_global_getenv("ConOutDev", buf, &sz);
967 	if (rv != EFI_SUCCESS)
968 		rv = efi_global_getenv("ConIn", buf, &sz);
969 	if (rv != EFI_SUCCESS) {
970 		/*
971 		 * If we don't have any Con* variable use both. If we have GOP
972 		 * make video primary, otherwise set serial primary. In either
973 		 * case, try to use both the 'efi' console which will use the
974 		 * GOP, if present and serial. If there's an EFI BIOS that omits
975 		 * this, but has a serial port redirect, we'll unavioidably get
976 		 * doubled characters, but we'll be right in all the other more
977 		 * common cases.
978 		 */
979 		if (efi_has_gop())
980 			how |= RB_MULTIPLE;
981 		else
982 			how |= RB_MULTIPLE | RB_SERIAL;
983 		setenv("console", "efi,comconsole", 1);
984 		goto out;
985 	}
986 	ep = buf + sz;
987 	node = (EFI_DEVICE_PATH *)buf;
988 	while ((char *)node < ep) {
989 		if (IsDevicePathEndType(node)) {
990 			if (pci_pending && vid_seen == 0)
991 				vid_seen = ++seen;
992 		}
993 		pci_pending = false;
994 		if (DevicePathType(node) == ACPI_DEVICE_PATH &&
995 		    (DevicePathSubType(node) == ACPI_DP ||
996 		    DevicePathSubType(node) == ACPI_EXTENDED_DP)) {
997 			/* Check for Serial node */
998 			acpi = (void *)node;
999 			if (EISA_ID_TO_NUM(acpi->HID) == 0x501) {
1000 				setenv_int("efi_8250_uid", acpi->UID);
1001 				com_seen = ++seen;
1002 			}
1003 		} else if (DevicePathType(node) == MESSAGING_DEVICE_PATH &&
1004 		    DevicePathSubType(node) == MSG_UART_DP) {
1005 			com_seen = ++seen;
1006 			uart = (void *)node;
1007 			setenv_int("efi_com_speed", uart->BaudRate);
1008 		} else if (DevicePathType(node) == ACPI_DEVICE_PATH &&
1009 		    DevicePathSubType(node) == ACPI_ADR_DP) {
1010 			/* Check for AcpiAdr() Node for video */
1011 			vid_seen = ++seen;
1012 		} else if (DevicePathType(node) == HARDWARE_DEVICE_PATH &&
1013 		    DevicePathSubType(node) == HW_PCI_DP) {
1014 			/*
1015 			 * Note, vmware fusion has a funky console device
1016 			 *	PciRoot(0x0)/Pci(0xf,0x0)
1017 			 * which we can only detect at the end since we also
1018 			 * have to cope with:
1019 			 *	PciRoot(0x0)/Pci(0x1f,0x0)/Serial(0x1)
1020 			 * so only match it if it's last.
1021 			 */
1022 			pci_pending = true;
1023 		}
1024 		node = NextDevicePathNode(node);
1025 	}
1026 
1027 	/*
1028 	 * Truth table for RB_MULTIPLE | RB_SERIAL
1029 	 * Value		Result
1030 	 * 0			Use only video console
1031 	 * RB_SERIAL		Use only serial console
1032 	 * RB_MULTIPLE		Use both video and serial console
1033 	 *			(but video is primary so gets rc messages)
1034 	 * both			Use both video and serial console
1035 	 *			(but serial is primary so gets rc messages)
1036 	 *
1037 	 * Try to honor this as best we can. If only one of serial / video
1038 	 * found, then use that. Otherwise, use the first one we found.
1039 	 * This also implies if we found nothing, default to video.
1040 	 */
1041 	how = 0;
1042 	if (vid_seen && com_seen) {
1043 		how |= RB_MULTIPLE;
1044 		if (com_seen < vid_seen)
1045 			how |= RB_SERIAL;
1046 	} else if (com_seen)
1047 		how |= RB_SERIAL;
1048 out:
1049 	return (how);
1050 }
1051 
1052 void
1053 parse_loader_efi_config(EFI_HANDLE h, const char *env_fn)
1054 {
1055 	pdinfo_t *dp;
1056 	struct stat st;
1057 	int fd = -1;
1058 	char *env = NULL;
1059 
1060 	dp = efiblk_get_pdinfo_by_handle(h);
1061 	if (dp == NULL)
1062 		return;
1063 	set_currdev_pdinfo(dp);
1064 	if (stat(env_fn, &st) != 0)
1065 		return;
1066 	fd = open(env_fn, O_RDONLY);
1067 	if (fd == -1)
1068 		return;
1069 	env = malloc(st.st_size + 1);
1070 	if (env == NULL)
1071 		goto out;
1072 	if (read(fd, env, st.st_size) != st.st_size)
1073 		goto out;
1074 	env[st.st_size] = '\0';
1075 	boot_parse_cmdline(env);
1076 out:
1077 	free(env);
1078 	close(fd);
1079 }
1080 
1081 static void
1082 read_loader_env(const char *name, char *def_fn, bool once)
1083 {
1084 	UINTN len;
1085 	char *fn, *freeme = NULL;
1086 
1087 	len = 0;
1088 	fn = def_fn;
1089 	if (efi_freebsd_getenv(name, NULL, &len) == EFI_BUFFER_TOO_SMALL) {
1090 		freeme = fn = malloc(len + 1);
1091 		if (fn != NULL) {
1092 			if (efi_freebsd_getenv(name, fn, &len) != EFI_SUCCESS) {
1093 				free(fn);
1094 				fn = NULL;
1095 				printf(
1096 			    "Can't fetch FreeBSD::%s we know is there\n", name);
1097 			} else {
1098 				/*
1099 				 * if tagged as 'once' delete the env variable so we
1100 				 * only use it once.
1101 				 */
1102 				if (once)
1103 					efi_freebsd_delenv(name);
1104 				/*
1105 				 * We malloced 1 more than len above, then redid the call.
1106 				 * so now we have room at the end of the string to NUL terminate
1107 				 * it here, even if the typical idium would have '- 1' here to
1108 				 * not overflow. len should be the same on return both times.
1109 				 */
1110 				fn[len] = '\0';
1111 			}
1112 		} else {
1113 			printf(
1114 		    "Can't allocate %d bytes to fetch FreeBSD::%s env var\n",
1115 			    len, name);
1116 		}
1117 	}
1118 	if (fn) {
1119 		printf("    Reading loader env vars from %s\n", fn);
1120 		parse_loader_efi_config(boot_img->DeviceHandle, fn);
1121 	}
1122 
1123 	free(freeme);
1124 }
1125 
1126 caddr_t
1127 ptov(uintptr_t x)
1128 {
1129 	return ((caddr_t)x);
1130 }
1131 
1132 static void
1133 acpi_detect(void)
1134 {
1135 	char buf[24];
1136 	int revision;
1137 
1138 	feature_enable(FEATURE_EARLY_ACPI);
1139 	if ((rsdp = efi_get_table(&acpi20)) == NULL)
1140 		if ((rsdp = efi_get_table(&acpi)) == NULL)
1141 			return;
1142 
1143 	sprintf(buf, "0x%016"PRIxPTR, (uintptr_t)rsdp);
1144 	setenv("acpi.rsdp", buf, 1);
1145 	revision = rsdp->Revision;
1146 	if (revision == 0)
1147 		revision = 1;
1148 	sprintf(buf, "%d", revision);
1149 	setenv("acpi.revision", buf, 1);
1150 	strncpy(buf, rsdp->OemId, sizeof(rsdp->OemId));
1151 	buf[sizeof(rsdp->OemId)] = '\0';
1152 	setenv("acpi.oem", buf, 1);
1153 	sprintf(buf, "0x%016x", rsdp->RsdtPhysicalAddress);
1154 	setenv("acpi.rsdt", buf, 1);
1155 	if (revision >= 2) {
1156 		/* XXX extended checksum? */
1157 		sprintf(buf, "0x%016llx",
1158 		    (unsigned long long)rsdp->XsdtPhysicalAddress);
1159 		setenv("acpi.xsdt", buf, 1);
1160 		sprintf(buf, "%d", rsdp->Length);
1161 		setenv("acpi.xsdt_length", buf, 1);
1162 	}
1163 }
1164 
1165 static void
1166 efi_smbios_detect(void)
1167 {
1168 	VOID *smbios_v2_ptr = NULL;
1169 	UINTN k;
1170 
1171 	for (k = 0; k < ST->NumberOfTableEntries; k++) {
1172 		EFI_GUID *guid;
1173 		VOID *const VT = ST->ConfigurationTable[k].VendorTable;
1174 		char buf[40];
1175 		bool is_smbios_v2, is_smbios_v3;
1176 
1177 		guid = &ST->ConfigurationTable[k].VendorGuid;
1178 		is_smbios_v2 = memcmp(guid, &smbios, sizeof(*guid)) == 0;
1179 		is_smbios_v3 = memcmp(guid, &smbios3, sizeof(*guid)) == 0;
1180 
1181 		if (!is_smbios_v2 && !is_smbios_v3)
1182 			continue;
1183 
1184 		snprintf(buf, sizeof(buf), "%p", VT);
1185 		setenv("hint.smbios.0.mem", buf, 1);
1186 		if (is_smbios_v2)
1187 			/*
1188 			 * We will parse a v2 table only if we don't find a v3
1189 			 * table.  In the meantime, store the address.
1190 			 */
1191 			smbios_v2_ptr = VT;
1192 		else if (smbios_detect(VT) != NULL)
1193 			/* v3 parsing succeeded, we are done. */
1194 			return;
1195 	}
1196 	if (smbios_v2_ptr != NULL)
1197 		(void)smbios_detect(smbios_v2_ptr);
1198 }
1199 
1200 EFI_STATUS
1201 main(int argc, CHAR16 *argv[])
1202 {
1203 	int howto, i, uhowto;
1204 	bool has_kbd;
1205 	char *s;
1206 	EFI_DEVICE_PATH *imgpath;
1207 	CHAR16 *text;
1208 	EFI_STATUS rv;
1209 	size_t sz, bisz = 0;
1210 	UINT16 boot_order[100];
1211 	char boot_info[4096];
1212 	char buf[32];
1213 	bool uefi_boot_mgr;
1214 
1215 #if !defined(__arm__)
1216 	efi_smbios_detect();
1217 #endif
1218 
1219         /* Get our loaded image protocol interface structure. */
1220 	(void) OpenProtocolByHandle(IH, &imgid, (void **)&boot_img);
1221 
1222 	/* Report the RSDP early. */
1223 	acpi_detect();
1224 
1225 	/*
1226 	 * Chicken-and-egg problem; we want to have console output early, but
1227 	 * some console attributes may depend on reading from eg. the boot
1228 	 * device, which we can't do yet.  We can use printf() etc. once this is
1229 	 * done. So, we set it to the efi console, then call console init. This
1230 	 * gets us printf early, but also primes the pump for all future console
1231 	 * changes to take effect, regardless of where they come from.
1232 	 */
1233 	setenv("console", "efi", 1);
1234 	uhowto = parse_uefi_con_out();
1235 #if defined(__riscv)
1236 	/*
1237 	 * This workaround likely is papering over a real issue
1238 	 */
1239 	if ((uhowto & RB_SERIAL) != 0)
1240 		setenv("console", "comconsole", 1);
1241 #endif
1242 	cons_probe();
1243 
1244 	/* Set print_delay variable to have hooks in place. */
1245 	env_setenv("print_delay", EV_VOLATILE, "", setprint_delay, env_nounset);
1246 
1247 	/* Set up currdev variable to have hooks in place. */
1248 	env_setenv("currdev", EV_VOLATILE, "", gen_setcurrdev, env_nounset);
1249 
1250 	/* Init the time source */
1251 	efi_time_init();
1252 
1253 	/*
1254 	 * Initialise the block cache. Set the upper limit.
1255 	 */
1256 	bcache_init(32768, 512);
1257 
1258 	/*
1259 	 * Scan the BLOCK IO MEDIA handles then
1260 	 * march through the device switch probing for things.
1261 	 */
1262 	i = efipart_inithandles();
1263 	if (i != 0 && i != ENOENT) {
1264 		printf("efipart_inithandles failed with ERRNO %d, expect "
1265 		    "failures\n", i);
1266 	}
1267 
1268 	devinit();
1269 
1270 	/*
1271 	 * Detect console settings two different ways: one via the command
1272 	 * args (eg -h) or via the UEFI ConOut variable.
1273 	 */
1274 	has_kbd = has_keyboard();
1275 	howto = parse_args(argc, argv);
1276 	if (!has_kbd && (howto & RB_PROBE))
1277 		howto |= RB_SERIAL | RB_MULTIPLE;
1278 	howto &= ~RB_PROBE;
1279 
1280 	/*
1281 	 * Read additional environment variables from the boot device's
1282 	 * "LoaderEnv" file. Any boot loader environment variable may be set
1283 	 * there, which are subtly different than loader.conf variables. Only
1284 	 * the 'simple' ones may be set so things like foo_load="YES" won't work
1285 	 * for two reasons.  First, the parser is simplistic and doesn't grok
1286 	 * quotes.  Second, because the variables that cause an action to happen
1287 	 * are parsed by the lua, 4th or whatever code that's not yet
1288 	 * loaded. This is relative to the root directory when loader.efi is
1289 	 * loaded off the UFS root drive (when chain booted), or from the ESP
1290 	 * when directly loaded by the BIOS.
1291 	 *
1292 	 * We also read in NextLoaderEnv if it was specified. This allows next boot
1293 	 * functionality to be implemented and to override anything in LoaderEnv.
1294 	 */
1295 	read_loader_env("LoaderEnv", "/efi/freebsd/loader.env", false);
1296 	read_loader_env("NextLoaderEnv", NULL, true);
1297 
1298 	/*
1299 	 * We now have two notions of console. howto should be viewed as
1300 	 * overrides. If console is already set, don't set it again.
1301 	 */
1302 #define	VIDEO_ONLY	0
1303 #define	SERIAL_ONLY	RB_SERIAL
1304 #define	VID_SER_BOTH	RB_MULTIPLE
1305 #define	SER_VID_BOTH	(RB_SERIAL | RB_MULTIPLE)
1306 #define	CON_MASK	(RB_SERIAL | RB_MULTIPLE)
1307 	if (strcmp(getenv("console"), "efi") == 0) {
1308 		if ((howto & CON_MASK) == 0) {
1309 			/* No override, uhowto is controlling and efi cons is perfect */
1310 			howto = howto | (uhowto & CON_MASK);
1311 		} else if ((howto & CON_MASK) == (uhowto & CON_MASK)) {
1312 			/* override matches what UEFI told us, efi console is perfect */
1313 		} else if ((uhowto & (CON_MASK)) != 0) {
1314 			/*
1315 			 * We detected a serial console on ConOut. All possible
1316 			 * overrides include serial. We can't really override what efi
1317 			 * gives us, so we use it knowing it's the best choice.
1318 			 */
1319 			/* Do nothing */
1320 		} else {
1321 			/*
1322 			 * We detected some kind of serial in the override, but ConOut
1323 			 * has no serial, so we have to sort out which case it really is.
1324 			 */
1325 			switch (howto & CON_MASK) {
1326 			case SERIAL_ONLY:
1327 				setenv("console", "comconsole", 1);
1328 				break;
1329 			case VID_SER_BOTH:
1330 				setenv("console", "efi comconsole", 1);
1331 				break;
1332 			case SER_VID_BOTH:
1333 				setenv("console", "comconsole efi", 1);
1334 				break;
1335 				/* case VIDEO_ONLY can't happen -- it's the first if above */
1336 			}
1337 		}
1338 	}
1339 
1340 	/*
1341 	 * howto is set now how we want to export the flags to the kernel, so
1342 	 * set the env based on it.
1343 	 */
1344 	boot_howto_to_env(howto);
1345 
1346 	if (efi_copy_init())
1347 		return (EFI_BUFFER_TOO_SMALL);
1348 
1349 	if ((s = getenv("fail_timeout")) != NULL)
1350 		fail_timeout = strtol(s, NULL, 10);
1351 
1352 	printf("%s\n", bootprog_info);
1353 	printf("   Command line arguments:");
1354 	for (i = 0; i < argc; i++)
1355 		printf(" %S", argv[i]);
1356 	printf("\n");
1357 
1358 	printf("   Image base: 0x%lx\n", (unsigned long)boot_img->ImageBase);
1359 	printf("   EFI version: %d.%02d\n", ST->Hdr.Revision >> 16,
1360 	    ST->Hdr.Revision & 0xffff);
1361 	printf("   EFI Firmware: %S (rev %d.%02d)\n", ST->FirmwareVendor,
1362 	    ST->FirmwareRevision >> 16, ST->FirmwareRevision & 0xffff);
1363 	printf("   Console: %s (%#x)\n", getenv("console"), howto);
1364 
1365 	/* Determine the devpath of our image so we can prefer it. */
1366 	text = efi_devpath_name(boot_img->FilePath);
1367 	if (text != NULL) {
1368 		printf("   Load Path: %S\n", text);
1369 		efi_setenv_freebsd_wcs("LoaderPath", text);
1370 		efi_free_devpath_name(text);
1371 	}
1372 
1373 	rv = OpenProtocolByHandle(boot_img->DeviceHandle, &devid,
1374 	    (void **)&imgpath);
1375 	if (rv == EFI_SUCCESS) {
1376 		text = efi_devpath_name(imgpath);
1377 		if (text != NULL) {
1378 			printf("   Load Device: %S\n", text);
1379 			efi_setenv_freebsd_wcs("LoaderDev", text);
1380 			efi_free_devpath_name(text);
1381 		}
1382 	}
1383 
1384 	if (getenv("uefi_ignore_boot_mgr") != NULL) {
1385 		printf("    Ignoring UEFI boot manager\n");
1386 		uefi_boot_mgr = false;
1387 	} else {
1388 		uefi_boot_mgr = true;
1389 		boot_current = 0;
1390 		sz = sizeof(boot_current);
1391 		rv = efi_global_getenv("BootCurrent", &boot_current, &sz);
1392 		if (rv == EFI_SUCCESS)
1393 			printf("   BootCurrent: %04x\n", boot_current);
1394 		else {
1395 			boot_current = 0xffff;
1396 			uefi_boot_mgr = false;
1397 		}
1398 
1399 		sz = sizeof(boot_order);
1400 		rv = efi_global_getenv("BootOrder", &boot_order, &sz);
1401 		if (rv == EFI_SUCCESS) {
1402 			printf("   BootOrder:");
1403 			for (i = 0; i < sz / sizeof(boot_order[0]); i++)
1404 				printf(" %04x%s", boot_order[i],
1405 				    boot_order[i] == boot_current ? "[*]" : "");
1406 			printf("\n");
1407 		} else if (uefi_boot_mgr) {
1408 			/*
1409 			 * u-boot doesn't set BootOrder, but otherwise participates in the
1410 			 * boot manager protocol. So we fake it here and don't consider it
1411 			 * a failure.
1412 			 */
1413 			boot_order[0] = boot_current;
1414 		}
1415 	}
1416 
1417 	/*
1418 	 * Next, find the boot info structure the UEFI boot manager is
1419 	 * supposed to setup. We need this so we can walk through it to
1420 	 * find where we are in the booting process and what to try to
1421 	 * boot next.
1422 	 */
1423 	if (uefi_boot_mgr) {
1424 		snprintf(buf, sizeof(buf), "Boot%04X", boot_current);
1425 		sz = sizeof(boot_info);
1426 		rv = efi_global_getenv(buf, &boot_info, &sz);
1427 		if (rv == EFI_SUCCESS)
1428 			bisz = sz;
1429 		else
1430 			uefi_boot_mgr = false;
1431 	}
1432 
1433 	/*
1434 	 * Disable the watchdog timer. By default the boot manager sets
1435 	 * the timer to 5 minutes before invoking a boot option. If we
1436 	 * want to return to the boot manager, we have to disable the
1437 	 * watchdog timer and since we're an interactive program, we don't
1438 	 * want to wait until the user types "quit". The timer may have
1439 	 * fired by then. We don't care if this fails. It does not prevent
1440 	 * normal functioning in any way...
1441 	 */
1442 	BS->SetWatchdogTimer(0, 0, 0, NULL);
1443 
1444 	/*
1445 	 * Initialize the trusted/forbidden certificates from UEFI.
1446 	 * They will be later used to verify the manifest(s),
1447 	 * which should contain hashes of verified files.
1448 	 * This needs to be initialized before any configuration files
1449 	 * are loaded.
1450 	 */
1451 #ifdef EFI_SECUREBOOT
1452 	ve_efi_init();
1453 #endif
1454 
1455 	/*
1456 	 * Try and find a good currdev based on the image that was booted.
1457 	 * It might be desirable here to have a short pause to allow falling
1458 	 * through to the boot loader instead of returning instantly to follow
1459 	 * the boot protocol and also allow an escape hatch for users wishing
1460 	 * to try something different.
1461 	 */
1462 	if (find_currdev(uefi_boot_mgr, boot_info, bisz) != 0)
1463 		if (uefi_boot_mgr &&
1464 		    !interactive_interrupt("Failed to find bootable partition"))
1465 			return (EFI_NOT_FOUND);
1466 
1467 	autoload_font(false);	/* Set up the font list for console. */
1468 	efi_init_environment();
1469 
1470 	interact();			/* doesn't return */
1471 
1472 	return (EFI_SUCCESS);		/* keep compiler happy */
1473 }
1474 
1475 COMMAND_SET(efi_seed_entropy, "efi-seed-entropy", "try to get entropy from the EFI RNG", command_seed_entropy);
1476 
1477 static int
1478 command_seed_entropy(int argc, char *argv[])
1479 {
1480 	EFI_STATUS status;
1481 	EFI_RNG_PROTOCOL *rng;
1482 	unsigned int size_efi = RANDOM_FORTUNA_DEFPOOLSIZE * RANDOM_FORTUNA_NPOOLS;
1483 	unsigned int size = RANDOM_FORTUNA_DEFPOOLSIZE * RANDOM_FORTUNA_NPOOLS;
1484 	void *buf_efi;
1485 	void *buf;
1486 
1487 	if (argc > 1) {
1488 		size_efi = strtol(argv[1], NULL, 0);
1489 
1490 		/* Don't *compress* the entropy we get from EFI. */
1491 		if (size_efi > size)
1492 			size = size_efi;
1493 
1494 		/*
1495 		 * If the amount of entropy we get from EFI is less than the
1496 		 * size of a single Fortuna pool -- i.e. not enough to ensure
1497 		 * that Fortuna is safely seeded -- don't expand it since we
1498 		 * don't want to trick Fortuna into thinking that it has been
1499 		 * safely seeded when it has not.
1500 		 */
1501 		if (size_efi < RANDOM_FORTUNA_DEFPOOLSIZE)
1502 			size = size_efi;
1503 	}
1504 
1505 	status = BS->LocateProtocol(&rng_guid, NULL, (VOID **)&rng);
1506 	if (status != EFI_SUCCESS) {
1507 		command_errmsg = "RNG protocol not found";
1508 		return (CMD_ERROR);
1509 	}
1510 
1511 	if ((buf = malloc(size)) == NULL) {
1512 		command_errmsg = "out of memory";
1513 		return (CMD_ERROR);
1514 	}
1515 
1516 	if ((buf_efi = malloc(size_efi)) == NULL) {
1517 		free(buf);
1518 		command_errmsg = "out of memory";
1519 		return (CMD_ERROR);
1520 	}
1521 
1522 	TSENTER2("rng->GetRNG");
1523 	status = rng->GetRNG(rng, NULL, size_efi, (UINT8 *)buf_efi);
1524 	TSEXIT();
1525 	if (status != EFI_SUCCESS) {
1526 		free(buf_efi);
1527 		free(buf);
1528 		command_errmsg = "GetRNG failed";
1529 		return (CMD_ERROR);
1530 	}
1531 	if (size_efi < size)
1532 		pkcs5v2_genkey_raw(buf, size, "", 0, buf_efi, size_efi, 1);
1533 	else
1534 		memcpy(buf, buf_efi, size);
1535 
1536 	if (file_addbuf("efi_rng_seed", "boot_entropy_platform", size, buf) != 0) {
1537 		free(buf_efi);
1538 		free(buf);
1539 		return (CMD_ERROR);
1540 	}
1541 
1542 	explicit_bzero(buf_efi, size_efi);
1543 	free(buf_efi);
1544 	free(buf);
1545 	return (CMD_OK);
1546 }
1547 
1548 COMMAND_SET(poweroff, "poweroff", "power off the system", command_poweroff);
1549 COMMAND_SET(halt, "halt", "power off the system", command_poweroff);
1550 
1551 static int
1552 command_poweroff(int argc __unused, char *argv[] __unused)
1553 {
1554 	int i;
1555 
1556 	for (i = 0; devsw[i] != NULL; ++i)
1557 		if (devsw[i]->dv_cleanup != NULL)
1558 			(devsw[i]->dv_cleanup)();
1559 
1560 	RS->ResetSystem(EfiResetShutdown, EFI_SUCCESS, 0, NULL);
1561 
1562 	/* NOTREACHED */
1563 	return (CMD_ERROR);
1564 }
1565 
1566 COMMAND_SET(reboot, "reboot", "reboot the system", command_reboot);
1567 
1568 static int
1569 command_reboot(int argc, char *argv[])
1570 {
1571 	int i;
1572 
1573 	for (i = 0; devsw[i] != NULL; ++i)
1574 		if (devsw[i]->dv_cleanup != NULL)
1575 			(devsw[i]->dv_cleanup)();
1576 
1577 	RS->ResetSystem(EfiResetCold, EFI_SUCCESS, 0, NULL);
1578 
1579 	/* NOTREACHED */
1580 	return (CMD_ERROR);
1581 }
1582 
1583 COMMAND_SET(memmap, "memmap", "print memory map", command_memmap);
1584 
1585 static int
1586 command_memmap(int argc __unused, char *argv[] __unused)
1587 {
1588 	UINTN sz;
1589 	EFI_MEMORY_DESCRIPTOR *map, *p;
1590 	UINTN key, dsz;
1591 	UINT32 dver;
1592 	EFI_STATUS status;
1593 	int i, ndesc;
1594 	char line[80];
1595 
1596 	sz = 0;
1597 	status = BS->GetMemoryMap(&sz, 0, &key, &dsz, &dver);
1598 	if (status != EFI_BUFFER_TOO_SMALL) {
1599 		printf("Can't determine memory map size\n");
1600 		return (CMD_ERROR);
1601 	}
1602 	map = malloc(sz);
1603 	status = BS->GetMemoryMap(&sz, map, &key, &dsz, &dver);
1604 	if (EFI_ERROR(status)) {
1605 		printf("Can't read memory map\n");
1606 		return (CMD_ERROR);
1607 	}
1608 
1609 	ndesc = sz / dsz;
1610 	snprintf(line, sizeof(line), "%23s %12s %12s %8s %4s\n",
1611 	    "Type", "Physical", "Virtual", "#Pages", "Attr");
1612 	pager_open();
1613 	if (pager_output(line)) {
1614 		pager_close();
1615 		return (CMD_OK);
1616 	}
1617 
1618 	for (i = 0, p = map; i < ndesc;
1619 	     i++, p = NextMemoryDescriptor(p, dsz)) {
1620 		snprintf(line, sizeof(line), "%23s %012jx %012jx %08jx ",
1621 		    efi_memory_type(p->Type), (uintmax_t)p->PhysicalStart,
1622 		    (uintmax_t)p->VirtualStart, (uintmax_t)p->NumberOfPages);
1623 		if (pager_output(line))
1624 			break;
1625 
1626 		if (p->Attribute & EFI_MEMORY_UC)
1627 			printf("UC ");
1628 		if (p->Attribute & EFI_MEMORY_WC)
1629 			printf("WC ");
1630 		if (p->Attribute & EFI_MEMORY_WT)
1631 			printf("WT ");
1632 		if (p->Attribute & EFI_MEMORY_WB)
1633 			printf("WB ");
1634 		if (p->Attribute & EFI_MEMORY_UCE)
1635 			printf("UCE ");
1636 		if (p->Attribute & EFI_MEMORY_WP)
1637 			printf("WP ");
1638 		if (p->Attribute & EFI_MEMORY_RP)
1639 			printf("RP ");
1640 		if (p->Attribute & EFI_MEMORY_XP)
1641 			printf("XP ");
1642 		if (p->Attribute & EFI_MEMORY_NV)
1643 			printf("NV ");
1644 		if (p->Attribute & EFI_MEMORY_MORE_RELIABLE)
1645 			printf("MR ");
1646 		if (p->Attribute & EFI_MEMORY_RO)
1647 			printf("RO ");
1648 		if (pager_output("\n"))
1649 			break;
1650 	}
1651 
1652 	pager_close();
1653 	return (CMD_OK);
1654 }
1655 
1656 COMMAND_SET(configuration, "configuration", "print configuration tables",
1657     command_configuration);
1658 
1659 static int
1660 command_configuration(int argc, char *argv[])
1661 {
1662 	UINTN i;
1663 	char *name;
1664 
1665 	printf("NumberOfTableEntries=%lu\n",
1666 		(unsigned long)ST->NumberOfTableEntries);
1667 
1668 	for (i = 0; i < ST->NumberOfTableEntries; i++) {
1669 		EFI_GUID *guid;
1670 
1671 		printf("  ");
1672 		guid = &ST->ConfigurationTable[i].VendorGuid;
1673 
1674 		if (efi_guid_to_name(guid, &name) == true) {
1675 			printf(name);
1676 			free(name);
1677 		} else {
1678 			printf("Error while translating UUID to name");
1679 		}
1680 		printf(" at %p\n", ST->ConfigurationTable[i].VendorTable);
1681 	}
1682 
1683 	return (CMD_OK);
1684 }
1685 
1686 
1687 COMMAND_SET(mode, "mode", "change or display EFI text modes", command_mode);
1688 
1689 static int
1690 command_mode(int argc, char *argv[])
1691 {
1692 	UINTN cols, rows;
1693 	unsigned int mode;
1694 	int i;
1695 	char *cp;
1696 	EFI_STATUS status;
1697 	SIMPLE_TEXT_OUTPUT_INTERFACE *conout;
1698 
1699 	conout = ST->ConOut;
1700 
1701 	if (argc > 1) {
1702 		mode = strtol(argv[1], &cp, 0);
1703 		if (cp[0] != '\0') {
1704 			printf("Invalid mode\n");
1705 			return (CMD_ERROR);
1706 		}
1707 		status = conout->QueryMode(conout, mode, &cols, &rows);
1708 		if (EFI_ERROR(status)) {
1709 			printf("invalid mode %d\n", mode);
1710 			return (CMD_ERROR);
1711 		}
1712 		status = conout->SetMode(conout, mode);
1713 		if (EFI_ERROR(status)) {
1714 			printf("couldn't set mode %d\n", mode);
1715 			return (CMD_ERROR);
1716 		}
1717 		(void) cons_update_mode(true);
1718 		return (CMD_OK);
1719 	}
1720 
1721 	printf("Current mode: %d\n", conout->Mode->Mode);
1722 	for (i = 0; i <= conout->Mode->MaxMode; i++) {
1723 		status = conout->QueryMode(conout, i, &cols, &rows);
1724 		if (EFI_ERROR(status))
1725 			continue;
1726 		printf("Mode %d: %u columns, %u rows\n", i, (unsigned)cols,
1727 		    (unsigned)rows);
1728 	}
1729 
1730 	if (i != 0)
1731 		printf("Select a mode with the command \"mode <number>\"\n");
1732 
1733 	return (CMD_OK);
1734 }
1735 
1736 COMMAND_SET(lsefi, "lsefi", "list EFI handles", command_lsefi);
1737 
1738 static void
1739 lsefi_print_handle_info(EFI_HANDLE handle)
1740 {
1741 	EFI_DEVICE_PATH *devpath;
1742 	EFI_DEVICE_PATH *imagepath;
1743 	CHAR16 *dp_name;
1744 
1745 	imagepath = efi_lookup_image_devpath(handle);
1746 	if (imagepath != NULL) {
1747 		dp_name = efi_devpath_name(imagepath);
1748 		printf("Handle for image %S", dp_name);
1749 		efi_free_devpath_name(dp_name);
1750 		return;
1751 	}
1752 	devpath = efi_lookup_devpath(handle);
1753 	if (devpath != NULL) {
1754 		dp_name = efi_devpath_name(devpath);
1755 		printf("Handle for device %S", dp_name);
1756 		efi_free_devpath_name(dp_name);
1757 		return;
1758 	}
1759 	printf("Handle %p", handle);
1760 }
1761 
1762 static int
1763 command_lsefi(int argc __unused, char *argv[] __unused)
1764 {
1765 	char *name;
1766 	EFI_HANDLE *buffer = NULL;
1767 	EFI_HANDLE handle;
1768 	UINTN bufsz = 0, i, j;
1769 	EFI_STATUS status;
1770 	int ret = 0;
1771 
1772 	status = BS->LocateHandle(AllHandles, NULL, NULL, &bufsz, buffer);
1773 	if (status != EFI_BUFFER_TOO_SMALL) {
1774 		snprintf(command_errbuf, sizeof (command_errbuf),
1775 		    "unexpected error: %lld", (long long)status);
1776 		return (CMD_ERROR);
1777 	}
1778 	if ((buffer = malloc(bufsz)) == NULL) {
1779 		sprintf(command_errbuf, "out of memory");
1780 		return (CMD_ERROR);
1781 	}
1782 
1783 	status = BS->LocateHandle(AllHandles, NULL, NULL, &bufsz, buffer);
1784 	if (EFI_ERROR(status)) {
1785 		free(buffer);
1786 		snprintf(command_errbuf, sizeof (command_errbuf),
1787 		    "LocateHandle() error: %lld", (long long)status);
1788 		return (CMD_ERROR);
1789 	}
1790 
1791 	pager_open();
1792 	for (i = 0; i < (bufsz / sizeof (EFI_HANDLE)); i++) {
1793 		UINTN nproto = 0;
1794 		EFI_GUID **protocols = NULL;
1795 
1796 		handle = buffer[i];
1797 		lsefi_print_handle_info(handle);
1798 		if (pager_output("\n"))
1799 			break;
1800 		/* device path */
1801 
1802 		status = BS->ProtocolsPerHandle(handle, &protocols, &nproto);
1803 		if (EFI_ERROR(status)) {
1804 			snprintf(command_errbuf, sizeof (command_errbuf),
1805 			    "ProtocolsPerHandle() error: %lld",
1806 			    (long long)status);
1807 			continue;
1808 		}
1809 
1810 		for (j = 0; j < nproto; j++) {
1811 			if (efi_guid_to_name(protocols[j], &name) == true) {
1812 				printf("  %s", name);
1813 				free(name);
1814 			} else {
1815 				printf("Error while translating UUID to name");
1816 			}
1817 			if ((ret = pager_output("\n")) != 0)
1818 				break;
1819 		}
1820 		BS->FreePool(protocols);
1821 		if (ret != 0)
1822 			break;
1823 	}
1824 	pager_close();
1825 	free(buffer);
1826 	return (CMD_OK);
1827 }
1828 
1829 #ifdef LOADER_FDT_SUPPORT
1830 extern int command_fdt_internal(int argc, char *argv[]);
1831 
1832 /*
1833  * Since proper fdt command handling function is defined in fdt_loader_cmd.c,
1834  * and declaring it as extern is in contradiction with COMMAND_SET() macro
1835  * (which uses static pointer), we're defining wrapper function, which
1836  * calls the proper fdt handling routine.
1837  */
1838 static int
1839 command_fdt(int argc, char *argv[])
1840 {
1841 
1842 	return (command_fdt_internal(argc, argv));
1843 }
1844 
1845 COMMAND_SET(fdt, "fdt", "flattened device tree handling", command_fdt);
1846 #endif
1847 
1848 /*
1849  * Chain load another efi loader.
1850  */
1851 static int
1852 command_chain(int argc, char *argv[])
1853 {
1854 	EFI_GUID LoadedImageGUID = LOADED_IMAGE_PROTOCOL;
1855 	EFI_HANDLE loaderhandle;
1856 	EFI_LOADED_IMAGE *loaded_image;
1857 	EFI_STATUS status;
1858 	struct stat st;
1859 	struct devdesc *dev;
1860 	char *name, *path;
1861 	void *buf;
1862 	int fd;
1863 
1864 	if (argc < 2) {
1865 		command_errmsg = "wrong number of arguments";
1866 		return (CMD_ERROR);
1867 	}
1868 
1869 	name = argv[1];
1870 
1871 	if ((fd = open(name, O_RDONLY)) < 0) {
1872 		command_errmsg = "no such file";
1873 		return (CMD_ERROR);
1874 	}
1875 
1876 #ifdef LOADER_VERIEXEC
1877 	if (verify_file(fd, name, 0, VE_MUST, __func__) < 0) {
1878 		sprintf(command_errbuf, "can't verify: %s", name);
1879 		close(fd);
1880 		return (CMD_ERROR);
1881 	}
1882 #endif
1883 
1884 	if (fstat(fd, &st) < -1) {
1885 		command_errmsg = "stat failed";
1886 		close(fd);
1887 		return (CMD_ERROR);
1888 	}
1889 
1890 	status = BS->AllocatePool(EfiLoaderCode, (UINTN)st.st_size, &buf);
1891 	if (status != EFI_SUCCESS) {
1892 		command_errmsg = "failed to allocate buffer";
1893 		close(fd);
1894 		return (CMD_ERROR);
1895 	}
1896 	if (read(fd, buf, st.st_size) != st.st_size) {
1897 		command_errmsg = "error while reading the file";
1898 		(void)BS->FreePool(buf);
1899 		close(fd);
1900 		return (CMD_ERROR);
1901 	}
1902 	close(fd);
1903 	status = BS->LoadImage(FALSE, IH, NULL, buf, st.st_size, &loaderhandle);
1904 	(void)BS->FreePool(buf);
1905 	if (status != EFI_SUCCESS) {
1906 		command_errmsg = "LoadImage failed";
1907 		return (CMD_ERROR);
1908 	}
1909 	status = OpenProtocolByHandle(loaderhandle, &LoadedImageGUID,
1910 	    (void **)&loaded_image);
1911 
1912 	if (argc > 2) {
1913 		int i, len = 0;
1914 		CHAR16 *argp;
1915 
1916 		for (i = 2; i < argc; i++)
1917 			len += strlen(argv[i]) + 1;
1918 
1919 		len *= sizeof (*argp);
1920 		loaded_image->LoadOptions = argp = malloc (len);
1921 		loaded_image->LoadOptionsSize = len;
1922 		for (i = 2; i < argc; i++) {
1923 			char *ptr = argv[i];
1924 			while (*ptr)
1925 				*(argp++) = *(ptr++);
1926 			*(argp++) = ' ';
1927 		}
1928 		*(--argv) = 0;
1929 	}
1930 
1931 	if (efi_getdev((void **)&dev, name, (const char **)&path) == 0) {
1932 #ifdef EFI_ZFS_BOOT
1933 		struct zfs_devdesc *z_dev;
1934 #endif
1935 		struct disk_devdesc *d_dev;
1936 		pdinfo_t *hd, *pd;
1937 
1938 		switch (dev->d_dev->dv_type) {
1939 #ifdef EFI_ZFS_BOOT
1940 		case DEVT_ZFS:
1941 			z_dev = (struct zfs_devdesc *)dev;
1942 			loaded_image->DeviceHandle =
1943 			    efizfs_get_handle_by_guid(z_dev->pool_guid);
1944 			break;
1945 #endif
1946 		case DEVT_NET:
1947 			loaded_image->DeviceHandle =
1948 			    efi_find_handle(dev->d_dev, dev->d_unit);
1949 			break;
1950 		default:
1951 			hd = efiblk_get_pdinfo(dev);
1952 			if (STAILQ_EMPTY(&hd->pd_part)) {
1953 				loaded_image->DeviceHandle = hd->pd_handle;
1954 				break;
1955 			}
1956 			d_dev = (struct disk_devdesc *)dev;
1957 			STAILQ_FOREACH(pd, &hd->pd_part, pd_link) {
1958 				/*
1959 				 * d_partition should be 255
1960 				 */
1961 				if (pd->pd_unit == (uint32_t)d_dev->d_slice) {
1962 					loaded_image->DeviceHandle =
1963 					    pd->pd_handle;
1964 					break;
1965 				}
1966 			}
1967 			break;
1968 		}
1969 	}
1970 
1971 	dev_cleanup();
1972 	status = BS->StartImage(loaderhandle, NULL, NULL);
1973 	if (status != EFI_SUCCESS) {
1974 		command_errmsg = "StartImage failed";
1975 		free(loaded_image->LoadOptions);
1976 		loaded_image->LoadOptions = NULL;
1977 		status = BS->UnloadImage(loaded_image);
1978 		return (CMD_ERROR);
1979 	}
1980 
1981 	return (CMD_ERROR);	/* not reached */
1982 }
1983 
1984 COMMAND_SET(chain, "chain", "chain load file", command_chain);
1985 
1986 #if defined(LOADER_NET_SUPPORT)
1987 extern struct in_addr servip;
1988 static int
1989 command_netserver(int argc, char *argv[])
1990 {
1991 	char *proto;
1992 	n_long rootaddr;
1993 
1994 	if (argc > 2) {
1995 		command_errmsg = "wrong number of arguments";
1996 		return (CMD_ERROR);
1997 	}
1998 	if (argc < 2) {
1999 		proto = netproto == NET_TFTP ? "tftp://" : "nfs://";
2000 		printf("Netserver URI: %s%s%s\n", proto, intoa(rootip.s_addr),
2001 		    rootpath);
2002 		return (CMD_OK);
2003 	}
2004 	if (argc == 2) {
2005 		strncpy(rootpath, argv[1], sizeof(rootpath));
2006 		rootpath[sizeof(rootpath) -1] = '\0';
2007 		if ((rootaddr = net_parse_rootpath()) != INADDR_NONE)
2008 			servip.s_addr = rootip.s_addr = rootaddr;
2009 		return (CMD_OK);
2010 	}
2011 	return (CMD_ERROR);	/* not reached */
2012 
2013 }
2014 
2015 COMMAND_SET(netserver, "netserver", "change or display netserver URI",
2016     command_netserver);
2017 #endif
2018